Sample records for accumulation insulin resistance

  1. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  3. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  4. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation.

    PubMed

    Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago; Ladiges, Warren; Rabinovitch, Peter S; Jurczak, Michael J; Choi, Cheol Soo; Shulman, Gerald I; Samuel, Varman T

    2017-08-01

    We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling. © 2017 by the American Diabetes Association.

  5. Relationships between body fat accumulation, aerobic capacity and insulin resistance in Japanese participants.

    PubMed

    Yoshimura, Eiichi; Kumahara, Hideaki; Tobina, Takuro; Ayabe, Makoto; Matono, Sakiko; Anzai, Keizo; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2011-01-01

    This study evaluated the relationships between body fat accumulation, aerobic capacity and insulin resistance (HOMA-IR) in 61 Japanese participants. The participants were middle-aged to elderly (age: 33-73; BMI: 21.6-38.5). Body fat mass (FM) was evaluated by hydrostatic weighing. Computed tomography was used to evaluate visceral and subcutaneous fat areas (VFA and SFA), liver to spleen ratio (L/S), and low-density muscle area (LDMA). To assess aerobic capacity, VO2 at the lactate threshold (VO2@LT) and VO2 peak were measured using a bicycle ergometer. FM, VFA, SFA, LDMA and L/S significantly correlated with HOMA-IR, but VO2@LT and VO2 peak did not. Analysis of covariance after adjustment for VFA or other body fat distribution and aerobic capacity showed that HOMA-IR had a significant linear trend across the tertile groups of L/S. However, for FM, VFA, SFA, LDMA and VO2@LT or VO2 peak, no significant trend was observed between the tertiles and insulin resistance. Ectopic fat deposition in the liver may influence insulin resistance independently of other body fat accumulation and aerobic capacity in Japanese participants. © 2011 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  6. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  7. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  8. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  9. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    PubMed

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  10. Mechanisms linking brain insulin resistance to Alzheimer's disease

    PubMed Central

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  11. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  12. Glycation & Insulin Resistance: Novel Mechanisms and Unique Targets?

    PubMed Central

    Song, Fei; Schmidt, Ann Marie

    2012-01-01

    Objectives Multiple biochemical, metabolic and signal transduction pathways contribute to insulin resistance. In this review, we present the evidence that the post-translational process of protein glycation may play role in insulin resistance. The post-translational modifications, the advanced glycation endproducts (AGEs), are formed and accumulate by endogenous and exogenous mechanisms. Methods and Results AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-alpha, direct modification of the insulin molecule thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as RAGE, or receptor for AGE. AGE-RAGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress and reduction in the expression and activity of the enzyme, glyoxalase I that detoxifies the AGE precursor, methylglyoxal, or MG. Conclusions Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to prevention of insulin resistance and its consequences. PMID:22815341

  13. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  14. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  15. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  16. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.

  17. NK cells link obesity-induced adipose stress to inflammation and insulin resistance.

    PubMed

    Wensveen, Felix M; Jelenčić, Vedrana; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Theurich, Sebastian; Glasner, Ariella; Mendrila, Davor; Štimac, Davor; Wunderlich, F Thomas; Brüning, Jens C; Mandelboim, Ofer; Polić, Bojan

    2015-04-01

    An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.

  18. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    PubMed

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  19. The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver*

    PubMed Central

    Schäfer, Alexander; Neschen, Susanne; Kahle, Melanie; Sarioglu, Hakan; Gaisbauer, Tobias; Imhof, Axel; Adamski, Jerzy; Hauck, Stefanie M.; Ueffing, Marius

    2015-01-01

    Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized. Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation. PMID:26070664

  20. Lipid accumulation product and insulin resistance in Iranian PCOS prevalence study.

    PubMed

    Hosseinpanah, Farhad; Barzin, Maryam; Erfani, Hadi; Serahati, Sara; Ramezani Tehrani, Fahimeh; Azizi, Fereidoun

    2014-07-01

    To evaluate diagnostic accuracy of lipid accumulation product (LAP) index as a marker of insulin resistance in a community-based population with polycystic ovary syndrome (PCOS), compared with healthy women. Anthropometric measurements, biochemical parameters, LAP index and insulin resistance (IR) were compared in 134 PCOS subjects and 414 healthy women recruited from 1126 reproductive aged women (18-45 years), participants of the Iranian PCOS Prevalence Study. LAP was defined as [WC (cm)-58] ×TG (mmol/l)]. PCOS was diagnosed using the Rotterdam criteria, and IR was defined using the homeostatic model assessment IR. LAP, body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) were compared using the two-tailed Spearman rank correlation test and analysing the receiver operating characteristic (ROC) curves for IR. Among the PCOS subjects, the mean ± SD age, BMI, WC and WHR were 32·2 ± 7·7 years, 26·8 ± 5·8 kg/m(2) , 85·2 ± 13·2 cm and 0·80 ± 0·06, respectively, and the median (IQ25-75) of LAP index was 34·03 (17·8-66·3). There was significant correlation between HOMA-IR index and LAP in patients with PCOS (r = 0·41; P < 0·001). Also, ROC curves analysis revealed that the optimal cut-off value for LAP to define the presence of IR was 34·1 (sensitivity: 75%; specificity: 58%). LAP showed the highest area under curve (AUC) (P < 0·001). Among PCOS subjects, LAP index has the strongest diagnostic accuracy for detection of IR in comparison with BMI, WC and WHR. © 2013 John Wiley & Sons Ltd.

  1. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-05

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  3. Age-related inflammation and insulin resistance: a review of their intricate interdependency.

    PubMed

    Park, Min Hi; Kim, Dae Hyun; Lee, Eun Kyeong; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young

    2014-12-01

    Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.

  4. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  5. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats.

    PubMed

    Xia, Tongjia; Zhang, Xue; Wang, Youmin; Deng, Datong

    2018-05-21

    This study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague-Dawley rats were randomized into two groups. PTU group received propylthiouracil (PTU) in drinking water for 6 weeks (n = 90), normal group received drinking normal water (n = 50). The pregnant rats were obtained and had a cesarean-section to get at gestational age of 8.5 d, 13d and 21 d, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of periodic acid-Schiff (PAS) and Oil Red O was used to observe accumulation of muscle glycogen and lipid in the fetal rat. The results showed that levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial protein and adipokines increased with the fetus developed, but had no statistical differences in PTU the group compared to the normal group. In conclusion, pregnant rats with hypothyroidism have not an influence on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats. ©2018 The Author(s).

  6. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    PubMed

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Jurczak, Michael J; Camporez, João-Paulo G; Alves, Tiago C; Kahn, Mario; Guigni, Blas A; Serr, Julie; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Shulman, Gerald I

    2013-07-30

    Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.

  9. Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo

    PubMed Central

    Galbo, Thomas; Perry, Rachel J.; Jurczak, Michael J.; Camporez‎, João-Paulo G.; Alves, Tiago C.; Kahn, Mario; Guigni, Blas A.; Serr, Julie; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Shulman, Gerald I.

    2013-01-01

    Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides. PMID:23840067

  10. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  12. Insulin resistance: definition and consequences.

    PubMed

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  13. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

    PubMed

    Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M

    2008-01-01

    Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.

  14. Insulin resistance in the control of body fat distribution: a new hypothesis.

    PubMed

    Ali, A T; Ferris, W F; Naran, N H; Crowther, N J

    2011-02-01

    Obesity causes insulin resistance, which is a prime etiological factor for type 2 diabetes, dyslipidemia, and cardiovascular disease. However, insulin resistance may be a normal physiological response to obesity that limits further fat deposition and which only has pathological effects at high levels. The current hypothesis suggests that in obesity the initial deposition of triglycerides occurs in subcutaneous adipose tissue and as this increases in size insulin resistance will rise and limit further subcutaneous lipid accumulation. Triglycerides will then be diverted to the visceral fat depot as well as to ectopic sites. This leads to a substantial rise in insulin resistance and the prevalence of its associated disorders. Evidence supporting this hypothesis includes studies showing that in lean subjects the prime determinant of insulin resistance is BMI, that is, subcutaneous fat whilst in overweight and obese subjects it is waist circumference and visceral adiposity. It has also been shown that the metabolic syndrome suddenly increases in prevalence at high levels of insulin resistance and we suggest that this is due to the diversion of lipids from the subcutaneous to the visceral depot. This system may have functioned in our evolutionary past to limit excessive adiposity by causing lipid deposition to occur at a site that has maximal effects on insulin resistance but involves minimal weight gain. © Georg Thieme Verlag KG Stuttgart · New York.

  15. [RAAS and insulin resistance].

    PubMed

    Motoshima, Hiroyuki; Araki, Eiichi

    2012-09-01

    The role of the renin-angiotensin-aldosterone system (RAAS) on the development of insulin resistance and type 2 diabetes (T2DM) is an area of growing interest. Most of the deleterious actions of the RAAS on insulin signals appear to be mediated through activation of the serine/threonine kinase, oxidative stress and tissue-inflammation in insulin-sensitive organs. Both experimental and clinical studies demonstrated that angiotensin II (Ang II) and aldosterone could play a role in the development of insulin resistance, diabetes and cardiovascular diseases. Large randomized clinical trials revealed that blockade of the RAAS with either angiotensin I converting enzyme inhibitors or AT1 receptor blockers results in decreased T2DM incidence, with a minor attenuation of markers for insulin resistance. This review focuses on the role of RAAS in the pathogenesis of insulin resistance, as well as on clinical relevance of RAAS blockade in the prevention and treatment of the metabolic syndrome and pre-diabetes.

  16. Consumption of a Mango Fruit Powder Protects Mice from High-Fat Induced Insulin Resistance and Hepatic Fat Accumulation.

    PubMed

    Sabater, Agustín G; Ribot, Joan; Priego, Teresa; Vazquez, Itxaso; Frank, Sonja; Palou, Andreu; Buchwald-Werner, Sybille

    2017-01-01

    The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  18. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    PubMed

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  20. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance.

    PubMed

    Mazidi, Mohsen; Kengne, Andre-Pascal; Katsiki, Niki; Mikhailidis, Dimitri P; Banach, Maciej

    2018-03-01

    To investigate the association of triglycerides/glucose index (TyG index), anthropometrically predicted visceral adipose tissue (apVAT), lipid accumulation product (LAP), visceral adiposity index (VAI) and triglycerides (TG):high density lipoprotein-cholesterol (HDL-C) ratio with insulin resistance (IR) in adult Americans. This study was based on data from three NHANES cycles (2005 to 2010). The TyG index was calculated as ln [TG×fasting glucose/2]. VAI was calculated using gender-specific formulas: men [waist circumference (WC)/39.68+(1.88×body mass index (BMI)]×(TG/1.03)×(1.31/HDL-C); women: [WC/36.58+(1.89×BMI)]×(TG/0.81)×(1.52/HDL-C). LAP index was calculated as [WC-65]×[TG] in men, and [WC-58]×[TG] in women. Correlation and regression analyses accounted for the complex sampling of database. A total of 18,318 subjects was included in this analysis [mean age 47.6Years]; 48.7% (n=8918) men]. The homeostatic model assessment of insulin resistance (HOMA-IR) had a significant positive correlation with the TyG index (r=0.502), LAP (r=0.551), apVAT (r=0.454), TG:HDL-C ratio (r=0.441) and VAI (r=451) (p<0.001 for all comparisons). Bland-Altman plots showed no systematic errors. The optimal cut-off to predict HOMA-diagnosed IR was 0.473 (sensitivity=74.5% and specificity=72.7%) for LAP, 0.478 (75.9%, 71.9%) for TyG, 0.391 (70.4%, 67.1%) for VAI, 0.392 (77.1% and 62.0%) for TG:HDL-C ratio and 0.381 (63.8%, 74.8%) for apVAT. The LAP index is a simple, cheap and accurate although not perfect, surrogate marker of HOMA-diagnosed IR among adult Americans. Moreover, it has higher predictability than other screening tools which traditionally applied. Among the markers, apVAT had the highest specificity and the TG:HDL-C ratio had the highest sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  2. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue.

    PubMed

    Harford, Karen A; Reynolds, Clare M; McGillicuddy, Fiona C; Roche, Helen M

    2011-11-01

    High-fat diet-induced obesity is associated with a chronic state of low-grade inflammation, which pre-disposes to insulin resistance (IR), which can subsequently lead to type 2 diabetes mellitus. Macrophages represent a heterogeneous population of cells that are instrumental in initiating the innate immune response. Recent studies have shown that macrophages are key mediators of obesity-induced IR, with a progressive infiltration of macrophages into obese adipose tissue. These adipose tissue macrophages are referred to as classically activated (M1) macrophages. They release cytokines such as IL-1β, IL-6 and TNFα creating a pro-inflammatory environment that blocks adipocyte insulin action, contributing to the development of IR and type 2 diabetes mellitus. In lean individuals macrophages are in an alternatively activated (M2) state. M2 macrophages are involved in wound healing and immunoregulation. Wound-healing macrophages play a major role in tissue repair and homoeostasis, while immunoregulatory macrophages produce IL-10, an anti-inflammatory cytokine, which may protect against inflammation. The functional role of T-cell accumulation has recently been characterised in adipose tissue. Cytotoxic T-cells are effector T-cells and have been implicated in macrophage differentiation, activation and migration. Infiltration of cytotoxic T-cells into obese adipose tissue is thought to precede macrophage accumulation. T-cell-derived cytokines such as interferon γ promote the recruitment and activation of M1 macrophages augmenting adipose tissue inflammation and IR. Manipulating adipose tissue macrophages/T-cell activity and accumulation in vivo through dietary fat modification may attenuate adipose tissue inflammation, representing a therapeutic target for ameliorating obesity-induced IR.

  3. Subjective sleep complaints are associated with insulin resistance in individuals without diabetes: the PPP-Botnia Study.

    PubMed

    Pyykkönen, Antti-Jussi; Isomaa, Bo; Pesonen, Anu-Katriina; Eriksson, Johan G; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri

    2012-11-01

    Sleep disorders and subjective sleep complaints have been associated with increased risk of type 2 diabetes. The evidence with respect to insulin resistance (IR) and insulin secretion in individuals without type 2 diabetes has been scarce and elusive. We examined if subjective sleep complaints and their co-occurrence were associated with IR and insulin secretion in adult women and men without diabetes. Women (n = 442) and men (n = 354) 18-75 years of age without type 2 diabetes underwent an oral glucose tolerance test (OGTT), with insulin and glucose measured at fasting and at 30 and 120 min. Complaints related to sleep apnea, insomnia, and daytime sleepiness were self-rated with the Basic Nordic Sleep Questionnaire. In comparison with individuals with no or minor sleep complaints, those with more frequent complaints of sleep apnea, insomnia, and daytime sleepiness were more insulin resistant, as evidenced by higher fasting insulin concentrations and insulin and glucose responses to OGTT, and more frequently had high homeostasis model assessment of IR and low insulin sensitivity index values. The likelihood of being insulin resistant increased significantly and linearly according to the accumulation of co-occurring sleep complaints. These associations changed only a little when adjusted for mediating and confounding factors and for depressive symptoms. Sleep complaints were not associated with indices of deficiency in insulin secretion. Subjective sleep complaints were associated with IR. The likelihood of being insulin resistant increased according to accumulation of co-occurring sleep complaints. Sleep complaints were not associated with deficiency in insulin secretion.

  4. Adipokines and Hepatic Insulin Resistance

    PubMed Central

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  5. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    PubMed

    Yoon, Mee-Sup

    2016-07-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  6. Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling

    PubMed Central

    Høeg, Louise D.; Sjøberg, Kim A.; Jeppesen, Jacob; Jensen, Thomas E.; Frøsig, Christian; Birk, Jesper B.; Bisiani, Bruno; Hiscock, Natalie; Pilegaard, Henriette; Wojtaszewski, Jørgen F.P.; Richter, Erik A.; Kiens, Bente

    2011-01-01

    OBJECTIVE We have previously shown that overnight fasted women have higher insulin-stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism than men. We therefore hypothesized that women would be less prone to lipid-induced insulin resistance. RESEARCH DESIGN AND METHODS Insulin sensitivity of whole-body and leg glucose disposal was studied in 16 young well-matched healthy men and women infused with intralipid or saline for 7 h. Muscle biopsies were obtained before and during a euglycemic-hyperinsulinemic clamp (1.42 mU · kg−1 · min−1). RESULTS Intralipid infusion reduced whole-body glucose infusion rate by 26% in women and 38% in men (P < 0.05), and insulin-stimulated leg glucose uptake was reduced significantly less in women (45%) than men (60%) after intralipid infusion. Hepatic glucose production was decreased during the clamp similarly in women and men irrespective of intralipid infusion. Intralipid did not impair insulin or AMPK signaling in muscle and subcutaneous fat, did not cause accumulation of muscle lipid intermediates, and did not impair insulin-stimulated glycogen synthase activity in muscle or increase plasma concentrations of inflammatory cytokines. In vitro glucose transport in giant sarcolemmal vesicles was not decreased by acute exposure to fatty acids. Leg lactate release was increased and respiratory exchange ratio was decreased by intralipid. CONCLUSIONS Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation, or direct inhibition of GLUT activity. Rather, a higher leg lactate release and lower glucose oxidation with intralipid infusion may suggest a metabolic feedback regulation of glucose metabolism. PMID:20956497

  7. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    PubMed

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  8. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  10. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  11. Enrichment, Distribution of Vanadium-Containing Protein in Vanadium-Enriched Sea Cucumber Apostichopus japonicus and the Ameliorative Effect on Insulin Resistance.

    PubMed

    Liu, Yanjun; Zhou, Qingxin; Zhao, Yanlei; Wang, Yiming; Wang, Yuming; Wang, Jingfeng; Xu, Jie; Xue, Changhu

    2016-05-01

    Sea cucumbers are a potential source of natural organic vanadium that may improve insulin resistance. In this work, vanadium was accumulated rapidly in blood, body wall, and intestine by sea cucumber Apostichopus japonicus. Furthermore, water-soluble vanadium-containing proteins, the main form of the organic vanadium, were tentatively accumulated and isolated by a bioaccumulation experiment. It was also designed to evaluate the beneficial effect of vanadium-containing proteins (VCPs) from sea cucumber rich in vanadium on the development of hyperglycemia and insulin resistance in C57BL/6J mice fed with a high-fat high-sucrose diet (HFSD). HFSD mice treated with VCPs significantly decreased fasting blood glucose, serum insulin, and HOMA-IR values as compared to HFSD mice, respectively. Serum adiponectin, resistin, TNF-α, and leptin levels in insulin-resistant mice were dramatically reduced by a VCP supplement. These results show an ameliorative effect on insulin resistance by treatment with VCPs. Such compound seems to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes.

  12. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  13. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice.

    PubMed

    Liepinsh, Edgars; Makrecka-Kuka, Marina; Makarova, Elina; Volska, Kristine; Vilks, Karlis; Sevostjanovs, Eduards; Antone, Unigunde; Kuka, Janis; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Grinberga, Solveiga; Dambrova, Maija

    2017-09-10

    Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017. © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  14. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages.

    PubMed

    Neth, Bryan J; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.

  15. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke

  16. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  17. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  18. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients.

    PubMed

    Jaganjac, Morana; Almuraikhy, Shamma; Al-Khelaifi, Fatima; Al-Jaber, Mashael; Bashah, Moataz; Mazloum, Nayef A; Zarkovic, Kamelija; Zarkovic, Neven; Waeg, Georg; Kafienah, Wael; Elrayess, Mohamed A

    2017-08-01

    Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). This study investigated whether impaired adipogenesis of omental (OM) adipose tissues and elevated 4-hydroxynonenal (4-HNE) accumulation contribute to this process, and if combined metformin and insulin treatment in T2DM patients could rescue this phenotype. OM adipose tissues were obtained from forty clinically well characterized obese individuals during weight reduction surgery. Levels of 4-HNE protein adducts, adipocyte size and number of macrophages were determined within these tissues by immunohistochemistry. Adipogenic capacity and gene expression profiles were assessed in preadipocytes derived from these tissues in relation to insulin resistance and in response to 4-HNE, metformin or combined metformin and insulin treatment. Preadipocytes isolated from insulin resistant (IR) and T2DM individuals exhibited lower adipogenesis, marked by upregulation of anti-adipogenic genes, compared to preadipocytes derived from insulin sensitive (IS) individuals. Impaired adipogenesis was also associated with increased 4-HNE levels, smaller adipocytes and greater macrophage presence in the adipose tissues. Within the T2DM group, preadipocytes from combined metformin and insulin treated subset showed better in vitro adipogenesis compared to metformin alone, which was associated with less presence of macrophages and 4-HNE in the adipose tissues. Treatment of preadipocytes in vitro with 4-HNE reduced their adipogenesis and increased proliferation, even in the presence of metformin, which was partially rescued by the presence of insulin. This study reveals involvement of 4-HNE in the impaired OM adipogenesis-associated with insulin resistance and T2DM and provides a proof of concept that this impairment can be reversed by the synergistic action of insulin and metformin. Further studies are

  19. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  20. A small amount of dietary carbohydrate can promote the HFD-induced insulin resistance to a maximal level.

    PubMed

    Mei, Shuang; Yang, Xuefeng; Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1-25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level.

  1. A Small Amount of Dietary Carbohydrate Can Promote the HFD-Induced Insulin Resistance to a Maximal Level

    PubMed Central

    Guo, Huailan; Gu, Haihua; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Bennett, Brian J.; He, Ling; Cao, Wenhong

    2014-01-01

    Both dietary fat and carbohydrates (Carbs) may play important roles in the development of insulin resistance. The main goal of this study was to further define the roles for fat and dietary carbs in insulin resistance. C57BL/6 mice were fed normal chow diet (CD) or HFD containing 0.1–25.5% carbs for 5 weeks, followed by evaluations of calorie consumption, body weight and fat gains, insulin sensitivity, intratissue insulin signaling, ectopic fat, and oxidative stress in liver and skeletal muscle. The role of hepatic gluconeogenesis in the HFD-induced insulin resistance was determined in mice. The role of fat in insulin resistance was also examined in cultured cells. HFD with little carbs (0.1%) induced severe insulin resistance. Addition of 5% carbs to HFD dramatically elevated insulin resistance and 10% carbs in HFD was sufficient to induce a maximal level of insulin resistance. HFD with little carbs induced ectopic fat accumulation and oxidative stress in liver and skeletal muscle and addition of carbs to HFD dramatically enhanced ectopic fat and oxidative stress. HFD increased hepatic expression of key gluconeogenic genes and the increase was most dramatic by HFD with little carbs, and inhibition of hepatic gluconeogenesis prevented the HFD-induced insulin resistance. In cultured cells, development of insulin resistance induced by a pathological level of insulin was prevented in the absence of fat. Together, fat is essential for development of insulin resistance and dietary carb is not necessary for HFD-induced insulin resistance due to the presence of hepatic gluconeogenesis but a very small amount of it can promote HFD-induced insulin resistance to a maximal level. PMID:25055153

  2. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  3. Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway.

    PubMed

    Qiu, Tianming; Chen, Min; Sun, Xiance; Cao, Jun; Feng, Chang; Li, Dandan; Wu, Wei; Jiang, Liping; Yao, Xiaofeng

    2016-09-02

    Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  5. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  6. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.

    PubMed

    Riddle, Misty R; Aspiras, Ariel C; Gaudenz, Karin; Peuß, Robert; Sung, Jenny Y; Martineau, Brian; Peavey, Megan; Box, Andrew C; Tabin, Julius A; McGaugh, Suzanne; Borowsky, Richard; Tabin, Clifford J; Rohner, Nicolas

    2018-03-29

    Periodic food shortages are a major challenge faced by organisms in natural habitats. Cave-dwelling animals must withstand long periods of nutrient deprivation, as-in the absence of photosynthesis-caves depend on external energy sources such as seasonal floods. Here we show that cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted populations. We found that multiple cave populations carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. Hybrid fish from surface-cave crosses carrying this mutation weigh more than non-carriers, and zebrafish genetically engineered to carry the mutation have increased body weight and insulin resistance. Higher body weight may be advantageous in caves as a strategy to cope with an infrequent food supply. In humans, the identical mutation in the insulin receptor leads to a severe form of insulin resistance and reduced lifespan. However, cavefish have a similar lifespan to surface fish and do not accumulate the advanced glycation end-products in the blood that are typically associated with the progression of diabetes-associated pathologies. Our findings suggest that diminished insulin signalling is beneficial in a nutrient-limited environment and that cavefish may have acquired compensatory mechanisms that enable them to circumvent the typical negative effects associated with failure to regulate blood glucose levels.

  7. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages

    PubMed Central

    Neth, Bryan J.; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer’s disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets. PMID:29163128

  8. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  9. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  10. The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans.

    PubMed

    Pearson, Taliesin; Wattis, Jonathan A D; King, John R; MacDonald, Ian A; Mazzatti, Dawn J

    2016-06-01

    Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper, we use a previously derived system of 12 first-order coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin-resistant tissue. Second, insulin resistance causes a fatty liver, and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is seen.

  11. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  12. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  13. Insulin Resistance in Alzheimer Disease: p53 and MicroRNAs as Important Players.

    PubMed

    Gasiorowski, Kazimierz; Brokos, Barbara; Leszek, Jerzy; Tarasov, Vadim V; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2017-01-01

    Glucose homeostasis is crucial for neuronal survival, synaptic plasticity, and is indispensable for learning and memory. Reduced sensitivity of cells to insulin and impaired insulin signaling in brain neurons participate in the pathogenesis of Alzheimer disease (AD). The tumor suppressor protein p53 coordinates with multiple cellular pathways in response to DNA damage and cellular stresses. However, prolonged stress conditions unveil deleterious effects of p53-evoked insulin resistance in neurons; enhancement of transcription of pro-oxidant factors, accumulation of toxic metabolites (e.g. ceramide and products of advanced glycation) and ROS-modified cellular components, together with the activation of proapoptotic genes, could finally induce a suicide death program of autophagy/apoptosis in neurons. Recent studies reveal the impact of p53 on expression and processing of several microRNAs (miRs) under DNA damage-inducing conditions. Additionally, the role of miRs in promotion of insulin resistance and type 2 diabetes mellitus has been well documented. Detailed recognition of the role of p53/miRs crosstalk in driving insulin resistance in AD brains could improve the disease diagnostics and aid future therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance.

    PubMed

    Zhao, Yun; Tang, Zhuqi; Shen, Aiguo; Tao, Tao; Wan, Chunhua; Zhu, Xiaohui; Huang, Jieru; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Cui, Shiwei; Zhang, Dongmei

    2015-09-22

    Protein tyrosine phosphatase 1B (PTP1B), which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1), thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386). Palmitate acid (PA) impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  15. Insulin resistance and bone: a biological partnership.

    PubMed

    Conte, Caterina; Epstein, Solomon; Napoli, Nicola

    2018-04-01

    Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.

  16. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  17. Insulin resistance in porphyria cutanea tarda.

    PubMed

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  18. Selective insulin resistance in hepatocyte senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less

  19. Menopausal hot flashes and insulin resistance.

    PubMed

    Tuomikoski, Pauliina; Ylikorkala, Olavi; Mikkola, Tomi S

    2012-10-01

    Recent data have indicated that menopausal hot flashes may be a determinant for cardiovascular health. Therefore, we studied the impact of hot flashes on insulin resistance, one of the most powerful markers of cardiovascular health, in recently postmenopausal women. We studied 143 recently postmenopausal (amenorrhea 6-36 mo) healthy and normal-weight women without previous hormone therapy use. The women prospectively recorded the number and severity of hot flashes for 2 weeks, and a validated total symptom score, the hot flash weekly weighted score, was calculated for each woman. Insulin resistance was assessed from fasting blood levels of glucose and insulin with the homeostasis model assessment. In 12 women, the assessment of insulin (n = 11) or glucose (n = 1) failed, and they were excluded from further analysis. Thus, hot flashes were absent in 19, mild in 32, moderate in 27, and severe in 53 women. The levels of glucose or insulin, or HOMA showed no differences between these groups, nor was insulin resistance related to the number or severity of hot flashes or to the levels of C-reactive protein or sex hormone-binding globulin. Overall, insulin resistance showed a positive association with body mass index (mean difference, 0.058; 95% CI, 0.015-0.102; P = 0.009) and a negative association with level of estradiol (mean difference, -0.002; 95% CI, -0.003 to -0.001; P = 0.009). Insulin resistance may not be involved in hot flash-related changes in cardiovascular health. However, because of the small sample size, these findings need to be interpreted with caution.

  20. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  1. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    PubMed

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    PubMed Central

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  3. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance.

    PubMed

    Kawaguchi, T; Yamagishi, S; Sata, M

    2009-01-01

    Recent clinical studies have shown that patients with chronic liver disease are insulin resistant. Of all etiologies of chronic liver disease including non-alcoholic fatty liver disease, the one that causes the most sever insulin resistance is hepatitis C virus (HCV) infection. Since insulin resistance promotes inflammatory and fibrogenic reactions in the liver, thus leading to the development of liver cirrhosis and hepatocellular carcinoma (HCC) in patients with HCV infection, amelioration of insulin sensitivity may inhibit the progression of HCV-associated liver disease, and could improve the survival of these patients. HCV directly causes insulin resistance through HCV core protein-elicited proteasomal degradation of insulin receptor substrates and subsequent inactivation of intracellular insulin signaling molecules such as Akt. Furthermore, tumor necrosis factor-alpha (TNF-alpha) and/or triglyceride accumulation-induced nuclear factor-kappaB (NF-kappaB) activation in the liver is shown to play a role in insulin resistance in patients with HCV-related chronic liver disease as well. We, along with others, have recently found that branched-chain amino acids (BCAAs) and pigment epithelium-derived factor (PEDF) could improve the HCV-associated insulin resistance via suppression of NF-kappaB and preservation of insulin signaling pathway. In this review, we discuss the mechanisms for the actions of BCAAs and PEDF, and their clinical implications in insulin resistance of chronic liver disease in patients with HCV infection. We also discuss here which chemical structures could contribute to insulin-sensitization in patients with HCV infection.

  4. Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction.

    PubMed

    Liu, Yilin; Steinbusch, Laura K M; Nabben, Miranda; Kapsokalyvas, Dimitris; van Zandvoort, Marc; Schönleitner, Patrick; Antoons, Gudrun; Simons, Peter J; Coumans, Will A; Geomini, Amber; Chanda, Dipanjan; Glatz, Jan F C; Neumann, Dietbert; Luiken, Joost J F P

    2017-06-01

    Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H + -ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V 1 and the integral membrane V 0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction. © 2017 by the American Diabetes Association.

  5. Antibody-Mediated Extreme Insulin Resistance: A Report of Three Cases.

    PubMed

    Kim, Han Na; Fesseha, Betiel; Anzaldi, Laura; Tsao, Allison; Galiatsatos, Panagis; Sidhaye, Aniket

    2018-01-01

    Type 2 diabetes mellitus is characterized by relative insulin deficiency and insulin resistance. Features suggesting severe insulin resistance include acanthosis nigricans, hyperandrogenism, weight loss, and recurrent hospital admissions for diabetic ketoacidosis. In rare circumstances, hyperglycemia persists despite administration of massive doses of insulin. In these cases, it is important to consider autoimmune etiologies for insulin resistance, such as type B insulin resistance and insulin antibody-mediated extreme insulin resistance, which carry high morbidity and mortality if untreated. Encouragingly, immunomodulatory regimens have recently been published that induce remission at high rates. We describe 3 cases of extreme insulin resistance mediated by anti-insulin receptor autoantibodies or insulin autoantibodies. All cases were effectively treated with an immunomodulatory regimen. Although cases of extreme insulin resistance are rare, it is important to be aware of autoimmune causes, recognize suggestive signs and symptoms, and pursue appropriate diagnostic evaluation. Prompt treatment with immunomodulators is key to restoring euglycemia in patients with autoimmune etiologies of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    PubMed Central

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  7. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways.

    PubMed

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Zhong, Caiyun

    2017-04-15

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemicals. Accumulating evidence indicates that exposure to BPA contributes to insulin resistance through diverse mechanism including inflammation and oxidative stress. Previous studies have suggested curcumin as a safe phytochemical which can improve obesity-related insulin resistance, inflammation and oxidative stress. The present study aimed to investigate the ability of curcumin to prevent BPA-induced insulin resistance in vitro and the underlying mechanism. Following the establishmet of in vitro insulin resistance via BPA treatment in human liver HepG2 cells, the protective effects of curcumin were determiend. We showed that treatment of HepG2 cells with 100nM BPA for 5days induced significantly decreased glucose consumption, impaired insulin signaling, elevation of pro-inflammatory cytokines and oxidative stress, and activation of signaling pathways; inhibition of JNK and p38 pathways, but not ERK nor NF-κB pathways, improved glucose consumption and insulin signaling in BPA-treated HepG2 cells. Moreover, we revealed that curcumin effectively attenuated the spectrum of effects of BPA-triggered insulin resistance, whereas pretreatment with JNK and p38 agonist anisomycin could significantly compensate the effects caused by curcumin. These data illustrated the role of JNK/p38 activation in BPA-induced insulin resistance and suggested curcumin as a promising candidate for the intervention of BPA-induced insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    PubMed

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  10. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance

    PubMed Central

    Ottum, Mona S.; Mistry, Anahita M.

    2015-01-01

    Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiable environmental factors including high levels of refined and simple carbohydrate diets, hypercaloric diets and sedentary lifestyles drive endogenous formation of advanced glycation end-products via accumulation of highly reactive glycolysis intermediates and activation of the polyol/aldose reductase pathway producing high intracellular fructose. High advanced glycation end-products overwhelm innate defenses of enzymes and receptor-mediated endocytosis and promote cell damage via the pro-inflammatory and pro-oxidant receptor for advanced glycation end-products. Oxidative stress disturbs cell signal transduction, especially insulin-mediated metabolic responses. Here we review emerging evidence that restriction of dietary advanced glycation end-products significantly reduces total systemic load and insulin resistance in animals and humans in diabetes, polycystic ovary syndrome, healthy populations and dementia. Of clinical importance, this insulin sensitizing effect is independent of physical activity, caloric intake and adiposity level. PMID:26236094

  11. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-02-26

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.

  12. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  13. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin

  14. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  15. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model.

    PubMed

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2016-12-04

    This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  17. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    PubMed

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  18. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance

    PubMed Central

    Khan, Ilvira M.; Dai Perrard, Xiao-Yuan; Brunner, Gerd; Lui, Hua; Sparks, Lauren M.; Smith, Steven R.; Wang, Xukui; Shi, Zheng-Zheng; Lewis, Dorothy E.; Wu, Huaizhu; Ballantyne, Christie M.

    2015-01-01

    Background/Objectives Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. Subjects/Methods T cells and macrophage markers were examined in SM of obese humans by RT-PCR. Mice were fed high-fat diet (HFD) for 2–24 weeks, and time course of macrophage and T cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-CT, and correlation to T cell number in SM was examined. CD11a−/− mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T cell accumulation in SM. To investigate the involvement JAK/STAT, the major pathway for T helper I (TH1) cytokine IFNγ? in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. Results Macrophage and T cells markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. Conclusions Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM

  19. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  20. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Celastrol attenuates mitochondrial dysfunction and inflammation in palmitate-mediated insulin resistance in C3A hepatocytes.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji; Tan, Joo Shun; Mohamad Rosdi, Mohamad Norisham

    2017-03-15

    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  3. Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance

    PubMed Central

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    Objective The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Measurements Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Results Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Conclusions Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance. PMID:23560057

  4. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  5. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR): A Better Marker for Evaluating Insulin Resistance Than Fasting Insulin in Women with Polycystic Ovarian Syndrome.

    PubMed

    Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib

    2017-03-01

    To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value <2 in adults and hyperinsulinemia based on fasting insulin levels ≥12 µIU/ml. A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 ±5.5 years. Mean HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.

  6. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  7. Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide

    PubMed Central

    Foley, Kevin P.; Klip, Amira

    2014-01-01

    ABSTRACT GLUT4 constitutively recycles between the plasma membrane and intracellular depots. Insulin shifts this dynamic equilibrium towards the plasma membrane by recruiting GLUT4 to the plasma membrane from insulin-responsive vesicles. Muscle is the primary site for dietary glucose deposition; however, how GLUT4 sorts into insulin-responsive vesicles, and if and how insulin resistance affects this process, is unknown. In L6 myoblasts stably expressing myc-tagged GLUT4, we analyzed the intracellular itinerary of GLUT4 as it internalizes from the cell surface and examined if such sorting is perturbed by C2-ceramide, a lipid metabolite causing insulin resistance. Surface-labeled GLUT4myc that internalized for 30 min accumulated in a Syntaxin-6 (Stx6)- and Stx16-positive perinuclear sub-compartment devoid of furin or internalized transferrin, and displayed insulin-responsive re-exocytosis. C2-ceramide dispersed the Stx6-positive sub-compartment and prevented insulin-responsive re-exocytosis of internalized GLUT4myc, even under conditions not affecting insulin-stimulated signaling towards Akt. Microtubule disruption with nocodazole prevented pre-internalized GLUT4myc from reaching the Stx6-positive perinuclear sub-compartment and from undergoing insulin-responsive exocytosis. Removing nocodazole allowed both parameters to recover, suggesting that the Stx6-positive perinuclear sub-compartment was required for GLUT4 insulin-responsiveness. Accordingly, Stx6 knockdown inhibited by ∼50% the ability of internalized GLUT4myc to undergo insulin-responsive re-exocytosis without altering its overall perinuclear accumulation. We propose that Stx6 defines the insulin-responsive compartment in muscle cells. Our data are consistent with a model where ceramide could cause insulin resistance by altering intracellular GLUT4 sorting. PMID:24705014

  8. Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens.

    PubMed

    Yuan, L; Lin, H; Jiang, K J; Jiao, H C; Song, Z G

    2008-07-01

    1. Two experiments were conducted to investigate the effects of exogenous corticosterone administration (30 mg/kg diet) and dietary energy level on feed or energy intake and fat deposition in broiler chickens of 1 and 4 weeks of age. 2. Corticosterone treatment significantly suppressed body weight (BW) gain and reduced feed and caloric efficiencies. The retarded growth may conceal the stimulatory effect of corticosterone on feed consumption or metabolisable energy (ME) intake. A high-energy diet may increase energy intake and partially alleviate the suppressing effect of corticosterone on growth of broilers. 3. Corticosterone administration promoted the conservation of energy stores as fat at both abdominal and subcutaneous sites and this process occurred regardless of dietary energy level in ad libitum feeding status. A high-energy diet increased fat accumulation and showed no significant interaction with corticosterone treatment. 4. The suppressed development of breast and thigh muscles by corticosterone treatment was observed only in 1-week-old chickens fed on the low-energy diet. In contrast, the yield of breast muscle but not thigh muscle was significantly decreased by corticosterone in 4-week-old chickens, suggesting that the tissue specificity to corticosterone challenge is age dependent. 5. Plasma concentrations of glucose, insulin, triglyceride, non-esterified fatty acids (NEFA) and very low density lipoprotein were increased by corticosterone treatment regardless of diet treatment. A high-energy diet increased plasma levels of NEFA and resulted in hyperinsulinism in 4-week-old chickens but not in 1-week-old chickens. 6. Lipoprotein lipase (LPL) activities in adipose tissues may have been up-regulated by corticosterone treatment and showed tissue specificity. The increased LPL activities at ad libitum feeding status were not necessarily linked with the increased fat accumulation in corticosterone challenged chickens. 7. Corticosterone resulted in augmented

  9. Human primary myoblast cell cultures from non-diabetic insulin resistant subjects retain defects in insulin action.

    PubMed Central

    Thompson, D B; Pratley, R; Ossowski, V

    1996-01-01

    Insulin resistance is a predictor of the development of noninsulin-dependent diabetes mellitus (NIDDM) in humans. It is unclear whether insulin resistance is a primary defect leading to NIDDM or the result of hyperinsulinemia and hyperglycemia. To determine if insulin resistance is the result of extrinsic factors such as hyperinsulinemia primary skeletal muscle cell cultures were established from muscle biopsies from Pima Indians with differing in vivo insulin sensitivities. These cell cultures expressed a variety of muscle-specific phenotypes including the proteins alpha-actinin and myosin, muscle-specific creatine kinase activity, and RNA encoding GLUT4, MYF5, MYOD1, and MYOGENIN. Labeled glucose was used to measure the insulin-stimulated conversion of glucose to glycogen in these cultures. The in vivo rates of insulin-stimulated glycogen production (insulin resistance) were correlated with in vitro measures of glycogen production (P = 0.007, r = 0.58). This defect in insulin action is stable in a uniform culture environment and is retained over time. The retention of insulin resistance in myoblast derived cell cultures is consistent with the expression of an underlying biochemical defect in insulin resistant skeletal muscle. PMID:8941652

  10. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    PubMed

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  11. The origins and drivers of insulin resistance.

    PubMed

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-02-14

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Brain natriuretic peptide and insulin resistance in older adults.

    PubMed

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P < 0.001 for all four indices). Although the genetic score was strongly related to measured NT-proBNP levels amongst European Americans (F statistic = 71.08), we observed no association of genetically determined NT-proBNP with insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  13. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  14. Thinking about brain insulin resistance.

    PubMed

    Al Haj Ahmad, Reem M; Al-Domi, Hayder A

    2018-05-06

    Dementia and type 2 diabetes mellitus (T2DM) are two of the epidemics of our time; in which insulin resistance (IR) is playing the central role. Epidemiological studies found that different types of dementia development may be promoted by the presence of T2DM. We aimed in this review to highlight the role of insulin and the IR in the brain as a pathophysiological factor of dementia development and also to expand our understanding of T2DM as a mediator of IR in the brain and to review the possible mechanisms of action that may explain the association. A critical review of the relevant published English articles up to 2018, using PubMed, Google Scholar, Science Direct, ADI, and WHO database was carried out. Keywords were included insulin resistance, T3DM, T2DM, dementia, brain insulin resistance were used. The rapidly increased prevalence of dementia concurrently with T2DM and obesity need urgent action to illustrate guidelines for prevention, modifying, and treatment based on mechanistic studies. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. Resistance training enhances insulin suppression of endogenous glucose production in elderly women.

    PubMed

    Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2016-03-15

    An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. Copyright © 2016 the American Physiological Society.

  16. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.

  17. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible

  18. Insulin resistance and improvements in signal transduction.

    PubMed

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  19. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver.

    PubMed

    Dongiovanni, P; Stender, S; Pietrelli, A; Mancina, R M; Cespiati, A; Petta, S; Pelusi, S; Pingitore, P; Badiali, S; Maggioni, M; Mannisto, V; Grimaudo, S; Pipitone, R M; Pihlajamaki, J; Craxi, A; Taube, M; Carlsson, L M S; Fargion, S; Romeo, S; Kozlitina, J; Valenti, L

    2018-04-01

    Nonalcoholic fatty liver disease is epidemiologically associated with hepatic and metabolic disorders. The aim of this study was to examine whether hepatic fat accumulation has a causal role in determining liver damage and insulin resistance. We performed a Mendelian randomization analysis using risk alleles in PNPLA3, TM6SF2, GCKR and MBOAT7, and a polygenic risk score for hepatic fat, as instruments. We evaluated complementary cohorts of at-risk individuals and individuals from the general population: 1515 from the liver biopsy cohort (LBC), 3329 from the Swedish Obese Subjects Study (SOS) and 4570 from the population-based Dallas Heart Study (DHS). Hepatic fat was epidemiologically associated with liver damage, insulin resistance, dyslipidemia and hypertension. The impact of genetic variants on liver damage was proportional to their effect on hepatic fat accumulation. Genetically determined hepatic fat was associated with aminotransferases, and with inflammation, ballooning and fibrosis in the LBC. Furthermore, in the LBC, the causal association between hepatic fat and fibrosis was independent of disease activity, suggesting that a causal effect of long-term liver fat accumulation on liver disease is independent of inflammation. Genetically determined hepatic steatosis was associated with insulin resistance in the LBC and SOS. However, this association was dependent on liver damage severity. Genetically determined hepatic steatosis was associated with liver fibrosis/cirrhosis and with a small increase in risk of type 2 diabetes in publicly available databases. These data suggest that long-term hepatic fat accumulation plays a causal role in the development of chronic liver disease. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  20. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  1. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  2. Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population.

    PubMed

    Ando, Ryosuke; Suzuki, Sadao; Nagaya, Teruo; Yamada, Tamaki; Okada, Atsushi; Yasui, Takahiro; Tozawa, Keiichi; Tokudome, Shinkan; Kohri, Kenjiro

    2011-02-01

    It has been reported that kidney stones are linked to metabolic syndrome (MetS), which is characterized by insulin resistance. The aim of the present study was to examine the association of insulin resistance, insulin and adiponectin with kidney stones in a Japanese population. From February 2007 to March 2008, 1036 (529 men and 507 women) apparently healthy Japanese subjects, aged 35-79 years, were analyzed. Weight, height, waist circumference and blood pressure were measured. Overnight fasting blood was collected to measure insulin and adiponectin levels. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated to assess insulin resistance. Logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence intervals for a self-reported history of kidney stones across tertiles of HOMA-IR, insulin and adiponectin. Of the participants, 84 men (15.6%) and 35 women (6.9%) had a history of kidney stones. Age, body mass index, waist circumference, systolic and diastolic blood pressures, HOMA-IR and insulin were significantly higher in women with than in women without kidney stones. There was no difference in adiponectin level between subjects with and without a history of kidney stones in either sex. Furthermore, a significant positive trend was observed in the age-adjusted OR for a history of kidney stones across insulin tertiles (P-value for trend = 0.04) in women. For Japanese women, HOMA-IR and insulin are associated with a history of kidney stones. The findings suggest that MetS components could increase the risk of kidney stones through subclinical hyperinsulinemia and insulin resistance. © 2010 The Japanese Urological Association.

  3. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  4. Whole-blood viscosity and the insulin-resistance syndrome.

    PubMed

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  5. A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

    PubMed Central

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-01-01

    Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  6. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. The Crucial Role of C18-Cer in Fat-Induced Skeletal Muscle Insulin Resistance.

    PubMed

    Blachnio-Zabielska, Agnieszka U; Chacinska, Marta; Vendelbo, Mikkel H; Zabielski, Piotr

    2016-01-01

    Muscle bioactive lipids accumulation leads to several disorder states. The most common are insulin resistance (IR) and type 2 diabetes. There is an ongoing debate which of the lipid species plays the major role in induction of muscle IR. Our aim was to elucidate the role of particular lipid group in induction of muscle IR. The analyses were performed on muscle from the following groups of rats: 1. Control, fed standard diet, 2 HFD, fed high fat diet, 3. HFD/Myr, fed HFD and treated with myriocin (Myr), an inhibitor of ceramide de novo synthesis. We utilized [U13C] palmitate isotope tracer infusion and mass spectrometry to measure content and synthesis rate of muscle long-chain acyl-CoA (LCACoA), diacylglycerols (DAG) and ceramide (Cer). HFD led to intramuscular accumulation of LCACoA, DAG and Cer and skeletal muscle IR. Myr-treatment caused decrease in Cer (most noticeable for stearoyl-Cer and oleoyl-Cer) and accumulation of DAG, possibly due to re-channeling of excess of intramuscular LCACoA towards DAG synthesis. An improvement in insulin sensitivity at both systemic and muscular level coincided with decrease in ceramide, despite elevated intramuscular DAG. The improved insulin sensitivity was associated with decreased muscle stearoyl- and oleoyl-ceramide content. The results indicate that accumulation of those ceramide species has the greatest impact on skeletal muscle insulin sensitivity in rats. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  11. Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    PubMed Central

    2009-01-01

    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665

  12. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    PubMed

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  13. Potential effect of exercise in ameliorating insulin resistance at transcriptome level.

    PubMed

    Hu, Zhigang; Zhou, Lei; He, Tingting

    2017-10-24

    Insulin resistance can lead to the pathogenesis of type 2 diabetes and exercise can increase insulin sensitivity. And different exercises may have different influences on the mitigation of insulin resistance. It's still unclear how exercise affects inherited insulin resistance at transcriptome level. The purpose of our study was to analyze the potential effects of exercise in ameliorating insulin resistance at transcriptome level. Herein, we analyzed two skeletal muscle transcriptome profiles, including gene profiles between inherited insulin resistant patients and matched healthy controls, and between trained and sedentary subjects (young and old subjects, respectively). Analysis of differentially expressed genes revealed that 12 genes (SGK1, LOC101929876, MYL5, COL6A3, MLF1, LUM, MSTN, COL1A2, COL3A1, IL32, IRS2 and ID1) associated with insulin resistance were reversed by exercise in young subjects, while six genes (MSTN, CFHR1, PFKFB3, IL32, RGCC and NMRK2) were identified in old subjects, suggesting that those genes play potential roles in insulin resistance response to exercise. In addition, we observed that two insulin resistance-related genes, MSTN and IL32, were identified in muscle cells of both young and old subjects, indicating their important roles in the mechanisms behind the beneficial effects of exercise on humans with inherited insulin resistance. Several pathways were also identified, such as "collagen metabolic process", "focal adhesion" and "negative regulation of myoblast differentiation". Taken together, our findings provide novel markers in insulin resistant patients and exercise, and some valuable information for future functional studies on how exercise ameliorating insulin resistance.

  14. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  15. 45Obesity, Insulin Resistance and Free Fatty Acids

    PubMed Central

    Boden, Guenther

    2011-01-01

    Purpose of Review to describe the role of FFA as a cause for insulin resistance in obese people. Recent Findings elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including T2DM, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanism by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL1β, IL6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Summary increased plasma FFA levels are an important cause of obesity associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels. PMID:21297467

  16. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats.

  17. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle

    PubMed Central

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats. PMID:26064395

  18. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans

    PubMed Central

    Underwood, Patricia C

    2012-01-01

    Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone. PMID:23242734

  19. Branched-chain amino acids in metabolic signalling and insulin resistance

    PubMed Central

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  20. Branched-chain amino acids in metabolic signalling and insulin resistance.

    PubMed

    Lynch, Christopher J; Adams, Sean H

    2014-12-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

  1. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  2. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  3. Skeletal muscle inflammation and insulin resistance in obesity.

    PubMed

    Wu, Huaizhu; Ballantyne, Christie M

    2017-01-03

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.

  4. Skeletal muscle inflammation and insulin resistance in obesity

    PubMed Central

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  5. Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription

    PubMed Central

    Nazarians-Armavil, Anaies; Menchella, Jonathan A.

    2013-01-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance. PMID:23579487

  6. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    PubMed

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (P<.01) and 2.0% compared with 0.7% (P<.01), respectively. The use of 500 units/mL concentrated insulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  7. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  8. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    PubMed Central

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  9. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  10. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  11. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity

    PubMed Central

    Law, Ivy K.M.; Xu, Aimin; Lam, Karen S.L.; Berger, Thorsten; Mak, Tak W.; Vanhoutte, Paul M.; Liu, Jacky T.C.; Sweeney, Gary; Zhou, Mingyan; Yang, Bo; Wang, Yu

    2010-01-01

    OBJECTIVE The proinflammatory cytokines/adipokines produced from adipose tissue act in an autocrine and/or endocrine manner to perpetuate local inflammation and to induce peripheral insulin resistance. The present study investigates whether lipocalin-2 deficiency or replenishment with this adipokine has any impact on systemic insulin sensitivity and the underlying mechanisms. METHODS AND RESULTS Under conditions of aging or dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO) mice show significantly decreased fasting glucose and insulin levels and improved insulin sensitivity compared with their wild-type littermates. Despite enlarged fat mass, inflammation and the accumulation of lipid peroxidation products are significantly attenuated in the adipose tissues of Lcn2-KO mice. Adipose fatty acid composition of these mice varies significantly from that in wild-type animals. The amounts of arachidonic acid (C20:4 n6) are elevated by aging and obesity and are paradoxically further increased in adipose tissue, but not skeletal muscle and liver of Lcn2-KO mice. On the other hand, the expression and activity of 12-lipoxygenase, an enzyme responsible for metabolizing arachidonic acid, and the production of tumor necrosis factor-α (TNF-α), a critical insulin resistance–inducing factor, are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimulates the expression and activity of 12-lipoxygenase and TNF-α production in fat tissues. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), an arachidonate lipoxygenase inhibitor, prevents TNF-α expression induced by lipocalin-2. Moreover, treatment with TNF-α neutralization antibody or CDC significantly attenuated the differences of insulin sensitivity between wild-type and Lcn2-KO mice. CONCLUSIONS Lipocalin-2 deficiency protects mice from developing aging- and obesity-induced insulin resistance largely by modulating 12-lipoxygenase and TNF-α levels in adipose tissue. PMID:20068130

  12. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance.

    PubMed

    Soop, M; Nygren, J; Myrenfors, P; Thorell, A; Ljungqvist, O

    2001-04-01

    Postoperative insulin resistance is a well-characterized metabolic state that has been shown to correlate with the length of postoperative stay in hospital. Preoperative intravenous or oral carbohydrate treatment has been shown to attenuate the development of postoperative insulin resistance measured 1 day after surgery. To study the effects of preoperative oral carbohydrate treatment on postoperative changes in insulin resistance and substrate utilization, in the absence of postoperative confounding factors, 15 patients were double-blindly treated with either a carbohydrate-rich beverage (12.5%) (n = 8) or placebo (n = 7) before undergoing total hip replacement surgery. Insulin sensitivity, endogenous glucose release, and substrate oxidation rates were measured before and immediately after surgery. Whole body insulin sensitivity decreased by 18% in the treatment group vs. 43% in the placebo group (P < 0.05, Student's t-test for unpaired data). In both groups, the major mechanism of insulin resistance was an inhibition of insulin-induced nonoxidative glucose disposal after surgery. The better preservation of insulin sensitivity in the treatment group was attributable to a less reduced glucose disposal in peripheral tissues and increased glucose oxidation rates.

  13. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance.

    PubMed

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-04-01

    Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.

  14. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?

    PubMed

    Brøns, Charlotte; Grunnet, Louise Groth

    2017-02-01

    Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver. © 2017 European Society of Endocrinology.

  15. Mechanism of insulin resistance in normal pregnancy.

    PubMed

    Hodson, K; Man, C Dalla; Smith, F E; Thelwall, P E; Cobelli, C; Robson, S C; Taylor, R

    2013-08-01

    Normal pregnancy is associated with insulin resistance although the mechanism is not understood. Increased intramyocellular lipid is closely associated with the insulin resistance of type 2 diabetes and obesity, and the aim of this study was to determine whether this was so for the physiological insulin resistance of pregnancy. Eleven primiparous healthy pregnant women (age: 27-39 years, body mass index 24.0±3.1 kg/m2) and no personal or family history of diabetes underwent magnetic resonance studies to quantify intramyocellular lipid, plasma lipid fractions, and insulin sensitivity. The meal-related insulin sensitivity index was considerably lower in pregnancy (45.6±9.9 vs. 193.0±26.1; 10(-4) dl/kg/min per pmol/l, p=0.0002). Fasting plasma triglyceride levels were elevated 3-fold during pregnancy (2.3±0.2 vs. 0.8±0.1 mmol/l, p<0.01) and the low-density density lipoprotein fraction, responsible for fatty acid delivery to muscle and other tissues, was 6-fold elevated (0.75±0.43 vs. 0.12±0.09 mmol/l; p=0.001). However, mean intramyocellular lipid concentrations of the soleus muscle were not different during pregnancy (20.0±2.3 vs. 19.1±3.2 mmol/l, p=0.64). The pregnancy effect on muscle insulin resistance is distinct from that underlying type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Levels of eicosapentaenoic acid in obese schoolchildren with and without insulin resistance.

    PubMed

    Sánchez Meza, Karmina; Tene Pérez, Carlos Enrique; Sánchez Ramírez, Carmen Alicia; Muñiz Valencia, Roberto; Del Toro Equihua, Mario

    2014-09-12

    Obesity in children is now an increasing health risk worldwide in which the insulin-resistance can be present. Studies have linked a diet rich in n-3 fatty acids with a lower prevalence of insulin-resistance. To compare the levels of eicosapentaenoic acid among obese children with and without insulin-resistance. In 56 randomly school-age children with obesity, insulin-resistance was determined by the homeostasis model assessment for insulin-resistance index and the serum levels of eicosapentaenoic acid were determined by gas chromatography. Insulin-resistance was established when the index was >6.0, non- insulin- resistance when that index was within the range of 1.4-5.9. The serum levels of eicosapentaenoic acid were compared with the Kruskal-Wallis and Mann-Whitney U tests, as needed. No differences in age or sex were identified among the groups studied. The anthropometric parameters were significantly higher in the group of children with insulin-resistance than in the other two groups. The children with insulin- resistance had significantly lower levels of eicosapentaenoic acid than the non- insulin-resistance group [12.4% area under the curve vs. 37.4%, p = 0.031], respectively. Obese primary school-aged children with insulin-resistance had lower plasma levels of eicosapentaenoic acid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway.

    PubMed

    Zhu, Jing; Jin, Jie; Ding, Jiexia; Li, Siying; Cen, Panpan; Wang, Keyi; Wang, Hai; Xia, Junbo

    2018-06-25

    Obesity and its major co-morbidity, type 2 diabetes, have been an alarming epidemic prevalence without an effective treatment available. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. Therefore, inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Here, we identify a small molecule, Ganoderic Acid A (GAA), inhibits the SREBP expression and decreases the cellular levels of cholesterol and fatty acid in vitro. GAA also ameliorates body weight gain and fat accumulation in liver or adipose tissues, and improves serum lipid levels and insulin sensitivity in high fat diet (HFD)-induced obese mice. Consistently, GAA regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Taken together, GAA could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. Copyright © 2018. Published by Elsevier B.V.

  18. Rapid development of systemic insulin resistance with overeating is not accompanied by robust changes in skeletal muscle glucose and lipid metabolism

    PubMed Central

    Cornford, Andrea S.; Hinko, Alexander; Nelson, Rachael K.; Barkan, Ariel L.; Horowitz, Jeffrey F.

    2014-01-01

    Prolonged overeating and the resultant weight gain are clearly linked with the development of insulin resistance and other cardiometabolic abnormalities, but adaptations that occur after relatively short periods of overeating are not completely understood. The purpose of this study was to characterize metabolic adaptations that may accompany the development of insulin resistance after 2 weeks of overeating. Healthy, nonobese subjects (n = 9) were admitted to the hospital for 2 weeks, during which time they ate ~4000 kcals·day−1 (70 kcal·kg−1 fat free mass·day−1). Insulin sensitivity was estimated during a meal tolerance test, and a muscle biopsy was obtained to assess muscle lipid accumulation and protein markers associated with insulin resistance, inflammation, and the regulation of lipid metabolism. Whole-body insulin sensitivity declined markedly after 2 weeks of overeating (Matsuda composite index: 8.3 ± 1.3 vs. 4.6 ± 0.7, p < 0.05). However, muscle markers of insulin resistance and inflammation (i.e., phosphorylation of IRS-1-Ser312, Akt-Ser473, and c-Jun N-terminal kinase) were not altered by overeating. Intramyocellular lipids tended to increase after 2 weeks of overeating (triacylglyceride: 7.6 ± 1.6 vs. 10.0 ± 1.8 nmol·mg−1 wet weight; diacylglyceride: 104 ± 10 vs. 142 ± 23 pmol·mg−1 wet weight) but these changes did not reach statistical significance. Overeating induced a 2-fold increase in 24-h insulin response (area under the curve (AUC); p < 0.05), with a resultant ~35% reduction in 24-h plasma fatty acid AUC (p < 0.05). This chronic reduction in circulating fatty acids may help explain the lack of a robust increase in muscle lipid accumulation. In summary, our findings suggest alterations in skeletal muscle metabolism may not contribute meaningfully to the marked whole-body insulin resistance observed after 2 weeks of overeating. PMID:23668758

  19. Rapid development of systemic insulin resistance with overeating is not accompanied by robust changes in skeletal muscle glucose and lipid metabolism.

    PubMed

    Cornford, Andrea S; Hinko, Alexander; Nelson, Rachael K; Barkan, Ariel L; Horowitz, Jeffrey F

    2013-05-01

    Prolonged overeating and the resultant weight gain are clearly linked with the development of insulin resistance and other cardiometabolic abnormalities, but adaptations that occur after relatively short periods of overeating are not completely understood. The purpose of this study was to characterize metabolic adaptations that may accompany the development of insulin resistance after 2 weeks of overeating. Healthy, nonobese subjects (n = 9) were admitted to the hospital for 2 weeks, during which time they ate ∼4000 kcals·day(-1) (70 kcal·kg(-1) fat free mass·day(-1)). Insulin sensitivity was estimated during a meal tolerance test, and a muscle biopsy was obtained to assess muscle lipid accumulation and protein markers associated with insulin resistance, inflammation, and the regulation of lipid metabolism. Whole-body insulin sensitivity declined markedly after 2 weeks of overeating (Matsuda composite index: 8.3 ± 1.3 vs. 4.6 ± 0.7, p < 0.05). However, muscle markers of insulin resistance and inflammation (i.e., phosphorylation of IRS-1-Ser(312), Akt-Ser(473), and c-Jun N-terminal kinase) were not altered by overeating. Intramyocellular lipids tended to increase after 2 weeks of overeating (triacylglyceride: 7.6 ± 1.6 vs. 10.0 ± 1.8 nmol·mg(-1) wet weight; diacylglyceride: 104 ± 10 vs. 142 ± 23 pmol·mg(-1) wet weight) but these changes did not reach statistical significance. Overeating induced a 2-fold increase in 24-h insulin response (area under the curve (AUC); p < 0.05), with a resultant ∼35% reduction in 24-h plasma fatty acid AUC (p < 0.05). This chronic reduction in circulating fatty acids may help explain the lack of a robust increase in muscle lipid accumulation. In summary, our findings suggest alterations in skeletal muscle metabolism may not contribute meaningfully to the marked whole-body insulin resistance observed after 2 weeks of overeating.

  20. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    PubMed Central

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  1. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    PubMed

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  2. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  3. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  4. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    PubMed

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  5. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    PubMed

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P < .05). Furthermore, the Tre/HFD group showed a significantly suppressed elevation of homeostasis model assessment-insulin resistance compared with the Mal/HFD group (P < .05) and showed a trend toward lower homeostasis model assessment-insulin resistance than the Glc/HFD group. After 8 weeks of feeding, mesenteric adipocyte size in the Tre/HFD group showed significantly less hypertrophy than the Glc/HFD, Mal/HFD, high-fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  7. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.

    PubMed

    Wang, Feng; Han, Lili; Hu, Dayi

    2017-01-01

    Studies on the association of fasting insulin concentrations or insulin resistance with subsequent risk of hypertension have yielded conflicting results. To quantitatively assess the association of fasting insulin concentrations or homeostasis model assessment insulin resistance (HOMA-IR) with incident hypertension in a general population by performing a meta-analysis. We searched the PubMed and Embase databases until August 31, 2016 for prospective observational studies investigating the elevated fasting insulin concentrations or HOMA-IR with subsequent risk of hypertension in the general population. Pooled risk ratio (RR) and 95% confidence interval (CI) of hypertension was calculated for the highest versus the lowest category of fasting insulin or HOMA-IR. Eleven studies involving 10,230 hypertension cases were identified from 55,059 participants. Meta-analysis showed that the pooled adjusted RR of hypertension was 1.54 (95% CI 1.34-1.76) for fasting insulin concentrations and 1.43 (95% CI 1.27-1.62) for HOMA-IR comparing the highest to the lowest category. Subgroup analysis results showed that the association of fasting insulin concentrations with subsequent risk of hypertension seemed more pronounced in women (RR 2.07; 95% CI 1.19-3.60) than in men (RR 1.48; 95% CI 1.17-1.88). This meta-analysis suggests that elevated fasting insulin concentrations or insulin resistance as estimated by homeostasis model assessment is independently associated with an exacerbated risk of hypertension in the general population. Early intervention of hyperinsulinemia or insulin resistance may help clinicians to identify the high risk of hypertensive population. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.

    PubMed

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-11-25

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4(+) and CD8(+) T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH.

  9. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E

    PubMed Central

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4+ and CD8+ T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. PMID:26603489

  10. Association between Insulin Resistance and Cardiovascular Risk Factors in Polycystic Ovary Syndrome Patients.

    PubMed

    Wanderley, Miriam da Silva; Pereira, Lara Cristina Ribeiro; Santos, Carla Borges; Cunha, Vinícius Santos da; Neves, Mariam Viviane Jovino

    2018-04-01

     To analyze the association between the indirect methods of evaluating insulin resistance (IR) and blood pressure, anthropometric and biochemical parameters in a population of polycystic ovary syndrome (PCOS) patients.  Cross-sectional study performed at the Hospital Universitário de Brasília (HUB, in the Portuguese acronym) involving PCOS patients diagnosed from January 2011 to January 2013. Four indirect methods, namely, fasting blood insulin level, fasting glucose/insulin ratio (G/I), homeostatic model-assessment-insulin resistance (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI), were used to obtain the IR diagnosis. The data were analyzed using the test of proportions, the Chi-square test, and Fisher exact test, when indicated.  Out of the 83 patients assessed, aged 28.79 ± 5.85, IR was found in 51.81-66.2% of them using the G/I ratio and the QUICKI, respectively. The test of proportions did not show a significant difference between the methods analyzed. The proportion of IR diagnoses was statistically higher in obese women than in women with normal body mass index (BMI). We observed a statistically significant association between all the methods for diagnosing IR and BMI, waist circumference (WC) and lipid accumulation product (LAP). With regards to arterial hypertension (AH), we observed a significant association according to three methods, with the exception of the ratio G/I.  Insulin resistance prevalence varied according to the diagnostic method employed, with no statistical difference between them. The proportion of IR diagnoses was statistically higher in obese women than in women with normal BMI. We observed a significant association between IR and WC, BMI, LAP, as well as dyslipidemia and AH in a high proportion of patients. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  11. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  12. Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep.

    PubMed

    Puttabyatappa, Muraly; Padmanabhan, Vasantha

    2017-01-01

    Insulin resistance, a common feature of metabolic disorders such as obesity, nonalcoholic fatty liver disease, metabolic syndrome, and polycystic ovary syndrome, is a risk factor for development of diabetes. Because sex hormones orchestrate the establishment of sex-specific behavioral, reproductive, and metabolic differences, a role for them in the developmental origin of insulin resistance is also to be expected. Female sheep exposed to male levels of testosterone during fetal life serve as an excellent translational model for delineating programming of insulin resistance. This chapter summarizes the ontogeny of insulin resistance, the tissue-specific changes in insulin sensitivity, and the various factors that are involved in the programming and maintenance of the insulin resistance in adult female sheep that were developmentally exposed to fetal male levels of testosterone during the sexual-differentiation window.

  13. Vitamin D supplementation reduces insulin resistance in Japanese adults: a secondary analysis of a double-blind, randomized, placebo-controlled trial.

    PubMed

    Sun, Xiaomin; Cao, Zhen-Bo; Tanisawa, Kumpei; Ito, Tomoko; Oshima, Satomi; Higuchi, Mitsuru

    2016-10-01

    Higher circulating 25-hydroxyvitamin D (25[OH]D) concentration has been linked to a lower prevalence of insulin resistance and type 2 diabetes mellitus. However, randomized controlled trials have not clarified the effect of vitamin D supplementation on insulin resistance in healthy adults. The objective of this study was to assess the effect of vitamin D supplementation for 1 year on insulin resistance; the study was a secondary analysis of a clinical trial. We hypothesized that increased 25(OH)D concentration after vitamin D supplementation for 1 year would significantly improve insulin resistance. Ninety-six healthy adults participated in this study, of whom 81 completed the study. The participants randomly received daily either 420 IU vitamin D 3 or placebo in a double-blind manner for 1 year. The levels of fasting insulin, glucose, and other parameters were assessed at baseline and after 1 year of intervention. Homeostasis model assessment of insulin resistance index was calculated from insulin and glucose levels. Visceral fat area and physical activity were also investigated. Serum 25(OH)D and 1,25-dihydroxyvitamin D concentrations were significantly increased by approximately 29.5 nmol/L and 7.0 pg/mL, respectively, after 1-year vitamin D supplementation. After vitamin D supplementation, fasting glucose levels and values of homeostasis model assessment of insulin resistance index significantly decreased from 88.3 to 85.3 mg/dL (P < .01) and 1.17 to 0.84 (P < .01), respectively, and the results were independent of physical activity and visceral fat accumulation. In conclusion, the present study showed that vitamin D supplementation for 1 year effectively improves fasting glucose level and insulin resistance in healthy Japanese adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Insulin resistance is associated with the aggressiveness of pancreatic ductal carcinoma.

    PubMed

    Dugnani, Erica; Balzano, Gianpaolo; Pasquale, Valentina; Scavini, Marina; Aleotti, Francesca; Liberati, Daniela; Di Terlizzi, Gaetano; Gandolfi, Alessandra; Petrella, Giovanna; Reni, Michele; Doglioni, Claudio; Bosi, Emanuele; Falconi, Massimo; Piemonti, Lorenzo

    2016-12-01

    To study whether insulin resistance accelerates the development and/or the progression of pancreatic adenocarcinoma (PDAC), we hypothesized that patients with insulin resistance, compared with those without insulin resistance, show: (1) a younger age and more advanced PDAC stage at diagnosis and (2) a shorter disease-free and overall survival after PDAC diagnosis. Prospective observational study of patients admitted to a referral center for pancreatic disease. Insulin resistance was defined as a HOMA-IR value greater than the 66th percentile value of the patients included in this study. Survival was estimated according to Kaplan-Meier and by Cox regression. Of 296 patients with PDAC, 99 (33 %) met criteria for being classified as insulin resistant at diagnosis. Median follow-up time after diagnosis was 5.27 ± 0.23 years. Patients with insulin resistance received a diagnosis of PDAC at a similar age compared to patients without insulin resistance (67.1 ± 9 vs. 66.8 ± 10 years, p = 0.68), but were more likely to have a cancer stage ≥3 (23.2 vs. 14.2 %, p = 0.053) and a residual disease after surgery (R1 56.4 vs. 38 %; p = 0.007). The median overall survival was 1.3 ± 0.14 and 1.79 ± 0.11 years for the patients with and without insulin resistance, respectively (p = 0.016). Results did not change when patients with diabetes at PDAC diagnosis were excluded from the analysis. Multivariate analysis showed that insulin resistance was independently associated with overall survival. Insulin resistance is associated with the aggressiveness of PDAC.

  15. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

    PubMed Central

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-01-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat. PMID:20049731

  16. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC.

    PubMed

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-08-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat.

  17. Dietary patterns and the insulin resistance phenotype among non-diabetic adults

    USDA-ARS?s Scientific Manuscript database

    Background: Information on the relation between dietary patterns derived by cluster analysis and insulin resistance is scarce. Objective: To compare insulin resistance phenotypes, including waist circumference, body mass index, fasting and 2-hour post-challenge insulin, insulin sensitivity index (I...

  18. [The insulin resistance syndrome and fibrinolysis disorders].

    PubMed

    Okapcová, J; Hrnciar, J

    1997-06-01

    The high atherogenic potential of the insulin resistance syndrome can be only partly explained by the association of "classical" risk factors of atherosclerosis which are considered part of it, i.e. impaired carbohydrate tolerance/diabetes mellitus type II, dyslipidaemia, hypertension and obesity. Impaired fibrinolysis due to excessive production of the plasminogen activator inhibitor-1 (PAI-1) are further risk factors which participate in the process of atherogenesis from the beginning of formation of the atheromatous plaque to the thrombotic occlusion of the vascular lumen. The authors present a group of 25 patients with different grades of glucose resistance, evaluated by theinsulin response to a glucose load. The insulin resistant group (n = 15) differed significantly from the non-resistant one (n = 10) as regards body weight and the central type of obesity (< 0.01 and 0.001 resp.) insulin level on fasting and after a load (< 0.0001 and 0.001 resp.), triglyceride levels (< 0.01), the incidence of diabetes or impaired carbohydrate tolerance (66.7 vs. 20%) and hypertension (53.3 vs. 20%), but also as regards the PAI-1 activity (.0001). As regards blood sugar levels, total and HDL cholesterol the groups did not differ. The authors investigated also the relationship between PAI-1 activity and different components of the insulin resistance syndrome in the whole group. The closest correlation was found between the PAI-1 activity and the general insulinaemic response to a glucose load (< 0.001) and between PAI-1 and triglycerides (< 0.001). Based on the presented results it may be stated that hypofibnrinolysis as a result of excessive production of PAI.1 is part of the insulin resistance syndrome and potentiates its high atherogenic risk.

  19. [Concept Analysis for Psychological Insulin Resistance in Korean People with Diabetes].

    PubMed

    Song, Youngshin

    2016-06-01

    The purpose of this study was to define the concept for psychological insulin resistance in the Korean population with diabetes. The Hybrid model was used to perform the concept analysis of psychological insulin resistance. Results from both the theoretical review with 26 studies and a field study including 19 participants with diabetes were included in final process. The preceding factors of psychological insulin resistance were uncontrolled blood glucose and change in daily life. The concept of psychological insulin resistance was found to have three categories with 8 attributes such as emotional factors (negative feeling), cognitive factors (low awareness and knowledge, low confidence for self-injection) and supportive factors (economic burden, dependency life, embarrassing, feeling about supporters, feeling of trust in, vs mistrust of health care providers). The 8 attributes included 30 indicators. The psychological insulin resistance of population with diabetes in Korea was defined as a complex phenomenon associated with insulin therapy that can be affected by emotional factors, cognitive factors, and supportive relational factors. Based on the results, a tool for measuring psychological insulin resistance of Koreans with diabetes and effective programs for enhancing insulin adherence should be developed in future studies.

  20. Insulin resistance and associated factors: a cross-sectional study of bank employees.

    PubMed

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria Del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-04-01

    Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals.

  1. Insulin resistance and associated factors: a cross-sectional study of bank employees

    PubMed Central

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-01-01

    OBJECTIVE: Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. METHODS: A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. RESULTS: It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. CONCLUSION: The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals. PMID:28492722

  2. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  3. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  4. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    PubMed

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  5. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  6. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  7. IL-34 is associated with obesity, chronic inflammation, and insulin resistance.

    PubMed

    Chang, Eun-Ju; Lee, Seul Ki; Song, Young Sook; Jang, Yeon Jin; Park, Hye Soon; Hong, Joon Pio; Ko, A Ra; Kim, Dae Yeon; Kim, Jong-Hyeok; Lee, Yeon Ji; Heo, Yoon-Suk

    2014-07-01

    IL-34 is a recently identified alternative ligand for colony-stimulating factor-1 (CSF-1) receptor. IL-34 and CSF-1 are regulators of differentiation, proliferation, and survival in mononuclear phagocytes. Here, we investigated the IL-34 serum concentration and expression in human adipose tissues and any associations with insulin resistance. We recruited 19 nondiabetic obese women, 9 type 2 diabetic women, and 27 normal-weight women. Metabolic parameters, abdominal fat distribution, serum IL-34 concentration, and IL-34 mRNA expression were measured in abdominal sc adipose tissue (SAT) and visceral adipose tissue (VAT). In addition, the expression/secretion and putative effects of IL-34 were assessed in human differentiated adipocytes. Serum IL-34 concentration was measured before and 5 to 9 months after laparoscopic Roux-en-Y gastric bypass surgery was performed on the 20 obese patients. Regardless of diabetes status, obese patients demonstrated significantly higher serum IL-34 concentrations than controls. Serum IL-34 was significantly and positively correlated with insulin resistance-related metabolic parameters. IL-34 mRNA was significantly higher in VAT than SAT. IL-34 was expressed in adipocytes as well as nonadipocytes, and expression was significantly higher during adipogenesis. In differentiated adipocytes, the expression/secretion of IL-34 was enhanced by TNFα and IL-1β. In addition, IL-34 augmented fat accumulation and inhibited the stimulatory effects of insulin on glucose transport. Moreover, serum IL-34 was significantly decreased after Roux-en-Y gastric bypass-induced weight loss. The present study demonstrates, for the first time, that IL-34 is expressed in human adipose tissues and the circulating concentration is significantly elevated in obese patients. This suggests that IL-34 is associated with insulin resistance.

  8. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-05

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

  10. Exercise and insulin resistance in youth: a meta-analysis.

    PubMed

    Fedewa, Michael V; Gist, Nicholas H; Evans, Ellen M; Dishman, Rod K

    2014-01-01

    The prevalence of obesity and diabetes is increasing among children, adolescents, and adults. Although estimates of the efficacy of exercise training on fasting insulin and insulin resistance have been provided, for adults similar estimates have not been provided for youth. This systematic review and meta-analysis provides a quantitative estimate of the effectiveness of exercise training on fasting insulin and insulin resistance in children and adolescents. Potential sources were limited to peer-reviewed articles published before June 25, 2013, and gathered from the PubMed, SPORTDiscus, Physical Education Index, and Web of Science online databases. Analysis was limited to randomized controlled trials by using combinations of the terms adolescent, child, pediatric, youth, exercise training, physical activity, diabetes, insulin, randomized trial, and randomized controlled trial. The authors assessed 546 sources, of which 4.4% (24 studies) were eligible for inclusion. Thirty-two effects were used to estimate the effect of exercise training on fasting insulin, with 15 effects measuring the effect on insulin resistance. Estimated effects were independently calculated by multiple authors, and conflicts were resolved before calculating the overall effect. Based on the cumulative results from these studies, a small to moderate effect was found for exercise training on fasting insulin and improving insulin resistance in youth (Hedges' d effect size = 0.48 [95% confidence interval: 0.22-0.74], P < .001 and 0.31 [95% confidence interval: 0.06-0.56], P < .05, respectively). These results support the use of exercise training in the prevention and treatment of type 2 diabetes.

  11. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    PubMed Central

    Fazakerley, Daniel J; Chaudhuri, Rima; Yang, Pengyi; Maghzal, Ghassan J; Thomas, Kristen C; Krycer, James R; Humphrey, Sean J; Parker, Benjamin L; Fisher-Wellman, Kelsey H; Meoli, Christopher C; Hoffman, Nolan J; Diskin, Ciana; Burchfield, James G; Cowley, Mark J; Kaplan, Warren; Modrusan, Zora; Kolumam, Ganesh; Yang, Jean YH; Chen, Daniel L; Samocha-Bonet, Dorit; Greenfield, Jerry R; Hoehn, Kyle L

    2018-01-01

    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. PMID:29402381

  12. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  13. Revisiting the connection between intramyocellular lipids and insulin resistance: a long and winding road.

    PubMed

    Muoio, D M

    2012-10-01

    In the mid-1990s, researchers began to re-examine type 2 diabetes from a more 'lipocentric' perspective; giving strong consideration to the idea that systemic lipid imbalances give rise to glucose dysregulation, rather than vice versa. At the forefront of this paradigm shift was a report by Krssak and colleagues (Diabetologia 1999; 42:113-116) showing that intramyocellular lipid content, measured via the (then) novel application of proton nuclear magnetic resonance spectroscopy, served as a robust indicator of muscle insulin sensitivity in healthy individuals. A subsequent wave of investigations produced compelling correlative evidence linking ectopic lipid deposition within skeletal myocytes to the development of obesity-associated insulin resistance. But this relationship has proven much more complex than originally imagined, and scientists today are still left wondering if and how the intramyocellular accumulation of lipid droplets has a direct bearing on insulin action. Originally viewed as a simple storage depot, the lipid droplet is now recognised as an essential and sophisticated organelle that actively participates in numerous cellular processes. This edition of 'Then and now' revisits the connection between intramuscular lipids and insulin resistance and looks to future research aimed at understanding the dynamic interplay between lipid droplet biology and metabolic health.

  14. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    PubMed Central

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  15. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  16. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.

  17. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  19. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  20. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  1. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    PubMed

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  2. Insulin resistance, role of metformin and other non-insulin therapies in pediatric type 1 diabetes.

    PubMed

    Bacha, Fida; Klinepeter Bartz, Sara

    2016-12-01

    Type 1 diabetes mellitus (T1DM) in youth is a challenging chronic medical condition. Its management should address not only the glycemic control but also insulin resistance and cardiovascular disease risk factors which are increasingly recognized to be present in youth with TID. Current knowledge on the mechanisms of insulin resistance in T1DM is reviewed. The use of adjunctive therapies that are beneficial to achieve adequate glycemic control while mitigating the effects of insulin resistance are discussed with a focus on metformin therapy and an overview of other new pharmacologic agents. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Insulin resistance in clinical and experimental alcoholic liver disease

    PubMed Central

    Carr, Rotonya M.; Correnti, Jason

    2015-01-01

    Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of health care dollars annually. Since the advent of the obesity epidemic, insulin resistance and diabetes have become common clinical findings in patients with ALD; and the development of insulin resistance predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease. PMID:25998863

  4. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus

    PubMed Central

    Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan

    2016-01-01

    Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373

  5. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    PubMed

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-04-01

    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R(2)=0.751, P<0.001). During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance.

  6. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  7. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  8. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev

    2016-11-01

    Insulin resistance is a common feature of obesity and predisposes the affected individuals to a variety of pathologies, including type 2 diabetes mellitus (T2DM), dyslipidemias, hypertension, cardiovascular disease etc. Insulin resistance is the primary cause of T2DM and it occurs many years before the disease onset. Although Thiazolidinediones (TZDs) such as rosiglitazone and pioglitazone are outstanding insulin sensitizers and are in clinical use since 1990s, however, their serious side effects such as heart attack and bladder cancer have limited their utilization. Thus, there is an unmet need to identify a new class of drugs with insulin sensitizing activity and minimal side effects. In the recent years, Histone deacetylase (HDAC) has emerged as a new molecular target in the control of insulin resistance and T2DM. The level of histone acetylation/deacetylation has been found to be altered during insulin resistance and T2DM conditions. HDAC inhibitors have been found to effectively manage insulin resistance and T2DM in various preclinical models and clinical trials. In this review we will focus on various aspects related to regulation of insulin signalling by HDACs and the future scope of HDAC inhibitors as therapeutics for insulin resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fast-food restaurants, park access, and insulin resistance among Hispanic youth.

    PubMed

    Hsieh, Stephanie; Klassen, Ann C; Curriero, Frank C; Caulfield, Laura E; Cheskin, Lawrence J; Davis, Jaimie N; Goran, Michael I; Weigensberg, Marc J; Spruijt-Metz, Donna

    2014-04-01

    Evidence of associations between the built environment and obesity risk has been steadily building, yet few studies have focused on the relationship between the built environment and aspects of metabolism related to obesity's most tightly linked comorbidity, type 2 diabetes. To examine the relationship between aspects of the neighborhood built environment and insulin resistance using accurate laboratory measures to account for fat distribution and adiposity. Data on 453 Hispanic youth (aged 8-18 years) from 2001 to 2011 were paired with neighborhood built environment and 2000 Census data. Analyses were conducted in 2011. Walking-distance buffers were built around participants' residential locations. Body composition and fat distribution were assessed using dual x-ray absorptiometry and waist circumference. Variables for park space, food access, walkability, and neighborhood sociocultural aspects were entered into a multivariate regression model predicting insulin resistance as determined by the homeostasis model assessment. Independent of obesity measures, greater fast-food restaurant density was associated with higher insulin resistance. Increased park space and neighborhood linguistic isolation were associated with lower insulin resistance among boys. Among girls, park space was associated with lower insulin resistance, but greater neighborhood linguistic isolation was associated with higher insulin resistance. A significant interaction between waist circumference and neighborhood linguistic isolation indicated that the negative association between neighborhood linguistic isolation and insulin resistance diminished with increased waist circumference. Reducing access to fast food and increasing public park space may be valuable to addressing insulin resistance and type 2 diabetes, but effects may vary by gender. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b.

    PubMed

    Ouyang, Zijun; Li, Wanshuai; Meng, Qianqian; Zhang, Qi; Wang, Xingqi; Elgehama, Ahmed; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2017-05-01

    Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca 2+ -ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca 2+ -ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Insulin-like growth factor 1, liver enzymes, and insulin resistance in patients with PCOS and hirsutism.

    PubMed

    Çakir, Evrim; Topaloğlu, Oya; Çolak Bozkurt, Nujen; Karbek Bayraktar, Başak; Güngüneş, Aşkın; Sayki Arslan, Müyesser; Öztürk Ünsal, İlknur; Tutal, Esra; Uçan, Bekir; Delıbaşi, Tuncay

    2014-01-01

    Hyperinsulinemia and insulin resistance are commonly seen in patients with hirsutism and polycystic ovary syndrome (PCOS), and are associated with cardiovascular disease risk. However, it is not yet known whether insulin-like growth factor I (IGF-I) and alanine transaminase (ALT) produced by the liver play roles in hyperinsulinemia and subclinical atherosclerotic process in patients with PCOS and idiopathic hirsutism (IH). This was a prospective case-controlled study. The study population consisted of 25 reproductive-age PCOS women, 33 women with IH, and 25 control subjects. Mean IGF-I levels and median ALT levels were higher in patients with IH and PCOS than controls, but these differences were not statistically significant. The participants who had a homeostasis model assessment insulin resistance index (HOMA-IR) greater than 2.7 had significantly higher IGF-1 and ALT levels. ALT levels were positively correlated with body mass index, FG, insulin and HOMA-IR. The study illustrated that IGF-1 and ALT levels were significantly higher in patients with increased insulin resistance. Due to short disease duration in younger participants, we did not observe any correlation between IGF-1 and hyperinsulinemia. These findings suggest that increased hepatic production of IGF-I and ALT might be an early indicator of insulin resistance in hirsutism.

  13. Adiponectin and waist circumference as predictors of insulin-resistance in women.

    PubMed

    Bonneau, Graciela A; Pedrozo, Williams R; Berg, Gabriela

    2014-01-01

    The initial disturbance of insulin resistance seems to focus on adipose tissue is a dynamic organ involved in many physiological and metabolic processes. Expresses and secretes a variety of active peptides, adipocytokines. To evaluate the prevalence of insulin-resistance in an healthy urban middle age population and to explore the role of adiponectin, inflammatory biomarkers (hs-CRP) and traditional cardiovascular risk factors as predictors of the insulin-resistance state. We studied of 176 participants (117 women and 59 men, 25-74 years), individuals with diabetes, hypothyroidism or hyperthyroidism, infectious disease, renal, or hepatic neoplasms and pregnant women were excluded. We evaluated glucose, insulin, adiponectin and hs-CRP. We found that 17.2% of individuals presented insulin-resistance. Correlation was found between waist circumference, body mass index, blood pressure and HOMA index (p<0.01). Adiponectin was associated with the insulin-resistance (p<0.001) but not hs-CRP. Adiponectin (β=0.385, p=0.004) and waist circumference (β=0.116, p=0.02) were predictors of IR only in women, meanwhile none of the analyzed biomarkers predicted insulin-resistance in men. Besides, postmenopausal women presented higher adiponectin levels than premenopausal 7.63 (4.46-9.58) vs 5.50 (3.83-7.40) μg/ml, p=0.01. Adiponectin and waist circumference are important predictors of insulin-resistance even in healthy non-diabetic women, they may open a new opportunity to improve current risk estimation. Copyright © 2013 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  14. Insulin resistance and polycystic ovary syndrome.

    PubMed

    Galluzzo, Aldo; Amato, Marco Calogero; Giordano, Carla

    2008-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in humans, affecting approximately 7-8% of women of reproductive age. Despite the criteria adopted, PCOS is considered to be a predominantly hyperandrogenetic syndrome and the evaluation of metabolic parameters and insulin sensitivity is not mandatory. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Acknowledging the strong impact of insulin-resistance in the genesis of PCOS could be helpful not only to make the diagnosis more robust, but also for conferring better cardiovascular risk prevention. Several current studies support a strong recommendation that women with PCOS should undergo comprehensive evaluation for the metabolic syndrome and recognized cardiovascular risk factors, and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many of these women do not lose weight easily. Insulin-sensitizing drugs are discussed as a promising and unique therapeutic option for the chronic treatment of PCOS.

  15. Association between omentin levels and insulin resistance in pregnancy.

    PubMed

    Aktas, G; Alcelik, A; Ozlu, T; Tosun, M; Tekce, B K; Savli, H; Tekce, H; Dikbas, O

    2014-03-01

    Omentin is a new adipokine secreted mainly from visceral adipose tissue. Serum omentin is found to be reduced in patients with impaired glucose tolerance, type 2 diabetes mellitus, obesity and insulin resistant states. Despite the fact that pregnancy is also characterized with hyperinsulinemia, literature is lacking about data of omentin levels and its association with insulin resistance in pregnant women. We aimed to evaluate the association of omentin levels and insulin resistance in pregnant women and to compare these levels with those of non-pregnant, non-diabetic women. Uncomplicated pregnant women who admit to our outpatient clinics for routine follow-up were included in the study group. Non-pregnant women without diabetes mellitus were served as control group. Fasting glucose, insulin, omentin levels and HOMA IR were recorded. SPSS 15.0 for Windows was used for statistical analysis. There were 36 pregnant women in the study group and 37 healthy, non-pregnant women in the control group. Serum omentin and fasting glucose levels were significantly decreased and fasting insulin was significantly increased in the study group compared to control group. Omentin might be an indicator of insulin resistance in pregnant women. Larger prospective studies are needed to claim whether omentin can have a clinical use for diagnosis of gestational diabetes mellitus. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  16. Sustained βAR Stimulation Mediates Cardiac Insulin Resistance in a PKA-Dependent Manner

    PubMed Central

    Denkaew, Tananat; Phosri, Sarawuth; Pinthong, Darawan; Parichatikanond, Warisara; Shimauchi, Tsukasa; Nishida, Motohiro

    2016-01-01

    Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of β-adrenergic receptors (βARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained βAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained βAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the β2AR subtype in cardiomyocytes and heart tissue. Overstimulation of β2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, βAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with β-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in βAR-mediated insulin resistance. PMID:26652903

  17. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    PubMed

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  18. Waist circumference and insulin resistance: a cross-sectional study of Japanese men

    PubMed Central

    Tabata, Shinji; Yoshimitsu, Shinichiro; Hamachi, Tadamichi; Abe, Hiroshi; Ohnaka, Keizo; Kono, Suminori

    2009-01-01

    Background Visceral obesity is positively related to insulin resistance. The nature of the relationship between waist circumference and insulin resistance has not been known in Japanese populations. This study examined the relationship between waist circumference and insulin resistance and evaluated the optimal cutoff point for waist circumference in relation to insulin resistance in middle-aged Japanese men. Methods Study subjects included 4800 Japanese men aged 39 to 60 years. Insulin resistance was evaluated by the homeostasis model assessment of insulin resistance (HOMA-IR). The relationship of waist circumference with HOMA-IR was assessed by use of adjusted means of HOMA-IR and odds ratios of elevated HOMA-IR defined as the highest quintile (≥2.00). Receiver operating characteristics (ROC) curve analysis using Youden index and the area under curve (AUC) was employed to determine optimal cutoffs of waist circumference in relation to HOMA-IR. Results Adjusted geometric means of HOMA-IR and prevalence odds of elevated HOMA-IR were progressively higher with increasing levels of waist circumference. In the ROC curve analysis, the highest value of Youden index was obtained for a cutoff point of 85 cm in waist circumference across different values of HOMA-IR. Multiple logistic regression analysis also indicated that the AUC was consistently the largest for a waist circumference of 85 cm. Conclusion Waist circumference is linearly related to insulin resistance, and 85 cm in waist circumference is an optimal cutoff in predicting insulin resistance in middle-aged Japanese men. PMID:19138424

  19. SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2014-09-01

    SIRT2 is primarily a cytoplasmic protein deacetylase and is abundantly expressed in metabolically active tissues like adipocytes and brain. However, its role, if any, in regulating insulin signaling in skeletal muscle cells, is not known. We have examined the role of SIRT2 in insulin-mediated glucose disposal in normal and insulin resistant C2C12 skeletal muscle cells in vitro. SIRT2 was over expressed in insulin resistant skeletal muscle cells. Pharmacological inhibition of SIRT2 increased insulin-stimulated glucose uptake and improved phosphorylation of Akt and GSK3β in insulin resistant cells. Knockdown of endogenous SIRT2 and over expression of catalytically-inactive SIRT2 mutant under insulin-resistant condition showed similar amelioration of insulin sensitivity. Our results suggest that down-regulation of SIRT2 improved insulin sensitivity in skeletal muscle cells under insulin-resistant condition. Previously it has been reported that down-regulation of SIRT1 and SIRT3 in C2C12 cells results in impairment of insulin signaling and induces insulin resistance. However, we have observed an altogether different role of SIRT2 in skeletal muscle. This implicates a differential regulation of insulin resistance by sirtuins which otherwise share a conserved catalytic domain. The study significantly directs towards future approaches in targeting inhibition of SIRT2 for therapeutic treatment of insulin resistance which is the major risk factor in Type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  1. Insulin resistance in offspring of hypertensive subjects.

    PubMed

    Mino, D; Wacher, N; Amato, D; Búrbano, G; Fonseca, M E; Revilla, C; Gordon, F; Lifshitz, A

    1996-10-01

    To assess whether apparently healthy subjects with a family history of systemic hypertension have a higher risk of presenting the insulin resistance syndrome. Three hundred and eighty-six subjects aged 20-65 years. A middle socio-economic class urban community from Mexico City. All subjects and, when necessary, their first-degree relatives, answered a questionnaire and underwent a physical examination with measurement of height, weight and blood pressure. Serum insulin, glucose, cholesterol and triglycerides were measured during fasting and 2 h after an oral load of 75 g glucose. A family history of systemic hypertension was present for 167 (43%) of the subjects, of whom 123 (31%) were obese. Subjects with a family history of hypertension had higher systolic blood pressures than did those without such a history (120 +/- 15 versus 115 +/- 10 mmHg). In the logistic regression model, the body mass index and age showed statistically significant effects on the fasting glucose:insulin ratio and on serum insulin levels after an oral load of glucose. When men and women were analysed separately, only in men were higher systolic and mean blood pressures and lower glucose:insulin ratios observed. In the logistic regression analysis the body mass index was a significant predictor of the glucose:insulin ratio and serum insulin levels after an oral load of glucose, especially in men. Apparently healthy male offspring of hypertensive parents have higher blood pressure levels and lower insulin sensitivities than do offspring of normotensive parents. Insulin resistance was related to obesity, but not to a family history of hypertension, as had previously been reported by other research groups.

  2. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  3. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yan-Jie; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Juan, Chi-Chang

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ET{sub A}R during insulin resistance,more » ET{sub A}R expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ET{sub A}R expression, but not ET{sub B}R, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ET{sub A}R pathway

  4. Lean mass and insulin resistance in women with polycystic ovary syndrome.

    PubMed

    Comerford, Kevin B; Almario, Rogelio U; Kim, Kyoungmi; Karakas, Sidika E

    2012-09-01

    Insulin resistance is common in women with polycystic ovary syndrome (PCOS). Muscle is the major tissue utilizing glucose while excess adipose tissue relates to insulin resistance. Thus, body composition is likely to be an important regulator of insulin sensitivity. Thirty-nine PCOS patients (age: 29.9±1.0 years; BMI: 33.8±1.2 kg/m(2)) participated in a cross sectional study. Body composition was measured by dual energy x-ray absorptiometry (DEXA). Insulin resistance and secretion were assessed using oral glucose tolerance test (OGTT) and frequently sampled intravenous glucose tolerance test (FS-IVGTT). In contrast with the conventional expectations, lean mass correlated directly (P<.05) with the insulin resistance measure HOMA (r=0.440); and inversely with the insulin sensitivity index QUICKI (r=-0.522) independent of fat mass. In 11 pairs of subjects matched for fat mass (35.6±2.2 and 35.6±2.4 kg) but with discordant lean mass (52.8±1.8 vs 44.4±1.6 kg), those with higher lean mass had a higher glucose response during OGTT (AUC(Glucose); P=.034). In contrast, 17 pairs matched for lean mass (48.7±1.7 and 48.9±1.6 kg) but discordant for fat mass (43.3±2.6 vs 30.3±8.9 kg) showed no differences in insulin resistance parameters. These novel findings indicate that lean mass relates directly to insulin resistance in PCOS. Published by Elsevier Inc.

  5. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects.

    PubMed

    Radikova, Z; Koska, J; Huckova, M; Ksinantova, L; Imrich, R; Vigas, M; Trnovec, T; Langer, P; Sebokova, E; Klimes, I

    2006-05-01

    Demanding measurement of insulin sensitivity using clamp methods does not simplify the identification of insulin resistant subjects in the general population. Other approaches such as fasting- or oral glucose tolerance test-derived insulin sensitivity indices were proposed and validated with the euglycemic clamp. Nevertheless, a lack of reference values for these indices prevents their wider use in epidemiological studies and clinical practice. The aim of our study was therefore to define the cut-off points of insulin resistance indices as well as the ranges of the most frequently obtained values for selected indices. A standard 75 g oral glucose tolerance test was carried out in 1156 subjects from a Caucasian rural population with no previous evidence of diabetes or other dysglycemias. Insulin resistance/sensitivity indices (HOMA-IR, HOMA-IR2, ISI Cederholm, and ISI Matsuda) were calculated. The 75th percentile value as the cut-off point to define IR corresponded with a HOMA-IR of 2.29, a HOMA-IR2 of 1.21, a 25th percentile for ISI Cederholm, and ISI Matsuda of 57 and 5.0, respectively. For the first time, the cut-off points for selected indices and their most frequently obtained values were established for groups of subjects as defined by glucose homeostasis and BMI. Thus, insulin-resistant subjects can be identified using this simple approach.

  6. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance

  7. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  8. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    PubMed

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P <0.001, for hepatic insulin resistance; β 1 =-0.208 versus β 2 =-0.021; P <0.001, for peripheral insulin resistance). The path coefficients from baseline uric acid to follow-up insulin resistance indices in the hypertensive group were significantly greater than that in the normotensive group ( P <0.001 for the difference of β 1 values in the 2 groups). Insulin resistance partially mediated the effect of uric acid on subsequent hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P <0.001, for the difference of mediation effects). These findings provide evidence that higher uric acid levels probably precede insulin resistance, and peripheral insulin resistance likely plays a more important role in the development of hypertension than hepatic insulin

  9. Role of nutrition in preventing insulin resistance in children.

    PubMed

    Blasetti, Annalisa; Franchini, Simone; Comegna, Laura; Prezioso, Giovanni; Chiarelli, Francesco

    2016-03-01

    Nutrition during prenatal, early postnatal and pubertal period is crucial for the development of insulin resistance and its consequences. During prenatal period fetal environment and nutrition seems to interfere with metabolism programming later in life. The type of dietary carbohydrates, glycemic index, protein, fat and micronutrient content in maternal nutrition could influence insulin sensitivity in the newborn. The effects of lactation on metabolism and nutritional behavior later in life have been studied. Dietary habits and quality of diet during puberty could prevent the onset of a pathological insulin resistance through an adequate distribution of macro- and micronutrients, a diet rich in fibers and vegetables and poor in saturated fats, proteins and sugars. We want to overview the latest evidences on the risk of insulin resistance later in life due to both nutritional behaviors and components during the aforementioned periods of life, following a chronological outline from fetal development to adolescence.

  10. A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes.

    PubMed Central

    Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I

    1989-01-01

    Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522

  11. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    PubMed

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    PubMed

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 +/- 0.3 vs. 1.7 +/- 0.2 ng ml-1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways.

  13. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice

    PubMed Central

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-01-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J−Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 ± 11 mg dl−1 on day 0 to 138 ± 10 mg dl−1 on day 5, P < 0.01), improvement in glucose tolerance without a change in serum insulin levels and an increase in serum leptin levels in comparison with control (2.6 ± 0.3 vs. 1.7 ± 0.2 ng ml−1, P < 0.05). Microarray mRNA analysis of adipose tissue revealed that leptin was the only upregulated gene affecting glucose uptake. In obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 ± 136 % (P < 0.01) increase in serum insulin levels. This increase in insulin secretion after 5 days of intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 ± 1.1 ng ml−1 at baseline to 9.8 ± 1.8 ng ml−1 at week 12, P < 0.001) and worsening glucose tolerance, consistent with an increase in insulin resistance. We conclude that the increase in insulin resistance in response to intermittent hypoxia is dependent on the disruption of leptin pathways. PMID:12878760

  14. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study.

    PubMed

    Meigs, James B; Larson, Martin G; Fox, Caroline S; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J

    2007-10-01

    Systemic oxidative stress causes insulin resistance in rodents. We tested the hypothesis that oxidative stress and insulin resistance are associated in humans. We used cross-sectional data from 2,002 nondiabetic subjects of the community-based Framingham Offspring Study. We measured insulin resistance with the homeostasis model and defined categorical insulin resistance as homeostasis model assessment of insulin resistance (HOMA-IR) > 75th percentile. We measured oxidative stress using the ratio of urine 8-epi-prostaglandin F2alpha (8-epi-PGF2alpha) to creatinine and used age- and sex-adjusted regression models to test the association of oxidative stress with insulin resistance in individuals without diabetes and among subgroups at elevated risk of diabetes. Across 8-epi-PGF2alpha/creatinine tertiles, the prevalence of insulin resistance increased (18.0, 27.5, and 29.4% for the first, second, and third tertiles, respectively; P < 0.0001), as did mean levels of HOMA-IR (3.28, 3.83, and 4.06 units; P < 0.0001). The insulin resistance-oxidative stress association was attenuated by additional adjustment for BMI (P = 0.06 across tertiles for insulin resistance prevalence; P = 0.004 for mean HOMA-IR). Twenty-six percent of participants were obese (BMI > or = 30 kg/m2), 39% had metabolic syndrome (according to the Adult Treatment Panel III definition), and 37% had impaired fasting glucose (IFG) (fasting glucose 5.6-6.9 mmol/l). Among 528 obese participants, respectively, insulin resistance prevalence was 41.3, 60.6, and 54.2% across 8-epi-PGF2alpha/creatinine tertiles (P = 0.005); among 781 subjects with metabolic syndrome, insulin resistance prevalence was 41.3, 56.7, and 51.7% (P = 0.0025); and among 749 subjects with IFG, insulin resistance prevalence was 39.6, 47.2, and 51.6% (P = 0.04). Systemic oxidative stress is associated with insulin resistance in individuals at average or elevated risk of diabetes even after accounting for BMI.

  15. Insulin Resistance and Glucose Levels in Subjects with Subclinical Hypothyroidism.

    PubMed

    Khan, Sikandar Hayat; Fazal, Nadeem; Ijaz, Aamir; Manzoor, Syed Mohsin; Asif, Naveed; Rafi, Tariq; Yasir, Muhammad; Niazi, Najmusaquib Khan

    2017-06-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Comparative cross-sectional study. Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism.

  16. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    PubMed

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance

    PubMed Central

    Amati, Francesca; Dubé, John J.; Alvarez-Carnero, Elvis; Edreira, Martin M.; Chomentowski, Peter; Coen, Paul M.; Switzer, Galen E.; Bickel, Perry E.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.

    2011-01-01

    OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. PMID

  18. [Insulin resistance in the pathogenesis of polycystic ovarian disease (PCOD)].

    PubMed

    Jakowicki, J

    1994-10-01

    In polycystic ovarian disease there is a strong association between hyperinsulinemia and hyperandrogenism but not with obesity alone. The magnitude of peripheral insulin resistance is similar to that seen in non-insulin-dependent diabetes mellitus. Mild hyperinsulinemia in PCOD patients is not impair the carbohydrate metabolism. The elimination of the cause of hyperandrogenism by bilateral oophorectomy, long-acting Gn-RH agonist or antiandrogen cyproterone acetate did not improve the associated insulin resistance. In opposition to insulin resistance in the tissues responsible for metabolism of carbohydrate, the ovary remains sensitive to the effects of pancreatic hormone. Presumably this mechanism involved the interaction with IGF-I receptors to stimulate thecal and stromal androgen production. Insulin may sensitize the stroma to the stimulatory effect of LH. In the mechanism of follicular arrest take part increased level of binding proteins for IGF-I, mainly IGFBP 2, -4 and 5 inhibit FSH and IGF-I action.

  19. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells.

    PubMed

    Yuan, Huier; Hu, Yaqiu; Zhu, Yuzhang; Zhang, Yongneng; Luo, Chaohuan; Li, Zhi; Wen, Tengfei; Zhuang, Wanling; Zou, Jinfang; Hong, Liangli; Zhang, Xin; Hisatome, Ichiro; Yamamoto, Tetsuya; Cheng, Jidong

    2017-03-05

    Hyperuricemia occurs together with abnormal glucose metabolism and insulin resistance. Skeletal muscle is an important organ of glucose uptake, disposal, and storage. Metformin activates adenosine monophosphate-activated protein kinase (AMPK) to regulate insulin signaling and promote the translocation of glucose transporter type 4 (GLUT4), thereby stimulating glucose uptake to maintain energy balance. Our previous study showed that high uric acid (HUA) induced insulin resistance in skeletal muscle tissue. However, the mechanism of metformin ameliorating UA-induced insulin resistance in muscle cells is unknown and we aimed to determine it. In this study, differentiated C2C12 cells were exposed to UA (15 mg/dl), then reactive oxygen species (ROS) was detected with DCFH-DA and glucose uptake with 2-NBDG. The levels of phospho-insulin receptor substrate 1 (IRS1; Ser307), phospho-AKT (Ser473) and membrane GLUT4 were examined by western blot analysis. The impact of metformin on UA-induced insulin resistance was monitored by adding Compound C, an AMPK inhibitor, and LY294002, a PI3K/AKT inhibitor. Our data indicate that UA can increase ROS production, inhibit IRS1-AKT signaling and insulin-stimulated glucose uptake, and induce insulin resistance in C2C12 cells. Metformin can reverse this process by increasing intracellular glucose uptake and ameliorating UA-induced insulin resistance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Effect of postprandial insulinemia and insulin resistance on measurement of arterial stiffness (augmentation index).

    PubMed

    Greenfield, Jerry R; Samaras, Katherine; Chisholm, Donald J; Campbell, Lesley V

    2007-01-02

    Arterial stiffness, specifically augmentation index (AIx), is an independent predictor of cardiovascular risk. Previous studies suggest that insulin infusion decreases AIx and that this response is attenuated in insulin resistance. Whether physiological postprandial insulinemia similarly affects AIx measurements, and whether insulin resistance modifies this response, has not been studied. Seven relatively insulin-resistant and seven insulin-sensitive postmenopausal women received low-carbohydrate and high-carbohydrate high-fat meals on separate days. Glucose and insulin levels were measured for 360-min following meal consumption. AIx was measured by radial artery applanation tonometry at regular intervals postprandially. Postprandial increases in glucose and insulin were greater following the high-carbohydrate high-fat meal in both insulin-sensitive and insulin-resistant subjects. AIx decreased in both groups following both meals. In insulin-sensitive subjects, the postprandial reduction (incremental area above the curve) in AIx was greater following the high-carbohydrate vs. low-carbohydrate high-fat meal (-6821+/-1089 vs. -3797+/-1171% x min, respectively, P=0.009). In contrast, in insulin-resistant subjects, postprandial AIx responses were similar following the meals, suggesting that insulin resistance is associated with impaired postprandial arterial relaxation. This study demonstrates that the carbohydrate content of a meal, and, hence, the magnitude of the postprandial glucose and insulin responses it elicits, are important determinants of postprandial AIx measurements. The further observation that insulin resistance modified this effect raises the possibility that this phenomenon is a contributor to increased cardiovascular risk in insulin resistance. The results indicate that future studies of AIx need to control for the effects of these potentially confounding variables and that measurement of AIx should be standardized with respect to meals.

  1. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    PubMed Central

    Zahradka, Peter

    2018-01-01

    Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance. PMID:29601521

  2. Platelet activity in Chinese obese adolescents with and without insulin resistance.

    PubMed

    Lu, Huimin; Lei, Shundong; Zhao, Jiuming; Chen, Ni

    2014-01-01

    To investigate the platelet activity in Chinese obese adolescents with and without insulin resistance. A cross-sectional study was performed in 159 obese Chinese adolescents to investigate their platelet activity using anthropometrics and biochemical parameters, oral glucose tolerance test and platelet testing. An index of insulin sensitivity, homeostasis model assessment of insulin resistance (HOMA-IR), and plasma fibrinogen, prothrombin fragment 1.2 (PT 1.2), fibrinopeptide A (FPA) and the levels of aggregation to collagen 1 μg/ml, adenosine diphosphate (ADP) 10 μmol/L and arachidonic acid (AA) 0.5 mmol/L were measured. Obese adolescents with insulin resistance had significantly higher HOMA-IR, glucose response curve (AUC), insulin AUC, PT 1.2, FPA and fibrinogen and aggregation (to collagen 1 μg/ml, ADP 10 μmol/L and AA 0.5 mmol/L) comparison with obese adolescents without insulin resistance (P < 0.05). Moreover, a positive correlation was found between both aggregation (to collagen, ADP and AA) and HOMA-IR (ρ = 0.716; P < 0.01, ρ = 0.682; P < 0.01 and ρ = 0.699; P < 0.01, respectively), glucose AUC (ρ = 0.479; P < 0.01, ρ = 0.416; P < 0.01 and ρ = 0.458; P < 0.01, respectively) and insulin AUC (ρ = 0.585; P < 0.01, ρ = 0.511; P < 0.01 and ρ = 0.576; P < 0.01, respectively) in obese adolescents with insulin resistance. Insulin resistance is a major determinant of platelet activation in Chinese obese adolescents.

  3. Role of PTEN in TNF Induced Insulin Resistance

    PubMed Central

    Bulger, David A; Conley, Jermaine; Conner, Spencer H; Majumdar, Gipsy; Solomon, Solomon S

    2015-01-01

    Aims/hypothesis PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. PMID:25918024

  4. Clinical impact of insulin resistance syndrome in cardiovascular diseases and its therapeutic approach.

    PubMed

    Harano, Y; Suzuki, M; Shinozaki, K; Hara, Y; Ryomoto, K; Kanazawa, A; Nishioheda, Y; Tsushima, M

    1996-06-01

    In subjects with coronary artery diseases (obstructive and vasospastic angina pectoris (AP)) who have no diabetes, hypertension, obesity and physical inactivity, insulin sensitivity was significantly reduced with compensated hyperinsulinemia on OGTT. Insulin resistance significantly correlated with coronary atherosclerosis score. In vasospastic AP (VAP), those who fulfilled more than 3 risk factors out of 5 (hyperinsulinemia, obesity, glucose intolerance, hypertension, dyslipidemia) consist of 70 and 40% for smokers and nonsmokers respectively. Insulin resistance syndrome who fulfilled all the criteria was 9-10% for VAP. In atherothrombotic brain infarction (ATTI) with the same exclusion criteria, the similar insulin resistance and hyperinsulinemia have been observed, but not in embolic (cardiac origin) or lacunar infarction. In ATTI, high TG and apo B with low HDL-chol were noted in blood. In essential hypertension without diabetes and obesity, hyperinsulinemia was noted in 25-35% and insulin resistance in 56-88%. Reduction of blood pressure with alpha blocker (bunazosin), ACE inhibitor (cilazapril), long-acting Ca++ blocker (amlodipine) significantly improved lowered insulin sensitivity. Insulin resistance rather than hyperinsulinemia is more closely associated with blood pressure. Cardiovascular diseases (vasospastic and obstructive AP, brain cortical artery diseases) are prone to develop diabetes because of insulin resistance and also promote the generation of cumulative risk factors resulting in a vicious cycle. Efforts to alleviate insulin resistance is crucial for the primary and secondary prevention of cardiovascular diseases.

  5. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  6. Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation

    PubMed Central

    Rico, J. Eduardo; Saed Samii, Sina; Mathews, Alice T.; Lovett, Jacqueline; Haughey, Norman J.; McFadden, Joseph W.

    2017-01-01

    Reduced insulin action develops naturally during the peripartum to ensure maternal nutrient delivery to the fetus and neonate. However, increased insulin resistance can facilitate excessive lipolysis which in turn promotes metabolic disease in overweight dairy cattle. Increased fatty acid availability favors the accumulation of the sphingolipid ceramide and is implicated in the pathogenesis of insulin resistance, however, the relationship between sphingolipid metabolism and insulin resistance during the peripartum remains largely unknown. Our objectives were to characterize temporal responses in plasma and tissue sphingolipids in lean and overweight peripartal cows and to establish the relationships between sphingolipid supply and lipolysis, hepatic lipid deposition, and systemic insulin action. Twenty-one multiparous lean and overweight Holstein cows were enrolled in a longitudinal study spanning the transition from gestation to lactation (d -21 to 21, relative to parturition). Plasma, liver, and skeletal muscle samples were obtained, and sphingolipids were profiled using LC/MS/MS. Insulin sensitivity was assessed utilizing intravenous insulin and glucose challenges. Our results demonstrated the following: first, insulin resistance develops postpartum concurrently with increased lipolysis and hepatic lipid accumulation; second, ceramides and glycosylated ceramides accumulate during the transition from gestation to lactation and are further elevated in overweight cows; third, ceramide accrual is associated with lipolysis and liver lipid accumulation, and C16:0- and C24:0-ceramide are inversely associated with systemic insulin sensitivity postpartum; fourth, plasma sphingomyelin, a potential source of ceramides reaches a nadir at parturition and is closely associated with feed intake; fifth, select sphingomyelins are lower in the plasma of overweight cows during the peripartal period. Our results demonstrate that dynamic changes occur in peripartal sphingolipids

  7. Metabolic signatures of insulin resistance in 7,098 young adults.

    PubMed

    Würtz, Peter; Mäkinen, Ville-Petteri; Soininen, Pasi; Kangas, Antti J; Tukiainen, Taru; Kettunen, Johannes; Savolainen, Markku J; Tammelin, Tuija; Viikari, Jorma S; Rönnemaa, Tapani; Kähönen, Mika; Lehtimäki, Terho; Ripatti, Samuli; Raitakari, Olli T; Järvelin, Marjo-Riitta; Ala-Korpela, Mika

    2012-06-01

    Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

  8. The role of dietary fat in obesity-induced insulin resistance.

    PubMed

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  9. How does brain insulin resistance develop in Alzheimer's disease?

    PubMed

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  10. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children.

    PubMed

    Ferira, Ashley J; Laing, Emma M; Hausman, Dorothy B; Hall, Daniel B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2016-04-01

    Vitamin D supplementation trials with diabetes-related outcomes have been conducted almost exclusively in adults and provide equivocal findings. The objective of this study was to determine the dose-response of vitamin D supplementation on fasting glucose, insulin, and a surrogate measure of insulin resistance in white and black children aged 9–13 years, who participated in the Georgia, Purdue, and Indiana University (or GAPI) trial: a 12-week multisite, randomized, triple-masked, dose-response, placebo-controlled vitamin D trial. Black and white children in the early stages of puberty (N = 323, 50% male, 51% black) were equally randomized to receive vitamin D3 (0, 400, 1000, 2000, or 4000 IU/day) for 12 weeks. Fasting serum 25-hydroxyvitamin D (25(OH)D), glucose and insulin were assessed at baseline and weeks 6 and 12. Homeostasis model assessment of insulin resistance was used as a surrogate measure of insulin resistance. Statistical analyses were conducted as intent-to-treat using a mixed effects model. Baseline serum 25(OH)D was inversely associated with insulin (r = −0.140, P = 0.017) and homeostasis model assessment of insulin resistance (r = −0.146, P = 0.012) after adjusting for race, sex, age, pubertal maturation, fat mass, and body mass index. Glucose, insulin, and insulin resistance increased (F > 5.79, P < .003) over the 12 weeks, despite vitamin D dose-dependent increases in serum 25(OH)D. Despite significant baseline inverse relationships between serum 25(OH)D and measures of insulin resistance, vitamin D supplementation had no impact on fasting glucose, insulin, or a surrogate measure of insulin resistance over 12 weeks in apparently healthy children.

  11. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  12. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    PubMed

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  13. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes.

    PubMed

    Mørkrid, Kjersti; Jenum, Anne K; Sletner, Line; Vårdal, Mari H; Waage, Christin W; Nakstad, Britt; Vangen, Siri; Birkeland, Kåre I

    2012-10-01

    To assess changes in insulin resistance and β-cell function in a multiethnic cohort of women in Oslo, Norway, from early to 28 weeks' gestation and 3 months post partum and relate the findings to gestational diabetes mellitus (GDM). Population-based cohort study of 695 healthy pregnant women from Western Europe (41%), South Asia (25%), Middle East (15%), East Asia (6%) and elsewhere (13%). Blood samples and demographics were recorded at mean 15 (V1) and 28 (V2) weeks' gestation and 3 months post partum (V3). Universal screening was by 75 g oral glucose tolerance test at V2, GDM with modified IADPSG criteria (no 1-h measurement): fasting plasma glucose (PG) ≥5.1 or 2-h PG ≥8.5 mmol/l. Homeostatic model assessment (HOMA)-β (β-cell function) and HOMA-IR (insulin resistance) were calculated from fasting glucose and C-peptide. Characteristics were comparable across ethnic groups, except age (South Asians: younger, P<0.001) and prepregnant BMI (East Asians: lower, P=0.040). East and South Asians were more insulin resistant than Western Europeans at V1. From V1 to V2, the increase in insulin resistance was similar across the ethnic groups, but the increase in β-cell function was significantly lower for the East and South Asians compared with Western Europeans. GDM women compared with non-GDM women were more insulin resistant at V1; from V1 to V2, their β-cell function increased significantly less and the percentage increase in β-cell function did not match the change in insulin resistance. Pregnant women from East Asia and South Asia were more insulin resistant and showed poorer HOMA-β-cell function than Western Europeans.

  14. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes.

    PubMed

    German, Jonathan P; Wisse, Brent E; Thaler, Joshua P; Oh-I, Shinsuke; Sarruf, David A; Ogimoto, Kayoko; Kaiyala, Karl J; Fischer, Jonathan D; Matsen, Miles E; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2010-07-01

    Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. Adult male Wistar rats remained nondiabetic or were injected with the beta-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 microg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate-phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine disorders in uDM. Treatment of diabetes in humans may

  15. Metabolomic analysis of insulin resistance across different mouse strains and diets.

    PubMed

    Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E

    2017-11-24

    Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women.

    PubMed

    Shanbhogue, Vikram V; Finkelstein, Joel S; Bouxsein, Mary L; Yu, Elaine W

    2016-08-01

    The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. There were no interventions. High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus.

  17. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  18. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  19. Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    PubMed Central

    Huang, Rae-Chi; de Klerk, Nicholas H.; Smith, Anne; Kendall, Garth E.; Landau, Louis I.; Mori, Trevor A.; Newnham, John P.; Stanley, Fiona J.; Oddy, Wendy H.; Hands, Beth; Beilin, Lawrence J.

    2011-01-01

    OBJECTIVE In light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN AND METHODS A total of 1,197 Australian children with cardiovascular/metabolic profiling at age 14 years were studied serially from birth to age 14 years. Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories of z scores (weight-for-height and BMI). Fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were compared at age 14 years between adiposity trajectories. RESULTS Seven adiposity trajectories were identified. Three (two rising and one chronic high adiposity) trajectories comprised 32% of the population and were associated with significantly higher fasting insulin and HOMA-IR compared with a reference trajectory group (with longitudinal adiposity z scores of approximately zero). There was a significant sex by trajectory group interaction (P < 0.001). Girls within a rising trajectory from low to moderate adiposity did not show increased insulin resistance. Maternal obesity, excessive weight gain during pregnancy, and gestational diabetes were more prevalent in the chronic high adiposity trajectory. CONCLUSIONS A range of childhood adiposity trajectories exist. The greatest insulin resistance at age 14 years is seen in those with increasing trajectories regardless of birth weight and in high birth weight infants whose adiposity remains high. Public health professionals should urgently target both excessive weight gain in early childhood across all birth weights and maternal obesity and excessive weight gain during pregnancy. PMID:21378216

  20. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    PubMed Central

    Deshmukh, Atul S.

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC), MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets. PMID:28248217

  1. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. © 2015 American Society for Nutrition.

  2. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  3. Elevated whole blood viscosity is associated with insulin resistance and non-alcoholic fatty liver.

    PubMed

    Zhao, Hong-yan; Li, Jing; Xu, Min; Wang, Tian-ge; Sun, Wan-wan; Chen, Ying; Bi, Yu-fang; Wang, Wei-qing; Ning, Guang

    2015-12-01

    Accumulating evidences demonstrate that abnormalities in whole blood viscosity (WBV) have been implicated in insulin resistance which may lead to non-alcoholic fatty liver disease (NAFLD). However, epidemiological studies exploring the association between WBV and NAFLD were not available. Our objective was to evaluate the association between WBV levels and risk of prevalent NAFLD. This was a cross-sectional population-based study performed in Shanghai, China. A total of 8673 participants aged 40 years or older were included. WBV was calculated from haematocrit and plasma protein concentration, at a shear rate of 208(-1) s, by a validated equation. NAFLD was diagnosed by hepatic ultrasound after the exclusion of alcohol abuse and other liver diseases. Insulin resistance (IR) was assessed by homeostasis model assessment (HOMA-IR). The overall prevalence of NAFLD was 30·2% in this population. With the increase of WBV level, participants have larger waist circumference (WC), more severe insulin resistance and the prevalence of NAFLD increased significantly with elevated WBV quartiles. Compared with those in the lowest quartiles, adults in the highest quartile of WBV levels have higher prevalence of NAFLD (adjusted odds ratio 1·77, 95% confidence interval [CI] 1·48-2·13) and IR (2·72, 95% CI 2·26-3·27). Elevated WBV is associated with prevalence of NAFLD and IR in middle-aged and elderly Chinese population. © 2015 John Wiley & Sons Ltd.

  4. Association of Serum Ferritin Levels with Metabolic Syndrome and Insulin Resistance.

    PubMed

    Padwal, Meghana K; Murshid, Mohsin; Nirmale, Prachee; Melinkeri, R R

    2015-09-01

    The impact of CVDs and Type II DM is increasing over the last decade. It has been estimated that by 2025 their incidence will double. Ferritin is one of the key proteins regulating iron homeostasis and is a widely available clinical biomarker of iron status. Some studies suggest that prevalence of atherosclerosis and insulin resistance increases significantly with increasing serum ferritin. Metabolic syndrome is known to be associated with increased risk of atherosclerosis as well as insulin resistance. The present study was designed to explore the association of serum ferritin levels with metabolic syndrome and insulin resistance. The present study was prospective, cross sectional. The study protocol was approved by IEC. The study group consisted of 90 participants (50 cases of metabolic syndrome and 40 age and sex matched controls). Diagnosis of metabolic syndrome was done as per NCEP ATP III criteria. Estimation of serum Ferritin and Insulin was done by Chemiluminescence Immunoassay (CLIA) while Glucose by Glucose Oxidase and Peroxidase (GOD-POD) method. Insulin Resistance was calculated by HOMA IR score. Data obtained was statistically analysed by using student t-test. We found statistically significant rise in the levels of serum ferritin (p=<0.001), glucose (p=<0.001), insulin (p=<0.001) and HOMA IR score (p=<0.0001) in cases of metabolic syndrome as compared with controls. High serum ferritin levels though within normal range are significantly associated with both metabolic syndrome and insulin resistance.

  5. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    PubMed

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  6. Subchronic sleep restriction causes tissue-specific insulin resistance.

    PubMed

    Rao, Madhu N; Neylan, Thomas C; Grunfeld, Carl; Mulligan, Kathleen; Schambelan, Morris; Schwarz, Jean-Marc

    2015-04-01

    Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole

  7. Comparative evaluation of simple indices of insulin resistance.

    PubMed

    Vaccaro, Olga; Masulli, Maria; Cuomo, Vincenzo; Rivellese, Angela Albarosa; Uusitupa, Matti; Vessby, Bengt; Hermansen, Kjeld; Tapsell, Linda; Riccardi, Gabriele

    2004-12-01

    Various surrogate methods for the quantification of insulin sensitivity have been proposed. A comparative evaluation is lacking and is relevant for the standardization of investigative methods and comparability of results. The aims of the study were to perform a comparative validation of fasting insulin, homeostasis model assessment (HOMA), Quantitative Insulin Sensitivity Check Index (QUICKI), and revised-QUICKI (R-QUICKI) against minimal model derived estimates of insulin sensitivity (SI(MM)) in nondiabetic people and to carry out a comparative evaluation of the ability of these indices as means for the identification of individuals with the metabolic syndrome (MS) on a population basis. We used 2 data sets defined as "validation sample" and "prevalence sample". Validation sample: a total of 162 healthy men and women aged 30 to 65 years were studied by frequently sampled intravenous glucose tolerance test (FSIVGTT). SI(MM) was calculated with the Minmod program. Prevalence sample: a total of 2,731 nondiabetic men and women aged 35 to 65 years were studied. In both samples, anthropometry, blood pressure, fasting glucose, insulin, triglycerides, high-density lipoprotein (HDL) cholesterol, and free fatty acid (FFA) were measured. HOMA, QUICKI, and R-QUICKI were calculated. The MS was defined according to the Adult Treatment Panel III. Validation sample: insulin, HOMA, QUICKI, and R-QUICKI significantly correlated with SI(MM) (r = -0,53, -0.52, 0.41, 0.33; all P < .001). The finding was confirmed in obese (body mass index [BMI] > or =25 kg/m(2)), but in the normal weight, the correlation coefficient for QUICKI was significantly smaller than for the other indices. Receiver operator characteristic (ROC) curve analysis performed with SI(MM) below or above the lowest 25th percentile (ie, insulin resistance yes, no) as the outcome variable and each of the 4 indices as the test variable showed no significant differences in the areas under the curve. Prevalence sample

  8. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    PubMed Central

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  9. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  10. The establishment of insulin resistance model in FL83B and L6 cell

    NASA Astrophysics Data System (ADS)

    Liu, Lanlan; Han, Jizhong; Li, Haoran; Liu, Mengmeng; Zeng, Bin

    2017-10-01

    The insulin resistance models of mouse liver epithelial and rat myoblasts cells were induced by three kinds of inducers: dexamethasone, high insulin and high glucose. The purpose is to select the optimal insulin resistance model, to provide a simple and reliable TR cell model for the study of the pathogenesis of TR and the improvement of TR drugs and functional foods. The MTT method is used for toxicity screening of three compounds, selecting security and suitable concentration. We performed a Glucose oxidase peroxidase (GOD-POD) method involving FL83B and L6 cell with dexamethasone, high insulin and high glucose-induced insulin resistance. Results suggested that FL83B cells with dexamethasone-induced (0.25uM) were established insulin resistance and L6 cells with high-glucose (30mM) and dexamethasone-induced (0.25uM) were established insulin resistance.

  11. Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance

    PubMed Central

    Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.

    2011-01-01

    OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175

  12. Insulin resistance in young adults born small for gestational age (SGA).

    PubMed

    Putzker, Stephanie; Bechtold-Dalla Pozza, Susanne; Kugler, Karl; Schwarz, Hans P; Bonfig, Walter

    2014-03-01

    This work aimed to assess glucose metabolism and insulin sensitivity in young adults born small for gestational age (SGA) as well as to measure the body composition and adipocytokines of these subjects. A total of 108 out of 342 SGA-born participants were invited for reexamination from the former Bavarian Longitudinal Study (BLS), in which 7505 risk-newborns of the years 1985 to 1986 were prospectively followed. Of these, 76 (34 female/42 male) participants at the age of 19.7±0.5 years were enrolled. Clinical examination and oral glucose tolerance testing (oGTT) was performed with assessment of insulin resistance indices, HbA1c, body mass index (BMI), adipocytokines, and body composition by bioimpedance analysis (BIA). A total of 25 out of 76 (32.9%) patients had abnormal fasting and/or glucose-stimulated insulin levels. Glucose values measured during oGTT showed no abnormalities, except one participant who had impaired glucose tolerance. Homeostasis model assessment insulin resistance index (HOMA-IR) was 1.92±4.2, and insulin sensitivity index by Matsuda (ISI(Matsuda)) showed mean values of 7.85±4.49. HOMA-IR>2.5 was found in 8 patients (10.5%), and 20 patients (26.3%) had an ISI(Matsuda)<5, both interpreted as insulin resistant. No alterations of adipocytokines were found. Fat mass (FM) measured by BIA was within the normal range for both genders and correlated significantly with BMI (r=0.465, p<0.001) and leptin (r=0.668, p>0.001), but not with adiponectin. Insulin resistance correlated with change in weight-for-height Z-score during the first 3 months of age, indicating that weight gain during that early phase might be a risk factor for the development of insulin resistance in children born SGA. A high percentage of insulin-resistant subjects were reconfirmed in a large German cohort of young adults born SGA. Therefore, regular screening for disturbances in glucose metabolism is recommended in these subjects.

  13. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  14. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women

    PubMed Central

    Finkelstein, Joel S.; Bouxsein, Mary L.; Yu, Elaine W.

    2016-01-01

    Context: The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. Objective: The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. Design, Setting, and Participants: This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. Interventions: There were no interventions. Main Outcome Measures: High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. Results: There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). Conclusions: In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus. PMID:27243136

  15. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency

    PubMed Central

    Arnold, Amy C.; Garland, Emily M.; Celedonio, Jorge E.; Raj, Satish R.; Abumrad, Naji N.; Biaggioni, Italo; Robertson, David; Luther, James M.

    2017-01-01

    Context: Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. Case Description: We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (−32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. Conclusions: We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. PMID:27778639

  16. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency.

    PubMed

    Arnold, Amy C; Garland, Emily M; Celedonio, Jorge E; Raj, Satish R; Abumrad, Naji N; Biaggioni, Italo; Robertson, David; Luther, James M; Shibao, Cyndya A

    2017-01-01

    Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (-32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. Copyright © 2017 by the Endocrine Society

  17. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Peripheral insulin resistance shifts metabolic fuel use away from carbohydrates, and towards lipids, and is most commonly associated with Type 2 diabetes mellitus. However, regulated insulin resistance is an evolved mechanism to preserve glucose for the brain in conditions of high demand or carbohy...

  18. Temporary reversal by topotecan of marked insulin resistance in a patient with myelodysplastic syndrome: case report and possible mechanism for tumor necrosis factor alpha (TNF-alpha)-induced insulin resistance.

    PubMed

    Huntington, M O; Krell, K E; Armour , W E; Liljenquist, J E

    2001-06-01

    Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor. We report here a remarkable degree of insulin resistance in a patient with adult respiratory distress syndrome and myelodysplasia.

  19. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males.

    PubMed

    Shaibi, Gabriel Q; Cruz, Martha L; Ball, Geoff D C; Weigensberg, Marc J; Salem, George J; Crespo, Noe C; Goran, Michael I

    2006-07-01

    Insulin resistance is thought to be a core defect in the pathophysiology of obesity-related comorbidities in children, such as type 2 diabetes. Exercise training is known to improve insulin resistance and reduce the risk of type 2 diabetes in adults. However, very little is known regarding the effects of exercise on insulin resistance in youth. Therefore, we examined the effects of a 16-wk resistance training exercise intervention on insulin sensitivity in youth at high risk for developing type 2 diabetes. Twenty-two overweight Latino adolescent males were randomly assigned to either a twice-per-week resistance training group (RT=11) or a nonexercising control group (C=11) for 16 wk. Strength was assessed by one-repetition maximum, body composition was quantified by dual-energy x-ray absorptiometry, and insulin sensitivity was determined by the frequently sampled intravenous glucose tolerance test with minimal modeling. Significant increases in upper- and lower-body strength were observed in the RT compared with the C group. The RT group significantly increased insulin sensitivity compared with the C group (P<0.05), and this increase remained significant after adjustment for changes in total fat mass and total lean tissue mass (P<0.05). Compared with baseline values, insulin sensitivity increased 45.1+/-7.3% in the RT group versus -0.9+/-12.9% in controls (P<0.01). A twice-per-week 16-wk resistance training program can significantly increase insulin sensitivity in overweight Latino adolescent males independent of changes in body composition.

  20. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  1. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  2. The Contribution of Singlet Oxygen to Insulin Resistance

    PubMed Central

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses. PMID:29081894

  3. The Contribution of Singlet Oxygen to Insulin Resistance.

    PubMed

    Onyango, Arnold N

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  4. Inverse association between soya food consumption and insulin resistance in Japanese adults.

    PubMed

    Nakamoto, Mariko; Uemura, Hirokazu; Sakai, Tohru; Katsuura-Kamano, Sakurako; Yamaguchi, Miwa; Hiyoshi, Mineyoshi; Arisawa, Kokichi

    2015-08-01

    The purpose of the present study was to examine the association between soya food consumption and insulin resistance using baseline data of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study in Tokushima, Japan. This cross-sectional study included 1274 subjects, aged 34-70 years at baseline, living in Tokushima Prefecture between 2008 and 2013. Fasting blood samples were collected and information on lifestyle characteristics including soya food intake and medical history were obtained using a structured self-administered questionnaire. The homeostasis model assessment of insulin resistance (HOMA-IR) was measured and those with HOMA-IR ≥ 2.5 were defined as having insulin resistance. Multiple logistic regression models were used to analyse the association between soya product intake and the prevalence of insulin resistance. Rural communities located in Tokushima Prefecture, Japan, between 2008 and 2013. A total of 1148 adults (565 men and 583 women), aged 34-70 years. The frequency of intake of miso soup, total non-fried soya products and total soya products showed significant inverse dose-response relationships with insulin resistance, after adjustments for potential confounders. When soya product intake was calculated as soya protein and isoflavone, the odds ratios of insulin resistance decreased significantly as the estimated intake of soya protein increased. Furthermore, significant inverse dose-response relationships were observed for total non-fried soya products and total soya products, after adjustment for total vegetable or total fibre consumption. The present results indicate that the intake of soya products and non-fried soya products is associated with reduced insulin resistance in the Japanese population.

  5. Insulin resistance in H pylori infection and its association with oxidative stress.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Nazligul, Yasar; Bolukbas, Cengiz; Bolukbas, F Fusun; Selek, Sahbettin; Celik, Hakim; Erel, Ozcan

    2006-11-14

    To determine the insulin resistance (IR) and oxidative status in H pylori infection and to find out if there is any relationship between these parameters and insulin resistance. Fifty-five H pylori positive and 48 H pylori negative patients were enrolled. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Serum total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined in all subjects. The total antioxidant capacity was significantly lower in H pylori positive group than in H pylori negative group (1.36 +/- 0.33 and 1.70 +/- 0.50, respectively; P < 0.001), while the total oxidant status and oxidative stress index were significantly higher in H pylori positive group than in H pylori negative group (6.79 +/- 3.40 and 5.08 +/- 0.95, and 5.42 +/- 3.40 and 3.10 +/- 0.92, respectively; P < 0.001). Insulin resistance was significantly higher in H pylori positive group than in H pylori negative group (6.92 +/- 3.86 and 3.61 +/- 1.67, respectively; P < 0.001). Insulin resistance was found to be significantly correlated with total antioxidant capacity (r = -0.251, P < 0.05), total oxidant status (r = 0.365, P < 0.05), and oxidative stress index (r = 0.267, P < 0.05). Insulin resistance seems to be associated with increased oxidative stress in H pylori infection. Further studies are needed to clarify the mechanisms underlying this association and elucidate the effect of adding antioxidant vitamins to H pylori eradication therapy on insulin resistance during H pylori infection.

  6. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    PubMed

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P < 0.05 or P < 0.01). Compared with the model group, ursolic acid at 100 micromol/L could enhance cellular glucose uptake of insulin resistant adipocyte significantly both in basic and insulin stimulation state (P < 0.01), while ursolic acid at 30 micromol/L could already enhance its glucose uptake significantly (P < 0.05), and could already decrease its FFA production significantly (P < 0.05). Ursolic acid at 30 micromol/L could increase the secretion of adiponectin on insulin resistant adipocyte significantly (P < 0.05), up-regulate the expression of PPARgamma protein (P < 0.05), but showed no effect on the PTP1B protein expression (P > 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  7. Insulin resistance and the metabolism of branched-chain amino acids.

    PubMed

    Lu, Jingyi; Xie, Guoxiang; Jia, Weiping; Jia, Wei

    2013-03-01

    Insulin resistance (IR) is a key pathological feature of metabolic syndrome and subsequently causes serious health problems with an increased risk of several common metabolic disorders. IR related metabolic disturbance is not restricted to carbohydrates but impacts global metabolic network. Branched-chain amino acids (BCAAs), namely valine, leucine and isoleucine, are among the nine essential amino acids, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals. The BCAAs are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in insulin resistant conditions and/or insulin deficiency. Although increased circulating BCAA concentration in insulin resistant conditions has been noted for many years and BCAAs have been reported to be involved in the regulation of glucose homeostasis and body weight, it is only recently that BCAAs are found to be closely associated with IR. This review will focus on the recent findings on BCAAs from both epidemic and mechanistic studies.

  8. Effects of losartan on whole-body, skeletal muscle, and vascular insulin responses in obesity/insulin resistance without hypertension

    PubMed Central

    Lteif, AA; Chisholm, RL; Gilbert, K; Considine, RV; Mather, KJ

    2011-01-01

    Aims Renin-angiotensin system antagonists have been found to improve glucose metabolism in obese hypertensive and type 2 diabetic subjects. The mechanism of these effects is not well understood. We hypothesized that the angiotensin receptor antagonist losartan would improve insulin-mediated vasodilation, and thereby improve insulin-stimulated glucose uptake in skeletal muscle of insulin resistant subjects. Materials and Methods We studied subjects with obesity and insulin resistance but without hypertension, hypercholesterolemia or dysglycemia (age 39.0±9.6 yrs [mean±SD], BMI 33.2±5.9 kg/m2, BP 115.8±12.2/70.9±7.2 mmHg, LDL 2.1±0.5 mmol/L). Subjects were randomized to 12 weeks’ double-blind treatment with losartan 100 mg once daily (n=9) or matching placebo (n=8). Before and after treatment, under hyperinsulinemic euglycemic clamp conditions we measured whole-body insulin stimulated glucose disposal, insulin-mediated vasodilation, and insulin-stimulated leg glucose uptake by the limb balance technique. Results Whole-body insulin-stimulated glucose disposal was not significantly increased by losartan. Insulin-mediated vasodilation was augmented following both treatments (increase in leg vascular conductance: pre-treatment 0.7±0.3 L*min−1*mmHg−1[losartan, mean ±SEM] and 0.9±0.3 [placebo], post-treatment 1.0±0.4 [losartan] and 1.3±0.6 [placebo]) but not different between treatment groups (p=0.53). Insulin’s action to augment NO production and to augment endothelium-dependent vasodilation were also not improved. Leg glucose uptake was not significantly changed by treatments, and not different between groups (p=0.11). Conclusions These findings argue against the hypothesis that losartan might improve skeletal muscle glucose metabolism by improving insulin-mediated vasodilation in normotensive insulin resistant obese subjects. The metabolic benefits of angiotensin receptor blockers may require the presence of hypertension in addition to obesity

  9. Role of intestinal inflammation as an early event in obesity and insulin resistance

    PubMed Central

    Ding, Shengli; Lund, Pauline K.

    2013-01-01

    Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067

  10. Chromium (D-phenylalanine)3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice.

    PubMed

    Dong, Feng; Kandadi, Machender Reddy; Ren, Jun; Sreejayan, Nair

    2008-10-01

    Chromium has gained popularity as a nutritional supplement for diabetic and insulin-resistant subjects. This study was designed to evaluate the effect of chronic administration of a novel chromium complex of d-phenylalanine [Cr(D-phe)(3)] in insulin-resistant, sucrose-fed mice. Whole-body insulin resistance was generated in FVB mice by 9 wk of sucrose feeding, following which they were randomly assigned to be unsupplemented (S group) or to receive oral Cr(D-phe)(3) in drinking water (SCr group) at a dose of 45 mug.kg(-1).d(-1) ( approximately 3.8 mug of elemental chromium.kg(-1).d(-1)). A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received Cr(D-phe)(3), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving Cr(D-phe)(3). Chromium supplementation significantly enhanced insulin-stimulated Akt phosphorylation and membrane-associated glucose transporter-4 in skeletal muscles of sucrose-fed mice. In cultured adipocytes rendered insulin resistant by chronic exposure to high concentrations of glucose and insulin, Cr(D-phe)(3) augmented Akt phosphorylation and glucose uptake. These results indicate that dietary supplementation with Cr(D-phe)(3) may have potential beneficial effects in insulin-resistant, prediabetic conditions.

  11. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  12. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Sun, Qinghua; Yue, Peibin; Deiuliis, Jeffrey A.; Lumeng, Carey N.; Kampfrath, Thomas; Mikolaj, Michael B.; Cai, Ying; Ostrowski, Michael C.; Lu, Bo; Parthasarathy, Sampath; Brook, Robert D.; Moffatt-Bruce, Susan D.; Chen, Lung Chi; Rajagopalan, Sanjay

    2009-01-01

    Background There is a strong link between urbanization and type 2 diabetes mellitus. Although a multitude of mechanisms have been proposed, there are no studies evaluating the impact of ambient air pollutants and the propensity to develop type 2 diabetes mellitus. We hypothesized that exposure to ambient fine particulate matter (<2.5 μm; PM2.5) exaggerates diet-induced insulin resistance, adipose inflammation, and visceral adiposity. Methods and Results Male C57BL/6 mice were fed high-fat chow for 10 weeks and randomly assigned to concentrated ambient PM2.5 or filtered air (n=14 per group) for 24 weeks. PM2.5-exposed C57BL/6 mice exhibited marked whole-body insulin resistance, systemic inflammation, and an increase in visceral adiposity. PM2.5 exposure induced signaling abnormalities characteristic of insulin resistance, including decreased Akt and endothelial nitric oxide synthase phosphorylation in the endothelium and increased protein kinase C expression. These abnormalilties were associated with abnormalities in vascular relaxation to insulin and acetylcholine. PM2.5 increased adipose tissue macrophages (F4/80+ cells) in visceral fat expressing higher levels of tumor necrosis factor-α/interleukin-6 and lower interleukin-10/N-acetyl-galactosamine specific lectin 1. To test the impact of PM2.5 in eliciting direct monocyte infiltration into fat, we rendered FVBN mice expressing yellow fluorescent protein (YFP) under control of a monocyte-specific promoter (c-fms, c-fmsYFP) diabetic over 10 weeks and then exposed these mice to PM2.5 or saline intratracheally. PM2.5 induced YFP cell accumulation in visceral fat and potentiated YFP cell adhesion in the microcirculation. Conclusion PM2.5 exposure exaggerates insulin resistance and visceral inflammation/adiposity. These findings provide a new link between air pollution and type 2 diabetes mellitus. PMID:19153269

  13. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  14. Peripheral Insulin Resistance and Impaired Insulin Signaling Contribute to Abnormal Glucose Metabolism in Preterm Baboons

    PubMed Central

    McGill-Vargas, Lisa L.; Gastaldelli, Amalia; Seidner, Steven R.; McCurnin, Donald C.; Leland, Michelle M.; Anzueto, Diana G.; Johnson, Marney C.; Liang, Hanyu; DeFronzo, Ralph A.; Musi, Nicolas

    2015-01-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors. PMID:25560831

  15. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    PubMed

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  16. Development of diet-induced insulin resistance in adult Drosophila melanogaster.

    PubMed

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H

    2012-08-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.

  17. Development of diet-induced insulin resistance in adult Drosophila melanogaster

    PubMed Central

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.

    2013-01-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511

  18. Role of PTEN in TNFα induced insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulger, David A.; Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104; Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibitedmore » the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.« less

  19. miRNA Signatures of Insulin Resistance in Obesity.

    PubMed

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  20. Effect of FTO rs9939609 variant on insulin resistance in obese female adolescents.

    PubMed

    Iskandar, Kristy; Patria, Suryono Yudha; Huriyati, Emy; Luglio, Harry Freitag; Julia, Madarina; Susilowati, Rina

    2018-05-15

    FTO rs9939609 variant has been shown to be associated with insulin resistance in Caucasian children. However, studies in Asia show inconsistent findings. We investigated the association between FTO rs9939609 polymorphisms and insulin resistance in obese female adolescents in Indonesia, a genetically distinct group within Asia. A total of 78 obese female adolescents participated in this study. The risk allele (A) frequency of FTO rs9939609 variant in Indonesian obese female adolescence was 44.2%. The frequency of insulin resistance was higher in the subjects with AA (54.6%) or AT (59.6%) than the subject with TT genotype (50%), but did not statistically different (p = 0.81 and p = 0.47, respectively). The insulin resistance rate was also higher in the risk allele (A) than the non-risk allele (T) subjects (0.58 vs. 0.55), but did not statistically different (p = 0.75). There was no association between FTO rs9939609 variant and body mass index, fasting glucose level, fasting insulin level, homeostatic model assessment of insulin resistance, and waist circumference (p > 0.05). In conclusion, FTO rs9939609 variant may not be associated with insulin resistance in Indonesian obese female adolescents. A multicenter study with a larger sample size is needed to clarify these findings.

  1. Insulin resistance is associated with depression risk in polycystic ovary syndrome.

    PubMed

    Greenwood, Eleni A; Pasch, Lauri A; Cedars, Marcelle I; Legro, Richard S; Eisenberg, Esther; Huddleston, Heather G

    2018-06-13

    To test the hypothesis that insulin resistance is associated with depression risk in polycystic ovary syndrome (PCOS). Secondary analysis of data from a multicenter randomized trial. Multicenter university-based clinical practices. Seven hundred thirty-eight women with PCOS by modified Rotterdam criteria seeking pregnancy enrolled in a randomized clinical trial comparing clomiphene citrate versus letrozole. The Primary Care Evaluation of Mental Disorders Patient Health Questionnaire was self-administered to identify depression using a validated algorithm at enrollment. Demographic and anthropometric data were collected, and serum assays were performed. Insulin resistance was estimated using the homeostatic model of insulin resistance (HOMA-IR), with a cutoff of >2.2 considered abnormal. Demographic, endocrine, and metabolic parameters associated with depression. In a univariate logistic regression analysis, elevated HOMA-IR was associated with 2.3-fold increased odds of depression (odds ratio [OR] = 2.32; 95% confidence interval [CI], 1.28-4.21). This association remained significant after controlling for age and body mass index (adjusted OR [aOR] = 2.23; 95% CI, 1.11-4.46) and in a model including additional potential confounders (aOR = 2.03; 95% CI, 1.00-4.16). Insulin resistance has a strong and independent association with depression in PCOS and may serve as a physiologic mediator. Our findings corroborate a growing body of evidence linking insulin resistance to depressed mood. The association between insulin resistance and depressed mood warrants further investigation to elucidate mechanisms and identify potential therapeutic targets. Copyright © 2018 American Society for Reproductive Medicine. All rights reserved.

  2. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  3. [Effect of soy isoflavone on gene expression of leptin and insulin sensibility in insulin-resistant rats].

    PubMed

    Chen, Shi-wei; Zhang, Li-shi; Zhang, Hong-min; Feng, Xiao-fan; Peng, Xiao-li

    2006-04-18

    To explore the effects of soy isoflavone (SIF) on gene expression of leptin and insulin sensibility in insulin-resistant (IR) rats induced by high-fat, and to reveal the mechanisms of SIF in ameliorating insulin sensibility. IR rats were randomly divided into four groups based on their insulin-resistant indexes (IRI): one model control group and three SIF groups that were gavaged with water solutions with SIF at doses of 0 mg/kg, 50 mg/kg, 150 mg/kg, and 450 mg/kg, respectively. After one month, fasting glucose, fasting insulin, leptin in serum, and leptin mRNA in the perirenal adipocyte were detected by enzymic method, radioimmunoassay, enzyme linked immunosorbent assay, and real time quantitative RT-PCR, respectively. The model control group was used to compare against the other groups: (1) Insulin and IRI were lower in the 150 mg/kg and 450 mg/kg groups; (2) In the 450 mg/kg group, body weight and leptin mRNA expression were lower, serum leptin content was higher. These results indicate that soy isoflavone might decrease body weight of rats and leptin mRNA, increase serum leptin level, and ameliorate leptin and insulin sensitivities.

  4. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria

    PubMed Central

    Coletta, Dawn K.

    2011-01-01

    Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in “naturally” occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance. PMID:21862724

  5. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    PubMed

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle

    PubMed Central

    Dagdeviren, Sezin; Jung, Dae Young; Friedline, Randall H.; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R.; Tsitsilianos, Nicholas; Inashima, Kunikazu; Tran, Duy A.; Hu, Xiaodi; Loubato, Marilia M.; Craige, Siobhan M.; Kwon, Jung Yeon; Lee, Ki Won; Kim, Jason K.

    2017-01-01

    Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic–euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.—Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. PMID:27811060

  7. Does Retinal Neurodegeneration Seen in Diabetic Patients Begin in the Insulin Resistance Stage?

    PubMed

    Arıkan, Sedat; Erşan, İsmail; Eroğlu, Mustafa; Yılmaz, Mehmet; Tufan, Hasan Ali; Gencer, Baran; Kara, Selçuk; Aşık, Mehmet

    2016-12-01

    To investigate whether retinal neurodegeneration and impairment in contrast sensitivity (CS), which have been demonstrated to begin in diabetic patients before the presence of signs of diabetic retinal vasculopathy, also occur in the stage of insulin resistance. The average, minimum and sectoral (inferior, superior, inferonasal, superonasal, inferotemporal and superotemporal) thicknesses of the ganglion cell-inner plexiform layer (GCIPL) measured using optical coherence tomography were compared between an insulin-resistant group and control group in order to evaluate the presence of retinal neurodegeneration. The CS of the two groups was also compared according to the logarithmic values measured at spatial frequencies of 1.5, 3, 6, 12 and 18 cycles per degree in photopic light using functional acuity contrast test (FACT). Twenty-five eyes of 25 patients with insulin resistance (insulin resistant group) and 25 eyes of 25 healthy subjects (control group) were included in this study. There were no statistically significant differences between the two groups in any of the spatial frequencies in the FACT. The mean average GCIPL thickness and mean GCIPL thickness in the inferotemporal sector were significantly less in the insulin-resistant group when compared with the control group (mean average GCIPL thicknesses in the insulin-resistant and control groups were 83.6±4.7 µm and 86.7±3.7 µm respectively, p=0.01; mean inferotemporal GCIPL thicknesses in the insulin-resistant and control groups were 83±6.0 µm and 86.7±4.6 µm respectively, p=0.02). Although it may not lead to functional visual impairment such as CS loss, the retinal neurodegeneration seen in diabetic patients may begin in the insulin resistance stage.

  8. Obesity, insulin resistance, and type 1 diabetes mellitus.

    PubMed

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  9. Insulin resistance in H pylori infection and its association with oxidative stress

    PubMed Central

    Aslan, Mehmet; Horoz, Mehmet; Nazligul, Yasar; Bolukbas, Cengiz; Bolukbas, F Fusun; Selek, Sahbettin; Celik, Hakim; Erel, Ozcan

    2006-01-01

    AIM: To determine the insulin resistance (IR) and oxidative status in H pylori infection and to find out if there is any relationship between these parameters and insulin resistance. METHODS: Fifty-five H pylori positive and 48 H pylori negative patients were enrolled. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Serum total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined in all subjects. RESULTS: The total antioxidant capacity was significantly lower in H pylori positive group than in H pylori negative group (1.36 ± 0.33 and 1.70 ± 0.50, respectively; P < 0.001), while the total oxidant status and oxidative stress index were significantly higher in H pylori positive group than in H pylori negative group (6.79 ± 3.40 and 5.08 ± 0.95, and 5.42 ± 3.40 and 3.10 ± 0.92, respectively; P < 0.001). Insulin resistance was significantly higher in H pylori positive group than in H pylori negative group (6.92 ± 3.86 and 3.61 ± 1.67, respectively; P < 0.001). Insulin resistance was found to be significantly correlated with total antioxidant capacity (r = -0.251, P < 0.05), total oxidant status (r = 0.365, P < 0.05), and oxidative stress index (r = 0.267, P < 0.05). CONCLUSION: Insulin resistance seems to be associated with increased oxidative stress in H pylori infection. Further studies are needed to clarify the mechanisms underlying this association and elucidate the effect of adding antioxidant vitamins to H pylori eradication therapy on insulin resistance during H pylori infection. PMID:17106938

  10. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and

  11. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.

    PubMed

    Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel

    2010-04-01

    Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation

  12. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    PubMed

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (p<5×10(-6) as compared to both PCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  13. SEX DIFFERENCES IN THE ASSOCIATION BETWEEN DIETARY RESTRAINT, INSULIN RESISTANCE AND OBESITY

    PubMed Central

    Jastreboff, Ania M.; Gaiser, Edward C.; Gu, Peihua; Sinha, Rajita

    2014-01-01

    Background & Aims Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. Methods In this cross-sectional, observational study, we studied 487 individuals from the community (men N=222, women N=265), who ranged from lean (body mass index 18.5–24.9kg/m2, N=173), overweight (body mass index 25–29.9kg/m2, N=159) and obese (body mass index >30kg/m2, N=155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. Results In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p<0.0001). Furthermore, homeostatic model assessment of insulin resistance levels were significantly higher in men who were high-versus low-restrained eaters (p=0.0006). Conclusions This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restraint eating is associated with insulin resistance in men but not in women. PMID:24854820

  14. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    PubMed

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  15. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  16. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome

    PubMed Central

    Kim, Bhumsoo; Feldman, Eva L

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia. Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer's disease (AD); however, the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the recent progress and future directions of insulin-based therapies. PMID:25766618

  17. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    PubMed

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Waist-to-height ratio is as reliable as biochemical markers to discriminate pediatric insulin resistance.

    PubMed

    Alvim, Rafael de Oliveira; Zaniqueli, Divanei; Neves, Felipe Silva; Pani, Virgilia Oliveira; Martins, Caroline Resende; Peçanha, Marcos Alves de Souza; Barbosa, Míriam Carmo Rodrigues; Faria, Eliane Rodrigues de; Mill, José Geraldo

    2018-05-07

    Given the importance of incorporating simple and low-cost tools into the pediatric clinical setting to provide screening for insulin resistance, the present study sought to investigate whether waist-to-height ratio is comparable to biochemical markers for the discrimination of insulin resistance in children and adolescents. This cross-sectional study involved students from nine public schools. In total, 296 children and adolescents of both sexes, aged 8-14 years, composed the sample. Waist-to-height ratio, triglycerides/glucose index, and triglycerides-to-HDL-C ratio were determined according to standard protocols. Insulin resistance was defined as homeostatic model assessment for insulin resistance with cut-off point ≥3.16. Age, body mass index, frequency of overweight, waist circumference, waist-to-height ratio, insulin, glucose, homeostatic model assessment for insulin resistance, triglycerides, triglycerides/glucose index, and triglycerides-to-HDL-C were higher among insulin-resistant boys and girls. Moderate correlation of all indicators (waist-to-height ratio, triglycerides/glucose index, and triglycerides-to-HDL-C ratio) with homeostatic model assessment for insulin resistance was observed for both sexes. The areas under the receiver operational characteristic curves were similar between waist-to-height ratio and biochemical markers. The indicators provided similar discriminatory power for insulin resistance. However, taking into account the cost-benefit ratio, the authors suggest that waist-to-height ratio may be a useful tool to provide screening for insulin resistance in pediatric populations. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1.

    PubMed

    Hu, Xiaojing; Chi, Liyi; Zhang, Wentao; Bai, Tiao; Zhao, Wei; Feng, Zhanbin; Tian, Hongyan

    2015-12-25

    Insulin resistance plays an important role in the development of hypertension, which is seriously detrimental to human health. Recently, Sirtuin-1 (SIRT1) has been found to participate in regulation of insulin resistance. Therefore, further studies focused on the SIRT1 regulators might provide a potential approach for combating insulin resistance and hypertension. Interestingly, in this study, we found that SIRT1 was the target gene of the miR-543 by the Dual-Luciferase Reporter Assay. Moreover, the miR-543 expression notably increased in the insulin-resistant HepG2 cells induced by TNF-α. Further analysis showed that the overexpression of the miR-543 lowered the SIRT1 mRNA and protein levels, resulting in the insulin resistance in the HepG2 cells; the inhibition of miR-543, however, enhanced the mRNA and protein expression of the SIRT1, and alleviated the insulin resistance. Furthermore, the SIRT1 overexpression abrogated the effect of miR-543 on insulin resistance. In addition, the overexpression of the miR-543 by the lentivirus-mediated gene transfer markedly impaired the insulin signaling assessed by the Western blot analysis of the glycogen synthesis and the phosphorylation of Akt and GSK3β. In summary, our study suggested that the downregulation of the miR-543 could alleviate the insulin resistance via the modulation of the SIRT1 expression, which might be a potential new strategy for treating insulin resistance and a promising therapeutic method for hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly

  1. Hepatic steatosis and PNPLA3 I148M variant are associated with serum Fetuin-A independently of insulin resistance.

    PubMed

    Rametta, Raffaela; Ruscica, Massimiliano; Dongiovanni, Paola; Macchi, Chiara; Fracanzani, Anna L; Steffani, Liliana; Fargion, Silvia; Magni, Paolo; Valenti, Luca

    2014-07-01

    Fetuin-A is a liver-derived peptide associated with insulin resistance. Aim of this cross-sectional study was to evaluate whether Fetuin-A is increased in patients with nonalcoholic fatty liver disease (NAFLD) vs. healthy subjects without metabolic abnormalities and the association with insulin resistance and liver damage. To investigate the causal relationship between fatty liver and Fetuin-A, we also analysed whether the inherited I148M PNPLA3 variant modulates Fetuin-A. In 137 patients with histological NAFLD, complete metabolic characterization, PNPLA3 genotype, and in 260 healthy subjects without metabolic alterations, Fetuin-A was measured by enzyme-linked immunoabsorbent assay. Serum Fetuin-A was higher in NAFLD patients than in controls (P < 0·0001), independently of age, sex, BMI, insulin resistance, dyslipidemia, adiponectin, PNPLA3 I148M and ALT levels (OR 1·006 95% CI 1·003-1·11; P = 0·003). In NAFLD patients, Fetuin-A was associated with steatosis severity (P = 0·03) and metabolic syndrome features, but not with hepatic inflammation. At multivariate analysis, Fetuin-A levels were associated with BMI, triglycerides, hyperglycemia and PNPLA3 I148M (P = 0·034) independently also of age, sex and ALT levels. As PNPLA3 I148M is a strong and inherited determinant of liver fat without affecting insulin resistance and lipid levels, these data suggest that steatosis has a causal role in determining serum Fetuin-A levels. Liver fat accumulation and the I148M variant of PNPLA3 are associated with serum Fetuin-A levels independently of insulin resistance. Fetuin-A may be implicated in the pathogenesis of metabolic complications associated with NAFLD. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  2. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  3. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  4. Dissociation Between APOC3 Variants, Hepatic Triglyceride Content and Insulin Resistance

    PubMed Central

    Kozlitina, Julia; Boerwinkle, Eric; Cohen, Jonathan C; Hobbs, Helen H

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) is an escalating health problem that is frequently associated with obesity and insulin resistance. The mechanistic relationship between NAFLD, obesity, and insulin resistance is not well understood. A nonsynonymous variant in patatin-like phospholipase domain containing 3 (rs738409, I148M) has been reproducibly associated with increased hepatic triglyceride content (HTGC) but has not been associated with either the body mass index (BMI) or indices of insulin resistance. Conversely, two sequence variants in apolipoprotein C3 (APOC3) that have been linked to hypertriglyceridemia (rs2854117 C > T and rs2854116 T > C) have recently been reported to be associated with both hepatic fat content and insulin resistance. Here we genotyped two APOC3 variants in 1228 African Americans, 843 European Americans and 426 Hispanics from a multiethnic population based study, the Dallas Heart Study and test for association with HTGC and homeostatic model of insulin resistance (HOMA-IR). We also examined the relationship between these two variants and HOMA-IR in the Atherosclerosis Risk in Communities (ARIC) study. No significant difference in hepatic fat content was found between carriers and noncarriers in the Dallas Heart Study. Neither APOC3 variant was associated with HOMA-IR in the Dallas Heart Study; this lack of association was confirmed in the ARIC study, even after the analysis was restricted to lean (BMI < 25 kg/m2) individuals (n = 4399). Conclusion: Our data do not support a causal relationship between these two variants in APOC3 and either HTGC or insulin resistance in middle-aged men and women. (Hepatology 2011;53:467-474) PMID:21274868

  5. Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance.

    PubMed

    Kozlitina, Julia; Boerwinkle, Eric; Cohen, Jonathan C; Hobbs, Helen H

    2011-02-01

    Nonalcoholic fatty liver disease (NAFLD) is an escalating health problem that is frequently associated with obesity and insulin resistance. The mechanistic relationship between NAFLD, obesity, and insulin resistance is not well understood. A nonsynonymous variant in patatin-like phospholipase domain containing 3 (rs738409, I148M) has been reproducibly associated with increased hepatic triglyceride content (HTGC) but has not been associated with either the body mass index (BMI) or indices of insulin resistance. Conversely, two sequence variants in apolipoprotein C3 (APOC3) that have been linked to hypertriglyceridemia (rs2854117 C > T and rs2854116 T > C) have recently been reported to be associated with both hepatic fat content and insulin resistance. Here we genotyped two APOC3 variants in 1228 African Americans, 843 European Americans and 426 Hispanics from a multiethnic population based study, the Dallas Heart Study and test for association with HTGC and homeostatic model of insulin resistance (HOMA-IR). We also examined the relationship between these two variants and HOMA-IR in the Atherosclerosis Risk in Communities (ARIC) study. No significant difference in hepatic fat content was found between carriers and noncarriers in the Dallas Heart Study. Neither APOC3 variant was associated with HOMA-IR in the Dallas Heart Study; this lack of association was confirmed in the ARIC study, even after the analysis was restricted to lean (BMI < 25 kg/m(2) ) individuals (n = 4399). Our data do not support a causal relationship between these two variants in APOC3 and either HTGC or insulin resistance in middle-aged men and women. Copyright © 2010 American Association for the Study of Liver Diseases.

  6. Acute cellular insulin resistance and hyperglycemia associated with hypophosphatemia after cardiac surgery.

    PubMed

    Garazi, Esther; Bridge, Suzanne; Caffarelli, Anthony; Ruoss, Stephen; Van der Starre, Pieter

    2015-01-15

    Successful glycemic control reduces morbidity and mortality in cardiac surgery patients. Protocols that include insulin infusions are commonly followed to achieve target blood glucose levels. Insulin resistance has been reported and linked to low serum phosphate levels in animal models and studies in diabetic outpatients, but not in postoperative patients. The following case series is a retrospective observational review of 8 cardiac surgery patients who developed insulin resistance early after surgery; this resistance was reversed by correcting serum hypophosphatemia. We discuss the multiple underlying mechanisms causing hypophosphatemia.

  7. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for insulin resistance in cultured hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  8. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  9. Role of genetic variation in insulin-like growth factor 1 receptor on insulin resistance and arterial hypertension.

    PubMed

    Sookoian, Silvia; Gianotti, Tomas Fernandez; Gemma, Carolina; Burgueño, Adriana L; Pirola, Carlos J

    2010-06-01

    To perform a two-stage study to explore the role of gene variants in the risk of insulin resistance and arterial hypertension. The selection of variants was performed by a first stage of in-silico analysis of the original genome-wide association data sets on genes involved in metabolic syndrome components, granted by the Diabetes Genetics Initiative and the Wellcome Trust Case-Control Consortium. We started by identifying single-nucleotide polymorphisms with a cutoff for association (P < 0.05) in both data sets after the application of a computational algorithm of gene prioritization. Among the more promising variants, six single-nucleotide polymorphisms in IGF1R (rs11247362, rs10902606, rs1317459, rs11854132, rs2684761, and rs2715416) were selected for further evaluation in our population. Altogether, 1094 men, aged 34.4 +/- 8.6 years, were included in a population-based study. Genotypes of rs2684761 showed significant association with insulin resistance (as a discrete trait, odds ratio per G allele 1.27, 95% confidence interval 1.03-1.56, P = 0.026; and homeostasis model assessment-insulin resistance as a continuous trait, P = 0.01). A significant association of rs2684761 with arterial hypertension was also observed (odds ratio per G allele 1.29, 95% confidence interval 1.02-1.64, P = 0.037) after adjusting for age and homeostasis model assessment-insulin resistance. Our study suggests for the first time a putative role of IGF1R variants in individual susceptibility to metabolic syndrome-related phenotypes, in particular on the risk of having insulin resistance and arterial hypertension.

  10. [Molecular mechanism for ET-1-induced insulin resistance in skeletal muscle cells].

    PubMed

    Horinouchi, Takahiro; Mazaki, Yuichi; Terada, Koji; Miwa, Soichi

    2018-01-01

    Insulin resistance is a condition where the sensitivity to insulin of the tissues expressing insulin receptor (InsR) is decreased due to a functional disturbance of InsR-mediated intracellular signaling. Insulin promotes the entry of glucose into the tissues and skeletal muscle is the most important tissue responsible for the insulin's action of decreasing blood glucose levels. Endothelin-1 (ET-1), a potent vasoconstrictor and pro-inflammatory peptide, induces insulin resistance through a direct action on skeletal muscle. However, the signaling pathways of ET-1-induced insulin resistance in skeletal muscle remain unclear. Here we show molecular mechanism underlying the inhibitory effect of ET-1 on insulin-stimulated Akt phosphorylation and glucose uptake in myotubes of rat L6 skeletal muscle cell line. mRNA expression levels of differentiation marker genes, MyoD and myogenin, were increased during L6 myoblasts differentiation into myotubes. Some of myotubes possessed the ability to spontaneously contract. In myotubes, insulin promoted Akt phosphorylation at Thr 308 and Ser 473 , and [ 3 H]-labelled 2-deoxy-D-glucose ([ 3 H]2-DG) uptake. The insulin-facilitated Akt phosphorylation and [ 3 H]2-DG uptake were inhibited by ET-1. The inhibitory effect of ET-1 was counteracted by blockade of ET type A receptor (ET A R), inhibition of G q/11 protein, and siRNA knockdown of G protein-coupled receptor kinase 2 (GRK2). The exogenously overexpressed GRK2 directly bound to endogenous Akt and their association was facilitated by ET-1. In summary, activation of ET A R with ET-1 inhibits insulin-induced Akt phosphorylation and [ 3 H]2-DG uptake in a G q/11 protein- and GRK2-dependent manner in skeletal muscle. These findings indicate that ET A R and GRK2 are potential targets for insulin resistance.

  11. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  12. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    PubMed

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  13. The role of polycarbonate monomer bisphenol-A in insulin resistance

    PubMed Central

    2017-01-01

    Bisphenol A (BPA) is a synthetic unit of polycarbonate polymers and epoxy resins, the types of plastics that could be found in essentially every human population and incorporated into almost every aspect of the modern human society. BPA polymers appear in a wide range of products, from liquid storages (plastic bottles, can and glass linings, water pipes and tanks) and food storages (plastics wraps and containers), to medical and dental devices. BPA polymers could be hydrolyzed spontaneously or in a photo- or temperature-catalyzed process, providing widespread environmental distribution and chronic exposure to the BPA monomer in contemporary human populations. Bisphenol A is also a xenoestrogen, an endocrine-disrupting chemical (EDC) that interferes with the endocrine system mimicking the effects of an estrogen and could potentially keep our endocrine system in a constant perturbation that parallels endocrine disruption arising during pregnancy, such as insulin resistance (IR). Gestational insulin resistance represents a natural biological phenomenon of higher insulin resistance in peripheral tissues of the pregnant females, when nutrients are increasingly being directed to the embryo instead of being stored in peripheral tissues. Gestational diabetes mellitus may appear in healthy non-diabetic females, due to gestational insulin resistance that leads to increased blood sugar levels and hyperinsulinemia (increased insulin production from the pancreatic beta cells). The hypothesis states that unnoticed and constant exposure to this environmental chemical might potentially lead to the formation of chronic low-level endocrine disruptive state that resembles gestational insulin resistance, which might contribute to the development of diabetes. The increasing body of evidence supports the major premises of this hypothesis, as exemplified by the numerous publications examining the association of BPA and insulin resistance, both epidemiological and mechanistic. However, to

  14. The role of polycarbonate monomer bisphenol-A in insulin resistance.

    PubMed

    Pjanic, Milos

    2017-01-01

    Bisphenol A (BPA) is a synthetic unit of polycarbonate polymers and epoxy resins, the types of plastics that could be found in essentially every human population and incorporated into almost every aspect of the modern human society. BPA polymers appear in a wide range of products, from liquid storages (plastic bottles, can and glass linings, water pipes and tanks) and food storages (plastics wraps and containers), to medical and dental devices. BPA polymers could be hydrolyzed spontaneously or in a photo- or temperature-catalyzed process, providing widespread environmental distribution and chronic exposure to the BPA monomer in contemporary human populations. Bisphenol A is also a xenoestrogen, an endocrine-disrupting chemical (EDC) that interferes with the endocrine system mimicking the effects of an estrogen and could potentially keep our endocrine system in a constant perturbation that parallels endocrine disruption arising during pregnancy, such as insulin resistance (IR). Gestational insulin resistance represents a natural biological phenomenon of higher insulin resistance in peripheral tissues of the pregnant females, when nutrients are increasingly being directed to the embryo instead of being stored in peripheral tissues. Gestational diabetes mellitus may appear in healthy non-diabetic females, due to gestational insulin resistance that leads to increased blood sugar levels and hyperinsulinemia (increased insulin production from the pancreatic beta cells). The hypothesis states that unnoticed and constant exposure to this environmental chemical might potentially lead to the formation of chronic low-level endocrine disruptive state that resembles gestational insulin resistance, which might contribute to the development of diabetes. The increasing body of evidence supports the major premises of this hypothesis, as exemplified by the numerous publications examining the association of BPA and insulin resistance, both epidemiological and mechanistic. However, to

  15. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men

    PubMed Central

    Petersen, Kitt Falk; Dufour, Sylvie; Feng, Jing; Befroy, Douglas; Dziura, James; Man, Chiara Dalla; Cobelli, Claudio; Shulman, Gerald I.

    2006-01-01

    Type 2 diabetes mellitus (T2DM) is strongly associated with obesity in most, but not all, ethnic groups, suggesting important ethnic differences in disease susceptibility. Although it is clear that insulin resistance plays a major role in the pathogenesis of T2DM and that insulin resistance is strongly associated with increases in hepatic (HTG) and/or intramyocellular lipid content, little is known about the prevalence of insulin resistance and potential differences in intracellular lipid distribution among healthy, young, lean individuals of different ethnic groups. To examine this question, 482 young, lean, healthy, sedentary, nonsmoking Eastern Asians (n = 49), Asian-Indians (n = 59), Blacks (n = 48), Caucasians (n = 292), and Hispanics (n = 34) underwent an oral glucose tolerance test to assess whole-body insulin sensitivity by an insulin sensitivity index. In addition, intramyocellular lipid and HTG contents were measured by using proton magnetic resonance spectroscopy. The prevalence of insulin resistance, defined as the lower quartile of insulin sensitivity index, was ≈2- to 3-fold higher in the Asian-Indians compared with all other ethnic groups, and this could entirely be attributed to a 3- to 4-fold increased prevalence of insulin resistance in Asian-Indian men. This increased prevalence of insulin resistance in the Asian-Indian men was associated with an ≈2-fold increase in HTG content and plasma IL-6 concentrations compared with Caucasian men. These data demonstrate important ethnic and gender differences in the pathogenesis of insulin resistance in Asian-Indian men and have important therapeutic implications for treatment of T2DM and for the development of steatosis-related liver disease in this ethnic group. PMID:17114290

  16. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    PubMed Central

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-01-01

    Background and Objectives: High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. Subjects/Methods: We investigated the metabolic consequences of mice fed a (a) regular diet, (b) ‘Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80+CD11c+ macrophages and anti-inflammatory F4/80+CD11c− macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. Results: We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing ‘Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to ‘Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Conclusion: Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose

  17. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance.

    PubMed

    Ma, X; Lin, L; Yue, J; Pradhan, G; Qin, G; Minze, L J; Wu, H; Sheikh-Hamad, D; Smith, C W; Sun, Y

    2013-12-23

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS consumption remains controversial. We investigated the metabolic consequences of mice fed a (a) regular diet, (b) 'Western' high-fat diet or (c) regular diet supplemented with 8% HFCS in drinking water (to mimic soft drinks) for 10 months. Adipose tissue macrophages (ATMs) have emerged as a major pathogenic factor for obesity and insulin resistance. ATMs consist of proinflammatory F4/80(+)CD11c(+) macrophages and anti-inflammatory F4/80(+)CD11c(-) macrophages. In this study, we assessed the effects of HFCS on ATMs in intra-abdominal fat. We found that HFCS feeding in mice induced more severe adipose inflammation and insulin resistance than even the higher-calorie-containing 'Western' high-fat diet, and these HFCS-induced deleterious effects were independent of calorie intake or body fat content. We showed that similar to 'Western' high-fat diet, HFCS triggered a robust increase of both proinflammatory ATMs and anti-inflammatory ATMs in intra-abdominal fat. Remarkably, however, the anti-inflammatory ATMs were much less abundant in HFCS-fed mice than in high-fat-fed mice. Furthermore, we showed that deletion of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) ameliorates HFCS-induced adipose inflammation and insulin resistance. HFCS-fed GHS-R-null mice exhibit decreased proinflammatory ATMs in intra-abdominal fat, reduced adipose inflammation and attenuated liver steatosis. Our studies demonstrate that HFCS has detrimental effects on metabolism, suggesting that dietary guidelines on HFCS consumption for Americans may need to be revisited. GHS-R deletion mitigates the effects of HFCS on adipose inflammation and insulin resistance, suggesting that GHS

  18. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.

    PubMed

    Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng

    2011-01-01

    NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.

  19. Metabolic responses with endothelin antagonism in a model of insulin resistance.

    PubMed

    Berthiaume, Nathalie; Wessale, Jerry L; Opgenorth, Terry J; Zinker, Bradley A

    2005-06-01

    Atrasentan, an endothelin antagonist, would have beneficial effects on metabolic responses in a model of insulin resistance. Zucker lean or fatty rats were maintained either on regular (lean and fatty control, n = 12) or atrasentan-treated water (5 mg/kg/d, fatty atrasentan, n = 13) for 6 weeks. There was no significant difference in water intake and body weight with the atrasentan-treated group compared with fatty controls. Although atrasentan had no effect on 3-hour fasting glucose levels, it reduced fasting insulin levels between weeks 2 and 4 of treatment by 53% (fatty control vs fatty atrasentan, P < .01). Atrasentan decreased the incremental area under the plasma glucose response curve ( Delta AUC) after a nutritionally complete meal tolerance test (MTT), by 28% in the atrasentan-treated group compared with fatty controls ( P < .05), and decreased the MTT-induced insulin Delta AUC by 63% in treated animals compared with the fatty control group ( P < .01). In addition, atrasentan significantly decreased the MTT-induced glucose-insulin index Delta AUC by 58% in treated rats compared with fatty controls ( P < .01). In summary, in the Zucker fatty rat, atrasentan significantly reduces (1) 3-hour fasting insulin levels at 4 weeks, (2) glucose and insulin MTT-induced Delta AUCs, and (3) the MTT-induced glucose-insulin index Delta AUC. These results demonstrate an improvement in hyperinsulinemia as well as in glucose tolerance and insulin sensitivity with chronic endothelin antagonism in a model of insulin resistance and suggest that chronic endothelin antagonism may have benefits in the treatment of insulin resistance and/or diabetes.

  20. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training

    PubMed Central

    Roberts, Christian K.; Hevener, Andrea L.; Barnard, R. James

    2014-01-01

    Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity. PMID:23720280

  1. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation.

    PubMed

    Caprio, Sonia; Perry, Rachel; Kursawe, Romy

    2017-05-01

    As a consequence of the global rise in the prevalence of adolescent obesity, an unprecedented phenomenon of type 2 diabetes has emerged in pediatrics. At the heart of the development of type 2 diabetes lies a key metabolic derangement: insulin resistance (IR). Despite the widespread occurrence of IR affecting an unmeasurable number of youths worldwide, its pathogenesis remains elusive. IR in obese youth is a complex phenomenon that defies explanation by a single pathway. In this review we first describe recent data on the prevalence, severity, and racial/ethnic differences in pediatric obesity. We follow by elucidating the initiating events associated with the onset of IR, and describe a distinct "endophenotype" in obese adolescents characterized by a thin superficial layer of abdominal subcutaneous adipose tissue, increased visceral adipose tissue, marked IR, dyslipidemia, and fatty liver. Further, we provide evidence for the cellular and molecular mechanisms associated with this peculiar endophenotype and its relations to IR in the obese adolescent. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Effect of Glucocorticoid-Induced Insulin Resistance on Follicle Development and Ovulation1

    PubMed Central

    Hackbart, Katherine S.; Cunha, Pauline M.; Meyer, Rudelle K.; Wiltbank, Milo C.

    2013-01-01

    ABSTRACT Polycystic ovarian syndrome (PCOS) is characterized by hyperandrogenemia, polycystic ovaries, and menstrual disturbance and a clear association with insulin resistance. This research evaluated whether induction of insulin resistance, using dexamethasone (DEX), in a monovular animal model, the cow, could produce an ovarian phenotype similar to PCOS. In all of these experiments, DEX induced insulin resistance in cows as shown by increased glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). Experiment 1: DEX induced anovulation (zero of five DEX vs. four of four control cows ovulated) and decreased circulating estradiol (E2). Experiment 2: Gonadotropin-releasing hormone (GnRH) was administered to determine pituitary and follicular responses during insulin resistance. GnRH induced a luteinizing hormone (LH) surge and ovulation in both DEX (seven of seven) and control (seven of seven) cows. Experiment 3: E2 was administered to determine hypothalamic responsiveness after induction of an E2 surge in DEX (eight of eight) and control (eight of eight) cows. An LH surge was induced in control (eight of eight) but not DEX (zero of eight) cows. All control (eight of eight) but only two of eight DEX cows ovulated within 60 h of E2 administration. Experiment 4: Short-term DEX was initiated 24 h after induced luteal regression to determine if DEX could acutely block ovulation before peak insulin resistance was induced, similar to progesterone (P4). All control (five of five), no P4-treated (zero of six), and 50% of DEX-treated (three of six) cows ovulated by 96 h after luteal regression. All anovular cows had reduced circulating E2. These data are consistent with DEX creating a lesion in hypothalamic positive feedback to E2 without altering pituitary responsiveness to GnRH or ovulatory responsiveness of follicles to LH. It remains to be determined if the considerable insulin resistance and the reduced follicular E2 production induced by DEX

  3. Induction of miR-96 by Dietary Saturated Fatty Acids Exacerbates Hepatic Insulin Resistance through the Suppression of INSR and IRS-1

    PubMed Central

    Yang, Won-Mo; Min, Kyung-Ho

    2016-01-01

    Obesity is defined as the excessive accumulation of body fat that ultimately leads to chronic metabolic diseases. Diets rich in saturated fatty acids (SFA) exacerbate obesity and hepatic steatosis, which increase the risk of hepatic insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play an important role in a range of biological processes, the implications of SFA-induced miRNAs in metabolic dysregulation, particularly in the pathogenesis of hepatic insulin resistance, are not well understood. This study investigated the implications of miR-96, which is induced strongly by SFA, in the development of hepatic insulin resistance. The liver of HFD mice and the palmitate-treated hepatocytes exhibited an impairment of insulin signaling due to the significant decrease in INSR and IRS-1 expression. According to expression profiling and qRT-PCR analysis of the miRNAs, the expression level of miR-96 was higher in hepatocytes treated with palmitate. Moreover, miR-96 was also upregulated in the liver of HFD mice. Interestingly, miR-96 targeted the 3’UTRs of INSR and IRS-1 directly, and repressed the expression of INSR and IRS-1 at the post-transcriptional level. Accordingly, the overexpression of miR-96 was found to cause a significant decrease in INSR and IRS-1 expression, thereby leading to an impairment of insulin signaling and glycogen synthesis in hepatocytes. These results reveal a novel mechanism whereby miR-96 promotes the pathogenesis of hepatic insulin resistance resulted from SFA or obesity. PMID:28036389

  4. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance.

    PubMed

    Hayata, Hiroki; Miyazaki, Hiroaki; Niisato, Naomi; Yokoyama, Noriko; Marunaka, Yoshinori

    2014-02-28

    Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells. Copyright © 2014. Published by Elsevier Inc.

  5. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations.

    PubMed

    Lunger, Fabian; Wildt, Ludwig; Seeber, Beata

    2013-06-01

    The aims of this cross-sectional study were to evaluate the relative agreement of both static and dynamic methods of diagnosing IR in women with polycystic ovary syndrome (PCOS) and to suggest a simple screening method for IR. All participants underwent serial blood draws for hormonal profiling and lipid assessment, a 3 h, 75 g load oral glucose tolerance test (OGTT) with every 15 min measurements of glucose and insulin, and an ACTH stimulation test. The prevalence of IR ranged from 12.2% to 60.5%, depending on the IR index used. Based on largest area under the curve on receiver operating curve (ROC) analyses, the dynamic indices outperformed the static indices with glucose to insulin ratio and fasting insulin (fInsulin) demonstrating the best diagnostic properties. Applying two cut-offs representing fInsulin extremes (<7 and >13 mIU/l, respectively) gave the diagnosis in 70% of the patients with high accuracy. Currently utilized indices for assessing IR give highly variable results in women with PCOS. The most accurate indices based on dynamic testing can be time-consuming and labor-intensive. We suggest the use of fInsulin as a simple screening test, which can reduce the number of OGTTs needed to routinely assess insulin resistance in women with PCOS.

  6. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    PubMed Central

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  7. Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats

    PubMed Central

    Cheng, Kai-Chun; Asakawa, Akihiro; Li, Ying-Xiao; Chung, Hsien-Hui; Amitani, Haruka; Ueki, Takatoshi; Cheng, Juei-Tang; Inui, Akio

    2014-01-01

    Background and aims Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. Methods Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. Results Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. Conclusions Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients. PMID:24404172

  8. Effect of android to gynoid fat ratio on insulin resistance in obese youth.

    PubMed

    Aucouturier, Julien; Meyer, Martine; Thivel, David; Taillardat, Michel; Duché, Pascale

    2009-09-01

    Upper body fat distribution is associated with the early development of insulin resistance in obese children and adolescents. To determine if an android to gynoid fat ratio is associated with the severity of insulin resistance in obese children and adolescents, whereas peripheral subcutaneous fat may have a protective effect against insulin resistance. The pediatric department of University Hospital, Clermont-Ferrand, France. A retrospective analysis using data from medical consultations between January 2005 and January 2007. Data from 66 obese children and adolescents coming to the hospital for medical consultation were used in this study. Subjects were stratified into tertiles of android to gynoid fat ratio determined by dual-energy x-ray absorptiometry. Insulin resistance was assessed by the homeostasis model of insulin resistance (HOMA-IR) index. There were no differences in weight, body mass index, and body fat percentage between tertiles. Values of HOMA-IR were significantly increased in the 2 higher tertiles (mean [SD], tertile 2, 2.73 [1.41]; tertile 3, 2.89 [1.28]) compared with the lower tertile (tertile 1, 1.67 [1.24]) of android to gynoid fat ratio (P < .001). The HOMA-IR value was significantly associated with android to gynoid fat ratio (r = 0.35; P < .01). Android fat distribution is associated with an increased insulin resistance in obese children and adolescents. An android to gynoid fat ratio based on dual-energy x-ray absorptiometry measurements is a useful and simple technique to assess distribution of body fat associated with an increased risk of insulin resistance.

  9. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.

    PubMed

    Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2017-03-03

    Chronic exposure to fine ambient particulate matter (PM 2.5 ) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM 2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM 2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2 -/- mice were subjected to exposure to concentrated ambient PM 2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM 2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM 2.5 -exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM 2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM 2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.

  10. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  11. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women.

    PubMed

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to assess the association between uric acid and birth weights regarding to insulin resistance. The means of the mid-gestational serum uric acid concentrations were not significantly different in women with and without insulin resistance. But stratification analysis showed that there was a significant difference between uric acid concentration and macrosomic birth in diabetic women without insulin resistance. Higher mid - gestation serum uric acid concentration, even if it does not exceed the normal range, is accompanied by lower birth weight only in non-insulin resistance women. Insulin resistance could have a negative confounding effect on hyperuriemia and birth weight.

  12. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies.

    PubMed

    Burghardt, Kyle J; Seyoum, Berhane; Mallisho, Abdullah; Burghardt, Paul R; Kowluru, Renu A; Yi, Zhengping

    2018-04-20

    Atypical antipsychotics increase the risk of diabetes and cardiovascular disease through their side effects of insulin resistance and weight gain. The populations for which atypical antipsychotics are used carry a baseline risk of metabolic dysregulation prior to medication which has made it difficult to fully understand whether atypical antipsychotics cause insulin resistance and weight gain directly. The purpose of this work was to conduct a systematic review and meta-analysis of atypical antipsychotic trials in healthy volunteers to better understand their effects on insulin sensitivity and weight gain. Furthermore, we aimed to evaluate the occurrence of insulin resistance with or without weight gain and with treatment length by using subgroup and meta-regression techniques. Overall, the meta-analysis provides evidence that atypical antipsychotics decrease insulin sensitivity (standardized mean difference=-0.437, p<0.001) and increase weight (standardized mean difference=0.591, p<0.001) in healthy volunteers. It was found that decreases in insulin sensitivity were potentially dependent on treatment length but not weight gain. Decreases in insulin sensitivity occurred in multi-dose studies <13days while weight gain occurred in studies 14days and longer (max 28days). These findings provide preliminary evidence that atypical antipsychotics cause insulin resistance and weight gain directly, independent of psychiatric disease and may be associated with length of treatment. Further, well-designed studies to assess the co-occurrence of insulin resistance and weight gain and to understand the mechanisms and sequence by which they occur are required. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A human model of dietary saturated fatty acid induced insulin resistance.

    PubMed

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all p<0.001). SSPG was also increased after a single SFA breakfast (55±32%, p=0.008, n=7). The increase in SSPG was less pronounced after an overnight fast following a daylong SFA diet (24±31%, p=0.04, n=10), and further attenuated 24h after returning to the control diet (19±35%, p=0.09, n=11). SSPG was not increased after a 24-h CARB diet (26±50%, p=0.11, n=12). A short-term SFA-enriched diet induced whole body insulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  14. The Effects of Fetal Gender on Maternal and Fetal Insulin Resistance.

    PubMed

    Walsh, Jennifer M; Segurado, Ricardo; Mahony, Rhona M; Foley, Michael E; McAuliffe, Fionnuala M

    2015-01-01

    Gender plays a role in the development of a number of cardiovascular and metabolic diseases and it has been suggested that females may be more insulin resistant in utero. We sought to assess the relationship between infant gender and insulin resistance in a large pregnancy cohort. This is a secondary analysis of a cohort from the ROLO randomized control trial of low GI diet in pregnancy. Serum insulin, glucose and leptin were measured in early pregnancy and at 28 weeks. At delivery cord blood C-peptide and leptin were measured. A comparison of maternal factors, fetal biometry, insulin resistance and leptin was made between male and female offspring. A multivariate regression model was built to account for the possible effects of maternal BMI, birthweight and original study group assignment on findings. A total of 582 women were included in this secondary analysis, of whom 304 (52.2%) gave birth to male and 278 (47.8%) gave birth to female infants. Compared to male infants at birth, female infants were significantly lighter, (3945 ± 436 vs. 4081± 549g, p<0.001), shorter in length (52.36 ± 2.3 vs. 53.05 ± 2.4cm, p<0.001) and with smaller head circumferences (35.36 ± 1.5 vs. 36.10 ± 1.1cm, p<0.001) than males. On multiple regression analysis, women pregnant with female fetuses were less insulin resistant in early pregnancy, i.e. had lower HOMA indices (B = -0.19, p = 0.01). Additionally female fetuses had higher concentrations of both cord blood leptin and C-peptide at birth when compared to male offspring (B = 0.38, p<0.001 and B = 0.31, p = 0.03 respectively). These findings suggest gender is a risk factor for insulin resistance in-utero. Additionally, carrying a female fetus decreases the risk of insulin resistance in the mother, from as early as the first trimester.

  15. Insulin resistance and self-perceived scholastic competence in inner-city, overweight and obese, African American children.

    PubMed

    Fyfe, Molly; Raman, Aarthi; Sharma, Sushma; Hudes, Mark L; Fleming, Sharon E

    2011-01-10

    scholastic competence is a predictor of future achievement, yet there is little research about health factors that influence the development of self-perceived scholastic competence (SPSC). This study examined the relationship of insulin resistance and body fatness with SPSC in low-income, overweight and obese, African American children. data were analyzed from a convenience sample of 9-10years old African American children (89 boys and 113 girls) enrolled in a type 2 diabetes prevention study. Health variables analyzed for their influence on SPSC (Harter scale) included insulin resistance (Homeostatic model-derived insulin sensitivity, HOMA-IR) and body fatness (% body fat). Adjustments were made for self-esteem (Global Self Worth). there was a significant gender by insulin resistance interaction effect on the child's SPSC, so separate regression models were developed for each gender. In boys, neither insulin resistance nor body fatness was related to SPSC. In girls, however, insulin resistance was negatively related to SPSC scores, and the significance of the relationship increased further after adjusting for body fatness. Body fatness alone was not significantly related to SPSC in girls, but after adjusting for insulin resistance, body fatness was positively related to SPSC. Thus, insulin resistance and body fatness mutually suppressed SPSC in girls. high SPSC was associated with lower insulin resistance and, with insulin resistance held constant, with higher body fatness in girls but not in boys. These relationships were not influenced by self-esteem in these children. 2010 Elsevier Inc. All rights reserved.

  16. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  17. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile.

    PubMed

    León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A

    2014-06-01

    To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013

  18. Recent Advances on the Role of microRNAs in both Insulin Resistance and Cancer.

    PubMed

    Vivacqua, Adele; De Marco, Paola; Belfiore, Antonino; Maggiolini, Marcello

    2017-01-01

    Insulin resistance is a pathological condition characterized by the failure of target cells to uptake and metabolize glucose in response to insulin. In particular, the elevated concentrations of glucose, insulin and free insulin growth factor-1, which result from insulin resistance, may generate a pro-inflammatory and protumorigenic state. These alterations may underlie the increased risk to develop various types of cancer as well as the worse cancer prognosis observed in obese and diabetic patients. MicroRNAs are short molecules of noncoding endogenous RNA, which are involved in several physio-pathological conditions like glucose homeostasis, lipid metabolism, insulin signaling and resistance. MicroRNAs play also a crucial role in tumorigenesis, acting as oncomirs or tumor suppressors depending on the cell context. Here, we recapitulate the role of certain microRNAs that are associated with both insulin resistance and cancer, and discuss their potential to be considered as therapeutic targets. Several studies have highlighted the action of diverse microRNAs in the aforementioned disorders. For instance, three microRNA clusters namely miR-103/107, miR-221/222 and miR-29 have been found to be upregulated in insulin resistance and certain types of cancer. These microRNAs have been shown to target genes like PTEN, Dicer and caveolins that are largely involved in important processes relevant to both insulin resistance and cancer. Certain microRNAs may represent potential drug targets common to both insulin resistance and cancer. In particular, the inhibition of miR-103/107, miR-221/222 and miR-29 may be taken into account in novel pharmacological approaches aiming to treat these two disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress

  20. Ghrelin receptor null mice have reduced visceral fat and improved insulin sensitivity during aging

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with a higher incidence of Type 2 diabetes; one in five Americans over age 65 has diabetes. Loss of lean mass and accumulation of fat, particularly visceral fat, during aging result in increased insulin resistance. Insulin resistance is a major pathogenic factor for Type 2 diabet...

  1. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise.

    PubMed

    Myslicki, Jason P; Belke, Darrell D; Shearer, Jane

    2014-11-01

    The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.

  2. Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women

    PubMed Central

    Sun, Wanwan; Lu, Jieli; Wu, Shengli; Bi, Yufang; Mu, Yiming; Zhao, Jiajun; Liu, Chao; Chen, Lulu; Shi, Lixin; Li, Qiang; Yang, Tao; Yan, Li; Wan, Qin; Liu, Yan; Wang, Guixia; Luo, Zuojie; Tang, Xulei; Chen, Gang; Huo, Yanan; Gao, Zhengnan; Su, Qing; Ye, Zhen; Wang, Youmin; Qin, Guijun; Deng, Huacong; Yu, Xuefeng; Shen, Feixia; Chen, Li; Zhao, Liebin; Wang, Tiange; Sun, Jichao; Xu, Min; Xu, Yu; Chen, Yuhong; Dai, Meng; Zhang, Jie; Zhang, Di; Lai, Shenghan; Li, Donghui; Ning, Guang; Wang, Weiqing

    2016-01-01

    Hyperinsulinemia and insulin resistance were reported to play a crucial role in diabetes-cancer relationship. This study aimed to explore the associations between insulin resistance and several female cancers in a non-diabetic population. This cross-sectional study was conducted in 121,230 middle-aged and elderly non-diabetic women. Cancer diagnosis was self-reported and further validated by medical records. Insulin resistance was defined as homeostasis model assessment of insulin resistance (HOMA-IR) ≥ 2.50. The prevalence of both premenopausal and postmenopausal breast cancer, postmenopausal ovarian cancer and premenopausal endometrial cancer were higher in insulin-resistant participants than in insulin-sensitive participants (premenopausal breast cancer, 0.45 vs 0.28%; postmenopausal breast cancer, 0.86 vs 0.63%; postmenopausal ovarian cancer, 0.17 vs 0.09%; premenopausal endometrial cancer, 0.43 vs 0.25%, respectively, all P < 0.05). Individuals with insulin resistance had higher odds ratio (OR) of breast cancer, both premenopausal and postmenopausal (OR 1.98, 95% confidence interval (CI) 1.19-3.32; OR 1.29, 95% CI 1.01-1.63), postmenopausal ovarian cancer (OR 2.17, 95% CI 1.10-3.40) as well as total endometrial cancer (OR 1.47, 95% CI 1.02-2.12). Subgroup analysis revealed that the possitive association between insulin resistance and risk of prevalent breast cancer was observed in popualtion with younger age, overweight or obesity, higher education and impaired glucose tolerance (IGR). No relationships were observed for the risk of prevalent cervical cancers with insulin resistance. Non-diabetic women with insulin resistance had higher risk of prevalent breast, ovarian and endomatrial cancer, which suggests special attentions to these female cancer screening and prevention. PMID:27822422

  3. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia

    PubMed Central

    Chapagain, Ananda; Caton, Paul W.; Kieswich, Julius; Andrikopoulos, Petros; Nayuni, Nanda; Long, Jamie H.; Harwood, Steven M.; Webster, Scott P.; Raftery, Martin J.; Thiemermann, Christoph; Walker, Brian R.; Seckl, Jonathan R.; Corder, Roger; Yaqoob, Muhammad Magdi

    2014-01-01

    Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11βHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11βHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11βHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11βHSD1−/− mice and rats treated with a specific 11βHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11βHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11βHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD. PMID:24569863

  4. Chromium picolinate for insulin resistance in subjects with HIV disease: a pilot study.

    PubMed

    Feiner, J J; McNurlan, M A; Ferris, R E; Mynarcik, D C; Gelato, M C

    2008-02-01

    Multidrug regimens in HIV disease are associated with an increased incidence of insulin resistance, by as much as 50%. Not only does insulin resistance predisposes subjects to diabetes but also it is associated with the metabolic syndrome and increased risk of cardiovascular disease. Previous studies suggest that chromium picolinate can improve insulin resistance in patients with type 2 diabetes. The objective was to study the efficacy and safety of chromium picolinate as a treatment of insulin resistance in subjects infected with HIV. The ability of chromium picolinate (1000 mug/day) to improve insulin sensitivity, determined with a hyperinsulinaemic-euglycaemic insulin clamp, was determined in eight HIV-positive subjects on highly active antiretroviral therapy. The mean rate of glucose disposal during the clamp was 4.41 mg glucose/kg lean body mass (LBM)/min (range 2.67-5.50), which increased to 6.51 mg/kg LBM/min (range 3.19-12.78, p = .03), an increase of 25% after 8 weeks of treatment with chromium picolinate. There were no significant changes in blood parameters, HIV viral burden or CD4+ lymphocytes with chromium picolinate treatment. Two subjects experienced abnormalities of liver function during the study. Another subject experienced an elevation in blood urea nitrogen. The study shows that chromium picolinate therapy improves insulin resistance in some HIV-positive subjects, but with some concerns about safety in this population.

  5. Effect of Salsalate on Insulin Action, Secretion, and Clearance in Nondiabetic, Insulin-Resistant Individuals: A Randomized, Placebo-Controlled Study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Ochoa, Hector; Reaven, Gerald

    2014-01-01

    OBJECTIVE Salsalate treatment has been shown to improve glucose homeostasis, but the mechanism remains unclear. The aim of this study was to evaluate the effect of salsalate treatment on insulin action, secretion, and clearance rate in nondiabetic individuals with insulin resistance. RESEARCH DESIGN AND METHODS This was a randomized (2:1), single-blind, placebo-controlled study of salsalate (3.5 g daily for 4 weeks) in nondiabetic individuals with insulin resistance. All individuals had measurement of glucose tolerance (75-g oral glucose tolerance test), steady-state plasma glucose (SSPG; insulin suppression test), and insulin secretion and clearance rate (graded-glucose infusion test) before and after treatment. RESULTS Forty-one individuals were randomized to salsalate (n = 27) and placebo (n = 14). One individual from each group discontinued the study. Salsalate improved fasting (% mean change −7% [95% CI −10 to −14] vs. 1% [−3 to 5], P = 0.005) but not postprandial glucose concentration compared with placebo. Salsalate also lowered fasting triglyceride concentration (−25% [−34 to −15] vs. −6% [−26 to 14], P = 0.04). Salsalate had no effect on SSPG concentration or insulin secretion rate but significantly decreased insulin clearance rate compared with placebo (−23% [−30 to −16] vs. 3% [−10 to 15], P < 0.001). Salsalate was well tolerated, but four individuals needed a dose reduction due to symptoms. CONCLUSIONS Salsalate treatment in nondiabetic, insulin-resistant individuals improved fasting, but not postprandial, glucose and triglyceride concentration. These improvements were associated with a decrease in insulin clearance rate without change in insulin action or insulin secretion. PMID:24963111

  6. Polycystic ovary morphology is associated with insulin resistance in women with polycystic ovary syndrome.

    PubMed

    Hong, So-Hyeon; Sung, Yeon-Ah; Hong, Young Sun; Jeong, Kyungah; Chung, Hyewon; Lee, Hyejin

    2017-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by chronic anovulation, hyperandrogenism, polycystic ovary morphology (PCOM) and metabolic disturbances including insulin resistance and type 2 diabetes mellitus. Although insulin resistance could be associated with PCOM, recent studies have shown controversial results. The aim of this study was to determine the relationship between PCOM and insulin resistance. This was a cross-sectional clinical study. A total of 679 women with PCOS who were diagnosed using the National Institute of Child Health and Human Disease (NICHD) criteria and 272 control women were analysed. We measured fasting glucose and insulin levels, 75 g oral glucose tolerance test-derived glucose and insulin levels, testosterone levels, ovarian volume and follicle number. Polycystic ovary morphology was described in 543 women (80.0%) with PCOS. Women with PCOS had significantly higher 2 hours postload glucose, fasting and 2 hours postload insulin levels, ovarian volume, ovarian follicle numbers and lower insulin sensitivity compared with those of the controls (all P<.01). In women with PCOS, ovarian volume and ovarian follicle number were negatively associated with the quantitative insulin sensitivity check index after adjusting for age, body mass index and total testosterone; however, this association was not observed in the controls. In the logistic regression analysis, increased ovarian follicle number was associated with decreased insulin sensitivity in women with PCOS. In PCOS, enlarged ovarian volume and follicle excess were associated with insulin resistance, and the number of ovarian follicles could be a predictor of insulin resistance. © 2017 John Wiley & Sons Ltd.

  7. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  8. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  9. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    PubMed

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  11. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4.

    PubMed

    Cavallari, Joseph F; Fullerton, Morgan D; Duggan, Brittany M; Foley, Kevin P; Denou, Emmanuel; Smith, Brennan K; Desjardins, Eric M; Henriksbo, Brandyn D; Kim, Kalvin J; Tuinema, Brian R; Stearns, Jennifer C; Prescott, David; Rosenstiel, Philip; Coombes, Brian K; Steinberg, Gregory R; Schertzer, Jonathan D

    2017-05-02

    Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Potential Roles of Stevia rebaudiana Bertoni in Abrogating Insulin Resistance and Diabetes: A Review

    PubMed Central

    Mohd-Radzman, Nabilatul Hani; Ismail, W. I. W.; Adam, Zainah; Jaapar, Siti Safura; Adam, Aishah

    2013-01-01

    Insulin resistance is a key factor in metabolic disorders like hyperglycemia and hyperinsulinemia, which are promoted by obesity and may later lead to Type II diabetes mellitus. In recent years, researchers have identified links between insulin resistance and many noncommunicable illnesses other than diabetes. Hence, studying insulin resistance is of particular importance in unravelling the pathways employed by such diseases. In this review, mechanisms involving free fatty acids, adipocytokines such as TNFα and PPARγ and serine kinases like JNK and IKKβ, asserted to be responsible in the development of insulin resistance, will be discussed. Suggested mechanisms for actions in normal and disrupted states were also visualised in several manually constructed diagrams to capture an overall view of the insulin-signalling pathway and its related components. The underlying constituents of medicinal significance found in the Stevia rebaudiana Bertoni plant (among other plants that potentiate antihyperglycemic activities) were explored in further depth. Understanding these factors and their mechanisms may be essential for comprehending the progression of insulin resistance towards the development of diabetes mellitus. PMID:24324517

  13. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhi-Qin; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002; Liu, Ting

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro andmore » in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.« less

  14. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    PubMed

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  15. Third Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance.

    PubMed

    Lin, Po-Ju; Borer, Katarina T

    2016-01-01

    Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to

  16. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice.

    PubMed

    Ussher, John R; Keung, Wendy; Fillmore, Natasha; Koves, Timothy R; Mori, Jun; Zhang, Liyan; Lopaschuk, David G; Ilkayeva, Olga R; Wagg, Cory S; Jaswal, Jagdip S; Muoio, Deborah M; Lopaschuk, Gary D

    2014-06-01

    There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits fatty acid oxidation in the heart secondary to inhibition of 3-ketoacyl-CoA thiolase (3-KAT), may have off-target effects on glycemic control in obesity. We fed C57BL/6NCrl mice a high-fat diet (HFD) for 10 weeks before a 22-day treatment with the 3-KAT inhibitor trimetazidine (15 mg/kg per day). Insulin resistance was assessed via glucose/insulin tolerance testing, and lipid metabolite content was assessed in gastrocnemius muscle. Trimetazidine-treatment led to a mild shift in substrate preference toward carbohydrates as an oxidative fuel source in obese mice, evidenced by an increase in the respiratory exchange ratio. This shift in metabolism was accompanied by an accumulation of long-chain acyl-CoA and a trend to an increase in triacylglycerol content in gastrocnemius muscle, but did not exacerbate HFD-induced insulin resistance compared with control-treated mice. It is noteworthy that trimetazidine treatment reduced palmitate oxidation rates in the isolated working mouse heart and neonatal cardiomyocytes but not C2C12 skeletal myotubes. Our findings demonstrate that trimetazidine therapy does not adversely affect HFD-induced insulin resistance, suggesting that treatment with trimetazidine would not worsen glycemic control in obese patients with angina.

  17. A novel botanical formula prevents diabetes by improving insulin resistance.

    PubMed

    Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min

    2017-07-05

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized

  18. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  19. Fructose, insulin resistance, and metabolic dyslipidemia

    PubMed Central

    Basciano, Heather; Federico, Lisa; Adeli, Khosrow

    2005-01-01

    Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG) synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia. PMID:15723702

  20. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  1. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?

    PubMed

    Zhou, Ming-Sheng; Wang, Aimei; Yu, Hong

    2014-01-31

    Insulin resistance and hypertension are considered as prototypical "diseases of civilization" that are manifested in the modern environment as plentiful food and sedentary life. The human propensity for insulin resistance and hypertension is a product, at least in part, of our evolutionary history. Adaptation to ancient lifestyle characterized by a low sodium, low-calorie food supply and physical stress to injury response has driven our evolution to shape and preserve a thrifty genotype, which is favorite with energy-saving and sodium conservation. As our civilization evolved, a sedentary lifestyle and sodium- and energy-rich diet, the thrifty genotype is no longer advantageous, and may be maladaptive to disease phenotype, such as hypertension, obesity and insulin resistance syndrome. This article reviews human evolution and the impact of the modern environment on hypertension and insulin resistance.

  2. Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation.

    PubMed

    Rico, J E; Bandaru, V V R; Dorskind, J M; Haughey, N J; McFadden, J W

    2015-11-01

    Insulin resistance is a homeorhetic adaptation to parturition in dairy cows transitioning from late pregnancy to early lactation. An increase in prepartum adiposity can predispose periparturient cows to greater lipolysis and insulin resistance, thus increasing the risk for metabolic disease. Mechanisms mediating the development of insulin resistance in overweight peripartal dairy cows may depend on ceramide metabolism. The sphingolipid ceramide accumulates in plasma and tissues of overweight monogastric animals, and facilitates saturated fatty acid-induced insulin resistance. Considering this evidence, we hypothesized that plasma ceramides would be elevated in periparturient dairy cattle and that these sphingolipids would correlate with the magnitude of lipolysis and insulin resistance. To test our central hypothesis, multiparous Holstein cows were allocated into 2 groups according to their body condition score (BCS) at d -30 prepartum: lean (BCS <3.0; n=10) or overweight (BCS >4.0; n=11). Blood samples were collected at d -45, -30, -15, and -7, relative to expected parturition, and at d 4 postpartum. Plasma glucose, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) concentrations were measured, and insulin sensitivity was estimated. The concentrations of individual plasma ceramide and glycosylated ceramide were determined using liquid chromatography-based mass spectrometry. Results demonstrated that greater adiposity was associated with a greater loss in body condition during late pregnancy. Overweight cows had greater circulating concentrations of glucose, insulin, and NEFA, and lower insulin sensitivity relative to lean cows. We detected 30 different sphingolipids across 6 lipid classes with acyl chains ranging from 16 to 26 carbons. The most abundant plasma sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide, and C16:0-lactosylceramide. Plasma concentrations of total ceramide and monohexosylceramide increased as

  3. Insulin resistance and coronary artery disease in non-diabetic patients: Is there any correlation?

    PubMed

    Vafaeimanesh, Jamshid; Parham, Mahmoud; Norouzi, Samieh; Hamednasimi, Parinaz; Bagherzadeh, Mohammad

    2018-01-01

    Cardiovascular diseases are the most common causes of death in the world and type 2 diabetes is one of them because it is highly prevalent and doubles heart disease risk. Some studies suggest that insulin resistance is associated with coronary artery disease in non-diabetics. The aim of this study was to evaluate the association of insulin resistance (IR) and coronary artery disease (CAD) in non-diabetic patients. In this cross-sectional study, from September 2014 to July 2015, 120 patients referring to Shahid Beheshti Hospital of Qom were evaluated. Their medical history, baseline laboratory studies, BMI and GFR were recorded. After 8 hours of fasting, blood samples were taken from the patients at 8 am, including fasting glucose and insulin level. We estimated insulin resistance using the homeostatic model assessment index of IR (HOMA-IR). Finally, we evaluated the association between IR and CAD. Totally, 120 patients were assigned to participate in this study, among them, 50 patients without CAD and 70 with coronary artery stenosis. Insulin resistance (HOMA-IR> 2.5) was positive in 59 (49.3%) patients and negative in 61 (50.7%) patients. Hence, the correlation between IR and CAD was not statistically significant (P=0.9). In this study, although the correlation was not found between insulin resistance and coronary heart disease, among men, we found a significant association between coronary heart disease and insulin resistance.

  4. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  5. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  7. The Impact of Resveratrol Supplementation on Blood Glucose, Insulin, Insulin Resistance, Triglyceride, and Periodontal Markers in Type 2 Diabetic Patients with Chronic Periodontitis.

    PubMed

    Zare Javid, Ahmad; Hormoznejad, Razie; Yousefimanesh, Hojat Allah; Zakerkish, Mehrnoosh; Haghighi-Zadeh, Mohammad Hosein; Dehghan, Parvin; Ravanbakhsh, Maryam

    2017-01-01

    The aim of this study was to investigate the impact of resveratrol supplementation along with non-surgical periodontal treatment on blood glucose, insulin, insulin resistance, triglyceride (TG), and periodontal markers in patients with type 2 diabetes with periodontal disease. In this double-blind clinical trial study, 43 patients with diabetes with chronic periodontitis were participated. Subjects were randomly allocated to intervention and control groups. The intervention and control groups received either 480 mg/day of resveratrol or placebo capsules (two pills) for 4 weeks. Fasting blood glucose, insulin, insulin resistance (homeostasis model assessment of insulin resistance), TGs, and pocket depth were measured in all subjects' pre-intervention and post-intervention. The mean serum levels of fasting insulin and insulin resistance (homeostasis model assessment of insulin resistance) were significantly lower in the intervention group compared with control group (10.42 ± 0.28 and 10.92 ± 0.9; 3.66 ± 0.97 and 4.49 ± 1.56, respectively). There was a significant difference in the mean pocket depth between intervention and control groups (2.35 ± 0.6 and 3.38 ± 0.5, respectively) following intervention. No significant differences were observed in the mean levels of fasting blood glucose and TGs between two groups' post-intervention. It is recommended that resveratrol supplementation may be beneficial as adjuvant therapy along with non-surgical periodontal treatment in insulin resistance and improving periodontal status among patients with diabetes with periodontal disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    PubMed

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  9. RBP4 activates antigen-presenting cells leading to adipose tissue inflammation and systemic insulin resistance

    PubMed Central

    Moraes-Vieira, Pedro M.; Yore, Mark M.; Dwyer, Peter M.; Syed, Ismail; Aryal, Pratik; Kahn, Barbara B.

    2014-01-01

    Insulin resistance is a major cause of diabetes and is highly associated with adipose tissue (AT) inflammation in obesity. RBP4, a retinol-transporter, is elevated in insulin resistance and contributes to increased diabetes risk. We aimed to determine the mechanisms for RBP4-induced insulin resistance. Here we show that RBP4 elevation causes AT inflammation by activating innate immunity which elicits an adaptive immune-response. RBP4-overexpressing mice (RBP4-Ox) are insulin-resistant and glucose-intolerant and have increased AT macrophage and CD4 T-cell infiltration. In RBP4-Ox, AT CD206+ macrophages express pro-inflammatory markers and activate CD4 T-cells while maintaining alternatively-activated macrophage markers. These effects result from direct activation of AT antigen-presenting cells (APCs) by RBP4 through a JNK-dependent pathway. Transfer of RBP4-activated APCs into normal mice is sufficient to induce AT inflammation, insulin resistance and glucose intolerance. Thus, RBP4 causes insulin resistance, at least partly, by activating AT APCs which induce CD4 T-cell Th1 polarization and AT inflammation. PMID:24606904

  10. Empagliflozin decreases remnant-like particle cholesterol in type 2 diabetes patients with insulin resistance.

    PubMed

    Hattori, Sachiko

    2017-11-28

    Remnant lipoproteins are thought to be atherogenic. Remnant-like particle cholesterol (RLP-C), which reflects the levels of various kinds of remnant lipoproteins in the blood, has a significant correlation with insulin resistance. In the present study, we measured the effect of empagliflozin (EMPA) on the levels of RLP-C, and investigated whether EMPA-mediated change in RLP-C is associated with a change in insulin resistance in type 2 diabetes patients who have insulin resistance. Patients were allocated to receive a placebo (n = 51) or EMPA (n = 58) as an add-on treatment. Fasting blood samples were collected before and 12 weeks after this intervention. EMPA significantly decreased glycated hemoglobin, bodyweight, systolic blood pressure, plasma triglycerides, liver transaminases and estimated glomerular filtration rate, and increased high-density lipoprotein cholesterol. Furthermore, EMPA decreased RLP-C and homeostatic model assessment of insulin resistance. In the placebo group, there were no significant changes in these factors except for slight increases in liver transaminases. Multiple regression analysis showed that the change in homeostatic model assessment of insulin resistance (P = 0.0102) and the change in alanine aminotransferase (P = 0.0301) were significantly associated with the change in RLP-C in the EMPA group. The change in RLP-C significantly correlated with the change in homeostatic model assessment of insulin resistance (Pearson correlation coefficient 0.503, 95% confidence interval 0.199-0.719; P = 0.00241). EMPA decreases RLP-C levels, which is closely associated with amelioration of insulin sensitivity in diabetes patients who have insulin resistance. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. Association between haptoglobin gene and insulin resistance in Arab-Americans.

    PubMed

    Burghardt, Kyle J; Masri, Dana El; Dass, Sabrina E; Shikwana, Sara S; Jaber, Linda A

    2017-11-01

    To analyze associations between variation in the HP gene and lipid and glucose-related measures in Arab-Americans. Secondary analyses were performed based on sex. Genomic DNA was extracted from samples obtained from a previous epidemiological study of diabetes in Arab-Americans. The HP 1 and 2 alleles were analyzed by polymerase chain reaction and gel electrophoresis. Associations were analyzed by linear regression. Associations were identified between the heterozygous haptoglobin 2-1 genotype and insulin resistance, fasting insulin and fasting c-peptide. The effect of sex did not remain significant after adjustment for relevant variables. HP genetic variation may have utility as a biomarker of insulin resistance and diabetes risk in Arab-Americans, however, future prospective studies are needed.

  12. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk?

    PubMed

    Summers, L K; Samra, J S; Frayn, K N

    1999-11-01

    The insulin resistant state is a major risk factor for coronary artery disease. This increased risk is likely to be due to associated lipid and coagulation abnormalities rather than just abnormalities in glucose metabolism or hyperinsulinaemia alone. Exaggerated postprandial lipaemia is a well-recognised associate of insulin resistance and postprandial hypertriglyceridaemia is particularly important in the development of coronary atheroma. It seems likely that insulin is one of the hormonal regulators of adipose tissue and skeletal muscle blood flow. The reduced blood flow and blunting of the postprandial rise of peripheral blood flow in insulin resistance may decrease chylomicron-triglyceride delivery to muscle in subjects with insulin resistance. This, in turn, will lead to increased production of atherogenic particles. We propose that impaired postprandial vasodilation, already recognised as a key feature of glucose intolerance, is also the cause of impaired lipid metabolism in insulin resistant subjects and predisposes them to cardiovascular disease.

  13. No evidence of insulin resistance in normal weight vegetarians. A case control study.

    PubMed

    Valachovicová, Martina; Krajcovicová-Kudlácková, Marica; Blazícek, Pavel; Babinská, Katarína

    2006-02-01

    Diets rich in carbohydrates with a low glycemic index and with high fiber content are associated with flat post-prandial rises of blood glucose, minimal post-prandial insulin secretion and maintenance of insulin sensitivity. Protective food commodities in the prevention of cardiovascular disease, insulin resistance syndrome or diabetes are crucial components of the vegetarian diet. Insulin resistance values were assessed in relation to different nutrition. Metabolic abnormality is a predictor of age-related diseases and can be more pronounced in obese subjects. Insulin resistance values in normal weight subjects of two different nutritional habits were correlated with age. Fasting concentrations of glucose and insulin as well as calculated values of insulin resistance IR (HOMA) were assessed in two nutritional groups of apparently healthy adult subjects (age range 19 - 64 years) with normal weight (body mass index 18.6 - 25.0 kg/m(2)): a vegetarian group (95 long-term lacto-ovo-vegetarians; duration of vegetarianism 10.2 +/- 0.5 years) and a non-vegetarian control group (107 subjects of general population on traditional western diet). Intake of energy and main nutrients (fats, saccharides, proteins) was similar in both groups. Glucose and insulin concentrations and IR (HOMA) values were significantly lower in vegetarians (glucose 4.47 +/- 0.05 vs. 4.71 +/- 0.07 mmol/l; insulin 4.96 +/- 0.23 vs. 7.32 +/- 0.41 mU/l; IR (HOMA) 0.99 +/- 0.05 vs. 1.59 +/- 0.10). IR (HOMA) dependence on age was only significant in subjects on a western diet. A significant increase of IR was found already in the age range 31-40 years, compared to vegetarians and it continued in later age decades. Age independent and low insulin resistance values in vegetarians are a consequence of an effective diet prevention by long-term frequent consumption of protective food. Vegetarians had a significantly higher consumption of whole grain products, pulses, products from oat and barley. The results of

  14. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats.

    PubMed

    Li, Jun; Zhu, Liang; Xu, Ming; Han, Juntao; Bai, Xiaozhi; Yang, Xuekang; Zhu, Huayu; Xu, Jie; Zhang, Xing; Gong, Yangfan; Hu, Dahai; Gao, Feng

    2015-08-01

    Severe burns often initiate the prevalence of hyperglycemia and insulin resistance, significantly contributing to adverse clinical outcomes. However, there are limited treatment options. This study was designed to investigate the role and the underlying mechanisms of oral antibiotics to selectively decontaminate the digestive tract (SDD) on burn-induced insulin resistance. Rats were subjected to 40% of total body surface area full-thickness burn or sham operation with or without SDD treatment. Translocation of FITC-labeled LPS was measured at 4h after burn. Furthermore, the effect of SDD on post-burn quantity of gram-negative bacteria in gut was investigated. Serum or muscle LPS and proinflammatory cytokines were measured. Intraperitoneal glucose tolerance test and insulin tolerance test were used to determine the status of systemic insulin resistance. Furthermore, intracellular insulin signaling (IRS-1 and Akt) and proinflammatory related kinases (JNK and IKKβ) were assessed by western blot. Burn increased the translocation of LPS from gut 4h after injury. SDD treatment effectively inhibited post-burn overgrowth of gram-negative enteric bacilli in gut. In addition, severe burns caused significant increases in the LPS and proinflammatory cytokines levels, activation of proinflammatory related kinases, and systemic insulin resistance as well. But SDD treatment could significantly attenuate burn-induced insulin resistance and improve the whole-body responsiveness to insulin, which was associated with the inhibition of gut-derived LPS, cytokines, proinflammatory related kinases JNK and IKKβ, as well as activation of IRS-1 and Akt. SDD appeared to have an effect on proinflammatory signaling cascades and further reduced severe burn-induced insulin resistance. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  15. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.

    PubMed

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin; Willis, Wayne T; Bailowitz, Zachary; De Filippis, Elena A; Brophy, Colleen; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J

    2010-10-01

    The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. NADH- and FADH(2)-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-DL-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance.

  16. Insulin Resistance, Metabolic Syndrome, and Polycystic Ovary Syndrome in Obese Youth.

    PubMed

    Platt, Adrienne M

    2015-07-01

    School nurses are well aware of the childhood obesity epidemic in the United States, as one in three youth are overweight or obese. Co-morbidities found in overweight or obese adults were not commonly found in youth three decades ago but are now increasingly "normal" as the obesity epidemic continues to evolve. This article is the second of six related articles discussing the co-morbidities of childhood obesity and discusses the complex association between obesity and insulin resistance, metabolic syndrome, and polycystic ovary syndrome. Insulin resistance increases up to 50% during puberty, which may help to explain why youth are more likely to develop co-morbidities as teens. Treatment of these disorders is focused on changing lifestyle habits, as a child cannot change his or her pubertal progression, ethnicity, or family history. School nurses and other personnel can assist youth with insulin resistance, metabolic syndrome, and polycystic ovary syndrome by supporting their efforts to make changes, reinforcing that insulin resistance is not necessarily type 2 diabetes even if the child is taking medication, and intervening with negative peer pressure. © 2015 The Author(s).

  17. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis.

    PubMed

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-10-01

    Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    PubMed

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p < 0.05). There was no significant correlation between CTRP1 and other IRS-1 serine sites (Ser302, Ser307, Ser612, Ser636/639, and Ser789). Collectively, our results suggested that CTRP1 might improve insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  19. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion.

    PubMed

    Geffner, M E; Kaplan, S A; Bersch, N; Golde, D W; Landaw, E M; Chang, R J

    1986-03-01

    Six nonobese women with polycystic ovarian disease (PCOD) showed significant hyperinsulinemia, compared with controls after oral glucose (P less than 0.05). As an indicator of insulin sensitivity, in vitro proliferation of erythrocyte progenitor cells of PCOD subjects exposed to physiologic concentrations of insulin was significantly blunted (P less than 0.001). Monocyte insulin receptor binding was not impaired in the PCOD subjects. Three of the PCOD patients were treated with a long-acting gonadotropin-releasing hormone agonist for 6 months, which resulted in marked suppression of ovarian androgen secretion but no demonstrable changes in in vivo or in vitro indicators of insulin resistance. Thus insulin resistance in PCOD subjects appears to be unrelated to ovarian hyperandrogenism (or acanthosis or obesity). Although certain tissues are insulin-resistant in PCOD patients, the ovary may remain sensitive and overproduce androgens in response to high circulating insulin levels.

  20. Effect of Insulin Levels on Phosphorylation of Specific Amino Acid Residues in IRS-1: Implications for Burn Induced Insulin Resistance

    PubMed Central

    Lu, Xiao-Ming; Hamrahi, Victoria F.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Alterations in the phosphorylation and/or degradation of insulin receptor substrate 1 (IRS-1) produced by burn injury may be responsible, at least in part, for burn-induced insulin resistance. In particular, following burn injury, reductions in glucose uptake by skeletal muscle may be secondary to altered abundance and/or phosphorylation of IRS-1. In this report, we performed in vitro studies with 293 cells transfected with IRS-1. These studies demonstrated that there is a dramatic change in the phosphorylation pattern of Tyr, Ser, and Thr residues in IRS-1 as a function of insulin levels. Specifically, Ser and Thr residues in the C-terminal region were phosphorylated only at high insulin levels. SILAC (stable isotope labeling with amino acids in cell culture) followed by sequencing of C-terminal IRS-1 fragments by tandem mass spectrometry demonstrated that there is significant protein cleavage at these sites. These findings suggest that one of the biological roles of the C-terminal region of IRS-1 may be negative modulation of the finely coordinated insulin signaling system. Clearly, this could represent an important factor in insulin resistance and identification of inhibitors of the kinases that are responsible for the phosphorylation could foster new lines of research for the development of drugs for treating insulin resistance. PMID:19724894

  1. [Decreased insulin resistance with amino acids, extracts and antioxidants in patients with polycystic ovary syndrome].

    PubMed

    Hernández-Valencia, Marcelino; Hernández-Quijano, Tomás; Vargas-Girón, Antonio; Vargas-López, Carlos; Arturo-Zárate

    2013-10-01

    The polycystic ovary syndrome (PCOS) it is a metabolic disorder with insulin resistance associated. Have been recently described contributor factors in the presence of insulin resistance that need to be studied. These factors can be the nutrients in the daily diet, final products of the advanced glycated end-products (AGEs), reactive derivatives of non enzymatic glucose-protein reactions either produced endogenously or ingested from dietary sources. The aim was to modifies the food intake to know the contribution on improve insulin resistance. Compare different diets and changes in insulin resistance in patients with polycystic ovary syndrome. As longitudinal, prospective and descriptive study, were included women with age among 18 to 40 years who received a compound with amino acids, extracts and anti-oxidants to dose of 660mg every 8 hours for 6 months. The inclusion approaches included the insulin resistance presence HOMA-IR > 2.6, elevated LH, and presence of ovaries with cysts by ultrasound. Statistical analysis with ANOVA one way to p <0.05. Were included a total of 30 patients, of which 28 patients had improvement in the insulin resistance from the 3 months, but until the 6 months they had significant difference (p<0.05), compared with 24 women from control group. With this result is demonstrated that it is necessary to modify the diet and to offer alimentary support to avoid the oxidative stress that takes impairment the insulin signaling with the subsequent insulin resistance.

  2. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  3. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    PubMed Central

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-01

    Background & objectives: Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation & conclusions: High

  4. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    PubMed

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  5. Immunosuppressive Therapy in Treatment of Refractory Hypoglycemia in Type B Insulin Resistance: A Case Report

    PubMed Central

    Sirisena, Imali

    2017-01-01

    Type B insulin resistance is a rare syndrome characterized by fluctuating glucose levels (ranging from hyperglycemia with extreme insulin resistance to intractable hypoglycemia without exogenous insulin administration), high serum insulin levels, and insulin receptor autoantibodies. Most cases occur in the African American population in association with other underlying autoimmune systemic diseases. Treatments with high-dose steroids, immunosuppressants, and plasmapheresis have been used, with variable outcomes, in patients without spontaneous remission. We report the case of a 60-year-old African American woman with history of systemic lupus erythematosus presenting with extreme fluctuations in glucose levels, ranging from severe hyperglycemia to refractory hypoglycemia, with high serum concentration of insulin in both phases. Her presentation and phenotype were very similar to those seen in known cases of type B insulin resistance associated with insulin receptor antibodies. Treatment in other reported cases used a combination of high-dose steroids and immunosuppressants. We tried high-dose steroids, azathioprine, and intravenous immunoglobulins, which resulted in improvement and barely detectable insulin receptor antibody. We present a case of type B insulin resistance with abnormally low titers of insulin receptor antibodies despite a typical clinical course and response. Future research is needed to improve diagnosis and treatment in this rare disease. PMID:29264467

  6. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  7. Probiotics improve insulin resistance status in an experimental model of Alzheimer's disease.

    PubMed

    Athari Nik Azm, Somayeh; Djazayeri, Abolghassem; Safa, Majid; Azami, Kian; Djalali, Mahmoud; Sharifzadeh, Mohammad; Vafa, Mohammadreza

    2017-01-01

    Background: Nowadays, Alzheimer's disease (AD) is considered as Type 3 diabetes in which insulin resistance is the common cause of both diseases. Disruption of insulin signaling cascade and insulin resistance can induce AD; and central insulin resistance causes systemic alterations in serum insulin, FBS levels, and lipid profile. Studies have shown that probiotics ( Lactobacillus and Bifidobacterium species) can be used as a nutritional approach to improve these metabolic changes. We assessed the probiotic effect (4 species of Lactobacillus and Bifidobacterium ) on insulin resistance biomarkers in an experimental model of AD. Methods: A total of 60 rats were divided into 5 groups: (1) a control group without surgical and dietary intervention; (2) a controlprobiotics group receiving probiotics for 8 weeks, but not receiving any surgical intervention; (3) a group receiving a sham operation in which PBS was injected intrahippocampus but without dietary intervention; (4) an Alzheimer group for which Amyloid-ß (Aß) 1- 42 was injected intrahippocampus but without dietary intervention; (5) and an Alzheimer-probiotics group for which Aß1-42 was injected intrahippocampus and given 2g probiotics for 8 weeks. The FBS levels and lipid profile were measured by a calorimetric method, insulin levels were detected by an ELISA kit, and HOMA-IR was calculated using a formula. ANOVA (one way analysis of variance followed by Bonferroni comparisons post hoc) was used to compare all the variables between groups. Results: Serum glucose, insulin levels, and HOMA-IR index increased in the Alzheimer group compared to the control (p<0.001), while probiotics decreased only insulin level and HOMA-IR index in AP group compared to Alzheimer group (p<0.001). Also, TG levels increased in the Alzheimer group (p<0.001), but no significant difference was detected between Alzheimer and Alzheimerprobiotics group. Conclusion: It seems that probiotics play an effective role in controlling glycemic

  8. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    PubMed

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  9. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    PubMed

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  10. Sex differences in the association between dietary restraint, insulin resistance and obesity.

    PubMed

    Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita

    2014-04-01

    Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

    PubMed

    Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

    PubMed Central

    D’Apolito, Maria; Du, Xueliang; Zong, Haihong; Catucci, Alessandra; Maiuri, Luigi; Trivisano, Tiziana; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Raia, Valeria; Pessin, Jeffrey E.; Brownlee, Michael; Giardino, Ida

    2009-01-01

    Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease. PMID:19955654

  13. Study of prevalence and effects of insulin resistance in patients with chronic hepatitis C genotype 4.

    PubMed

    Amer, A F; Baddour, M M; Elshazly, M A; Fadally, G; Hanafi, N F; Assar, S L

    2016-02-01

    There is strong epidemiological evidence linking hepatitis C virus (HCV) infection and diabetes. Our aim was to evaluate the prevalence of insulin resistance in Egyptian patients with chronic HCV genotype 4 infection, to assess factors associated with insulin resistance and to test the impact of insulin resistance on outcomes of treatment with pegylated interferon/ribavirin. Insulin resistance [homeostasis model assessmentinsulin resistance (HOMA-IR) score > 3.0] was detected in 31 of 100 nondiabetic patients. The relationship between elevated HOMA-IR and baseline viral load and degree of fibrosis was statistically significant (r = 0.218 and r = 0.223). Follow-up of patients with complete early virological response until the end of treatment showed a statistically significant decrease in HOMA-IR score. Out of 29 liver tissue sections examined, 14 had a low level of expression of insulin receptor type 1 by immunohistochemical studies. This study confirms that insulin resistance affects treatment outcome, and thus HOMA-IR testing before initiation of therapy may be a cost-effective tool.

  14. Evidence for insulin resistance in nonobese patients with polycystic ovarian disease.

    PubMed

    Jialal, I; Naiker, P; Reddi, K; Moodley, J; Joubert, S M

    1987-05-01

    In this study seven normal weight Indian patients with polycystic ovarian disease (PCOD) with no evidence of acanthosis nigricans and 7 age- and weight-matched normal Indian women were studied to determine whether PCOD patients were insulin-resistant. While all 14 women had normal glucose tolerance, the PCOD women had significantly higher mean plasma glucose levels at 30 and 60 min and higher mean incremental glucose areas [incremental areas: PCOD, 9.0 +/- 2.2 (+/- SEM); normal women, 4.0 +/- 0.8 mmol/L; P less than 0.05]. Insulin responses were significantly higher in the PCOD compared to normal women (incremental areas: PCOD, 623.8 +/- 78.3; normal women, 226.2 +/- 30.3 microU/mL; P less than 0.001). Both serum testosterone and androstenedione levels correlated with the insulin areas (r = 0.82; P less than 0.001 and r = 0.86; P less than 0.001, respectively). [125I] Insulin binding to erythrocytes revealed decreased maximum specific binding in the PCOD women (6.9 +/- 0.6%) compared to that in normal women (9.2 +/- 0.7%; P less than 0.02). While Scatchard analysis revealed similar receptor numbers, ID50 values demonstrated decreased receptor affinity in the women with PCOD. In conclusion, in the absence of acanthosis nigricans, nonobese patients with PCOD are insulin resistant, and this insulin resistance correlates with the hyperandrogenism.

  15. Dietary glycemic factors, insulin resistance, and adiponectin levels in acne vulgaris.

    PubMed

    Çerman, Aslı Aksu; Aktaş, Ezgi; Altunay, İlknur Kıvanç; Arıcı, Janset Erkul; Tulunay, Aysın; Ozturk, Feyza Yener

    2016-07-01

    There is increasing evidence to support the relationship between acne vulgaris and diet. The aim of this study was to investigate possible associations among dietary glycemic index, glycemic load, milk consumption, insulin resistance, and adiponectin levels in the pathogenesis of acne vulgaris. The dietary glycemic index, glycemic load, milk consumption, fasting glucose, insulin, insulin-like growth factor)-1, insulin-like growth factor binding protein-3, adiponectin, and homeostasis model assessment of insulin resistance values of 50 patients with acne vulgaris and 36 healthy control subjects were measured. Glycemic index and glycemic load levels were significantly higher (P = .022 and P = .001, respectively) and serum adiponectin levels were significantly lower (P = .015) in patients with acne than in the control subjects. There was an inverse correlation between serum adiponectin concentration and glycemic index (P = .049, r = -0.212). This study used a cross-sectional design and the study population was limited to young, nonobese adults. A high-glycemic-index/-load diet was positively associated with acne vulgaris. Adiponectin may be a pathogenetic cofactor contributing to the development of the disease. Further research on adiponectin levels in patients with acne in terms of development of insulin resistance might be important in this possible relationship. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Aging per se Increases the Susceptibility to Free Fatty Acid–Induced Insulin Resistance

    PubMed Central

    Huffman, Derek M.; Fishman, Sigal; Jerschow, Elina; Heo, Hye J.; Atzmon, Gil; Schechter, Clyde; Muzumdar, Radhika H.

    2010-01-01

    Elevations in systemic free fatty acids (FFA) contribute to insulin resistance. To determine the effects of an acute elevation in FFA on insulin action with aging, we infused saline or intralipid (IL) during a hyperinsulinemic–euglycemic clamp in three groups of rats: young ad libitum–fed (YAL), old ad libitum–fed (OAL), and old on lifelong calorie restriction (OCR). The OCR group was included to distinguish between aging per se and age-related changes in body fat distribution. IL induced marked insulin resistance in both YAL and OCR, but the onset of insulin resistance was approximately two to three times more rapid in OCR as compared with YAL. In response to IL infusion, plasminogen-activating inhibitor-1 (PAI-1) expression was increased in subcutaneous fat from OAL animals. In visceral fat, a marked increase in PAI-1 and interleukin-6 expression was observed in OAL and OCR rats, but not YAL, in response to IL treatment. Thus, aging per se increases the inflammatory response to excess nutrients and vulnerability to FFA-induced insulin resistance with aging. PMID:20504893

  17. Substantial replacement of lactose with fat in a high-lactose milk replacer diet increases liver fat accumulation but does not affect insulin sensitivity in veal calves.

    PubMed

    Pantophlet, A J; Gerrits, W J J; Vonk, R J; van den Borne, J J G C

    2016-12-01

    In veal calves, the major portion of digestible energy intake originates from milk replacer (MR), with lactose and fat contributing approximately 45 and 35%, respectively. In veal calves older than 4 mo, prolonged high intakes of MR may lead to problems with glucose homeostasis and insulin sensitivity, ultimately resulting in sustained insulin resistance, hepatic steatosis, and impaired animal performance. The contribution of each of the dietary energy sources (lactose and fat) to deteriorated glucose homeostasis and insulin resistance is currently unknown. Therefore, an experiment was designed to compare the effects of a high-lactose and a high-fat MR on glucose homeostasis and insulin sensitivity in veal calves. Sixteen male Holstein-Friesian calves (120±2.8kg of BW) were assigned to either a high-lactose (HL) or a high-fat (HF) MR for 13 consecutive weeks. After at least 7 wk of adaptation, whole-body insulin sensitivity and insulin secretion were assessed by euglycemic-hyperinsulinemic and hyperglycemic clamps, respectively. Postprandial blood samples were collected to assess glucose, insulin, and triglyceride responses to feeding, and 24-h urine was collected to quantify urinary glucose excretion. At the end of the trial, liver and muscle biopsies were taken to assess triglyceride contents in these tissues. Long-term exposure of calves to HF or HL MR did not affect whole-body insulin sensitivity (averaging 4.2±0.5×10 -2 [(mg/kg∙min)/(μU/mL)]) and insulin secretion. Responses to feeding were greater for plasma glucose and tended to be greater for plasma insulin in HL calves than in HF calves. Urinary glucose excretion was substantially higher in HL calves (75±13g/d) than in HF calves (21±6g/d). Muscle triglyceride content was not affected by treatment and averaged 4.5±0.6g/kg, but liver triglyceride content was higher in HF calves (16.4±0.9g/kg) than in HL calves (11.2±0.7g/kg), indicating increased hepatic fat accumulation. We conclude that

  18. Accretion of visceral fat and hepatic insulin resistance in pregnant rats.

    PubMed

    Einstein, Francine H; Fishman, Sigal; Muzumdar, Radhika H; Yang, Xiao Man; Atzmon, Gil; Barzilai, Nir

    2008-02-01

    Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.

  19. Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men.

    PubMed

    Muniyappa, Ranganath; Irving, Brian A; Unni, Uma S; Briggs, William M; Nair, K Sreekumaran; Quon, Michael J; Kurpad, Anura V

    2010-12-01

    Insulin resistance is highly prevalent in Asian Indians and contributes to worldwide public health problems, including diabetes and related disorders. Surrogate measurements of insulin sensitivity/resistance are used frequently to study Asian Indians, but these are not formally validated in this population. In this study, we compared the ability of simple surrogate indices to accurately predict insulin sensitivity as determined by the reference glucose clamp method. In this cross-sectional study of Asian-Indian men (n = 70), we used a calibration model to assess the ability of simple surrogate indices for insulin sensitivity [quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment (HOMA2-IR), fasting insulin-to-glucose ratio (FIGR), and fasting insulin (FI)] to predict an insulin sensitivity index derived from the reference glucose clamp method (SI(Clamp)). Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction as well as leave-one-out cross-validation-type RMSE of prediction (CVPE). QUICKI, FIGR, and FI, but not HOMA2-IR, had modest linear correlations with SI(Clamp) (QUICKI: r = 0.36; FIGR: r = -0.36; FI: r = -0.27; P < 0.05). No significant differences were noted among CVPE or RMSE from any of the surrogate indices when compared with QUICKI. Surrogate measurements of insulin sensitivity/resistance such as QUICKI, FIGR, and FI are easily obtainable in large clinical studies, but these may only be useful as secondary outcome measurements in assessing insulin sensitivity/resistance in clinical studies of Asian Indians.

  20. [Insulin resistance in type 1 diabetic children and adolescents -- a simplified method of estimation].

    PubMed

    Szadkowska, Agnieszka; Pietrzak, Iwona; Mianowska, Beata; Markuszewski, Leszek; Bodalska-Lipińska, Joanna; Bodalski, Jerzy

    2006-01-01

    Our own studies confirm the hypothesis, that insulin resistance of various degree is often observed in children and adolescents with type 1 diabetes mellitus (T1DM). The knowledge of this parameter characterizing individual patients may be of great value not only for better understanding of the disease course but also as a potential source of specific treatment. Reliable estimation of insulin resistance with hyperinsulinemic euglycemic clamp is a complex, laborious and costly procedure. These facts were enough to motivate us to make an attempt to elaborate an indirect, simplified method of insulin resistance assessment in T1DM children, that would be based on patients characteristics and on clinical parameters of the disease course. 142 children and adolescents with T1DM (79 boys, 63 girls) aged 7.7-20.3 years (mean age - 13.7+/-3.3 years) were included into the study. Duration of diabetes was 0.5-12.5 years (mean 2.7+/-2.3 years). The stage of puberty was assessed by the Tanner scale. Euglycemic-hyperinsulinemic clamp by de Fronzo was performed to estimate insulin resistance. Glucose disposal rate (M index) determined during the last 30 min of the test estimated insulin resistance. Looking for clinical and metabolic factors characterizing insulin resistance: a) the plasma cholesterol, HDL-Ch, triglycerides and HbA1c were examined, b) the height, weight, waist circumference and blood pressure were measured, c) body mass index and daily dose of insulin were calculated. For statistical analysis the multiple regression was used (forward stepwise method). In the study group M index ranged from 2.1 to 17.4 mg/kg/min (mean 7.27+/-2.62 mg/kg/min). The boys presented better insulin sensitivity than girls (7.79 vs. 6.62, p=0.008). The insulin resistance depended on the patients' age (r=-0.46, p<0.001) and stage of puberty (p<0.001). A correlation between M index and insulin dose (r=-0.34, p<0.05) and HbA1c (r=-0.17; p=0.04) were found. There was a significant relationship

  1. The relationship between vitronectin and hepatic insulin resistance in type 2 diabetes mellitus.

    PubMed

    Cao, Yan; Li, Xinyu; Lu, Chong; Zhan, Xiaorong

    2018-05-18

    The World Health Organization (WHO) estimates that approximately 300 million people will suffer from diabetes mellitus by 2025. Type 2 diabetes mellitus (T2DM) is much more prevalent. T2DM comprises approximately 90% of diabetes mellitus cases, and it is caused by a combination of insulin resistance and inadequate compensatory insulin secretory response. In this study, we aimed to compare the plasma vitronectin (VN) levels between patients with T2DM and insulin resistance (IR) and healthy controls. Seventy patients with IR and 70 age- and body mass index (BMI)-matched healthy controls were included in the study. The insulin, Waist-to-Hip Ratio (WHR), C-peptide (CP) and VN levels of all participants were examined. The homeostasis model of assessment for insulin resistence index (HOMA-IR (CP)) formula was used to calculate insulin resistance. The levels of BMI, fasting plasma gluose (FPG), 2-hour postprandial glucose (2hPG), glycated hemoglobins (HbA1c), and HOMA-IR (CP) were significantly elevated in case group compared with controls. VN was found to be significantly decreased in case group. (VN Mean (Std): 8.55 (2.92) versus 12.88 (1.26) ng/mL p < 0.001). Multiple linear regression analysis was performed. This model explained 43.42% of the total variability of VN. Multiple linear regression analysis showed that HOMA-IR (CP) and age independently predicted VN levels. The VN may be a candidate target for the appraisal of hepatic insulin resistance in patients with T2DM.

  2. Adipocytokines and insulin resistance across various degrees of glucose tolerance in pregnancy.

    PubMed

    Skvarca, A; Tomazic, M; Krhin, B; Blagus, R; Janez, A

    2012-01-01

    Gestational diabetes mellitus is characterized by progressive insulin resistance. Adipocytokines are thought to be associated with insulin resistance. This cross-sectional study evaluated the associations between serum concentrations of several adipocytokines and insulin resistance at different stages of glucose tolerance in pregnancy, using the homeostasis model assessment of insulin resistance (HOMA-IR) as a reference. According to oral glucose tolerance test results, 74 pregnant women were divided into three groups: normal glucose tolerance (n = 25); intermediate glucose tolerance (n = 19); gestational diabetes mellitus (n = 30). Adiponectin, leptin, resistin, visfatin and retinol-binding protein 4 (RBP4) concentrations were measured using enzyme-linked immuno sorbent assays. Groups were comparable regarding age, week of gestation and body mass index before gestation. There were statistically significant between-group differences in HOMA-IR, but no significant differences regarding serum adipocytokine concentrations. Adipo nectin, leptin, resistin, visfatin and RBP4 were not associated with the degree of glucose tolerance in pregnancy. Concentrations of these adipocytokines are not sufficiently sensitive to replace HOMA- IR in pregnancy.

  3. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  4. Novel adiponectin-resistin (AR) and insulin resistance (IRAR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study

    PubMed Central

    2011-01-01

    Background Adiponectin and resistin are adipokines which modulate insulin action, energy, glucose and lipid homeostasis. Meta-analyses showed that hypoadiponectinemia and hyperresistinemia are strongly associated with increased risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS) and cardiovascular disease. The aim of this study was to propose a novel adiponectin-resistin (AR) index by taking into account both adiponectin and resistin levels to povide a better indicator of the metabolic homeostasis and metabolic disorders. In addition, a novel insulin resistance (IRAR) index was proposed by integration of the AR index into an existing insulin resistance index to provide an improved diagnostic biomarker of insulin sensitivity. Methods In this case control study, anthropometric clinical and metabolic parameters including fasting serum total adiponectin and resistin levels were determined in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40-70 years old. Significant differences in continuous variables among subject groups were confirmed by ANCOVA or MANCOVA test using 1,000 stratified bootstrap samples with bias corrected and accelerated (BCa) 95% CI. Spearman's rho rank correlation test was used to test the correlation between two variables. Results The AR index was formulated as 1+log10(R0)-log10(A0). The AR index was more strongly associated with increased risk of T2DM and MS than hypoadiponectinemia and hyperresistinemia alone. The AR index was more strongly correlated with the insulin resistance indexes and key metabolic endpoints of T2DM and MS than adiponectin and resistin levels alone. The AR index was also correlated with a higher number of MS components than adiponectin and resistin levels alone. The IRAR index was formulated as log10(I0G0)+log10(I0G0)log10(R0/A0). The normal reference range of the IRAR index for insulin sensitive individuals was between 3.265 and

  5. [Factors associated with insulin resistence in rural populations].

    PubMed

    Mendes, Larissa Loures; Gazzinelli, Andréa; Velásquez-Meléndez, Gustavo

    2009-04-01

    This study explores the relations of anthropometric, body composition assessments, biochemical and hemodynamic parameters with insulin resistance in two rural communities. Sample was composed by adults aged 18 or older, both sexes. Participants were excluded if pregnant and diabetic. Data collection included demographic lifestyle, hemodynamic, anthropometric and biochemical variables. From the 567 subjects, 50.4% were men and 49.6%, women. Most of the sample was non-white (75.7%), lived with partner (69.3%) and had low educational level. Overweight and obesity prevalences were 17.4% and 5.5%, respectively. Multivariate analysis found risk factors associated to insulin resistance for non-diabetic adults with low income and educational level: overweight, obesity, elevated waist-to-hip ratio, C-reactive protein and skin color.

  6. Arteriolar insulin resistance in a rat model of polycystic ovary syndrome.

    PubMed

    Sara, Levente; Antal, Peter; Masszi, Gabriella; Buday, Anna; Horvath, Eszter M; Hamar, Peter; Monos, Emil; Nadasy, Gyorgy L; Varbiro, Szabolcs

    2012-02-01

    To investigate the vascular dysfunction caused by insulin resistance in polycystic ovary syndrome (PCOS) and the effectiveness of vitamin D in an animal model. Controlled experimental animal study. Animal laboratory at a university research institute. Thirty female Wistar rats. Rats were divided into groups at age 21-28 weeks. Twenty of them were subjected to dihydrotestosterone (DHT) treatment (83 μg/d); ten of them also received parallel vitamin D treatment (120 ng/100 g/wk). Oral glucose tolerance tests with insulin level measurements were performed. Gracilis arterioles were tested for their contractility as well as their nitric oxide (NO)-dependent and insulin-induced dilation using pressure arteriography. Several physiologic parameters, glucose metabolism, and pressure arteriography. DHT treatment increased the passive diameter of resistance arterioles, lowered norepinephrine-induced contraction (30.1 ± 4.7% vs. 8.7 ± 3.6%) and reduced acetylcholine-induced (122.0 ± 2.9% vs. 48.0 ± 1.4%) and insulin-induced (at 30 mU/mL: 21.7 ± 5.3 vs. 9.8 ± 5.6%) dilation. Vitamin D treatment restored insulin relaxation and norepinephrine-induced contractility; in contrast, it failed to alter NO-dependent relaxation. In DHT-treated rats, in addition to metabolically proven insulin resistance, decreased insulin-induced vasorelaxation was observed and was improved by vitamin D treatment without affecting NO-dependent relaxation. The reduction in insulin-induced dilation of arterioles is an important as yet undescribed pathway of vascular damage in PCOS and might explain the clinical effectiveness of vitamin D treatment. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Insulin resistance and serum levels of interleukin-17 and interleukin-18 in normal pregnancy.

    PubMed

    Jahromi, Abdolreza Sotoodeh; Shojaei, Mohammad; Ghobadifar, Mohamed Amin

    2014-06-01

    We performed this study to evaluate the role of Interleukin-17 (IL-17) and Interleukin-18 (IL-18) in insulin resistance during normal pregnancy. This descriptive cross sectional study was carried out on 97 healthy pregnant women including 32, 25, and 40 individuals in the first, second, and third trimesters, respectively, and on 28 healthy non pregnant women between the autumn of 2012 and the spring of 2013. We analyzed the serum concentrations of IL-17 and IL-18 by using the enzyme linked immunosorbent assay (ELISA). Insulin resistance was measured by homeostasis model assessment of insulin resistance equation. No significant differences between the demographic data of the pregnant and non pregnant groups were observed. Insulin resistant in pregnant women was significantly higher than the controls (p=0.006). Serum IL-17 concentration was significantly different in non pregnant women and pregnant women in all gestational ages (p<0.05). Serum IL-18 level was significantly lower in subjects with first, second, and third trimesters of pregnancy in compared to non pregnant women (p<0.05). No significant correlations were found between serum IL-17 and IL-18 levels with insulin resistance (r=0.08, p=0.34 vs. r=0.01, p=0.91, respectively). Our data suggested that IL-17 and IL-18 do not appear to attribute greatly to pregnancy deduced insulin resistance during normal pregnancy.

  8. Insulin resistance and clinical outcomes after acute ischemic stroke.

    PubMed

    Ago, Tetsuro; Matsuo, Ryu; Hata, Jun; Wakisaka, Yoshinobu; Kuroda, Junya; Kitazono, Takanari; Kamouchi, Masahiro

    2018-04-24

    In this study, we aimed to determine whether insulin resistance is associated with clinical outcomes after acute ischemic stroke. We enrolled 4,655 patients with acute ischemic stroke (aged 70.3 ± 12.5 years, 63.5% men) who had been independent before admission; were hospitalized in 7 stroke centers in Fukuoka, Japan, from April 2009 to March 2015; and received no insulin therapy during hospitalization. The homeostasis model assessment of insulin resistance (HOMA-IR) score was calculated using fasting blood glucose and insulin levels measured 8.3 ± 7.8 days after onset. Study outcomes were neurologic improvement (≥4-point decrease in NIH Stroke Scale score or 0 at discharge), poor functional outcome (modified Rankin Scale score of ≥3 at 3 months), and 3-month prognosis (stroke recurrence and all-cause mortality). Logistic regression analysis was used to evaluate the association of the HOMA-IR score with clinical outcomes. The HOMA-IR score was associated with neurologic improvement (odds ratio, 0.68 [95% confidence interval, 0.56-0.83], top vs bottom quintile) and with poor functional outcome (2.02 [1.52-2.68], top vs bottom quintile) after adjusting for potential confounding factors, including diabetes and body mass index. HOMA-IR was not associated with stroke recurrence or mortality within 3 months of onset. The associations were maintained in nondiabetic or nonobese patients. No heterogeneity was observed according to age, sex, stroke subtype, or stroke severity. These findings suggest that insulin resistance is independently associated with poor functional outcome after acute ischemic stroke apart from the risk of short-term stroke recurrence or mortality. © 2018 American Academy of Neurology.

  9. Uric acid concentrations are associated with insulin resistance and birthweight in normotensive pregnant women.

    PubMed

    Laughon, S Katherine; Catov, Janet; Roberts, James M

    2009-12-01

    We sought to investigate whether uric acid concentrations are increased in pregnant women with insulin resistance and to correlate both with fetal growth. Uric acid, glucose, and insulin were measured in plasma at 20.4 (+/-2.0) weeks' gestation in 263 women. The association between uric acid and insulin resistance, as estimated using the homeostasis model assessment (HOMA), was analyzed and related to birthweights. In 212 (80.6%) women who remained normotensive throughout pregnancy, HOMA increased 1.23 U per 1-mg/dL increase in uric acid (95% confidence interval, 1.07-1.42; P=.003). Infants born to normotensive women in the upper quartile of uric acid and lowest HOMA quartile weighed 435.6 g less than infants of women with highest uric acid and HOMA quartiles (P<.005). Increasing uric acid concentrations were associated with insulin resistance in midpregnancy. Hyperuricemia was associated with lower birthweight in normotensive women, and this effect was attenuated by insulin resistance.

  10. Hepatic Free Cholesterol Accumulates in Obese, Diabetic Mice and Causes Non-Alcoholic Steatohepatitis

    PubMed Central

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-01-01

    Background & Aims Type-2 diabetes and non-alcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to pathogenesis of NASH. Methods Alms1 mutant (foz/foz) and wild-type (WT) NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Results Hepatic cholesterol accumulation was attributed to up-regulation of low density lipoprotein receptor (LDLR) via activation of sterol regulatory element binding protein-2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and LDLR and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. Conclusions In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. PMID:21703998

  11. Acculturation and Insulin Resistance among US Chinese Immigrant Women.

    PubMed

    Tseng, Marilyn; Fang, Carolyn Y

    2015-11-05

    Chinese immigrants in the United States undergo a transition to increased chronic disease risk commonly attributed to acculturative changes. Longitudinal data to confirm this are lacking. We examined acculturation in relation to insulin resistance in a sample of Chinese immigrant women to determine differences by level of education and possible mediation by anthropometry and diet. Longitudinal study. Philadelphia, Pennsylvania. 305 Chinese immigrant women recruited October 2005 to April 2008 and followed until April 2010. Association of acculturation, measured using the General Ethnicity Questionnaire - American version (GEQA), with homeostasis model assessment (HOMA) score as an indicator of insulin resistance, modeled using generalized estimating equations to account for repeated measures over time. GEQA was associated with log HOMA score, but only in women with <9 years of education (beta [SE] = .09 [.04], P=.02; interaction P=.02). The association persisted with adjustment for body mass index, waist circumference, and dietary variables. These findings provide longitudinal evidence that insulin resistance increases with acculturation. However, the association was apparent only in less-educated immigrants and may be mediated by a pathway other than changes in anthropometry and diet.

  12. Lipoprotein(a) is not related to markers of insulin resistance in pregnancy.

    PubMed

    Todoric, Jelena; Handisurya, Ammon; Leitner, Karoline; Harreiter, Juergen; Hoermann, Gregor; Kautzky-Willer, Alexandra

    2013-10-01

    Dyslipidemia, a major risk factor for cardiovascular disease is a common finding in patients with type 2 diabetes and among women with gestational diabetes. Elevated levels of lipoprotein(a) [Lp(a)] are linked to increased risk of cardiovascular disease. However, its relationship with insulin resistance, type 2 diabetes and gestational diabetes is controversial and unproven. Here we aimed to clarify whether Lp(a) levels are associated with insulin sensitivity in pregnancy. Sixty-four women with gestational diabetes and 165 with normal glucose tolerance were enrolled in the study. Fasting Lp(a) serum levels were measured in all women at 24-28 weeks of gestation. In pregnancy, there was no significant difference in serum Lp(a) concentrations between the two groups. Its level did not correlate with markers of insulin resistance (HOMA-IR), insulin sensitivity (HOMA-S%), pancreatic beta-cell function (HOMA-B%) and insulin sensitivity in dynamic conditions (OGIS). In addition, fasting glucose and insulin levels and those throughout an oral glucose tolerance test were independent of Lp(a) concentrations in our study group. Lp(a) levels in pregnant women do not differ with respect to the presence or absence of gestational diabetes. Although influenced by some components of the lipid profile, such as triglycerides and HDL-C, insulin resistance in pregnancy is not affected by Lp(a).

  13. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Yki-Järvinen, Hannele

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disorders ranging from simple steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading to hyperinsulinemia and a low high-density lipoprotein (HDL) cholesterol concentration. The latter features predispose to type 2 diabetes and cardiovascular disease (CVD). Understanding the impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65% carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets rich in saturated (SFA) as compared to monounsaturated (MUFA) or polyunsaturated (PUFA) fatty acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases liver fat content as well as fibrosis but has no effect on features of insulin resistance. PMID:26556368

  14. Sleep duration and insulin resistance in healthy black and white adolescents.

    PubMed

    Matthews, Karen A; Dahl, Ronald E; Owens, Jane F; Lee, Laisze; Hall, Martica

    2012-10-01

    Poor sleep may play a role in insulin resistance and diabetes risk. Yet few studies of sleep and insulin resistance have focused on the important developmental period of adolescence. To address this gap, we examined the association of sleep and insulin resistance in healthy adolescents. Cross-sectional. Community setting in one high school. 245 (137 African Americans, 116 males) high school students. Participants provided a fasting blood draw and kept a sleep log and wore a wrist actigraph for one week during the school year. Participants' families were from low to middle class based on family Hollingshead scores. Total sleep time across the week averaged 7.4 h by diary and 6.4 h by actigraph; homeostatic model assessment of insulin resistance ([HOMA-IR] unadjusted) averaged 4.13. Linear regression analyses adjusted for age, race, gender, body mass index, and waist circumference showed that the shorter the sleep, the higher the HOMA-IR, primarily due to sleep duration during the week. No evidence was found for long sleep being associated with elevated HOMA-IR. Fragmented sleep was not associated with HOMA-IR but was associated with glucose levels. Reduced sleep duration is associated with HOMA-IR in adolescence. Long sleep duration is not associated. Interventions to extend sleep duration may reduce diabetes risk in youth.

  15. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  16. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men.

    PubMed

    He, Qing; Engelson, Ellen S; Ionescu, Gabriel; Glesby, Marshall J; Albu, Jeanine B; Kotler, Donald P

    2008-01-01

    A large proportion of HIV-infected patients on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. We performed a cross-sectional analysis of baseline data from 23 HIV-infected participants in three prospective clinical studies. Magnetic resonance spectroscopy was used to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole-body adipose tissue compartments: that is, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes, as well as the intermuscular adipose tissue (IMAT) subcompartment and the omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. The homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Hepatic lipid content correlated significantly with total VAT (r = 0.62, P = 0.0014), but not with SAT (r = 0.053, P = 0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r = 0.67, P = 0.0004) and RPAT (r = 0.53, P = 0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r = 0.61, P = 0.057 and r = 0.68, P = 0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Hepatic lipid content is associated with VAT volume, especially the OMAT subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men.

  17. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV infected men

    PubMed Central

    He, Qing; Engelson, Ellen S.; Ionescu, Gabriel; Glesby, Marshall J.; Albu, Jeanine B.; Kotler, Donald P.

    2010-01-01

    Background A large proportion of HIV-infected subjects on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. Design and methods We performed a cross-sectional analysis of baseline data from twenty-three HIV-infected participants in 3 prospective clinical studies. Magnetic resonance spectroscopy was applied to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole body adipose tissue compartments, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes as well as inter-muscular adipose tissue (IMAT) subcompartment, and omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. Homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Results Hepatic lipid content correlated significantly with total VAT (r=0.62, p=0.0014) but not with SAT (r=0.053, p=0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r=0.67, p=0.0004) and RPAT (r=0.53, p=0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r=0.61, p=0.057 and 0.68, p=0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Conclusion Hepatic lipid content is associated with VAT volume, especially the omental-mesenteric subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men. PMID:18572755

  18. GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes

    PubMed Central

    Ait-Omar, Amal; Monteiro-Sepulveda, Milena; Poitou, Christine; Le Gall, Maude; Cotillard, Aurélie; Gilet, Jules; Garbin, Kevin; Houllier, Anne; Château, Danièle; Lacombe, Amélie; Veyrie, Nicolas; Hugol, Danielle; Tordjman, Joan; Magnan, Christophe; Serradas, Patricia; Clément, Karine; Leturque, Armelle; Brot-Laroche, Edith

    2011-01-01

    OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet–fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-14C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology. PMID:21852673

  19. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance.

    PubMed

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2016-05-24

    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  20. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    PubMed

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Oxidative stress and insulin resistance in policemen working shifts.

    PubMed

    Demir, Irfan; Toker, Aysun; Zengin, Selcuk; Laloglu, Esra; Aksoy, Hulya

    2016-04-01

    Shift work is a work schedule involving irregular or unusual hours, compared to those of a normal daytime work schedule. In developed countries, night shift work is very common. In several cities of our country, 12/24 shift system is implemented in police organization. While night shift work composes half of the 20 shift in a month, in ergonomic shift system, an alternative shift schedule, shift work can be performed in three shifts in a day. In this study, we aimed to investigate the effects of 12/24 shift work system on insulin resistance and oxidative stress and systemic inflammation. Two hundred and four 12/24 shift workers (age 44.3 ± 5.6 years) and 193 ergonomic shift workers (age 42.6 ± 5.5 years) were included to study. Serum oxidized LDL (ox-LDL), neutrophil gelatinase lipocalin-2 (NGAL) as oxidative stress markers, glucose, insulin, ferritin, high-sensitive C-reactive protein (hsCRP) and erythrocyte sedimentation rate values were measured. Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance. Serum ox-LDL, HOMA-IR, hsCRP and NGAL levels in 12/24 shift system were found to be significantly higher compared with ergonomic shift workers (p < 0.0001, p = 0.02, p = 0.03, p = 0.02, respectively). When evaluated all subjects, weak but significant correlation was found between HOMA-IR with ox-LDL (r = 0.12, p = 0.01), hsCRP (r = 0.17, p = 0.001) and ferritin (r = 0.15, r = 0.003). Also in 12/24 shift work group, there were significant correlations between HOMA-IR with hsCRP (r = 0.17, p = 0.01) and ferritin (r = 0.25, p = 0.0001). It may be concluded that 12/24 shift system might give rise to insulin resistance and oxidative stress. Additionally, workers in this system may under risk of systemic inflammatory response. Working hours must be arranged in accordance with the physiological rhythm.

  2. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less

  3. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    DOE PAGES

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; ...

    2015-07-07

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less

  4. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma.

    PubMed

    Forno, Erick; Han, Yueh-Ying; Muzumdar, Radhika H; Celedón, Juan C

    2015-08-01

    Obesity increases both the risk of asthma and asthma severity and is a well-known risk factor for insulin resistance and the metabolic syndrome (MS) in children and adolescents. We aimed to examine the association among obesity, insulin sensitivity, MS, and lung function in US adolescents with and without asthma. We performed a cross-sectional study of 1429 adolescents aged 12 to 17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adjusted regression was used to assess the relationships among obesity, insulin sensitivity/resistance, MS, and lung function in children with and without asthma. Insulin resistance was negatively associated with FEV1 and forced vital capacity (FVC) in adolescents with and without asthma, whereas MS was associated with lower FEV1/FVC ratios, with a more pronounced decrease found among asthmatic patients; these associations were driven by overweight/obese adolescents. Higher body mass index was associated with a decrease in FEV1/FVC ratios among adolescents with insulin resistance. Compared with healthy participants, adolescents with MS had an approximately 2% decrease in FEV1/FVC ratios, adolescents with asthma had an approximately 6% decrease, and those with MS and asthma had approximately 10% decreased FEV1/FVC ratios (P < .05). Insulin resistance and MS are associated with worsened lung function in overweight/obese adolescents. Asthma and MS synergistically decrease lung function, as do obesity and insulin resistance. These factors might contribute to the pathogenesis of asthma severity in obese patients and warrant further investigation. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. INSULIN RESISTANCE POST-BURN: UNDERLYING MECHANISMS AND CURRENT THERAPEUTIC STRATEGIES

    PubMed Central

    Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2014-01-01

    The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the post-burn hypermetabolic response have significantly improved the clinical outcome of these patients over the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a PPAR-γ agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance post-burn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia post-burn and outlines current therapeutic strategies that are being used to modulate hyperglycemia following thermal trauma. PMID:18695610

  6. Chromium Enhances Insulin Responsiveness via AMPK

    PubMed Central

    Hoffman, Nolan J.; Penque, Brent A.; Habegger, Kirk M.; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S.

    2014-01-01

    Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5′ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. PMID:24725432

  7. Chromium enhances insulin responsiveness via AMPK.

    PubMed

    Hoffman, Nolan J; Penque, Brent A; Habegger, Kirk M; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S

    2014-05-01

    Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    PubMed Central

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  9. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.

    PubMed

    Lotta, Luca A; Gulati, Pawan; Day, Felix R; Payne, Felicity; Ongen, Halit; van de Bunt, Martijn; Gaulton, Kyle J; Eicher, John D; Sharp, Stephen J; Luan, Jian'an; De Lucia Rolfe, Emanuella; Stewart, Isobel D; Wheeler, Eleanor; Willems, Sara M; Adams, Claire; Yaghootkar, Hanieh; Forouhi, Nita G; Khaw, Kay-Tee; Johnson, Andrew D; Semple, Robert K; Frayling, Timothy; Perry, John R B; Dermitzakis, Emmanouil; McCarthy, Mark I; Barroso, Inês; Wareham, Nicholas J; Savage, David B; Langenberg, Claudia; O'Rahilly, Stephen; Scott, Robert A

    2017-01-01

    Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.

  10. Insulin resistance syndrome in children.

    PubMed

    Ten, Svetlana; Maclaren, Noel

    2004-06-01

    The insulin resistance syndrome (syndrome X, metabolic syndrome) has become the major health problem of our times. Associated obesity, dyslipidemia, atherosclerosis, hypertension, and type 2 diabetes conspire to shorten life spans, while hyperandrogenism with polycystic ovarian syndrome affect the quality of life and fertility of increasing numbers of women. Whereas a growing number of single genetic diseases affecting satiety or energy metabolism have been found to produce the clinical phenotype, strong familial occurrences, especially in racially prone groups such as those from the Indian subcontinent, or individuals of African, Hispanic, and American Indian descents, together with emerging genetic findings, are revealing the polygenetic nature of the syndrome. However, the strong lifestyle factors of excessive carbohydrate and fat consumption and lack of exercise are important keys to the phenotypic expression of the syndrome. The natural history includes small for gestational age birth weight, excessive weight gains during childhood, premature pubarche, an allergic diathesis, acanthosis nigricans, striae compounded by gynecomastia, hypertriglyceridemia, hepatic steatosis, premature atherosclerosis, hypertension, polycystic ovarian syndrome, and focal glomerulonephritis appearing increasingly through adolescence into adulthood. Type 2 diabetes, which develops because of an inherent and/or an acquired failure of an insulin compensatory response, is increasingly seen from early puberty onward, as is atheromatous disease leading to coronary heart disease and stroke. A predisposition to certain cancers and Alzheimer's disease is also now recognized. The looming tragedy from growing numbers of individuals affected by obesity/insulin resistance syndrome requires urgent public health approaches directed at their early identification and intervention during childhood. Such measures include educating the public on the topic, limiting the consumption of sucrose

  11. White blood cells levels and PCOS: direct and indirect relationship with obesity and insulin resistance, but not with hyperandogenemia.

    PubMed

    Papalou, Olga; Livadas, Sarantis; Karachalios, Athanasios; Tolia, Nikoleta; Kokkoris, Panayiotis; Tripolitakis, Konstantinos; Diamanti-Kandarakis, Evanthia

    2015-01-01

    was significantly (p=0.02) higher in the group of insulin-resistant women (HOMA-IR >2). Chronic low-grade inflammation and increased white cell count do occur in PCOS. Obesity and insulin resistance are the two leading parameters that act accumulatively in the development of leucocytosis, whereas hyperandrogenism does not seem to affect it.

  12. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation.

    PubMed

    Dirks, Marlou L; Wall, Benjamin T; van de Valk, Bas; Holloway, Tanya M; Holloway, Graham P; Chabowski, Adrian; Goossens, Gijs H; van Loon, Luc J C

    2016-10-01

    Short (<10 days) periods of muscle disuse, often necessary for recovery from illness or injury, lead to various negative health consequences. The current study investigated mechanisms underlying disuse-induced insulin resistance, taking into account muscle atrophy. Ten healthy, young males (age: 23 ± 1 years; BMI: 23.0 ± 0.9 kg · m(-2)) were subjected to 1 week of strict bed rest. Prior to and after bed rest, lean body mass (dual-energy X-ray absorptiometry) and quadriceps cross-sectional area (CSA; computed tomography) were assessed, and peak oxygen uptake (VO2peak) and leg strength were determined. Whole-body insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Additionally, muscle biopsies were collected to assess muscle lipid (fraction) content and various markers of mitochondrial and vascular content. Bed rest resulted in 1.4 ± 0.2 kg lean tissue loss and a 3.2 ± 0.9% decline in quadriceps CSA (both P < 0.01). VO2peak and one-repetition maximum declined by 6.4 ± 2.3 (P < 0.05) and 6.9 ± 1.4% (P < 0.01), respectively. Bed rest induced a 29 ± 5% decrease in whole-body insulin sensitivity (P < 0.01). This was accompanied by a decline in muscle oxidative capacity, without alterations in skeletal muscle lipid content or saturation level, markers of oxidative stress, or capillary density. In conclusion, 1 week of bed rest substantially reduces skeletal muscle mass and lowers whole-body insulin sensitivity, without affecting mechanisms implicated in high-fat diet-induced insulin resistance. © 2016 by the American Diabetes Association.

  13. Hepatic Insulin Resistance is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis

    PubMed Central

    Biddinger, Sudha B.; Hernandez-Ono, Antonio; Rask-Madsen, Christian; Haas, Joel T.; Alemán, José O.; Suzuki, Ryo; Scapa, Erez F.; Agarwal, Chhavi; Carey, Martin C.; Stephanopoulos, Gregory; Cohen, David E.; King, George L.; Ginsberg, Henry; Kahn, C. Ronald

    2014-01-01

    Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced HDL cholesterol and VLDL particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apoB-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of PGC-1β, which promotes VLDL secretion, but decreased expression of SREBP-1c, SREBP-2 and their targets, the lipogenic enzymes and the LDL receptor. Within twelve weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome. PMID:18249172

  14. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  15. Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.

    PubMed

    Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio

    2010-02-01

    The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.

  16. Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27.

    PubMed

    Kim, Hye Young; Kwon, Woo Young; Kim, Yeon A; Oh, Yoo Jin; Yoo, Seung Hee; Lee, Mi Hwa; Bae, Ju Yong; Kim, Jong-Min; Yoo, Young Hyun

    2017-06-01

    Although epidemiological and experimental studies demonstrated that polychlorinated biphenyls (PCBs) lead to insulin resistance, the mechanism underlying PCBs-induced insulin resistance has remained unsolved. In this study, we examined in vitro and in vivo effects of PCB-118 (dioxin-like PCB) and PCB-138 (non-dioxin-like PCB) on adipocyte differentiation, lipid droplet growth, and insulin action. 3T3-L1 adipocytes were incubated with PCB-118 or PCB-138 during adipocyte differentiation. For in vivo studies, C57BL/6 mice were administered PCB-118 or PCB-138 (37.5 mg/kg) by intraperitoneal injection and we examined adiposity and whole-body insulin action. PCB-118 and PCB-138 significantly promoted adipocyte differentiation and increased the lipid droplet (LD) size in 3T3-L1 adipocytes. In mice, both PCBs increased adipose mass and adipocyte size. Furthermore, both PCBs induced insulin resistance in vitro and in vivo. Expression of fat-specific protein 27 (Fsp27), which is localized to LD contact sites, was increased in PCB-treated 3T3-L1 adipocytes and mice. Depletion of Fsp27 by siRNA resulted in the inhibition of LD enlargement and attenuation of insulin resistance in PCB-treated 3T3-L1 adipocytes. An anti-diabetic drug, metformin, attenuated insulin resistance in PCB-treated 3T3-L1 adipocytes through the reduced expression of Fsp27 protein and LD size. This study suggests that PCB exposure-induced insulin resistance is mediated by LD enlargement through Fsp27.

  17. The research for the clinical curative effect through combing traditional Chinese medicine with insulin to cure diabetes.

    PubMed

    Wu, Qianfeng; Fan, Hongxia

    2014-07-01

    The clinical curative effect is observed through curing type 2 diabetes mellitus with the therapy of combing Traditional Chinese Medicine (TCM) with insulin. Both the insulin prescription and the treatment of traditional Chinese medicine prescription are applied as mutual comparison. And the dosage, time, blood sugar level and curative effect etc are recorded. Healthy human body is taken as comparison for monitoring physical indicators. Through comparing insulin prescription and the combing therapy of insulin and traditional Chinese medicine, the insulin treatment group is better than contrast group (P<0.05). For the blending use group, the ISI in each group is significantly lower than that of health control group (P<0.01), where accumulation of damp heat in spleen type is the lowest; the BM I, H bA1C of type 2 diabetic patient is higher than health control group, its accumulation of damp heat in spleen type is the highest, TC, TG typical accumulation of damp heat in spleen are higher than other pattern of syndrome. the treatment method of combing TCM with insulin in curing type 2 diabetes mellitus has better effect than using insulin treatment alone; the resistance degree of insulin demonstrates the changing trend of first increase and later decrease with the development of disease course. Accumulation of damp heat in spleen type accounts for the highest proportion in type 2 diabetic patients, and there exists serious insulin resistance.

  18. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults.

    PubMed

    Würtz, Peter; Soininen, Pasi; Kangas, Antti J; Rönnemaa, Tapani; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma S; Raitakari, Olli T; Ala-Korpela, Mika

    2013-03-01

    Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 years; 54% women). Insulin resistance was estimated by homeostasis model assessment (HOMA) at baseline and 6-year follow-up. Amino acid associations with HOMA of insulin resistance (HOMA-IR) and glucose were assessed using regression models adjusted for established risk factors. We further examined whether amino acid profiling could augment risk assessment of insulin resistance (defined as 6-year HOMA-IR >90th percentile) in early adulthood. Isoleucine, leucine, valine, phenylalanine, and tyrosine were associated with HOMA-IR at baseline and for men at 6-year follow-up, while for women only leucine, valine, and phenylalanine predicted 6-year HOMA-IR (P < 0.05). None of the other amino acids were prospectively associated with HOMA-IR. The sum of branched-chain and aromatic amino acid concentrations was associated with 6-year insulin resistance for men (odds ratio 2.09 [95% CI 1.38-3.17]; P = 0.0005); however, including the amino acid score in prediction models did not improve risk discrimination. Branched-chain and aromatic amino acids are markers of the development of insulin resistance in young, normoglycemic adults, with most pronounced associations for men. These findings suggest that the association of branched-chain and aromatic amino acids with the risk for future diabetes is at least partly mediated through insulin resistance.

  19. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats.

    PubMed

    Dotzert, Michelle S; Murray, Michael R; McDonald, Matthew W; Olver, T Dylan; Velenosi, Thomas J; Hennop, Anzel; Noble, Earl G; Urquhart, Brad L; Melling, C W James

    2016-05-20

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training.

  20. Estimation of metabolic factors related to insulin resistance and metabolic syndrome in young people.

    PubMed

    Płaczkowska, Sylwia; Pawlik-Sobecka, Lilla; Kokot, Izabela; Piwowar, Agnieszka

    2018-05-09

    Civilizational developments occurring during recent decades have resulted in an increased incidence of a variety of metabolic disorders related to insulin resistance in younger people. The determination of decision limits for insulin resistance indices, especially among young people, is a significant challenge in clinical practice. The aim of this study was the estimation of metabolic factors related to their relationship to insulin resistance and metabolic syndrome (MS) features in young, apparently healthy people. Moreover, we evaluated the optimal decision limits for patients with MS identification for HOMA1-IR, HOMA2-IR, HOMA2 obtained from C-peptide concentrations. 349 apparently healthy people aged 18-31 (260 women and 89 men), were enrolled in this study. The present analysis of metabolic, anthropometric and clinical parameters observed them in clusters covering the criteria of MS recognition, but MS in this group was only partially related to insulin resistance. The HOMA1-IR decision limit estimation is likely to became be useful in the prognostication of metabolic disturbances in young, apparently healthy people. A measure of insulin resistance that can provide a reliable early prediction of MS is likely to provide an opportunity for instigating preventive measures of significant clinical utility.

  1. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    PubMed Central

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  2. Association between gamma glutamyl transferase and insulin resistance markers in healthy obese children.

    PubMed

    Kaushik, Girdhar Gopal; Sharm, Sonali; Sharma, Reenu; Mittal, Prerna

    2009-10-01

    To study the relationship of gamma glutamyl transferase (GGT) with insulin resistance markers [fasting insulin and Homeostasis Model Assessment of-insulin resistance (HOMA-IR)] and to assess the role of GGT as a determinant of insulin resistance in healthy obese children. Fifty healthy obese children (boys and girls with mean age 9.2 +/- 0.73 and 8.8 +/- 0.74 years) born to diabetic mothers were studied. In all the subjects, anthropometric measurements viz, BMI and body weight were studied. The biochemical parameters analysed in fasting samples of subjects were plasma glucose, plasma insulin, serum GGT and calculation of HOMA-IR. The fifty studied subjects belonged to age group 8 to12 years. The difference in mean age of boys and girls was not significant (p = 0.09). Body weight values in all subjects ranged from 20 to 78 kgs and BMI values ranged from 14.5 to 42.1 Kg/m2. No significant difference was observed between body weight and BMI values when compared between boys and girls. A similar trend was observed in the values of biochemical parameters viz, fasting glucose, fasting insulin and HOMA-IR levels when compared between boys and girls (p = 0.72, p = 0.80, p = 0.59). Serum GGT correlated significantly with age, body weight, BMI, fasting insulin and HOMA-IR levels. HOMA-IR values also showed significant correlation with body weight, BMI, fasting glucose and fasting insulin levels. The association of GGT with fasting insulin and HOMA-IR levels was considerably significant compared to its association with other variables. The serum activity of GGT remained correlated with HOMA-IR even after removing the effect of BMI, weight and age on GGT values. The results showed that GGT is a determinant of HOMA-IR independently of age, BMI and weight. A correlation exists between GGT and insulin resistance markers. The observed correlation indicates that monitoring GGT and fasting insulin levels in obese children might serve to help prevent the development of diabetes in

  3. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  4. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  5. A common variation of the PTEN gene is associated with peripheral insulin resistance.

    PubMed

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, J F P; Poulsen, P; Grunnet, L G; Vaag, A

    2016-09-01

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults

  7. Omentin, an adipokine with insulin-sensitizing properties, is negatively associated with insulin resistance in normal gestation.

    PubMed

    Brandt, Benny; Mazaki-Tovi, Shali; Hemi, Rina; Yinon, Yoav; Schiff, Eyal; Mashiach, Roy; Kanety, Hannah; Sivan, Eyal

    2015-05-01

    Omentin, a newly identified adipokine, enhances insulin mediated glucose uptake in human adipocytes, thus, inducing systemic insulin-sensitizing effect. The aims of this study were to determine whether circulating maternal omentin levels are associated with insulin resistance indices and to assess which compartment, maternal, fetal, or placental, is the source of omentin in maternal circulation. Fasting serum glucose, insulin, and omentin were determined in 25 healthy pregnant women at the third trimester, before and 3 days after elective cesarean section. Cord blood omentin was measured in the 25 term neonates. Homeostasis model assessment (HOMA) was used to evaluate insulin sensitivity before and after delivery. Antepartum maternal omentin levels were negatively correlated with insulin levels (r=-0.41, P=0.04) and positively correlated with insulin sensitivity (HOMA%S; r=0.4, P=0.04). Postpartum omentin levels were negatively correlated with maternal body mass index (r=-0.44, P=0.02). Median maternal omentin levels was comparable before and after delivery (57.2, inter-quartile range: 38.2-76.2 ng/mL vs. 53.4, 39.8-69.4 ng/mL, respectively, P=0.25) and highly correlated (r=0.83, P<0.001). Antepartum maternal and neonatal omentin levels did not differ significantly (fetal: 62.2, 44.3-74.2 ng/mL, P=0.77) and did not correlate (P=0.6). Circulating maternal omentin levels are correlated with insulin resistance indices, suggesting that this adipokine may play a role in metabolic adaptations of normal gestation. The strong correlation between anteparum and postpartum maternal omentin levels, as well as the lack of association between maternal and neonatal omentin levels, suggest that placental or fetal compartments are unlikely as the main source of circulating maternal omentin.

  8. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers.

    PubMed

    Jacob, S; Balletshofer, B; Henriksen, E J; Volk, A; Mehnert, B; Löblein, K; Häring, H U; Rett, K

    1999-01-01

    Essential hypertension is--at least in many subjects--associated with a decrease in insulin sensitivity, while glycaemic control is (still) normal. It seems that in hypertensive patients, two major functions of insulin are impaired: there is insulin resistance of peripheral glucose uptake (primarily skeletal muscle) and insulin resistance of insulin-stimulated vasodilation. In view of some retrospective data and meta-analyses, which showed a less than expected reduction in coronary events (coronary paradox), the metabolic side effects of the antihypertensive treatment have received more attention. Many groups have shown that conventional antihypertensive treatment, both with beta-blockers and/or diuretics, decreases insulin sensitivity by various mechanisms. While low-dose diuretics seem to be free of these metabolic effects, there is no evidence for this in the beta-adrenergic blockers. However, recent metabolic studies evaluated the effects of vasodilating beta-blockers, such as dilevalol, carvedilol and celiprolol, on insulin sensitivity and the atherogenic risk factors. None of them decreased insulin sensitivity, as has been described for the beta-blockers with and without beta1 selectivity. This supports the idea that peripheral vascular resistance and peripheral blood flow play a central role in mediating the metabolic side effects of the beta-blocking agents, as the vasodilating action (either via beta2 stimulation or alpha1-blockade) seems to more than offset the detrimental effects of the blockade of beta (or beta1) receptors. Further studies are needed to elucidate the relevance of the radical scavenging properties of these agents and their connection to their metabolic effects. Therefore, the beneficial characteristics of these newer beta-adrenoreceptor blockers suggest that the vasodilating beta-blocking agents could be advantageous for hypertensive patients with insulin resistance or type 2 diabetes.

  9. Chromium (d-Phenylalanine)3 Alleviates High Fat-Induced Insulin Resistance and Lipid Abnormalities

    PubMed Central

    Kandadi, Machender Reddy; Unnikrishnan, MK; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2010-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (d-phenylalanine)3 [Cr(d-Phe)3] on -glucose and -insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(d-Phe)3 (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body -glucose and- insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up- take in the gastrocnemius muscles, assessed as 2-[3H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-32P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)3. These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. PMID:21134603

  10. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  11. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    PubMed

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ethnic Differences in Hepatic Steatosis: An insulin resistance paradox?

    PubMed Central

    Guerrero, Richard; Vega, Gloria L.; Grundy, Scott M.; Browning, Jeffrey D.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a burgeoning problem. We have previously shown that Hispanics were at greater risk for NAFLD than African-Americans despite a similar prevalence of risk factors between these groups. We have performed the largest, population-based study to date (n=2,170) utilizing proton magnetic resonance (MR) spectroscopy, dual-energy x-ray absorptiometry, and multi-slice abdominal MR imaging to determine the contribution of body fat distribution to the differing prevalence of hepatic steatosis in the three major U.S. ethnic groups (African-American, Hispanic, Caucasian). Despite controlling for age and total adiposity, African-Americans had less intraperitoneal (IP) fat and more lower extremity (LE) fat than their Hispanic and Caucasian counterparts. The differences in hepatic triglyceride content (HTGC) between these groups remained after controlling for total, abdominal subcutaneous, and LE adiposity; however, controlling for IP fat nearly abolished the differences in HTGC, indicating a close association between IP and liver fat regardless of ethnicity. Despite the lower levels of IP and liver fat in African-Americans, their prevalence of insulin resistance was similar to Hispanics, who had the highest levels of IP and liver fat. Furthermore, insulin levels and HOMAIR values were highest and serum triglyceride levels were lowest among African-Americans after controlling for IP fat. In conclusion, IP fat is linked to HTGC, irrespective of ethnicity. The differing prevalence of hepatic steatosis between these groups was associated with similar differences in visceral adiposity. The metabolic response to obesity and insulin resistance differs in African-Americans when compared to either Hispanics or Caucasians: African-Americans appear to be more resistant to both the accretion of triglyceride in the abdominal visceral compartment (adipose tissue and liver) and hypertriglyceridemia associated with insulin resistance. PMID:19105205

  13. Circulating ApoJ is closely associated with insulin resistance in human subjects.

    PubMed

    Seo, Ji A; Kang, Min-Cheol; Ciaraldi, Theodore P; Kim, Sang Soo; Park, Kyong Soo; Choe, Charles; Hwang, Won Min; Lim, Dong Mee; Farr, Olivia; Mantzoros, Christos; Henry, Robert R; Kim, Young-Bum

    2018-01-01

    Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, P<0.0001). Circulating ApoJ levels strongly correlated with fasting glucose, fasting insulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. DASH diet, insulin resistance, and serum hs-CRP in polycystic ovary syndrome: a randomized controlled clinical trial.

    PubMed

    Asemi, Z; Esmaillzadeh, A

    2015-03-01

    This study was designed to assess the effects of Dietary Approaches to Stop Hypertension (DASH) eating plan on insulin resistance and serum hs-CRP in overweight and obese women with PCOS. This randomized controlled clinical trial was done on 48 women diagnosed with PCOS. Subjects were randomly assigned to consume either the control (n=24) or the DASH eating pattern (n=24) for 8 weeks. The DASH diet consisted of 52% carbohydrates, 18% proteins, and 30% total fats. It was designed to be rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fats, cholesterol, refined grains, and sweets. Sodium content of the DASH diet was designed to be less than 2 400 mg/day. The control diet was also designed to contain 52% carbohydrates, 18% protein, and 30% total fat. Fasting blood samples were taken at baseline and after 8 weeks intervention to measure -insulin resistance and serum hs-CRP levels. -Adherence to the DASH eating pattern, compared to the -control diet, resulted in a significant reduction of serum insulin levels (-1.88 vs. 2.89 μIU/ml, p=0.03), HOMA-IR score (-0.45 vs. 0.80; p=0.01), and serum hs-CRP levels (-763.29 vs. 665.95 ng/ml, p=0.009). Additionally, a significant reduction in waist (-5.2 vs. -2.1 cm; p=0.003) and hip circumference (-5.9 vs. -1 cm; p<0.0001) was also seen in the DASH group compared with the control group. In conclusion, consumption of the DASH eating pattern for 8 weeks in overweight and obese women with PCOS resulted in the improvement of insulin resistance, serum hs-CRP levels, and abdominal fat accumulation. www.irct.ir: IRCT201304235623N6. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Genetics Home Reference: type A insulin resistance syndrome

    MedlinePlus

    ... insulin resistance syndrome are more subtle in affected males. Some males have low blood sugar (hypoglycemia) as the only ... may also have acanthosis nigricans. In many cases, males with this condition come to medical attention only ...

  16. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    PubMed

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  17. Implication of Low Level Inflammation in the Insulin Resistance of Adipose Tissue at Late Pregnancy

    PubMed Central

    de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O. H.; de Mouzon, S. Hauguel; Herrera, E.

    2011-01-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance. PMID:21914778

  18. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    PubMed

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.

  19. Epigallocatechin-3-gallate ameliorates insulin resistance in hepatocytes.

    PubMed

    Ma, Shan-Bo; Zhang, Rui; Miao, Shan; Gao, Bin; Lu, Yang; Hui, Sen; Li, Long; Shi, Xiao-Peng; Wen, Ai-Dong

    2017-06-01

    Hyperglycemia is a typical pathogenic factor in a series of complications among patients with type II diabetes. Epigallocatechin-3-gallate (EGCG) is the major polyphenol extracted from green tea and is reported to be an antioxidant. The aim of the present study was to examine the effect of EGCG on insulin resistance in human HepG2 cells pretreated with high concentrations of glucose. The protein kinase B (AKT)/glycogen synthase kinase (GSK) pathways were analyzed using western blot analysis in HepG2 cells and primary mouse hepatocytes treated with high glucose and/or EGCG. Cellular glycogen content was determined using a glycogen assay kit. Reactive oxygen species (ROS) production was determined using dihydroethidium staining and flow cytometry. c‑JUN N‑terminal kinase (JNK)/insulin receptor substrate 1 (IRS1)/AKT/GSK signaling was explored using western blot analysis in HepG2 cells treated with high glucose and/or EGCG or N-acetyl-cysteine. High glucose significantly decreased the levels of phosphorylated AKT and GSK in HepG2 cells and mouse primary hepatocytes. Pretreatment with EGCG significantly restored the activation of AKT and GSK in HepG2 cells and primary hepatocytes exposed to high glucose. In HepG2 cells and primary hepatocytes, glycogen synthesis was improved by EGCG treatment in a dose‑dependent manner. High glucose significantly stimulated the production of ROS while EGCG protected high glucose‑induced ROS production. ROS is known to serve a major role in high glucose induced‑insulin resistance by increasing JNK and IRS1 serine phosphorylation. In the present study, EGCG was observed to enhance the insulin‑signaling pathway. EGCG ameliorated high glucose‑induced insulin resistance in the hepatocytes by potentially decreasing ROS‑induced JNK/IRS1/AKT/GSK signaling.

  20. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport.

    PubMed

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-11-01

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [(123)I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 +/- 0.06 vs 2.28 +/- 0.18 (p < 0.001) for the fructose-fed group, 0.92 +/- 0.05 vs 1.62 +/- 0.25 (p < 0.01) for the Zucker group and 1.34 +/- 0.06 vs 2.01 +/- 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance.

  1. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  2. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status.

    PubMed

    McClain, A D; Otten, J J; Hekler, E B; Gardner, C D

    2013-01-01

    Previous research shows diminished weight loss success in insulin-resistant (IR) women assigned to a low-fat (LF) diet compared to those assigned to a low-carbohydrate (LC) diet. These secondary analyses examined the relationship between insulin-resistance status and dietary adherence to either a LF-diet or LC-diet among 81 free-living, overweight/obese women [age = 41.9 ± 5.7 years; body mass index (BMI) = 32.6 ± 3.6 kg/m(2)]. This study found differential adherence by insulin-resistance status only to a LF-diet, not a LC-diet. IR participants were less likely to adhere and lose weight on a LF-diet compared to insulin-sensitive (IS) participants assigned to the same diet. There were no significant differences between IR and IS participants assigned to LC-diet in relative adherence or weight loss. These results suggest that insulin resistance status may affect dietary adherence to weight loss diets, resulting in higher recidivism and diminished weight loss success of IR participants advised to follow LF-diets for weight loss. © 2012 Blackwell Publishing Ltd.

  3. Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'?

    PubMed

    Greenfield, Jerry R; Campbell, Lesley V

    2006-05-01

    Inflammation has been implicated as an important aetiological factor in the development of both insulin resistance and type 2 diabetes mellitus. This conclusion is predominantly drawn from studies demonstrating associations between elevated (but 'normal range') levels of circulating acute phase inflammatory markers, typified by C-reactive protein (CRP), and indices of insulin resistance and the development of type 2 diabetes. There is debate as to whether these associations are independent of body fatness or, rather, an epiphenomenon of obesity, particularly central obesity, a strong predictor of insulin resistance and type 2 diabetes and an important source of inflammatory cytokines, such as interleukin-6. Some of this controversy and the inability to draw definitive conclusions from these studies relate to the fact that most studies measure body fat and its distribution indirectly using anthropometric estimates, such as Body Mass Index and waist circumference, rather than directly by dual-energy X-ray absorptiometry, computed tomography or magnetic resonance imaging. Furthermore, use of the term inflammation may be inappropriate when describing mild elevations of CRP in the 'normal range' in the absence of the other changes that characterise classical inflammatory diseases, such as a reduction in levels (or evidence of consumption) of complement proteins. Debate as to whether obesity mediates the association between circulating levels of inflammatory markers and insulin resistance can be resolved by well-designed studies using body fat measured by gold-standard methods. In this review, we present evidence to support the suggestion that body fat is the primary determinant of circulating inflammatory marker levels in the basal state and that marginally elevated levels of circulating interleukin-6 and CRP in obesity are a consequence rather than a cause of insulin resistance. The importance of genetic influences in determining both body fatness and circulating CRP

  4. GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children.

    PubMed

    Shen, Yue; Wu, Lijun; Xi, Bo; Liu, Xin; Zhao, Xiaoyuan; Cheng, Hong; Hou, Dongqing; Wang, Xingyu; Mi, Jie

    2013-01-01

    Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults. We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (p<0.05). In children, both variants significantly reduced insulin (p<0.05. for rs1260326, β = -0.07; for rs1260333, β = -0.07) and HOMA-IR (p<0.05. for rs1260326, β = -0.03; for rs1260333, β = -0.03). There were significant associations between two variants and insulin resistance for children. Under co-dominant model, for CT vs. CC, OR is 0.83 (95%CI 0.69-1.00) for rs1260326, and 0.83 (95%CI 0.68-1.00) for rs1260333; for TT vs. CC, OR is 0.72 (95%CI 0.58-0.88) for rs1260326, and 0.72 (95%CI 0.58-0.89) for rs1260333. Under allele model, for allele T vs. C, the ORs are 0.85 (95%CI 0.76-0.94) and 0.85 (95%CI 0.76-0.94) for rs1260326 and rs1260333, respectively). Our study confirmed the associations between GCKR variants and triglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.

  5. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome.

    PubMed

    Belli, Susana H; Graffigna, Mabel N; Oneto, Adriana; Otero, Patricia; Schurman, Leon; Levalle, Oscar A

    2004-03-01

    To evaluate the effects of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome (PCOS). Prospective study. Women with PCOS attending as outpatients of the Endocrine Division, Hospital Durand, Buenos Aires. Twenty-four insulin-resistant women with PCOS. Hormonal evaluations and a standardized oral glucose tolerance test before and after a 3-month trial of 4 mg of rosiglitazone daily. Serum LH, FSH, T, IGF-1, IGFBP-1, IGFBP-3, leptin, 17alpha-hydroxyprogesterone, insulin, and glucose concentrations. The area under insulin curve (AUC-insulin), the HOMA index (insulin resistance), the QUICKI index (insulin sensitivity), and the beta-cell function were calculated. Body mass index (BMI) and the waist/hip ratio were evaluated. A significant decrease was observed in serum fasting insulin, AUC insulin, HOMA index, beta-cell function, IGF-1, LH, and waist/hip ratio. The QUICKI index and IGFBP-1 increased significantly. Serum sex hormone-binding globulin, androgens, leptin, IGFBP-3, and BMI remained unchanged. Twenty-two of 23 females had their menses restored, and three patients became pregnant. One patient was excluded because she became pregnant at the second month. Associated with the decrease in LH, rosiglitazone improved insulin-resistance parameters and normalized the menstrual cycle, which suggests that this drug could improve the endocrine-reproductive condition in insulin-resistant women with PCOS.

  6. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats☆

    PubMed Central

    Castro, Gisele; C. Areias, Maria Fernanda; Weissmann, Lais; Quaresma, Paula G.F.; Katashima, Carlos K.; Saad, Mario J.A.; Prada, Patricia O.

    2013-01-01

    Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT pathway similar to the hypothalamus. Insulin was able to decrease neuropeptide Y (NPY) and increase oxytocin mRNA levels in the amygdala via PI3K, which may contribute to hypophagia. Additionally, obese rats did not reduce FI in response to insulin and AKT phosphorylation was decreased in the amygdala, suggesting insulin resistance. Insulin resistance was associated with ER stress and low-grade inflammation in this brain region. The inhibition of ER stress with PBA reverses insulin action/signaling, decreases NPY and increases oxytocin mRNA levels in the amygdala from obese rats, suggesting that ER stress is probably one of the mechanisms that induce insulin resistance in the amygdala. PMID:24251109

  7. Ethnic differences in the ability of triglyceride levels to identify insulin resistance.

    PubMed

    Sumner, Anne E; Cowie, Catherine C

    2008-02-01

    The Metabolic Syndrome is used to predict the onset of coronary artery disease and Type 2 diabetes. As the predictive value of the Metabolic Syndrome has been challenged, alternative syndromes have been developed. All of these syndromes were developed in populations that were predominantly non-Hispanic white (NHW). They include the Enlarged Waist Elevated Triglyceride Syndrome, the Overweight-Lipid Syndrome and the Hypertriglyceridemic Waist Syndrome. The first applies to postmenopausal women, the second to overweight individuals (BMI> or =25 kg/m(2)), and the third to men. Each syndrome uses hypertriglyceridemia as a criterion. However, the definition of hypertriglyceridemia varies by syndrome i.e. TG> or =128 mg/dL for the Enlarged Waist Elevated Triglyceride Syndrome, TG> or =130 mg/dL for the Overweight-Lipid Syndrome, > or =150 mg/dL for the Metabolic Syndrome, and TG> or =176 mg/dL for the Hypertriglyceridemic Waist Syndrome. Insulin resistance and hypertriglyceridemia are highly correlated. But as insulin resistant non-Hispanic blacks (NHB) often have triglyceride (TG) levels below the thresholds set by these syndromes, the ability of either TG or these syndromes to identify high risk NHB is unknown. Using the National Health and Nutrition Examination Survey (NHANES) 1999-2002, our goals were to determine by ethnicity: (1) the prevalence of each of these syndromes; (2) the ability of fasting TG concentrations to identify insulin resistance at cut-off levels established by these syndromes, specifically 130, 150 and 176 mg/dL. Participants were 2804 adults from NHANES 1999-2002. The cohort was divided into tertiles of homeostasis model assessment. Insulin resistance was defined as the upper tertile (> or =2.73). The prevalence of each syndrome was lower in NHB than NHW or Mexican Americans (MA) (all P<0.05). Mean TG levels in NHB, non-Hispanic Whites (NHW) and Mexican Americans (MA) were: 99, 140 and 144mg/dL, respectively. The mean percents of insulin-resistant

  8. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  9. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    PubMed

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  10. Insulin resistance and muscle strength in older persons.

    PubMed

    Abbatecola, Angela M; Ferrucci, Luigi; Ceda, Gianpaolo; Russo, Cosimo R; Lauretani, Fulvio; Bandinelli, Stefania; Barbieri, Michelangela; Valenti, Giorgio; Paolisso, Giuseppe

    2005-10-01

    The functional consequences of an age-related insulin resistance (IR) state on muscle functioning are unknown. Because insulin is needed for adequate muscle function, an age-related insulin-resistant state may also be a determining factor. We evaluated the relationship between IR and handgrip muscle strength in men and women from a large population-based study (n = 968). The degree of IR was evaluated by the homeostasis model assessment (HOMA) and muscle strength was assessed using handgrip. Simple sex-stratified correlations demonstrated that, in men, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.321; p < .001), muscle area (r = 0.420; p < .001), muscle density (r = 0.263; p = .001), plasma albumin (r = 0.156; p = .001), insulin-like growth factor-1 (r = 0.258; p < .001), calcium (r = 0.140; p = .006), and testosterone (r = 0.325; p < .001) concentrations, whereas a negative association was found for age (r = -0.659; p < .001) and myoglobin plasma levels (r = -0.164; p =.001). In women, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.280; p < .001), muscle area (r = 0.306; p < .001), muscle density (r = 0.341; p = .001), plasma albumin (r = 0.140; p =.001), and insulin-like growth factor-1 (r = 0.300; p < .001), whereas a negative association was found for age (r = -0.563; p < .001), myoglobin levels (r = -0.164; p = .001), and IR (r = -0.130; p = .04). Sex-stratified analyses adjusted for multiple confounders showed that the relationship between IR and handgrip strength was found significant in women, whereas it was negligible and not significant in men.

  11. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  12. Elevated circulating irisin is associated with lower risk of insulin resistance: association and path analyses of obese Chinese adults.

    PubMed

    Shi, Xiulin; Lin, Mingzhu; Liu, Changqin; Xiao, Fangsen; Liu, Yongwen; Huang, Peiying; Zeng, Xin; Yan, Bing; Liu, Suhuan; Li, Xiaoying; Yang, Shuyu; Li, Xuejun; Li, Zhibin

    2016-07-29

    Evidence on the role of irisin in insulin resistance is limited and controversial, and pathways between them remain unknown. We aimed to examine the independent effects of circulating irisin and different adiposity measurements, as well as their potential interactions, on insulin resistance. We also aimed to explore possible pathways among circulating irisin, adiposity, glucose and insulin levels and insulin resistance. A cross-sectional study of 1,115 community- living obese Chinese adults, with data collection on clinical characteristics, glucose and lipid metabolic parameters and circulating irisin levels. Among the 1,115 subjects, 667 (59.8 %) were identified as insulin-resistance, and showed significantly decreased serum irisin than their controls (log-transformed irisin: 1.19 ± 2.34 v.s. 1.46 ± 2.05 ng/ml, p = 0.042). With adjustment for potential confounders, elevated circulating irisin was significantly associated with reduced risk of insulin resistance, with adjusted odds ratio per standard deviation increase of irisin of 0.871 (0.765-0.991, p = 0.036). As for different adiposity measurements, body fat percentage, but neither BMI nor waist, was significantly associated with increased risk of insulin resistance (OR: 1.152 (1.041-1.275), p = 0.006). No significant interaction effect between serum irisin and adiposity on insulin resistance was found. A one pathway model about the relationship between serum irisin and insulin resistance fits well (χ (2) = 44.09, p < 0.001; CFI-0.994; TLI =0.986; and RMSEA = 0.067), and shows that elevated circulating irisin might improve insulin resistance indirectly through lowering fasting insulin levels (standardized path coefficient = -0.046, p = 0.032). Elevated circulating irisin is associated with lower risk of insulin resistance indirectly through lowering fasting insulin.

  13. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    PubMed Central

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  14. The effect of different doses of vitamin D supplementation on insulin resistance during pregnancy.

    PubMed

    Soheilykhah, Sedigheh; Mojibian, Mahdieh; Moghadam, Maryam Jannati; Shojaoddiny-Ardekani, Ahmad

    2013-04-01

    Low serum vitamin D levels are correlated with insulin resistance during pregnancy. We have assessed the effects of different doses of vitamin D on insulin resistance during pregnancy. A randomized clinical trial was done on 120 women with a gestational age of less than 12 weeks. The women were divided into three groups randomly. Group A received 200 IU vitamin D daily, group B 50,000 IU vitamin D monthly and group C 50,000 IU vitamin D every 2 weeks from 12 weeks of pregnancy until delivery. The serum levels of fasting blood sugar (FBS), insulin, calcium and 25-hydroxyvitamin D were measured before and after intervention. We used the homeostatic model assessment of insulin resistance (HOMA-IR) as a surrogate measure of insulin resistance. The mean ± standard deviation of serum 25-hydroxyvitamin D increased in group C from 7.3 ± 5.9 to 34.1 ± 11.5 ng/ml and in group B it increased from 7.3 ± 5.3 to 27.23 ± 10.7 ng/ml, but the level of vitamin D in group A increased from 8.3 ± 7.8 to 17.7 ± 9.3 ng/ml (p < 0.001). The mean differences of insulin and HOMA-IR before and after intervention in groups A and C were significant (p = 0.01, p = 0.02). This study has shown that supplementation of pregnant women with 50 000 IU vitamin D every 2 weeks improved insulin resistance significantly.

  15. Effects of cross-training on markers of insulin resistance/hyperinsulinemia.

    PubMed

    Wallace, M B; Mills, B D; Browning, C L

    1997-09-01

    This study examined, through a randomized controlled trial, the effects of cross-training (combined resistance and endurance exercise) on markers of insulin resistance, (e.g., dyslipidemia, intra-abdominal obesity, hyperinsulinemia, and hypertension), body composition, and performance in hyperinsulinemic individuals. Sedentary adult males characterized as hyperinsulinemic (fasting insulin > 2 OuU.mL-1), randomly assigned to two groups (N = 8 each), completed 14 wk of training at 3 d.wk-1. An endurance-only (E) group performed both continuous cycle exercise and walking (30 min each at 60-70% heart rate reserve). A cross-training (C) group performed both endurance and resistance exercise (8 exercises, 4 sets/exercise, 8-12 repetitions/set) in a single session. Both E and C groups demonstrated similar increases in VO2max (25% and 27%) while only C demonstrated an increase in 1 RM bench press (19%) and leg press (25%). The changes induced by C training were significantly greater than those from E training alone in percent fat (6.9 +/- 1.3 vs 1.4 +/- 1.4), insulin concentration (8.5 +/- 2.7 vs 3.0 +/- 1.3 uU.mL-1), glucose levels (11.1 +/- 2.9 vs 5.9 +/- 2.6 mg.dL-1), HDL-C levels (5.1 +/- 1.3 vs 2.9 +/- 1.6 mg.dL-1), triglyceride concentration (43.8 +/- 13.6 mg.dL-1), and systolic blood pressure (14.6 +/- 5.5 vs 8.3 +/- 6.8 mm Hg). Results indicate that the addition of resistance training to an endurance training program will induce significantly greater differences in markers of insulin resistance and body composition in individuals with hyperinsulinemia than endurance training alone.

  16. Exploring pathway interactions in insulin resistant mouse liver

    PubMed Central

    2011-01-01

    Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6) was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well. PMID:21843341

  17. Intrauterine insulin resistance in fetuses of overweight mothers.

    PubMed

    Liu, Bin; Xu, Yun; Liang, Jian-Ming; Voss, Courtney; Xiao, Huan-Yu; Sheng, Wei-Yang; Sun, Yan-Hong; Wang, Zi-Lian

    2013-01-01

    To investigate the relationship between maternal overweight and fetal insulin resistance. Nineteen overweight and 30 lean pregnant women were recruited in the present study. Maternal and fetal insulin resistance were determined by measuring sex hormone binding globulin (SHBG) concentrations in maternal venous or umbilical cord serum, respectively. Maternal age, gestational age, height, pre-gravidity weight, pre-partum weight, as well as fetal gender, birth weight, birth height, and head circumference were collected as clinical data. Fetuses of overweight mothers had larger birth weight (3.58±0.55kg vs 3.32±0.42, adjusted P=0.006) and lower SHBG concentrations (26.64±3.65 vs 34.36±7.84, adjusted P=0.007) than those of lean mothers after values were adjusted for potential cofactors. Fetal SHBG level was negatively correlated with pre-gravidity body mass index (R=-0.392, adjusted P=0.025) and weight gain during pregnancy (R=-0.332, adjusted P=0.026) even with adjustment for potential cofactors. Among the 29 pregnant women with gestational diabetes mellitus, the overweight mothers had higher H1AC levels than their lean counterparts (6.47±0.44 vs 5.74±0.52, adjusted P=0.004). Intrauterine insulin resistance is more prominent in fetuses of overweight mothers, an effect that is decreased by weight gain control during pregnancy. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  18. High blood pressure and insulin resistance: influence of ethnic background.

    PubMed

    Ferrannini, E; Haffner, S M; Stern, M P; Mitchell, B D; Natali, A; Hazuda, H P; Patterson, J K

    1991-06-01

    Hyperinsulinaemia links non-insulin dependent diabetes (NIDDM), obesity, and hypertension, each an insulin-resistant state in its own right. Insulin resistance predicts the occurrence of NIDDM, and plays a major role in its pathogenesis. We tested the hypothesis that hyperinsulinaemia may also predict hypertension in a sample (n = 2905) of the mixed population of San Antonio, in which hyperinsulinaemia and NIDDM are more prevalent among Mexican-Americans than non-Hispanic whites. Whilst in the whole sample the hypertensives had significantly (P less than 0.001) higher plasma insulin concentrations than the normotensives, high blood pressure was significantly (P less than 0.01) more frequent among non-Hispanic whites than Mexican-Americans regardless of diabetes status. After adjusting for factors (age, sex, body mass, and body fat distribution) known to affect insulin levels, a direct relationship between post-glucose plasma insulin concentrations and prevalence of hypertension was still present in both ethnic groups. In Mexican-Americans, however, the standardized prevalence of hypertension was significantly (P less than 0.001) lower at any given insulin concentration. Post-glucose plasma glucose levels also were directly related to hypertension prevalence in both groups; again, the regression line was shifted downward and, furthermore, less steep (P less than 0.02) in Mexican-Americans, suggesting relative protection against the negative effect of hyperglycaemia on blood pressure. Dyslipidaemia (higher total cholesterol and triglyceride, and lower HDL-cholesterol concentrations) was strongly associated with hyperinsulinaemia and blood pressure in both ethnic groups. After adjusting for plasma insulin, only hypertriglyceridaemia was associated with high blood pressure, with no inter-ethnic difference.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    PubMed

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the

  20. Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats.

    PubMed

    Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels

    2010-02-01

    The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.