Sample records for accumulation rates increased

  1. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  2. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  3. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA

    USGS Publications Warehouse

    Smoak, J.M.; Swarzenski, P.W.

    2004-01-01

    This study examines historical changes in sediment and nutrient accumulation rates in Bear Lake along the northeastern Utah/Idaho border, USA. Two sediment cores were dated by measuring excess 210Pb activities and applying the constant rate of supply (CRS) dating model. Historical rates of bulk sediment accumulation were calculated based on the ages within the sediment cores. Bulk sediment accumulation rates increased throughout the last 100 years. According to the CRS model, bulk sediment accumulation rates were <25mg cm-2 year-1 prior to 1935. Between 1935 and 1980, bulk sediment accumulation rates increased to approximately 40mg cm -2 year-1. This increase in sediment accumulation probably resulted from the re-connection of Bear River to Bear Lake. Bulk sediment accumulation rates accelerated again after 1980. Accumulation rates of total phosphorus (TP), total nitrogen (TN), total inorganic carbon (TIC), and total organic carbon (TOC) were calculated by multiplying bulk sediment accumulation rates times the concentrations of these nutrients in the sediment. Accumulation rates of TP, TN, TIC, and TOC increased as a consequence of increased bulk sediment accumulation rates after the re-connection of Bear River with Bear Lake.

  4. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    NASA Astrophysics Data System (ADS)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  5. Temperature-dependence of biomass accumulation rates during secondary succession.

    PubMed

    Anderson, Kristina J; Allen, Andrew P; Gillooly, James F; Brown, James H

    2006-06-01

    Rates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm-dominated communities than in gymnosperm-dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature-dependence of photosynthesis to the rate of whole-ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem-level rate processes can be predicted based on the kinetics of individual metabolic rate.

  6. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  7. Late 20th Century increase in South Pole snow accumulation

    USGS Publications Warehouse

    Mosley-Thompson, E.; Paskievitch, J.F.; Gow, A.J.; Thompson, L.G.

    1999-01-01

    A compilation of the 37-year history of net accumulation at the South Pole [Mosley-Thompson et al., 1995] suggests an increase in net annual accumulation since 1965. This record is sporadic and its quality is compromised by spatially restricted observations and nonsystematic measurement procedures. Results from a new, spatially extensive network of 236 accumulation poles document that the current 5-year (1992-1997) average annual net accumulation at the South Pole is 84.5??8.9 mm water equivalent (w.e.). This accumulation rate reflects a 30% increase since the 1960s when the best, although not optimal, records indicate that it was 65 mm w.e. Identification of two prominent beta radioactivity horizons (1954/1955 and 1964/1965) in six firn cores confirms an increase in accumulation since 1965. Viewed from a longer perspective of accumulation provided by ice cores and a snow mine study, the net accumulation of the 30-year period, 1965-1994, is the highest 30-year average of this millennium. Limited data suggest this recent accumulation increase extends beyond the South Pole region and may be characteristic of the high East Antarctic Plateau. Enhanced accumulation over the polar ice sheets has been identified as a potential early indicator of warmer sea surface temperatures and may offset a portion of the current rise in global sea level. Copyright 1999 by the American Geophysical Union.

  8. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  9. A closer look at the Neogene erosion and accumulation rate increase

    NASA Astrophysics Data System (ADS)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  10. Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla).

    PubMed

    Tsurim, Ido; Sapir, Nir; Belmaker, Jonathan; Shanni, Itai; Izhaki, Ido; Wojciechowski, Michał S; Karasov, William H; Pinshow, Berry

    2008-05-01

    Fat accumulation by blackcaps (Sylvia atricapilla) is a prerequisite for successful migratory flight in the autumn and has recently been determined to be constrained by availability of drinking water. Birds staging in a fruit-rich Pistacia atlantica plantation that had access to water increased their body mass and fat reserves both faster and to a greater extent than birds deprived of water. We conducted a series of laboratory experiments on birds captured during the autumn migration period in which we tested the hypotheses that drinking water increases food use by easing limitations on the birds' dietary choices and, consequently, feeding and food processing rates, and that the availability of drinking water leads to improved digestion and, therefore, to higher apparent metabolizable energy. Blackcaps were trapped in autumn in the Northern Negev Desert, Israel and transferred to individual cages in the laboratory. Birds were provided with P. atlantica fruit and mealworms, and had either free access to water (controls) or were water-deprived. In experiment 1, in which mealworm availability was restricted, water-deprived birds had a fourfold lower fruit and energy intake rates and, consequently, gained less fat and total mass than control birds. Water availability did not affect food metabolizability. In experiment 2, in which mealworms were provided ad libitum, water availability influenced the birds' diet: water-restricted birds ate more mealworms, while control birds consumed mainly P. atlantica fruit. Further, in experiment 2, fat and mass gain did not differ between the two treatment groups. We conclude that water availability may have important consequences for fat accumulation in migrating birds while they fatten at stopover sites, especially when water-rich food is scarce. Restricted water availability may also impede the blackcap's dietary shift from insectivory to frugivory, a shift probably necessary for successful pre-migratory fattening.

  11. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  12. Increased de novo ceramide synthesis and accumulation in failing myocardium

    PubMed Central

    Ji, Ruiping; Akashi, Hirokazu; Drosatos, Konstantinos; Liao, Xianghai; Jiang, Hongfeng; Kennel, Peter J.; Brunjes, Danielle L.; Castillero, Estibaliz; Zhang, Xiaokan; Deng, Lily Y.; Homma, Shunichi; George, Isaac J.; Takayama, Hiroo; Naka, Yoshifumi; Goldberg, Ira J.

    2017-01-01

    Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction. PMID:28469091

  13. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  14. Using transplants to measure accumulation rates of epiphytic bryophytes in forests of western Oregon

    USGS Publications Warehouse

    Rosso, A.L.; Muir, Patricia S.; Rambo, T.

    2001-01-01

    We sought a simple and effective transplant method that could be used to measure biomass accumulation rates of epiphytic bryophytes. Trials were carried out in the Pseudotsuga menziesii-dominated forests of western Oregon. We tested multiple transplant methods over a 13-month period while comparing accumulation rates of Antitrichia curtipendula (Hedw.) Brid. and Isothecium myosuroides Brid. among an old-growth stand, a young stand, and a recent clearcut. In our study area, Antitrichia is considered to be an old-growth associate while Isothecium is a more ubiquitous species. Methods tested included containment in net bags, containment in hairnets, and directly tying mats to substrates. Three sizes of transplants were tested with both natural and inert artificial substrates. Transplants of approximately five g enclosed in plastic net bags and tied to either natural or artificial substrates worked well for our purposes. Only minor differences were found in mean accumulation rates between the old growth and young stand, though variation in accumulation rates was higher in the old growth. Neither species appeared capable of surviving in the clearcut. Antitrichia accumulated biomass 60% faster in the canopy than in the understory on average. Antitrichia also accumulated at a faster rate than Isothecium, with mean 13-month biomass increases of 11.8 and 3.7% respectively for 5 g transplants in the understory. Our results suggest that Antitrichia's association with old growth may be due more to dispersal or establishment limitations than to a decreased ability to grow in young stands.

  15. Trawling-induced alterations of deep-sea sediment accumulation rates during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Puig, P.; Paradis, S.; Masque, P.; Martin, J.; Juan, X.; Palanques, A.

    2015-12-01

    Commercial bottom trawling causes direct physical disturbance of the marine sedimentary environments by scraping and ploughing the seabed, generating periodic resuspension of surface sediments. However, the quantification of the sediment that is removed by trawling and exported across the continental margin remains largely unaddressed, and the preservation of the signal of such impacts in the geological record have been mostly overlooked. The analysis of sediment cores collected along the Catalan margin (NW Mediterranean) has allowed evaluating the contribution of this anthropogenic activity to the present-day sediment dynamics. Sediment cores at intensively trawled sites are characterized by over-consolidated sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sedimentary deposits. In turn, combined 210Pb and 137Cs chronologies indicate a significant increase of sediment accumulation rates within submarine canyon environments since the 1970s, coincidently with a strong impulse in the industrialization of the trawling fleets of this region. Two sampling sites that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied 1-2 decades after the first studies and revealed a second and even larger increase of sediment accumulation rates (>2 cm/y) occurring at the beginning of the XXI century. This recent change has been attributed to a preferential displacement of the trawling fleet towards fishing grounds surrounding submarine canyons and, also, to technical improvements in trawling vessels, presumably related to financial subsidies provided to the fishing sector. The alteration of sediment accumulation rates described in this continental margin may occur in many regions of the World's oceans given the wide geographical distribution of this human activity, and therefore, it could represent a potential marker of the Anthropocene in deep-sea environments.

  16. IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Jansik, Danielle P.; Owen, Antionette T.

    2013-08-05

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with X-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185±155 µm, and produced >3 mm thick layer after 120 h at 850 °C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  17. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Rodriguez, C. A.; Matyas, J.

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, andmore » on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.« less

  18. Carbon stocks and accumulation rates in Pacific Northwest forests: role of stand age, plant community, and productivity

    Treesearch

    Andrew N. Gray; Thomas R. Whittier; Mark E. Harmon

    2016-01-01

    Forest ecosystems are removing significant amounts of carbon from the atmosphere. Both abiotic resource availability and biotic interactions during forest succession affect C accumulation rates and maximum C stocks. However, the timing and controls on the peak and decline in C accumulation rates as stands age, trees increase in size, and canopy gaps become prevalent...

  19. Determination of mass accumulation rates and sediment radionuclide inventories in the deep Black Sea

    NASA Astrophysics Data System (ADS)

    Buesseler, Ken O.; Benitez, Claudia R.

    1994-11-01

    Accumulation rates were determined from a detailed profile of 210Pb excess in the top 3 cm of a box core from the deep waters of the western Black Sea. The data suggest a mass accumulation rate (MAR) of 69 ± 3g m -2y -1, less than half the MAR determined by varve counting. It is concluded that recognizable laminae couplets are not formed annually in these sediments. Further support for this conclusion is provided by the well documented fallout peaks of 239,240Pu and 137Cs from atmospheric nuclear weapons testing in the 1960s and the 1986 Chernobyl reactor accident. The 210Pb derived MAR from the top 3 cm is significantly higher than the long-term MAR determined from 14C data, suggesting an increase in accumulation rates within the past 1000-2000 years. The sedimen inventories of 210Pb excess and 239,240Pu match their expected supply, whereas most of the fallout 137Cs remains in the water column. The measured increase in 226Ra inventory in the top cm of this core matches the previously observed decrease in water column 226Ra during the past 30 years.

  20. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  1. Global warming precipitation accumulation increases above the current-climate cutoff scale

    PubMed Central

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  2. Global warming precipitation accumulation increases above the current-climate cutoff scale

    NASA Astrophysics Data System (ADS)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  3. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  4. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    PubMed

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  5. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE PAGES

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; ...

    2017-01-23

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  6. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs.

    PubMed

    Kelly, Erin N; Schindler, David W; St Louis, Vincent L; Donald, David B; Vladicka, Katherine E

    2006-12-19

    Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence.

  7. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs

    PubMed Central

    Kelly, Erin N.; Schindler, David W.; St. Louis, Vincent L.; Donald, David B.; Vladicka, Katherine E.

    2006-01-01

    Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence. PMID:17158215

  8. Understanding Ozark Forest Litter Variability Through a Synthesis of Accumulation Rates and Fire Events

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Keith W. Grabner; Jeremy Kolaks

    2006-01-01

    Measuring success of fuels management is improved by understanding rates of litter accumulation and decay in relation to disturbance events. Despite the broad ecological importance of litter, little is known about the parameters of accumulation and decay rates in Ozark forests. Previously published estimates were used to derive accumulation rates and combined litter...

  9. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  10. Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta

    USGS Publications Warehouse

    Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L.; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead

    2017-01-01

    Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.

  11. Accumulation rate in a tropical Andean glacier as a proxy for northern Amazon precipitation

    NASA Astrophysics Data System (ADS)

    da Rocha Ribeiro, Rafael; Simões, Jefferson Cardia; Ramirez, Edson; Taupin, Jean-Denis; Assayag, Elias; Dani, Norberto

    2018-04-01

    Andean tropical glaciers have shown a clear shrinkage throughout the last few decades. However, it is unclear how this general retreat is associated with variations in rainfall patterns in the Amazon basin. To investigate this question, we compared the annual net accumulation variations in the Bolivian Cordillera Real (Andes), which is derived from an ice core from the Nevado Illimani (16° 37' S, 67° 46' W), covering the period 1960-1999 using the Amazonian Rainfall Index, Northern Atlantic Index (TNA), Multivariate ENSO Index (MEI), and Pacific Decadal Oscillation (PDO). The accumulation rate at the Nevado Illimani ice core decreased by almost 25% after 1980, from 1.02 w.eq. a-1 (water equivalent per year) in the 1961-1981 period to 0.76 w.eq. a-1 in the 1981-1999 period. The Northern Amazonian Rainfall (NAR) index best reflects changes in accumulation rates in the Bolivian ice core. Our proposal is based on two observations: (1) This area shows reduced rainfall associated with a more frequent and intense El Niño (during the positive phase of the MEI). The opposite (more rain) is true during La Niña phases. (2) Comparisons of the ice core record and NAR, PDO, and MEI indexes showed similar trends for the early 1980s, represented by a decrease in the accumulation rates and its standard deviations, probably indicating the same causality. The general changes observed by early 1980s coincided with the beginning of a PDO warm phase. This was followed by an increase in the Amazonian and tropical Andean precipitation from 1999, coinciding with a new PDO phase. However, this increase did not result in an expansion of the Zongo Glacier area.

  12. Carbon isotope evidence for recent climate-related enhancement of CO 2 assimilation and peat accumulation rates in Antarctica.

    PubMed

    Royles, Jessica; Ogée, Jérôme; Wingate, Lisa; Hodgson, Dominic A; Convey, Peter; Griffiths, Howard

    2012-10-01

    Signy Island, maritime Antarctic, lies within the region of the Southern Hemisphere that is currently experiencing the most rapid rates of environmental change. In this study, peat cores up to 2 m in depth from four moss banks on Signy Island were used to reconstruct changes in moss growth and climatic characteristics over the late Holocene. Measurements included radiocarbon dating (to determine peat accumulation rates) and stable carbon isotope composition of moss cellulose (to estimate photosynthetic limitation by CO 2 supply and model CO 2 assimilation rate). For at least one intensively 14 C-dated Chorisodontium aciphyllum moss peat bank, the vertical accumulation rate of peat was 3.9 mm yr -1 over the last 30 years. Before the industrial revolution, rates of peat accumulation in all cores were much lower, at around 0.6-1 mm yr -1 . Carbon-13 discrimination (Δ), corrected for background and anthropogenic source inputs, was used to develop a predictive model for CO 2 assimilation. Between 1680 and 1900, there had been a gradual increase in Δ, and hence assimilation rate. Since 1800, assimilation has also been stimulated by the changes in atmospheric CO 2 concentration, but a recent decline in Δ (over the past 50-100 years) can perhaps be attributed to documented changes in temperature and/or precipitation. The overall increase in CO 2 assimilation rate ( 13 C proxy) and enhanced C accumulation ( 14 C proxy) are consistent with warmer and wetter conditions currently generating higher growth rates than at any time in the past three millennia, with the decline in Δ perhaps compensated by a longer growing season. © 2012 Blackwell Publishing Ltd.

  13. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  14. Constant-Differential-Pressure Two-Fluid Accumulator

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin; Dalton, Luke T.

    2010-01-01

    A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.

  15. Radon exhalation rates from building materials using electret ion chamber radon monitors in accumulators.

    PubMed

    Kotrappa, Payasada; Stieff, Frederick

    2009-08-01

    An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.

  16. Accumulation rate and mixing of shelf sediments in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lewis, R.C.; Coale, K.H.; Edwards, B.D.; Marot, M.; Douglas, J.N.; Burton, E.J.

    2002-01-01

    The distribution of excess 210Pb in 31 sediment cores was used to determine modern (last 100 yr) mass accumulation rates and the depth of sediment mixing on the continental shelf between Pacifica and Monterey, California, USA. Apparent mass accumulation rates average 0.27 g cm-2 yr-1 and range from 0.42 g cm-2 yr-1 to 0.12 g cm-2 yr-1. Accumulation rates were highest at mid-shelf water depths (60-100 m) adjacent to major rivers and near the head of the Ascension submarine canyon. Cores from water depths of less than 65 m had low, uniform 210Pb activity profiles and sandy textures. The uppermost 5-13 cm of 15 cores had uniform 210Pb activity profiles above a region of steadily decreasing 210Pb activity. This phenomenon was attributed to sediment mixing. The thickness of this upper layer of uniform 210Pb activity decreased southward from 13 cm, west of Pacifica, to less than 5 cm, near Monterey Canyon. This southward decrease may be attributed to shallower bioturbation in the southern study area. Integrated excess 210Pb activities were generally higher where sedimentation rates were high. They were also higher with increasing distance from major rivers. Thus, sedimentation rate alone does not explain the distribution of integrated excess 210Pb in this study area. Excess 210Pb in the seafloor is controlled by other factors such as sediment texture, the atmospheric deposition rate of 210Pb, and the residence time of sediment particles in the water column. ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Givelet, N.; Le Roux, G.; Weiss, D.; Cheburkin, A. K.; Knudsen, K.; Heinemeier, J.; van Der Knaap, W. O.; Norton, S. A.; Lohse, C.

    2005-01-01

    A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample ( 206Pb/ 207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10 -4 and 8.5 ± 1.8 × 10 -3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m 2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m 2/yr and 1.34 ± 0.29 μg/m 2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m 2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m 2

  18. Death rates reflect accumulating brain damage in arthropods.

    PubMed

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M J; Sheehy, Matt R J

    2005-09-22

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz-Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p < 0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence.

  19. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    PubMed

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  20. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition.

    PubMed

    Zak, Donald R; Freedman, Zachary B; Upchurch, Rima A; Steffens, Markus; Kögel-Knabner, Ingrid

    2017-02-01

    Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size-density fractionation and solid-state 13 C-NMR spectroscopy to explore the extent to which declines in microbial decay in a long-term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N-alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine-texture forest soils. © 2016 John Wiley & Sons Ltd.

  1. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  2. Brain glutathione reductase induction increases early survival and decreases lipofuscin accumulation in aging frogs.

    PubMed

    López-Torres, M; Pérez-Campo, R; Fernandez, A; Barba, C; Barja de Quiroga, G

    1993-02-01

    Brain catalase was continuously depleted throughout the life span starting with a large population of initially young and old frogs. Free radical-related parameters were measured in the brain tissue once per year after 2.5, 14.5, and 26.5 months of experimentation. Brain lipofuscin accumulation was observed after 14.5 and 26.5 months, and survival was continuously followed during 33 months. The age of the animal did not decrease endogenous antioxidants nor increase tissue peroxidation either in cross-sectional or longitudinal comparisons. Continuous catalase depletion similarly affected young and old animals, inducing glutathione reductase, tending to decrease oxidized glutathione/reduced glutathione (GSSG/GSH) ratio, decreasing lipofuscin accumulation in the brain, and increasing survival from 46% to 91% after 14.5 months. At 26.5 months of experimentation the loss of the glutathione reductase induction in catalase-depleted animals was accompanied by the presence of higher lipofuscin deposits than in controls and was followed by a great increase in mortality rate. Even though the maximal life span (7 years) was the same in the control and treated animals which were already old (4.2 years) at the beginning of the experiment, the treated animals showed a strong reduction in the rates of early death. It is proposed that the maintenance of a high antioxidant/prooxidant balance in the vertebrate brain greatly increases the probability of the individual to reach the final segments of its species-specific life span.

  3. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    PubMed

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  4. The accumulation rate of meteorite falls at the earth's surface - The view from Roosevelt County, New Mexico

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wells, Gordon L.; Rendell, Helen M.

    1990-01-01

    The discovery of 154 meteorite fragments within an 11-sq km area of wind-excavated basins in Roosevelt County, New Mexico, permits a new calculation of the accumulation rate of meteorite falls at the earth's surface. Thermoluminescence dating of the coversand unit comprising the prime recovery surface suggests the maximum terrestrial age of the meteorites to be about 16.0 ka. The 68 meteorite fragments subjected to petrological analyses represent a minimum of 49 individual falls. Collection bias has largely excluded carbonaceous chondrites and achondrites, requiring the accumulation rate derived from the recovered samples to be increased by a factor of 1.25. Terrestrial weathering destroying ordinary chondrites can be modeled as a first-order decay process with an estimated half-life of 3.5 + or - 1.9 ka on the semiarid American High Plains. Having accounted for the age of the recovery surface, area of field searches, pairing of finds, collection bias and weathering half-life, an accumulation rate of 940 falls/a per 10 to the 6th sq km is calculated for falls greater than 10 g total mass. This figure exceeds the best-constrained previous estimate by more than an order of magnitude. One possible reason for this disparity may be the extraordinary length of the fall record preserved in the surficial geology of Roosevelt County. The high accumulation rate determined for the past 16 ka may point to the existence of periods when the meteorite fall rate was significantly greater than at present.

  5. Comparison of elemental accumulation rates between ferromanganese deposits and sediments in the South Pacific Ocean

    USGS Publications Warehouse

    Kraemer, T.; Schornick, J.C.

    1974-01-01

    Rates of accumulation of Fe and Mn, as well as Cu, Ni, Co, Pb, Zn, Hg, U and Th have been determined for five ferromanganese deposits from four localities in the South Pacific Ocean. Manganese is accumulating in nodules and crusts at a rate roughly equivalent to that found to be accumulating in sediments in the same area. Iron shows a deficiency in accumulation in nodules and crusts with respect to sediments, especially near the continents, but also in the central and south-central Pacific. Copper is accumulating in nodules and crusts at a rate one order of magnitude less than the surrounding sediments. This is interpreted as meaning that most of the Mn is supplied as an authigenic phase to both sediments and nodules while Fe is supplied mostly by ferromanganese micro-nodules and by detrital and adsorbed components of sediments; and Cu is enriched in sediments relative to nodules and crusts most probably through biological activity. ?? 1974.

  6. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper we propose an innovative channel coding scheme called Accumulate Repeat Accumulate codes. This class of codes can be viewed as trubo-like codes, namely a double serial concatenation of a rate-1 accumulator as an outer code, a regular or irregular repetition as a middle code, and a punctured accumulator as an inner code.

  7. Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity.

    PubMed

    Larson, Chad A; Passy, Sophia I

    2013-03-01

    The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s(-1)), high (30-cm · s(-1)), and variable (9- to 32-cm · s(-1)) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity.

  8. Rates of Species Accumulation and Taxonomic Diversification during Phototrophic Biofilm Development Are Controlled by both Nutrient Supply and Current Velocity

    PubMed Central

    2013-01-01

    The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s−1), high (30-cm · s−1), and variable (9- to 32-cm · s−1) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity. PMID:23335757

  9. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  10. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  11. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  12. Determining rates of sediment accumulation on the Mekong shelf: Timescales, steady-state assumptions, and radiochemical tracers

    NASA Astrophysics Data System (ADS)

    DeMaster, D. J.; Liu, J. P.; Eidam, E.; Nittrouer, C. A.; Nguyen, T. T.

    2017-09-01

    Thirty-two kasten cores, collected from the proximal Mekong continental shelf, have been analyzed for their excess 210Pb distributions in an effort to establish rates of sediment accumulation over the past 100 years. The length of the cores varied from 0.5 to 3 m, and stations sampled topset, foreset, and bottomset beds (water depths 7-21 m). Apparent excess 210Pb sediment accumulation rates ranged from > 10 cm/y (no down-core decrease of excess activity over 300 cm core length) near the Song Hau river mouth, to 1-3 cm/y in topset and foreset beds within 20-50 km of the river mouth, to rates as low as 0.4 cm/y in cores from bottomset beds. The 210Pb sediment accumulation rates yield an overall sediment burial rate of 6.1 × 1013 g/y for the proximal deltaic deposits, which corresponds to 43% of the total modern Mekong sediment burial on the southern Vietnam shelf (1.4 × 1014 g/y; based on our 210Pb and seismic data and 210Pb data from the literature). This shelf burial rate is in reasonable agreement with current long-term estimates of Mekong River sediment discharge (1.3-1.6 × 1014 g/y) from the literature. The inventory of excess 210Pb in the proximal Mekong deltaic deposits indicates that the shoreward flow of offshore water (entrained during river/ocean mixing) is approximately twice the flow of the Mekong freshwater discharge. Organic-carbon 14C ages were measured on 10 cores from the proximal Mekong delta and compared to 210Pb sediment accumulation rates in the same core. The 210Pb accumulation rates in all 10 cores were considered to be more robust and accurate than the 14C geochronologies, primarily because of down-core variations in the source of organic carbon deposited on the seafloor (old terrestrial carbon versus younger marine carbon). Variations in the source of organic carbon accumulating in the seabed were resolved by measuring the δ13C value of the seabed organic carbon.

  13. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  14. Topographic control and accumulation rate of some Holocene coral reefs: south Florida and Dry Tortugas

    USGS Publications Warehouse

    Shinn, E.A.; Hudson, J.H.; Halley, R.B.; Lidz, B.H.; Taylor, D.L.

    1977-01-01

    Core drilling and examination of underwater excavation on 6 reef sites in south Florida and Dry Tortugas revealed that underlying topography is the major factor controlling reef morphology. Carbon-14 dating on coral recovered from cores enables calculation of accumulation rates. Accumulation rates were found to range from 0.38 m/1000 years in thin Holocene reefs to as much as 4.85 m/1000 years in thicker buildups. Cementation and alteration of corals were found to be more pronounced in areas of low buildup rates than in areas of rapid accumulation rates. Acropora palmata, generally considered the major reef builder in Florida, was found to be absent in most reefs drilled. At Dry Tortugas, the more than 13-meter thick Holocene reef did not contain A. palmata. The principal reef builders in this outer reef are the same as those which built the Pleistocene Key Largo formation, long considered to be fossilized patch reef complex.

  15. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    PubMed

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  16. Daily accumulation rates of marine debris on sub-Antarctic island beaches.

    PubMed

    Eriksson, Cecilia; Burton, Harry; Fitch, Stuart; Schulz, Martin; van den Hoff, John

    2013-01-15

    The worlds' oceans contain a large but unknown amount of plastic debris. We made daily collections of marine debris stranded at two sub-Antarctic islands to establish (a) physical causes of strandings, and (b) a sampling protocol to better estimate the oceans' plastic loading. Accumulation rates at some beaches were dependent on tide and onshore winds. Most of the 6389 items collected were plastic (Macquarie 95%, Heard 94%) and discarded or lost fishing gear comprised 22% of those plastic items. Stalked barnacles (Lepas spp.) were a regular attachment on Macquarie debris but not at Heard Island. The daily accumulation rate of plastic debris on Macquarie Island was an order of magnitude higher than that estimated from monthly surveys during the same 4 months in the previous 5 years. This finding suggests that estimates of the oceans' plastic loading are an order of magnitude too low. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats

    PubMed Central

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Fujii, Aya; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Morisawa, Daisuke; Ohyanagi, Mitsumasa; Tsujino, Takeshi; Masuyama, Tohru

    2013-01-01

    Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis. PMID:24116080

  18. Acidified seawater increases accumulation of cobalt but not cesium in manila clam Ruditapes philippinarum.

    PubMed

    Sezer, Narin; Kocaoğlan, Hasan Oğuz; Kılıç, Önder; Lacoue-Labarthe, Thomas; Belivermiş, Murat

    2018-04-01

    The pH of seawater around the world is expected to continue its decline in the near future in response to ocean acidification that is driven by heightened atmospheric CO 2 emissions. Concomitantly, economically-important molluscs that live in coastal waters including estuaries and embayments, may be exposed to a wide assortment of contaminants, including trace metals and radionuclides. Seawater acidification may alter both the chemical speciation of select elements as well as the physiology of organisms, and may thus pose at risk to many shellfish species, including the manila clam Ruditapes philippinarum. The bioconcentration efficiency of two common radionuclides associated with the nuclear fuel cycle, 134 Cs and 57 Co, were investigated by exposing live clams to dissolved 134 Cs and 57 Co at control (pH = 8.1) and two lowered pH (pH = 7.8 and 7.5) levels using controlled aquaria. The uptake and depuration kinetics of the two radionuclides in the whole-body clam were followed for 21 and 35 days, respectively. At steady-state equilibrium, the concentration factor (CF ss ) for 57 Co increased as the pH decreased (i.e. 130 ± 5, 194 ± 6, and 258 ± 10 at pH levels 8.1, 7.8 and 7.5, respectively), whereas the 134 Cs uptake was not influenced by a change in pH conditions. During depuration, the lowest depuration rate constant of 57 Co by the manila clam was observed at the intermediate pH of 7.8. An increase in the accumulation of 57 Co at the intermediate pH value was thought to be caused mainly by the aragonitic shell of the clam, as well as the low salinity and alkalinity of seawater used in the experiment. Considering that accumulation consists of uptake and depuration, among the three pH conditions moderately acidified seawater enhanced most the accumulation of 57 Co. Accumulation of 134 Cs was not strongly influenced by a reduced pH condition, as represented by an analogous uptake constant rate and CF ss in each treatment. Such results suggest that

  19. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea

    NASA Astrophysics Data System (ADS)

    Demaster, David J.; Ragueneau, Olivier; Nittrouer, Charles A.

    1996-08-01

    . P preservation efficiencies remained relatively high (24-65%) even when the accumulation rates were low (1-2 cm kyr-1) because of the near-zero phosphate fluxes out of the seabed. Of the total P in the seabed (0.04-0.09 wt. %), approximately 25% existed in the form of organic P. The total amount of biogenic silica accumulating on the Ross Sea shelf is ˜2.3 × 1012 g SiO2 yr-1, which is approximately an order of magnitude less than the Ledford-Hoffman et al. [1986] estimate that was based on 210Pb chronologies. Biogenic silica accumulation rates in the southern, central, and western Ross Sea increased during the mid and late Holocene, reaching their maximum values during the past 500 to 1000 years.

  20. A Probabilistic Method of Assessing Carbon Accumulation Rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska

    NASA Technical Reports Server (NTRS)

    Nichols, Jonathan E.; Peteet, Dorothy M.; Frolking, Steve; Karavias, John

    2017-01-01

    Arctic peatlands are an important part of the global carbon cycle, accumulating atmospheric carbon as organic matter since the Late glacial. Current methods for understanding the changing efficiency of the peatland carbon sink rely on peatlands with an undisturbed stratigraphy. Here we present a method of estimating primary carbon accumulation rate from a site where permafrost processes have either vertically or horizontally translocated nearby carbon-rich sediment out of stratigraphic order. Briefly, our new algorithm estimates the probability of the age of deposition of a random increment of sediment in the core. The method assumes that if sediment age is measured at even depth increments, dates are more likely to occur during intervals of higher accumulation rate and vice versa. Multiplying estimated sedimentation rate by measured carbon density yields carbon accumulation rate. We perform this analysis at the Imnavait Creek Peatland, near the Arctic Long Term Ecological Research network site at Toolik Lake, Alaska. Using classical radiocarbon age modeling, we find unreasonably high rates of carbon accumulation at various Holocene intervals. With our new method, we find accumulation rate changes that are in improved agreement within the context of other sites throughout Alaska and the rest of the Circum-Arctic region.

  1. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  2. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.

    PubMed

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-21

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p < 0.05) in the CO2 acidified seawater during the 30 days experiment and the health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd(2+)/Ca(2+) in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  3. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety

    PubMed Central

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-01

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p < 0.05) in the CO2 acidified seawater during the 30 days experiment and the health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd2+/Ca2+ in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion. PMID:26795597

  4. The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers.

    PubMed

    Meighan, Michelle M; Fenus, Taressa; Karey, Emma; MacNeil, Joseph

    2011-06-01

    In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd(2+) in hydroponic solution had initial translocation rates of at least 0.12 mmol kg(-1)h(-1) and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g(-1) and extracting 1400 μg plant(-1). When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g(-1)min(-1). The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage

    PubMed Central

    Garcillán, Pedro P.

    2016-01-01

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  6. Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian Mustard1

    PubMed Central

    de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman

    1999-01-01

    Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues. PMID:9952452

  7. Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James L.; Moore, Peggy E.

    2016-01-01

    Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.

  8. Natural and Anthropogenic Causes of Accelerated Sediment Accumulation Rates in Nehalem Bay Salt Marshes, Oregon

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Wheatcroft, R. A.; Peck, E. K.; Brophy, L.

    2016-12-01

    Vertical sediment accretion in estuarine salt marshes occurs as sediments settle out of the water column and onto marsh soils during periods of tidal inundation - thus accretion is influenced by both relative sea level rise (RSLR) and sediment flux to the estuary. Oregon estuaries are understudied compared to their East and Gulf Coast counterparts, but provide a unique opportunity to disentangle these effects. A broader study in three Oregon estuaries (Peck et al., this session) indicates RSLR as the dominant factor controlling sedimentation rates. Working in Nehalem Bay (northern Oregon coast), replicate sediment cores were taken along several transects across an elevation gradient for analysis of sediment and carbon accumulation using CT scans, gamma detection of Pb-210, X-Ray Fluorescence (XRF) and Loss-on-Ignition (LOI). Preliminary results indicate sediment accumulation rates over the past century are higher than rates seen in other comparable Oregon salt marshes; this is consistent with past studies and preliminary analysis of remote sensing data that show significant horizontal expansion of Nehalem marshes. A number of possible causes for the high sediment accumulation rates - hydroclimate of Nehalem River, extensive timber harvesting, forest fires such as the so-called Tillamook Burns, and diking of adjacent marshes - are being explored.

  9. Increase in carbon accumulation in a boreal peatland following a period of wetter climate and long-term decrease in nitrogen deposition.

    PubMed

    Utstøl-Klein, Simon; Halvorsen, Rune; Ohlson, Mikael

    2015-06-01

    Rates of peat growth and carbon (C) accumulation in a Sphagnum-dominated boreal peatland in south-east Norway were compared over two time periods each 17 yr long, that is, an earlier period from 1978 to 1995 and a recent period from 1995 to 2012. Our research was based on 109 peat cores. By using exactly the same study area and sampling protocols to obtain data for the two time periods, we were able to obtain a clear picture of the spatio-temporal patterns of peat accumulation. We show that peat growth and C accumulation were significantly higher in the recent than in the earlier time period. Interestingly, nitrogen (N) deposition was lower in the recent than in the earlier time period, while precipitation increased in the recent time period. Temperatures did not show any consistent trends over the time periods. Although our data do not allow assessment of the relative importance of declining N deposition vs increasing precipitation as drivers of peat accumulation, our results suggest that peatland C sequestration is not significantly inhibited by N pollution at current precipitation and N deposition levels. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Response of salt-marsh carbon accumulation to climate change.

    PubMed

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  12. Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli.

    PubMed

    Sutterlin, Holly A; Zhang, Sisi; Silhavy, Thomas J

    2014-09-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Increasing catechin and procyanindin accumulation in high-CO2-treated Fragaria vesca strawberries.

    PubMed

    Blanch, María; Alvarez, Inma; Sanchez-Ballesta, María T; Escribano, María I; Merodio, Carmen

    2012-08-01

    This paper deals with the impact of low temperature and high CO2 levels on flavonols, proanthocyanidins, and anthocyanins, synthesized via branched pathways from common precursors, in strawberries (Fragaria vesca L.). Flavonoids were identified with Q-TOF equipment and quantified by HPLC-quadrupole. Proanthocyanins B1 and B3 accumulated in CO2-treated strawberries, whereas in untreated (air) fruit, flavonoid production was redirected toward anthocyanin accumulation with a sharp decrease in catechin and procyanidin B3 levels. Moreover, in CO2-treated fruit, mainly in those with 20% CO2, anthocyanin accumulation did not decline. Due to its antifungal activity, catechin induction in CO2-treated strawberries could explain the capacity of high CO2 treatments to reduce fungal decay. Ascorbic acid content increased in 40% CO2-treated fruits, whereas in those treated with 20% CO2 an increase in flavonol content was observed. Despite these differences, similar antioxidant capacities were found in untreated and CO2-treated Mara de Bois strawberries.

  14. Peat Accumulation in the Everglades (USA) during the Past 4000 Years: Rates, Drivers, and Sources of Error

    NASA Astrophysics Data System (ADS)

    Glaser, P. H.; Volin, J. C.; Givnish, T. J.; Hansen, B. C.; Stricker, C. A.

    2012-12-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. AMS-14C dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands

  15. Constant Flux Proxies and Pleistocene Sediment Accumulation Rates on the Juan de Fuca Ridge in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; d'Almeida, M.; Huybers, P. J.; Winckler, G.

    2016-12-01

    Mass accumulation rates of marine sediments are often employed to constrain deposition rates of important proxies such as terrigenous dust, carbonate, and biogenic opal to quantitatively examine variations in continental aridity, atmospheric transport, and biologic productivity across changing climatic conditions. However, deposition rates that are estimated using traditional mass accumulation rates calculated from sediment core age models can be subject to bias from lateral sediment transport and limited age model resolution. Constant flux proxies, such as extraterrestrial helium-3 (3HeET) and excess thorium-230 (230ThXS), can be used to calculate vertical sediment accumulation rates that are independent of age model uncertainties and the effects of lateral sediment transport. While a short half-life limits analyses of 230ThXS to the past 500 ka, 3HeET is stable and could be used to constrain sedimentary fluxes during much of the Cenozoic. Despite the vast paleoceanographic potential of constant flux proxies, few studies have directly compared the behavior of 230ThXS and 3HeET using measurements from the same samples. Sediment grain size fractionation and local scavenging effects may differentially bias one or both proxy systems and complicate the interpretation of 230ThXS or 3HeET data. We will present a new record of vertical sediment accumulation rates spanning the past 600 ka in the Northeast Pacific constrained using analyses of both 3HeET and 230ThXS in two sediment cores from cruise AT26-19 on the Juan de Fuca Ridge. Such a record allows for intercomparison of both constant flux proxies in the mid-ocean ridge environment and examination of sedimentary behavior across multiple glacial cycles. The 230ThXS-derived accumulation rates typically range from 0.5 to 2 g cm-2 ka-1 over the past 450 ka, with periods of maximum deposition coinciding with glacial maxima. Preliminary results of samples analyzed with both 3HeET and 230ThXS indicate relative consistency

  16. A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Kumar, Niraj; Stute, Martin; Anderson, Robert F.; Seidl, Michele A.; Schlosser, Peter; Mix, Alan

    1995-07-01

    We present a detailed down-core analysis of helium isotope ratios and concentrations for bulk sediments from the central Equatorial Pacific that span the last two glacial-interglacial cycles. Measured 3He/4He ratios range from 1.0 × 10 -5 to 2.1 × 10 -4, or 7.4 to 149 times the atmospheric ratio. The 3He from interplanetary dust particles (IDPs) constitutes virtually all of the 3He measured within the sediment. Because carbonate accumulation rates are high in the Equatorial Pacific, the measured 3He concentrations are lower than have been measured elsewhere, and range from 4.7 × 10 -13 to 3.0 × 10 -12 cm 3STP · g -1. If the cosmic dust 3He-flux is constant with time, sediment mass accumulation rates can be determined from the 3He concentration in sediments. The excess 230Th technique is an entirely independent method for calculating sediment mass accumulation rates because its source is in-situ decay of 234U in seawater. To first order, initial excess 230Th activities correlate with 3He concentrations within this core. Based on the 230Th results, we estimate the 3He-flux to the Earth's surface as (9.6 ± 2.0) × 10 -16 cm 3STP · cm -2 · a -1. If this flux has remained constant over extended periods of time, it can be used to determine sediment accumulation rates beyond the 230Th range (300,000 yr).

  17. High population increase rates.

    PubMed

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  18. Surface Creep Rate and Moment Accumulation Rate Along the Aceh Segment of the Sumatran Fault From L-band ALOS-1/PALSAR-1 Observations

    NASA Astrophysics Data System (ADS)

    Tong, X.; Sandwell, D. T.; Schmidt, D. A.

    2018-04-01

    We analyzed the interferometric synthetic aperture radar data from the ALOS-1/PALSAR-1 satellite to image the interseismic deformation along the Sumatran fault. The interferometric synthetic aperture radar time series analysis reveals up to 20 mm/year of aseismic creep on the Aceh segment along the Northern Sumatran fault. This is a large fraction of the total slip rate across this fault. The spatial extent of the aseismic creep extends for 100 km. The along-strike variation of the aseismic creep has an inverse "U" shape. An analysis of the moment accumulation rate shows that the central part of the creeping section accumulates moment at approximately 50% of the rate of the surrounding locked segments. An initial analysis of temporal variations suggests that the creep rate may be decelerating with time, suggesting that the creep rate is adjusting to a stress perturbation from nearby seismic activity. Our study has implications to the earthquake hazard along the northern Sumatran fault.

  19. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males.

    PubMed

    Woodruff, Ronny C; Balinski, Michael A

    2018-05-09

    To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.

  20. Economic stress in childhood and adulthood, and self-rated health: a population based study concerning risk accumulation, critical period and social mobility.

    PubMed

    Lindström, Martin; Hansen, Kristina; Rosvall, Maria

    2012-09-11

    Research in recent decades increasingly indicates the importance of conditions in early life for health in adulthood. Only few studies have investigated socioeconomic conditions in both childhood and adulthood in relation to health testing the risk accumulation, critical period, and social mobility hypotheses within the same setting. This study investigates the associations between economic stress in childhood and adulthood, and self-rated health with reference to the accumulation, critical period and social mobility hypotheses in life course epidemiology, taking demographic, social support, trust and lifestyle factors into account. The public health survey in Skåne (southern Sweden) in 2008 is a cross-sectional postal questionnaire study based on a random sample, in which 28,198 persons aged 18-80 years participated (55% participation). Logistic regression models were used to investigate associations between economic stress in childhood and adulthood, and self-rated health. Three life-course socioeconomic models concerning the association between economic stress and self-rated health (SRH) were investigated. The results showed a graded association between the combined effect of childhood and adulthood economic stress and poor SRH in accordance with the accumulation hypothesis. Furthermore, upward social mobility showed a protecting effect and downward mobility increased odds ratios of poor SRH in accordance with the social mobility hypothesis. High/severe economic stress exposures in both stages of life were independently associated with poor SRH in adulthood. Furthermore, stratifying the study population into six age groups showed similar odds ratios of poor SRH regarding economic stress exposure in childhood and adulthood in all age groups among both men and women. The accumulation and social mobility hypotheses were confirmed. The critical period model was confirmed in the sense that both economic stress in childhood and adulthood had independent effects on

  1. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    PubMed

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  2. Acute Stimulant Treatment and Reinforcement Increase the Speed of Information Accumulation in Children with ADHD.

    PubMed

    Fosco, Whitney D; White, Corey N; Hawk, Larry W

    2017-07-01

    The current studies utilized drift diffusion modeling (DDM) to examine how reinforcement and stimulant medication affect cognitive task performance in children with ADHD. In Study 1, children with (n = 25; 88 % male) and without ADHD (n = 33; 82 % male) completed a 2-choice discrimination task at baseline (100 trials) and again a week later under alternating reinforcement and no-reinforcement contingencies (400 trials total). In Study 2, participants with ADHD (n = 29; 72 % male) completed a double-blind, placebo-controlled trial of 0.3 and 0.6 mg/kg methylphenidate and completed the same task utilized in Study 1 at baseline (100 trials). Children with ADHD accumulated information at a much slower rate than controls, as evidenced by a lower drift rate. Groups were similar in nondecision time and boundary separation. Both reinforcement and stimulant medication markedly improved drift rate in children with ADHD (ds = 0.70 and 0.95 for reinforcement and methylphenidate, respectively); both treatments also reduced boundary separation (ds = 0.70 and 0.39). Reinforcement, which emphasized speeded accuracy, reduced nondecision time (d = 0.37), whereas stimulant medication increased nondecision time (d = 0.38). These studies provide initial evidence that frontline treatments for ADHD primarily impact cognitive performance in youth with ADHD by improving the speed/efficiency of information accumulation. Treatment effects on other DDM parameters may vary between treatments or interact with task parameters (number of trials, task difficulty). DDM, in conjunction with other approaches, may be helpful in clarifying the specific cognitive processes that are disrupted in ADHD, as well as the basic mechanisms that underlie the efficacy of ADHD treatments.

  3. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw

    Treesearch

    Caitlin E. Hicks Pries; Edward A.G. Schuur; K. Grace Crummer

    2012-01-01

    Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by...

  5. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  6. Recent accumulation rates of an alpine glacier derived from firn cores and repeated helicopter-borne GPR

    NASA Astrophysics Data System (ADS)

    Sold, L.; Huss, M.; Eichler, A.; Schwikowski, M.; Hoelzle, M.

    2014-08-01

    The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a new method for estimating annual accumulation rates on a temperate alpine glacier based on the interpretation of internal reflection horizons (IRH) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal traveltime is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR profiles intersect in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRH correspond to density maxima, but not exclusively to former summer glacier surfaces. From GPR profiles across the accumulation area, we obtain spatial distributions of water equivalent for at least four annual firn layers, reaching a mean density of 0.74 g cm-3. Refreezing accounts for 9% of the density increase over time and depth. The strongest limitation to our method is the dependence on layer chronology assumptions. The uncertainties inherent to the modelling approach itself are in the same order of conventional point measurements in snow pits. We show that GPR can be used to complement existing mass balance monitoring programs on temperate alpine glaciers, but also to retrospectively extend newly initiated time series.

  7. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be

  8. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster.

    PubMed

    Avila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora

    2006-05-01

    In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.

  9. Increase of the Spontaneous Mutation Rate in a Long-Term Experiment With Drosophila melanogaster

    PubMed Central

    Ávila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora

    2006-01-01

    In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was ∼2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2–3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation. PMID:16547099

  10. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  11. Spatiotemporal patterns of mercury accumulation in lake sediments of western North America

    USGS Publications Warehouse

    Drevnick, Paul; Cooke, Colin A.; Barraza, Daniella; Blais, Jules M.; Coale, Kenneth; Cumming, Brian F.; Curtis, Chris; Das, Biplob; Donahue, William F.; Eagles-Smith, Collin A.; Engstrom, Daniel R.; Fitzgerald, William F.; Furl, Chad V.; Gray, John R.; Hall, Roland I.; Jackson, Togwell A.; Laird, Kathleen R.; Lockhart, W. Lyle; Macdonald, Robie W.; Mast, M. Alisa; Mathieu, Callie; Muir, Derek C.G.; Outridge, Peter; Reinemann, Scott; Rothenberg, Sarah E.; Ruiz-Fernandex, Ana Carolina; St. Louis, V.L.; Sanders, Rhea; Sanei, Hamed; Skierszkan, Elliott; Van Metre, Peter C.; Veverica, Timothy; Wiklund, Johan A.; Wolfe, Brent B.

    2016-01-01

    For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2 μg/m2 per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of “legacy” mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

  12. Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas.

    PubMed

    Matteucci, M L; Anyarambhatla, G; Rosner, G; Azuma, C; Fisher, P E; Dewhirst, M W; Needham, D; Thrall, D E

    2000-09-01

    The effect of hyperthermia on the accumulation of technetium-99m-labeled liposomes was studied in feline sarcomas. Each cat received two separate injections of liposomes. The first was used to quantify the amount of technetium-99m-labeled liposomes within the tumor under normothermic conditions. The second injection was made at the beginning of a 60-min hyperthermia procedure. Planar scintigraphy was used to measure the activity of technetium-99m-labeled liposomes within the tumor at predetermined times up to 18 h after injection. Regions of interest were drawn for the tumor, lungs, liver, kidney, and aorta. Counts in the regions of interest were decay corrected. Counts/pixel in the tumor under normothermic and hyperthermic conditions were normalized to aorta counts/pixel. A total of 16 cats were eligible for the study. In two of the 16 cats, incomplete count data precluded analysis. In the remaining 14 cats, hyperthermia resulted in a significant increase in liposome accumulation in the tumor (P = 0.001). Tumor volume ranged from 1.2 to 236.2 cm3, and thermal dose ranged from 2.0 to 243.3 CEM43CT90 (equivalent time that the 10th percentile temperature was equal to 43 degrees C). There was not a relationship between either tumor volume or hyperthermia dose on the magnitude of increased liposome accumulation, suggesting that this method has application across a range of tumor volumes and degrees of heatibility.

  13. Enhanced accumulation of PCB congeners by Baltic Sea blue mussels, Mytilus edulis, with increased algae enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilek, M.; Bjoerk, M.; Broman, D.

    The objective of this study was to examine if natural variations in the quantity of phytoplankton-derived particulate and dissolved organic carbon influences the accumulation of polychlorinated biphenyls (PCBs) in the tissues of Baltic Sea blue mussels (Mytilus edulis L.). In a laboratory flow-through experiment the authors exposed M. edulis to the technical PCB mixture Aroclor{reg_sign} 1248 for 21 d at three different enrichments of the unicellular green algae Chlamydomonas sp., 0.10, 0.16, and 0.32 mg particulate organic carbon (POC)/L. Tissue and water concentrations were determined for seven PCB congeners and 21-d bioaccumulation factors were calculated against total water concentrations. Contrarymore » to what would be expected, an increase in algae enrichment from 0.10 to 0.32 mg POC/L resulted in an enhanced PCB accumulation by a factor of approx. 2. This increase in PCB accumulation was more pronounced for PCB congeners with lower hydrophobicity. These observations have implications for the design of laboratory accumulation studies and potentially for PCB accumulation and cycling in field populations of suspension-feeding mussels in response to changes in eutrophication status.« less

  14. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise

    USGS Publications Warehouse

    Bacon, M.P.; Rosholt, J.N.

    1982-01-01

    Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33??41.2???N, 57??36.9???W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex 230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in ??g/cm2-1000 y, are: 4300 ?? 1100 for Mn, 46 ?? 16 for Ni and 76 ?? 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater. ?? 1982.

  15. Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    NASA Technical Reports Server (NTRS)

    Anschuetz, H.; Sinisalo, A.; Isaksson, E.; McConnell, J. R.; Hamran, S.-E.; Bisiaux, M. M.; Pasteris, D.; Neumann, T. A.; Winther, J.-G.

    2011-01-01

    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

  16. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error

    USGS Publications Warehouse

    Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.

    2012-01-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.

  17. Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules.

    PubMed

    Vjayan, T; Vadivelu, V M

    2017-12-01

    The effects of variable aeration in the famine period on polyhydroxyalkanoate (PHA) accumulation in aerobic granules were investigated. Results showed that regardless of the aeration rates used during famine period, all aerobic granules achieved a similar chemical oxygen demand removal and PHA content. The decrease in famine-period aeration rates accelerated the maximum PHA accumulation together with increase in granular size and settling ability. The PHA-accumulating microorganisms were found to have shifted closer to the surface of the granules when the aeration rate was reduced. Moreover, PHA compositional changes occurred, where the hydroxyvalerate content had increased with the reduction in aeration rate. Ultimately, the results indicate that the requirement of aeration for PHA accumulation in aerobic granules is highly insignificant in the famine phase. PHA production in aerobic granules under zero aeration in the famine period may result in an energy input reduction of up to 74%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.

  19. Vascular dilation, tachycardia, and increased inotropy occur sequentially with increasing epinephrine dose rate, plasma and myocardial concentrations, and cAMP

    PubMed Central

    Maslov, Mikhail Y.; Wei, Abraham E.; Pezone, Matthew J.; Edelman, Elazer R.; Lovich, Mark A.

    2015-01-01

    Background While epinephrine infusion is widely used in critical care for inotropic support, there is no direct method to detect the onset and measure the magnitude of this response. We hypothesized that surrogate measurements, such as heart rate and vascular tone, may indicate if the plasma and tissue concentrations of epinephrine and cAMP are in a range sufficient to increase myocardial contractility. Methods Cardiovascular responses to epinephrine infusion (0.05–0.5 mcg·kg−1·min−1) were measured in rats using arterial and left ventricular catheters. Epinephrine and cAMP levels were measured using ELISA techniques. Results The lowest dose of epinephrine infusion (0.05 mcg·kg−1·min−1) did not raise plasma epinephrine level and did not lead to cardiovascular response. Incremental increase in epinephrine infusion (0.1 mcg·kg−1·min−1) elevated plasma but not myocardial epinephrine levels, providing vascular, but not cardiac effects. Further increase in the infusion rate (0.2 mcg·kg−1·min−1) raised myocardial tissue epinephrine levels sufficient to increase heart rate but not contractility. Inotropic and lusitropic effects were significant at the infusion rate of 0.3 mcg·kg−1·min−1. Correlation of plasma epinephrine to hemodynamic parameters suggest that as plasma concentration increases, systemic vascular resistance falls (EC50=47 pg/ml), then HR increases (ED50=168 pg/ml), followed by a rise in contractility and lusitropy (ED50=346 pg/ml and ED50=324 pg/ml accordingly). Conclusions The dose response of epinephrine is distinct for vascular tone, HR and contractility. The need for higher doses to see cardiac effects is likely due to the threshold for drug accumulation in tissue. Successful inotropic support with epinephrine cannot be achieved unless the infusion is sufficient to raise the heart rate. PMID:25790776

  20. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy

    PubMed Central

    Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G.; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M.; D’Orazio, Valeria

    2017-01-01

    Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m2/yr), OC (0.28 vs. 0.18 kg/m2/yr) and TN (3.7 vs. 6.1 g/m2/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using 14C age dating, were confirmed using 210Pb and 137Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene. PMID:28230066

  1. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-04-30

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  2. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal

  3. Tyrosine content, influx and accumulation rate, and catecholamine biosynthesis measured in vivo, in the central nervous system and in peripheral organs of the young rat. Influence of neonatal hypo- and hyperthyroidism.

    PubMed

    Diarra, A; Lefauconnier, J M; Valens, M; Georges, P; Gripois, D

    1989-10-01

    The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.

  4. Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash

    2013-05-01

    Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  6. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells

    PubMed Central

    Mishra, Sanghamitra; Peterson, Katherine; Yin, Lili; Berger, Alan; Fan, Jianguo

    2016-01-01

    Purpose Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. Methods Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. Results Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5–7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. Conclusions ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and

  7. Improving age-depth models using sedimentary proxies for accumulation rates in fluvio-lacustrine deposits

    NASA Astrophysics Data System (ADS)

    Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.

    2017-04-01

    Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in

  8. Accumulation effects in modulation spectroscopy with high-repetition-rate pulses: Recursive solution of optical Bloch equations

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir Al.; Pullerits, Tõnu

    2017-10-01

    Application of the phase-modulated pulsed light for advance spectroscopic measurements is the area of growing interest. The phase modulation of the light causes modulation of the signal. Separation of the spectral components of the modulations allows to distinguish the contributions of various interaction pathways. The lasers with high repetition rate used in such experiments can lead to appearance of the accumulation effects, which become especially pronounced in systems with long-living excited states. Recently it was shown that such accumulation effects can be used to evaluate parameters of the dynamical processes in the material. In this work we demonstrate that the accumulation effects are also important in the quantum characteristics measurements provided by modulation spectroscopy. In particular, we consider a model of quantum two-level system driven by a train of phase-modulated light pulses, organized in analogy with the two-dimensional spectroscopy experiments. We evaluate the harmonics' amplitudes in the fluorescent signal and calculate corrections appearing from the accumulation effects. We show that the corrections can be significant and have to be taken into account at analysis of experimental data.

  9. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications.

    PubMed

    Angrisani, Nina; Foth, Franziska; Kietzmann, Manfred; Schumacher, Stephan; Angrisani, Gian Luigi; Christel, Anne; Behrens, Peter; Reifenrath, Janin

    2013-10-10

    In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency

  10. Accelerated Mutation Accumulation in Asexual Lineages of a Freshwater Snail

    PubMed Central

    Neiman, Maurine; Hehman, Gery; Miller, Joseph T.; Logsdon, John M.; Taylor, Douglas R.

    2010-01-01

    Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction. PMID:19995828

  11. Increased Calcium Availability Leads to Greater Forest Floor Accumulation in an Adirondack Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2010-12-01

    Nutrient availability in Northeastern US forests has been dramatically altered by anthropogenic activities. Acid deposition has not only increased nitrogen (N) availability, but has also been linked to soil acidification and a loss of base cations, largely calcium (Ca). We are studying the long-term effects of a Ca addition on carbon (C) and N cycling in a forested catchment in the Adirondack Park, New York. In 1989, calcium carbonate (lime) was added to two subcatchments within the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. Two additional subcatchments were left as controls. Eighteen years after the Ca application, both soil pH and exchangeable Ca concentrations remain elevated in the organic horizons and upper mineral soils of the treated subcatchments. The forest floor mass in this watershed is very large and measurements show that the organic layer in the limed subcatchments is significantly larger than in the controls (212 t/ha vs. 116 t/ha), resulting in greater C and N stocks in the Ca-amended soils. This finding suggests that Ca may stabilize soil organic matter (SOM), resulting in greater C storage under high soil Ca conditions. We are investigating potential drivers of this SOM accumulation in the limed subcatchments, including rates of leaf litter production and the decomposition rate of forest floor material. This work will provide important insights into how long-term changes in soil Ca availability influence SOM stabilization, retention and nutrient cycling.

  12. Linking Central Metabolism with Increased Pathway Flux: l-Valine Accumulation by Corynebacterium glutamicum

    PubMed Central

    Radmacher, Eva; Vaitsikova, Adela; Burger, Udo; Krumbach, Karin; Sahm, Hermann; Eggeling, Lothar

    2002-01-01

    Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete l-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since l-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize l-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for d-pantothenate. When the resulting strain, C. glutamicum 13032ΔilvAΔpanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM l-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the l-valine biosynthesis pathway. PMID:11976094

  13. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Treesearch

    J.A. Hribljan; D.J. Cooper; J. Sueltenfuss; E.C. Wolf; K.A. Heckman; Erik Lilleskov; R.A. Chimner

    2015-01-01

    The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia:...

  14. Dynamics of polyhydroxyalkanoate accumulation in aerobic granules during the growth-disintegration cycle.

    PubMed

    Gobi, K; Vadivelu, V M

    2015-11-01

    The polyhydroxyalkanoate (PHA) accumulation dynamics in aerobic granules that undergo the growth-disintegration cycle were investigated. Four sequencing batch reactors (SBR) were inoculated with aerobic granules at different stages of development (different sizes). Different sizes of aerobic granules showed varying PHA contents. Thus, further study was conducted to investigate the diffusion of substrate and oxygen on PHA accumulation using various organic loading rates (OLR) and aeration rates (AR). An increase in OLR from 0.91 to 3.64kg COD/m(3)day increased the PHA content from 0.66 to 0.87g PHA/g CDW. Meanwhile, an AR increase from 1 to 4L/min only accelerated the maximum PHA accumulation without affecting the PHA content. However, the PHA composition only changes with AR, while the hydroxyvalerate (HV) content increased at a higher AR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Different efflux rates may determine the cellular accumulation of various bis(guanylhydrazones).

    PubMed Central

    Alhonen-Hongisto, L; Fagerström, R; Laine, R; Elo, H; Jänne, J

    1984-01-01

    Three bis(guanylhydrazones) (those of methylglyoxal, glyoxal and ethylglyoxal) were compared for their affinity for the putative polyamine carrier and for their cellular retention in L1210 mouse leukaemia cells. All the bis(guanylhydrazones) inhibited equally effectively the uptake of spermidine by the tumour cells, indicating that the compounds had roughly equal affinity for the polyamine carrier. The fact that methylglyoxal bis(guanylhydrazone) and glyoxal bis(guanylhydrazone) were much more effectively concentrated in the animal cells than was ethylglyoxal bis(guanylhydrazone) was obviously attributable to the finding that the efflux rate of ethylglyoxal bis(guanylhydrazone) greatly exceeded that of the other bis(guanylhydrazones). The rate of efflux of the drugs was slowed down if the tumour cells were treated with 2-difluoromethylornithine before exposure to the bis(guanylhydrazones). These results suggest that intracellular binding of the bis(guanylhydrazones) determines their cellular accumulation. PMID:6431972

  16. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications

    PubMed Central

    2013-01-01

    Background In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. Results The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. Conclusion A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant

  17. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp; Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp; Nakamura, Kyoko

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+}more » levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the

  18. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann

    2017-08-01

    Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.

  19. Determinants of reinforcer accumulation during an operant task.

    PubMed

    McFarland, J M; Lattal, K A

    2001-11-01

    Responses by rats on an earn lever made available food pellets that were delivered to a food cup by responses on a second, collect, lever. The rats could either collect and immediately consume or accumulate (defined as the percentage of multiple earn responses and as the number of pellets earned before a collect response) earned pellets. In Experiment 1, accumulation varied as a function of variations in the earn or collect response requirements and whether the earn and collect levers were proximal (31 cm) or distal (248 cm) to one another. Some accumulation occurred under all but one of the conditions, but generally was higher when the earn and collect levers were distal to one another, particularly when the earn response requirement was fixed-ratio (FR) 1. In Experiment 2, the contributions of responses and time to accumulation were assessed by comparing an FR 20 earn response requirement to a condition in which only a single earn response was required at the end of a time interval nominally yoked to the FR interval. When 248 cm separated the earn and collect levers, accumulation was always greater in the FR condition, and it was not systematically related to reinforcement rate. In Experiment 3, increasing the earn response requirement with a progressive-ratio schedule that reset only with a collect response increased the likelihood of accumulation when the collect and earn levers were 248 cm apart, even though such accumulation increased the next earn response requirement. Reinforcer accumulation is an understudied dimension of operant behavior that relates to the analysis of such phenomena as hoarding and self-control, in that they too involve accumulating versus immediately collecting or consuming reinforcers.

  20. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Determinants of reinforcer accumulation during an operant task.

    PubMed Central

    McFarland, J M; Lattal, K A

    2001-01-01

    Responses by rats on an earn lever made available food pellets that were delivered to a food cup by responses on a second, collect, lever. The rats could either collect and immediately consume or accumulate (defined as the percentage of multiple earn responses and as the number of pellets earned before a collect response) earned pellets. In Experiment 1, accumulation varied as a function of variations in the earn or collect response requirements and whether the earn and collect levers were proximal (31 cm) or distal (248 cm) to one another. Some accumulation occurred under all but one of the conditions, but generally was higher when the earn and collect levers were distal to one another, particularly when the earn response requirement was fixed-ratio (FR) 1. In Experiment 2, the contributions of responses and time to accumulation were assessed by comparing an FR 20 earn response requirement to a condition in which only a single earn response was required at the end of a time interval nominally yoked to the FR interval. When 248 cm separated the earn and collect levers, accumulation was always greater in the FR condition, and it was not systematically related to reinforcement rate. In Experiment 3, increasing the earn response requirement with a progressive-ratio schedule that reset only with a collect response increased the likelihood of accumulation when the collect and earn levers were 248 cm apart, even though such accumulation increased the next earn response requirement. Reinforcer accumulation is an understudied dimension of operant behavior that relates to the analysis of such phenomena as hoarding and self-control, in that they too involve accumulating versus immediately collecting or consuming reinforcers. PMID:11768714

  2. Sexual difference in polychlorinated biphenyl accumulation rates of walleye (Stizostedion vitreum)

    USGS Publications Warehouse

    Madenjian, Charles P.; Noguchi, George E.; Haas, Robert C.; Schrouder, Kathrin S.

    1998-01-01

    Adult male walleye (Stizostedion vitreum) exhibited significantly higher polychlorinated biphenyl (PCB) concentrations than similarly aged female walleye from Saginaw Bay (Lake Huron). To explain this difference, we tested the following three hypotheses: (i) females showed a considerably greater reduction in PCB concentration immediately following spawning than males, (ii) females grew at a faster rate and therefore exhibited lower PCB concentrations than males, and (iii) males spent more time in the Saginaw River system than females, and therefore received a greater exposure to PCBs. The first hypothesis was tested by comparing PCB concentration in gonadal tissue with whole-body concentration, the second hypothesis was tested via bioenergetics modeling, and we used mark-recapture data from the Saginaw Bay walleye fishery to address the third hypothesis. The only plausible explanation for the observed difference in PCB accumulation rate was that males spent substantially more time in the highly contaminated Saginaw River system than females, and therefore were exposed to greater environmental concentrations of PCBs. Based on the results of our study, we strongly recommend a stratified random sampling design for monitoring PCB concentration in Saginaw Bay walleye, with fixed numbers of females and males sampled each year.

  3. Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest

    USGS Publications Warehouse

    Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing

    2006-01-01

    The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem—monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration—coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ± 2538 g · m−2, 16889 ± 1936 g · m−2 and 12680 ± 1854 g · m−2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ± 97 g · m−2 · a−1, 193 ± 85 g · m−2 · a−1 and 213 ± 86 g · m−2 · a−1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March.

  4. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar

    NASA Astrophysics Data System (ADS)

    Lewis, Gabriel; Osterberg, Erich; Hawley, Robert; Whitmore, Brian; Marshall, Hans Peter; Box, Jason

    2017-03-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. An improved understanding of temporal and spatial variability of snow accumulation will reduce uncertainties in GrIS mass balance models and improve projections of Greenland's contribution to sea-level rise, currently estimated at 0.089 ± 0.03 m by 2100. Here we analyze 25 NASA Operation IceBridge accumulation radar flights totaling > 17 700 km from 2013 to 2014 to determine snow accumulation in the GrIS dry snow and percolation zones over the past 100-300 years. IceBridge accumulation rates are calculated and used to validate accumulation rates from three regional climate models. Averaged over all 25 flights, the RMS difference between the models and IceBridge accumulation is between 0.023 ± 0.019 and 0.043 ± 0.029 m w.e. a-1, although each model shows significantly larger differences from IceBridge accumulation on a regional basis. In the southeast region, for example, the Modèle Atmosphérique Régional (MARv3.5.2) overestimates by an average of 20.89 ± 6.75 % across the drainage basin. Our results indicate that these regional differences between model and IceBridge accumulation are large enough to significantly alter GrIS surface mass balance estimates. Empirical orthogonal function analysis suggests that the first two principal components account for 33 and 19 % of the variance, and correlate with the Atlantic Multidecadal Oscillation (AMO) and wintertime North Atlantic Oscillation (NAO), respectively. Regions that disagree strongest with climate models are those in which we have the fewest IceBridge data points, requiring additional in situ measurements to verify model uncertainties.

  5. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  6. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    PubMed

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  7. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  8. Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    PubMed Central

    Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571

  9. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  10. Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield

    NASA Astrophysics Data System (ADS)

    Schwikowski, M.; Schläppi, M.; Santibañez, P.; Rivera, A.; Casassa, G.

    2012-12-01

    Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

  11. Long-term carbon accumulation in Andes peatlands

    NASA Astrophysics Data System (ADS)

    Huaman, Yizet; Moreira-turq, Patricia; Willems, Bram; Espinoza, Raul; Turq, Bruno; Apaéstegui, James; Llanos, Romina

    2017-04-01

    High-altitude peatlands of the Andes still remain relatively unexplored since most of the studies on carbon capture in tropical soils have focused on peatlands in low altitude areas, leaving aside the importance of the study of high mountain wetlands, currently called "bofedales" located between 3000 and 5000 masl, covering most of the Andes mountains in South America. These peatlands in turn may also represent important paleoclimatic records. In this study, we investigated three peatland cores (APA-01, APA2-01, and APA2-02) at different altitudes (4210 m, 4420 m and 4432 m, respectively) in high Andean Peatlands of southern Peru. The peatland studied is located at the headwater basin Cachi River, in the town of Ayacucho, Peru. The aim of this study was to evaluate the role played by past climatic changes on the peatlands carbon accumulation. Each core was sectioned centimeter by centimeter and sub samples (n = 31) were collected for radiocarbon dating by AMS (acceleration mass spectrometer) and were used to create a sedimentological model based on the program Clam2.2R. The concentrations of carbon and nitrogen were determined from a C / H / N elemental analyzer and the stable carbon and nitrogen isotopes (δ13C and δ15N) were also analyzed. The bulk density was determined based on the volume occupied by the sediment (g /cm3). Finally, the carbon accumulation rate (gC m-2año-1) was determined. The three cores were characterized by two sedimentary units, the results present in the first sedimentary unit of APA01 an average long-term carbon accumulation rate of 59 gC m-2año-1, APA2-01 with 32 gC m-2año-1 and finally APA2-02 with 24 gC m-2año-1; for the second sedimentary unit we have: APA01 on average 17 gC m-2año-1, APA2-01 with 33 gC m-2año-1 and finally APA2-02 with 49 gC m-2año-1. In conclusion, we can say that the carbon accumulation rate for the first sedimentary unit of the three cores decreases as the altitude increases; on the other hand, we have the

  12. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska

    USGS Publications Warehouse

    Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E. Arthur

    2003-01-01

    A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35-50 ??m quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil's Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr-much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values. ?? 2003 Elsevier Science (USA). All rights reserved.

  13. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium.

    PubMed

    Tsyganov, Viktor E; Belimov, Andrei A; Borisov, Alexey Y; Safronova, Vera I; Georgi, Manfred; Dietz, Karl-Josef; Tikhonovich, Igor A

    2007-02-01

    To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.

  14. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  15. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  16. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx

    PubMed Central

    Suárez, Gabriel A.; Renda, Brian A.; Dasgupta, Aurko

    2017-01-01

    ABSTRACT The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (dinP) and a DNA damage response regulator (umuDAb [the umuD gene of A. baylyi]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  17. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.

    PubMed

    Suárez, Gabriel A; Renda, Brian A; Dasgupta, Aurko; Barrick, Jeffrey E

    2017-09-01

    The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS 1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS 1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS 1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase ( dinP ) and a DNA damage response regulator ( umuD Ab [the umuD gene of A. baylyi ]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  18. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    PubMed Central

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  19. 75 FR 81003 - Rate Increase Disclosure and Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...This document contains proposed regulations implementing the rules for health insurance issuers regarding the disclosure and review of unreasonable premium increases under section 2794 of the Public Health Service Act. The proposed rule would establish a rate review program to ensure that all rate increases that meet or exceed an established threshold are reviewed by a State or HHS to determine whether the rate increases are unreasonable.

  20. Ice shelf snow accumulation rates from the Amundsen-Bellingshausen Sea sector of West Antarctica derived from airborne radar

    NASA Astrophysics Data System (ADS)

    Medley, B.; Kurtz, N. T.; Brunt, K. M.

    2015-12-01

    The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.

  1. Modelling past, present and future peatland carbon accumulation across the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2017-09-01

    Most northern peatlands developed during the Holocene, sequestering large amounts of carbon in terrestrial ecosystems. However, recent syntheses have highlighted the gaps in our understanding of peatland carbon accumulation. Assessments of the long-term carbon accumulation rate and possible warming-driven changes in these accumulation rates can therefore benefit from process-based modelling studies. We employed an individual-based dynamic global ecosystem model with dynamic peatland and permafrost functionalities and patch-based vegetation dynamics to quantify long-term carbon accumulation rates and to assess the effects of historical and projected climate change on peatland carbon balances across the pan-Arctic region. Our results are broadly consistent with published regional and global carbon accumulation estimates. A majority of modelled peatland sites in Scandinavia, Europe, Russia and central and eastern Canada change from carbon sinks through the Holocene to potential carbon sources in the coming century. In contrast, the carbon sink capacity of modelled sites in Siberia, far eastern Russia, Alaska and western and northern Canada was predicted to increase in the coming century. The greatest changes were evident in eastern Siberia, north-western Canada and in Alaska, where peat production hampered by permafrost and low productivity due the cold climate in these regions in the past was simulated to increase greatly due to warming, a wetter climate and higher CO2 levels by the year 2100. In contrast, our model predicts that sites that are expected to experience reduced precipitation rates and are currently permafrost free will lose more carbon in the future.

  2. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    PubMed

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  4. Common functional variants of APOA5 and GCKR accumulate gradually in association with triglyceride increase in metabolic syndrome patients.

    PubMed

    Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Duga, Balázs; Janicsek, Ingrid; Wittmann, István; Melegh, Béla

    2012-02-01

    The common functional variants of the apolipoprotein A5 (APOA5) and the glucokinase regulatory protein genes (GCKR) have been shown to associate with increased fasting triglyceride (TG) levels. Albeit the basic association has been extensively investigated in several populations of different origin, less is known about quantitative traits of them. In our study accumulation rates of four APOA5 (T-1131, IVS3 + G476A, T1259C and C56G) and two GCKR (C1337T and rs780094) functional SNPs were analyzed in patients stratified into four TG quartile groups. Randomly selected 325 metabolic syndrome patients were separated into four quartile (q) groups based on the TG levels as follows q1: TG <1.38 mmol/l; q2: 1.38-1.93 mmol/l; q3: 1.94-2.83 mmol/l; and q4: TG >2.83 mmol/l. We observed significant stepwise increase of prevalence rates of minor allele frequencies in the four plasma TG quartiles for three APOA5 SNPs: -1131C (q1: 4.94%; q2: 8.64%; q3: 11.6%; q4: 12.3%), IVS3 + 476A (q1: 4.32%; q2: 7.4%; q3: 10.36%; q4: 11.1%), and 1259C (q1: 4.94%; q2: 7.41%; q3: 10.4%; q4: 11.7%). The haplotype analysis revealed, that the frequency of APOA5*2 haplotype gradually increased in q2, q3 and q4 (q1: 9.87%; q2: 14.8%; q3: 18.3%; q4: 21%). The distribution of the homozygotes of the two analyzed GCKR variants resembled to the APOA5 pattern. Contrary to the hypothetically predictable linear association coming from the current knowledge about the APOA5 and GCKR functions, the findings presented here revealed a unique, TG raise dependent gradual accumulation of the functional variants of in MS patients. Thus, the findings of the current study serve indirect evidence for the existence of rare APOA5 and GCKR haplotypes in metabolic syndrome patients with higher TG levels, which contribute to the complex lipid metabolism alteration in this disease.

  5. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp; Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp; Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption maymore » accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation

  6. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    PubMed

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non

  7. Patterns of sediment accumulation in the tidal marshes of Maine

    USGS Publications Warehouse

    Wood, M.E.; Kelley, J.T.; Belknap, D.F.

    1989-01-01

    One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.

  8. Enhanced land subsidence in Galveston Bay, Texas: Interaction between sediment accumulation rates and relative sea level rise

    NASA Astrophysics Data System (ADS)

    Al Mukaimi, Mohammad E.; Dellapenna, Timothy M.; Williams, Joshua R.

    2018-07-01

    Galveston Bay is the second largest estuary along the northern Gulf of Mexico coast, with a watershed containing one of largest concentrations of petroleum and chemical industries globally, as well as Houston, the fifth largest metropolitan area in the USA. Throughout the last century, extensive groundwater extraction to support these industries and an expanding population has resulted in significantly enhanced land subsidence (0.6-3.0 cm yr-1). The highest subsidence rates observed in the bay are within the lower 15 km of the San Jacinto River/Houston Ship Channel region (SJR/HSC), with distal areas in East and West Galveston Bays having subsidence rates on the order of 0.2 cm yr-1. In order to investigate the impacts of subsidence on sedimentation, a series of 22 vibracores were collected throughout the bay, and 210Pb and 137Cs radioisotope geochronologies and grain size distributions were determined. Sediment accumulation rates are highest (1.9 ± 0.5 cm yr-1) in the SJR/HSC, and decrease (<0.6 cm yr-1) both seaward and towards low subsidence regions. These results indicate sedimentation rates are significantly (p < 0.01) higher in areas with elevated Relative Sea Level Rise (RSLR). However, throughout most of Galveston Bay sedimentation rates are lower (as much as 50%) than estimated RSLR, indicating a sediment accretionary deficit. In areas (e.g., Scott Bay) within the SJR/HSC, the bay has deepened by more than 1.5 m, suggesting that sediment accumulation cannot keep pace with RSLR. Ultimately, this has resulted in a loss of coastal wetlands and a conversion of marine habitats from relatively shallow to deeper water settings.

  9. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  10. Rowing Crew Coordination Dynamics at Increasing Stroke Rates

    PubMed Central

    2015-01-01

    In rowing, perfect synchronisation is important for optimal performance of a crew. Remarkably, a recent study on ergometers demonstrated that antiphase crew coordination might be mechanically more efficient by reducing the power lost to within-cycle velocity fluctuations of the boat. However, coupled oscillator dynamics predict the stability of the coordination to decrease with increasing stroke rate, which in case of antiphase may eventually yield breakdowns to in-phase. Therefore, this study examined the effects of increasing stroke rate on in- and antiphase crew coordination in rowing dyads. Eleven experienced dyads rowed on two mechanically coupled ergometers on slides, which allowed the ergometer system to move back and forth as one ‘boat’. The dyads performed a ramp trial in both in- and antiphase pattern, in which stroke rates gradually increased from 30 strokes per minute (spm) to as fast as possible in steps of 2 spm. Kinematics of rowers, handles and ergometers were captured. Two dyads showed a breakdown of antiphase into in-phase coordination at the first stroke rate of the ramp trial. The other nine dyads reached between 34–42 spm in antiphase but achieved higher rates in in-phase. As expected, the coordinative accuracy in antiphase was worse than in in-phase crew coordination, while, somewhat surprisingly, the coordinative variability did not differ between the patterns. Whereas crew coordination did not substantially deteriorate with increasing stroke rate, stroke rate did affect the velocity fluctuations of the ergometers: fluctuations were clearly larger in the in-phase pattern than in the antiphase pattern, and this difference significantly increased with stroke rate. Together, these results suggest that although antiphase rowing is less stable (i.e., less resistant to perturbation), potential on-water benefits of antiphase over in-phase rowing may actually increase with stroke rate. PMID:26185987

  11. Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Zebker, H. A.

    2012-12-01

    The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive

  12. Total carbon accumulation in a tropical forest landscape.

    PubMed

    Sierra, Carlos A; Del Valle, Jorge I; Restrepo, Hector I

    2012-12-19

    Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years.

  13. Total carbon accumulation in a tropical forest landscape

    PubMed Central

    2012-01-01

    Background Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. Results We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Conclusions Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years. PMID:23249727

  14. Increased photosynthesis compensates for shorter growing season in subarctic tundra - seven years of snow accumulation manipulations

    NASA Astrophysics Data System (ADS)

    Bosiö, Julia; Johansson, Margareta; Njuabe, Herbert; Christensen, Torben R.

    2013-04-01

    This study was initiated to analyze the effect of snow cover on photosynthesis and plant growth in subarctic mires underlain by permafrost. Due to their narrow environmental window these raised bogs, often referred to as palsa mires, are highly sensitive to climatic changes. In Fennoscandia palsa mires are currently subjected to climate related thawing and shift in vegetational and hydrological patterns. Yet, we know little of how these subarctic permafrost mires react and feed back to such changes. By using snow fences to hinder snow drift the accumulation of snow was increased in six plots (10x20 m) in a snow manipulation experiment on a subarctic permafrost mire in northern Sweden. The thicker snow pack prolongs the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season. By measuring incoming and reflected photosynthetic active radiation (PAR) we wanted to address the question whether the increased snow thickness and associated delay of the growing season start affected the absorbed PAR and the accumulated gross primary production (GPP) over the season. The reflected PAR was measured at twelve plots where six of the plots experienced increased snow accumulation (treatment), and remaining six plots were untreated (control). Minikin QT sensors with integrated data loggers logged incoming and reflected PAR hourly throughout the growing seasons of 2011 and 2012. In July - September 2010 PAR measurements were coupled with flux chamber measurements to assess GPP and light use efficiency of the plots. The increased accumulation of snow prolonged the duration of the snow cover in spring, causing a delay in the onset, as well as an overall shortening of the growing season in the treated plots. The end of the growing season was not affected by the snow manipulation. The delay of the growing season start and hence overall shortening of the growing season in the treatment plots was 18 days in 2011 and 3

  15. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  16. Elucidating effects of atmospheric deposition and peat decomposition processes on mercury accumulation rates in a northern Minnesota peatland over last 10,000 cal years

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.

    2014-12-01

    Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.

  17. 150,000 years of loess accumulation in central Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, Britta J. L.; Evans, Michael E.; Froese, Duane G.; Kravchinsky, Vadim A.

    2016-03-01

    The Halfway House site in interior Alaska is arguably the most studied loess deposit in northwestern North America. The site contains a complex paleomagnetic and paleoenvironmental record, but has lacked the robust chronologic control that would allow its full potential to be exploited. Detailed reexamination of stratigraphy, paleomagnetics and tephrostratigraphy reveals a relatively complete marine isotope stage (MIS) 6 to Holocene record constrained by the Old Crow (124 ± 10 ka), VT (106 ± 10 ka), Sheep Creek-Klondike (ca. 80 ka), Dominion Creek (77 ± 8 ka) and Dawson (ca. 30.2 cal ka BP) tephras. We show two well-developed paleosols formed during Marine Isotope Stages (MIS) 5e and 5a, while MIS 5c and 5b are either poorly represented or absent. The new tephrostratigraphy presented here is the most complete one to date for the late Pleistocene and indicates MIS 5 sediments are more common than previously recognized. A magnetic excursion within the sediments is identified as the post-Blake excursion (94.1 ± 7.8 ka), providing independent age control and adding to the increasing body of evidence that Alaskan loess is a detailed recorder of variations of the Earth's magnetic field over time. A high-resolution magnetic susceptibility profile placed into this new chronostratigraphic framework supports the hypothesis that wind-intensity is the main variable controlling fluctuations in susceptibility. Correlation of the susceptibility record to global marine δ18O records is complicated by highly variable accumulation rates. We find the lowest rates of accumulation during peak warm and cold stages, while abrupt increases are associated with periods of transition between marine isotope (sub)stages. Building on previous accumulation models for Alaska, surface roughness is likely a leading variable controlling loess accumulation rates during transitions and peak cold periods, but the negligible accumulation during MIS 5e and 5a suggests that loess production was

  18. Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate.

    PubMed

    Holmes, M E; Samson, S E; Wilson, J X; Dixon, S J; Grover, A K

    2000-01-01

    Pig deendothelialized coronary artery rings and smooth muscle cells cultured from them accumulated ascorbate from medium containing Na(+). The accumulated material was determined to be ascorbate using high-performance liquid chromatography. We further characterized ascorbate uptake in the cultured cells. The data fitted best with a Hill coefficient of 1 for ascorbate (K(asc) = 22 +/- 2 microM) and 2 for Na(+) (K(Na) = 84 +/- 10 mM). The anion transport inhibitors sulfinpyrazone and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibited the uptake. Transferring cultured cells loaded with (14)C-ascorbate into an ascorbate-free solution resulted in a biphasic loss of radioactivity - an initial sulfinpyrazone-insensitive faster phase and a late sulfinpyrazone-sensitive slower phase. Transferring loaded cells into a Na(+)-free medium increased the loss in the initial phase in a sulfinpyrazone-sensitive manner, suggesting that the ascorbate transporter is bidirectional. Including peroxide or superoxide in the solution increased the loss of radioactivity. Thus, ascorbate accumulated in coronary artery smooth muscle cells by a Na(+)-dependent transporter was lost in an ascorbate-free solution, and the loss was increased by removing Na(+) from the medium or by oxidative stress. Copyright 2000 S. Karger AG, Basel

  19. Local Spatial Heterogeneity of Holocene Carbon Accumulation throughout the Peat Profile of an Ombrotrophic Northern Minnesota Bog

    DOE PAGES

    McFarlane, Karis J.; Hanson, Paul J.; Iversen, Colleen M.; ...

    2018-05-30

    Here, we evaluated the spatial heterogeneity of historical carbon accumulation rates in a forested, ombrotrophic bog in Minnesota to aid understanding of responses to an ongoing decade-long warming manipulation. Eighteen peat cores indicated that the bog has been accumulating carbon for over 11,000 years, to yield 176±40 kg C m –2 to 225±58 cm of peat depth. Estimated peat basal ages ranged from 5100 to 11,100 cal BP. The long-term apparent rate of carbon accumulation over the entire peat profile was 22±2 kg C m –2yr –1. Plot location within the study area did not affect carbon accumulation rates, butmore » estimated basal ages were younger in profiles from plots closer to the bog lagg and farther from the bog outlet. In addition, carbon accumulation varied considerably over time. Early Holocene net carbon accumulation rates were 30±6 g C m –2yr –1. Around 3300 calendar BP, net carbon accumulation rates dropped to 15±8 g C m –2yr –1until the last century when net accumulation rates increased again to 74±57 g C m –2yr –1. During this period of low accumulation, regional droughts may have lowered the water table, allowing for enhanced aerobic decomposition and making the bog more susceptible to fire. These results suggest that experimental warming treatments, as well as a future warmer climate may reduce net carbon accumulation in peat in this and other southern boreal peatlands. Furthermore, our we caution against historical interpretations extrapolated from one or a few peat cores.« less

  20. Local Spatial Heterogeneity of Holocene Carbon Accumulation throughout the Peat Profile of an Ombrotrophic Northern Minnesota Bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Karis J.; Hanson, Paul J.; Iversen, Colleen M.

    Here, we evaluated the spatial heterogeneity of historical carbon accumulation rates in a forested, ombrotrophic bog in Minnesota to aid understanding of responses to an ongoing decade-long warming manipulation. Eighteen peat cores indicated that the bog has been accumulating carbon for over 11,000 years, to yield 176±40 kg C m –2 to 225±58 cm of peat depth. Estimated peat basal ages ranged from 5100 to 11,100 cal BP. The long-term apparent rate of carbon accumulation over the entire peat profile was 22±2 kg C m –2yr –1. Plot location within the study area did not affect carbon accumulation rates, butmore » estimated basal ages were younger in profiles from plots closer to the bog lagg and farther from the bog outlet. In addition, carbon accumulation varied considerably over time. Early Holocene net carbon accumulation rates were 30±6 g C m –2yr –1. Around 3300 calendar BP, net carbon accumulation rates dropped to 15±8 g C m –2yr –1until the last century when net accumulation rates increased again to 74±57 g C m –2yr –1. During this period of low accumulation, regional droughts may have lowered the water table, allowing for enhanced aerobic decomposition and making the bog more susceptible to fire. These results suggest that experimental warming treatments, as well as a future warmer climate may reduce net carbon accumulation in peat in this and other southern boreal peatlands. Furthermore, our we caution against historical interpretations extrapolated from one or a few peat cores.« less

  1. Increasing protein production rates can decrease the rate at which functional protein is produced

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet; O'Brien, Edward

    The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. We combine a well-established ribosome-traffic model with a master-equation model of co-translational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates associated with translation are altered. We find that while J monotonically increases as the rates of translation-initiation, -elongation and -termination increase, F can either increase or decrease. F exhibits non-monotonic behavior because increasing these rates can cause a protein to be synthesized more rapidly but provide less time for nascent-protein domains to co-translationally fold thereby producing less functional nascent protein immediately after synthesis. We further demonstrate that these non-monotonic changes in Faffect the post-translational, steady-state levels of functional protein in a similar manner. Our results provide a possible explanation for recent experimental observations that the specific activity of enzymatic proteins can decrease with increased synthesis rates and can in principle be used to rationally-design transcripts to maximize the production of functional nascent protein.

  2. Organic carbon accumulation in Brazilian mangal sediments

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  3. Fish like it Hot? The response of ichthyolith accumulation to changing climates of the Paleogene

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.; Zill, M. E.; Bryant, R. M.; Graves, L. G.; Norris, R. D.

    2014-12-01

    It has been hypothesized that the production of fish in the water column is related to the amount of primary production in the surface waters. Most future Earth scenarios suggest that as the climate warms, increased surface ocean stratification will decrease nutrient availability and therefore net primary productivity and fish production. Here we calculate accumulation rates of ichthyoliths (microfossil fish teeth and shark dermal scales) throughout the Paleogene and find that ichthyolith accumulation is inversely related to hypothesized changes in primary productivity, but is positively related to ocean temperature. At DSDP Site 596 in the South Pacific, and ODP Site 1258 from the equatorial Atlantic, accumulation of fish fossils increase 6-10 fold from the relatively cool Paleocene into the warm Early Eocene Climate Optimum. In contrast, cooling and increased biosilica deposition at the Eocene/Oligocene (E/O) Boundary suggests that the marine ecosystem switched to a highly productive diatom-dominated ocean, which should favor short, efficient food chains and increased fish production. However, we find that at both Pacific DSDP Site 596 and Atlantic DSDP Site 522, fish accumulation drops by about 50% across the E/O. Indeed, this relation between ichthyolith accumulation and δ18O-estimated paleotemperature is also seen in the Oligocene, at North Pacific ODP Site 886, where warming in the middle Oligocene is mirrored by an increase in ichthyolith accumulation. It appears that ichthyolith accumulation rate may not be purely an effect of total primary production in the water column but rather, may reflect a fundamental response in fish physiology or ecosystem efficiency to warmer water. It has been documented that respiration is faster and more efficient in warm waters, and this may help generate more efficient food web links that compensate for any decrease in primary productivity caused by global warming. Indeed, it appears that fish seem to thrive as the

  4. Surface-atmosphere decoupling limits accumulation at Summit, Greenland

    PubMed Central

    Berkelhammer, Max; Noone, David C.; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J.; O’Neill, Michael S.; Schneider, David; Steffen, Konrad; White, James W. C.

    2016-01-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  5. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    PubMed

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  6. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  7. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli

    PubMed Central

    Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X.; Fares, Mario A.

    2016-01-01

    Abstract The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. PMID:27566759

  8. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-01-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae. PMID:25922486

  9. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    PubMed

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs

    PubMed Central

    2011-01-01

    Background The role of renal lipoprotein lipase (LPL) per se in kidney diseases is still controversial and obscure. The purpose of this study was to observe the preventive effects of Ibrolipim, a LPL activator, on lipid accumulation and LPL expression in the kidneys of minipigs fed a high-sucrose and high-fat diet (HSFD). Methods Male Chinese Bama minipigs were fed a control diet or HSFD with or without 0.1 g/kg/day Ibrolipim for 5 months. Body weight, plasma glucose, insulin, lipids, LPL activity, and urinary microalbumin were measured. Renal tissue was obtained for detecting LPL activity and contents of triglyceride and cholesterol, observing the renal lipid accumulation by Oil Red O staining, and examining the mRNA and protein expression of LPL by real time PCR, Western Blot and immunohistochemistry. Results Feeding HSFD to minipigs caused weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia and microalbuminuria. HSFD increased plasma LPL activity while it decreased the mRNA and protein expression and activity of LPL in the kidney. The increases in renal triglyceride and cholesterol contents were associated with the decrease in renal LPL activity of HSFD-fed minipigs. In contrast, supplementing Ibrolipim into HSFD lowered body weight, plasma glucose, insulin, triglyceride and urinary albumin concentrations while it increased plasma total cholesterol and HDL-C. Ibrolipim suppressed the renal accumulation of triglyceride and cholesterol, and stimulated the diet-induced down-regulation of LPL expression and activity in the kidney. Conclusions Ibrolipim exerts renoprotective and hypolipidemic effects via the increase in renal LPL activity and expression, and thus the increased expression and activity of renal LPL play a vital role in suppressing renal lipid accumulation and ameliorating proteinuria in diet-induced diabetic minipigs. PMID:21762526

  11. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SYSTEM TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...) Evaluation of increased rate. If a card issuer increases an annual percentage rate that applies to a credit card account under an open-end (not home-secured) consumer credit plan, based on the credit risk of the...

  12. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SYSTEM TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...) Evaluation of increased rate. If a card issuer increases an annual percentage rate that applies to a credit card account under an open-end (not home-secured) consumer credit plan, based on the credit risk of the...

  13. Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?

    PubMed

    Kelling, Steve; Johnston, Alison; Hochachka, Wesley M; Iliff, Marshall; Fink, Daniel; Gerbracht, Jeff; Lagoze, Carl; La Sorte, Frank A; Moore, Travis; Wiggins, Andrea; Wong, Weng-Keen; Wood, Chris; Yu, Jun

    2015-01-01

    Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project's tasks. To improve the quality of a citizen science project's outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill.

  14. Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?

    PubMed Central

    Kelling, Steve; Johnston, Alison; Hochachka, Wesley M.; Iliff, Marshall; Fink, Daniel; Gerbracht, Jeff; Lagoze, Carl; La Sorte, Frank A.; Moore, Travis; Wiggins, Andrea; Wong, Weng-Keen; Wood, Chris; Yu, Jun

    2015-01-01

    Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project’s tasks. To improve the quality of a citizen science project’s outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill. PMID:26451728

  15. Increasing preferred step rate during running reduces plantar pressures.

    PubMed

    Gerrard, James M; Bonanno, Daniel R

    2018-01-01

    Increasing preferred step rate during running is a commonly used strategy in the management of running-related injuries. This study investigated the effect of different step rates on plantar pressures during running. Thirty-two healthy runners ran at a comfortable speed on a treadmill at five step rates (preferred, ±5%, and ±10%). For each step rate, plantar pressure data were collected using the pedar-X in-shoe system. Compared to running with a preferred step rate, a 10% increase in step rate significantly reduced peak pressure (144.5±46.5 vs 129.3±51 kPa; P=.033) and maximum force (382.3±157.6 vs 334.0±159.8 N; P=.021) at the rearfoot, and reduced maximum force (426.4±130.4 vs 400.0±116.6 N; P=.001) at the midfoot. In contrast, a 10% decrease in step rate significantly increased peak pressure (144.5±46.5 vs 161.5±49.3 kPa; P=.011) and maximum force (382.3±157.6 vs 425.4±155.3 N; P=.032) at the rearfoot. Changing step rate by 5% provided no effect on plantar pressures, and no differences in plantar pressures were observed at the medial forefoot, lateral forefoot or hallux between the step rates. This study's findings indicate that increasing preferred step rate by 10% during running will reduce plantar pressures at the rearfoot and midfoot, while decreasing step rate by 10% will increase plantar pressures at the rearfoot. However, changing preferred step rate by 5% will provide no effect on plantar pressures, and forefoot pressures are unaffected by changes in step rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer

    PubMed Central

    Hessmann, E; Patzak, M S; Klein, L; Chen, N; Kari, V; Ramu, I; Bapiro, T E; Frese, K K; Gopinathan, A; Richards, F M; Jodrell, D I; Verbeke, C; Li, X; Heuchel, R; Löhr, J M; Johnsen, S A; Gress, T M; Ellenrieder, V; Neesse, A

    2018-01-01

    Objective Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. Design Gemcitabine metabolites were analysed in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. Results Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2′,2′-difluorodeoxycytidine-5′-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2′,2′-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5′-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. Conclusions Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine. PMID:28077438

  17. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer.

    PubMed

    Hessmann, E; Patzak, M S; Klein, L; Chen, N; Kari, V; Ramu, I; Bapiro, T E; Frese, K K; Gopinathan, A; Richards, F M; Jodrell, D I; Verbeke, C; Li, X; Heuchel, R; Löhr, J M; Johnsen, S A; Gress, T M; Ellenrieder, V; Neesse, A

    2018-03-01

    Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. Gemcitabine metabolites were analysed in LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2',2'-difluorodeoxycytidine-5'-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2',2'-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5'-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  18. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  19. Determining the rate of value increase for oaks

    Treesearch

    Paul S. DeBald; Joseph J. Mendel

    1971-01-01

    A method used to develop rate of value increase is described as an aid to management decision-making. Regional rates of value increase and financial maturity diameters for ten species common to the oak-hickory type are outlined, and the economic principles involved are explained to show how they apply to either individual trees or stands.

  20. Partial connectivity increases cultural accumulation within groups.

    PubMed

    Derex, Maxime; Boyd, Robert

    2016-03-15

    Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population's ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups.

  1. Partial connectivity increases cultural accumulation within groups

    PubMed Central

    Boyd, Robert

    2016-01-01

    Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population’s ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups. PMID:26929364

  2. Including Deposition Rate in Models of Cosmogenic Nuclide Accumulation in Fluvial Sediments to Improve Terrace Abandonment Ages

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Wang, N.; Van Dissen, R. J.; Little, T.

    2017-12-01

    Fluvial sediments are archives of the erosional, transport, and depositional processes occurring in the catchment. Terraces become robust markers for geomorphic analysis if their time of abandonment can be determined. Methods such as OSL can determine burial ages for fine grained sediments within the terrace fill but may not be directly related to the terrace abandonment age. Cosmogenic nuclides can be used to determine exposure ages for geologically young terraces but the surface being dated may have been subsequently eroded and the material itself may have been deposited with an inherited nuclide concentration. To deal with this problem, many researchers collect multiple samples with depth to model the depth-dependent nuclide concentration to help constrain inheritance and post-depositional erosion. It is often, however, assumed that the entire sediment pile accumulated instantaneously. In this submission, we present the results of a depth profile model that incorporates sediment accumulation rate to improve terrace age estimates. We test this model on fault-offset river terraces near Kaikoura, New Zealand. We measured depth profiles of OSL ages and cosmogenic nuclide concentrations of two late Quaternary terraces that are offset by up to 800 m across the Kekerengu Fault. OSL ages and dated tephras in the overlying loess provide minimum age constraints for both terraces while OSL ages of fine-grained sediments within the fill provide depositional ages. The predicted sedimentation rates for the terraces are as high as 0.5m/yr, consistent with geologically instantaneous deposition. Modelled abandonment ages from cosmogenic nuclides for the terraces are consistent with OSL and tephra constraints at 9.7 +/- 3.8 ka and 30.4 +/- 2.1 ka, respectively. These terrace abandonment ages yield dextral slip rates of 18.5-20.5 mm/yr and 25-28 mm/yr, respectively, consistent with the rapid slip rate on the adjacent Hope Fault.

  3. Visual cortical activity reflects faster accumulation of information from cortically blind fields

    PubMed Central

    Martin, Tim; Das, Anasuya; Huxlin, Krystel R.

    2012-01-01

    Brain responses (from functional magnetic resonance imaging) and components of information processing were investigated in nine cortically blind observers performing a global direction discrimination task. Three of these subjects had responses in perilesional cortex in response to blind field stimulation, whereas the others did not. We used the EZ-diffusion model of decision making to understand how cortically blind subjects make a perceptual decision on stimuli presented within their blind field. We found that these subjects had slower accumulation of information in their blind fields as compared with their good fields and to intact controls. Within cortically blind subjects, activity in perilesional tissue, V3A and hMT+ was associated with a faster accumulation of information for deciding direction of motion of stimuli presented in the blind field. This result suggests that the rate of information accumulation is a critical factor in the degree of impairment in cortical blindness and varies greatly among affected individuals. Retraining paradigms that seek to restore visual functions might benefit from focusing on increasing the rate of information accumulation. PMID:23169923

  4. Accumulation and fragmentation of plastic debris in global environments

    PubMed Central

    Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton

    2009-01-01

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  5. Accumulation and fragmentation of plastic debris in global environments.

    PubMed

    Barnes, David K A; Galgani, Francois; Thompson, Richard C; Barlaz, Morton

    2009-07-27

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  6. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  7. An exactly solvable, spatial model of mutation accumulation in cancer

    NASA Astrophysics Data System (ADS)

    Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej

    2016-12-01

    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.

  8. Catecholamine-Independent Heart Rate Increases Require CaMKII

    PubMed Central

    Gao, Zhan; Singh, Madhu V; Hall, Duane D; Koval, Olha M.; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Chen, Biyi; Wu, Yuejin; Chaudhary, Ashok K; Martins, James B; Hund, Thomas J; Mohler, Peter J; Song, Long-Sheng; Anderson, Mark E.

    2011-01-01

    Background Catecholamines increase heart rate by augmenting the cAMP responsive HCN4 ‘pacemaker current’ (If) and/or by promoting inward Na+/Ca2+ exchanger current (INCX), by a ‘Ca2+ clock’ mechanism in sinoatrial nodal cells (SANCs). The importance, identity and function of signals that connect If and Ca2+ clock mechanisms are uncertain and controversial, but the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is required for physiological heart rate responses to β-adrenergic receptor (β-AR) stimulation. The aim of this stuy is to measure the contribution of the Ca2+ clock and CaMKII to cardiac pacing independent of β-AR agonist stimulation. Methods and Results We used the L-type Ca2+ channel agonist BayK 8644 (BayK) to activate the SANC Ca2+ clock. BayK and isoproterenol were similarly effective in increasing rates in SANCs and Langendorff-perfused hearts from WT control mice. In contrast, SANCs and isolated hearts from mice with CaMKII inhibition by transgenic expression of an inhibitory peptide (AC3-I) were resistant to rate increases by BayK. BayK only activated CaMKII in control SANCs, but increased ICa equally in all SANCs, indicating that increasing ICa was insufficient and suggesting CaMKII activation was required for heart rate increases by BayK. BayK did not increase If or protein kinase A (PKA)-dependent phosphorylation of phospholamban (at Ser16), indicating that increased SANC Ca2+ by BayK did not augment cAMP/PKA signaling at these targets. Late diastolic intracellular Ca2+ release and INCX were significantly reduced in AC3-I SANCs and the response to BayK was eliminated by ryanodine in all groups. Conclusions The Ca2+ clock is capable of supporting physiological fight or flight responses, independent of β-AR stimulation or If increases. Complete Ca2+ clock and β-AR stimulation responses require CaMKII. PMID:21406683

  9. Accumulation and phytotoxicity of technical hexabromocyclododecane in maize.

    PubMed

    Wu, Tong; Huang, Honglin; Zhang, Shuzhen

    2016-04-01

    To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane (HBCD) in maize, young seedlings were exposed to solutions of technical HBCD at different concentrations. The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96hr, and the accumulation was much higher in roots than in shoots. HBCD accumulation in maize had a positive linear correlation with the exposure concentration. The accumulation of different diastereoisomers followed the order γ-HBCD>β-HBCD>α-HBCD. Compared with their proportions in the technical HBCD exposure solution, the diastereoisomer contribution increased for β-HBCD and decreased for γ-HBCD in both maize roots and shoots with exposure time, whereas the contribution of α-HBCD increased in roots and decreased in shoots throughout the experimental period. These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize. Inhibitory effects of HBCD on the early development of maize followed the order of germination rate>root biomass≥root elongation>shoot biomass≥shoot elongation. Hydroxyl radical (OH) and histone H2AX phosphorylation (γ-H2AX) were induced in maize by HBCD exposure, indicative of the generation of oxidative stress and DNA double-strand breaks in maize. An OH scavenger inhibited the expression of γ-H2AX foci in both maize roots and shoots, which suggests the involvement of OH generation in the HBCD-induced DNA damage. The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD. Copyright © 2015. Published by Elsevier B.V.

  10. Declining growth of Mauna Loa during the last 100,000 years: Rates of lava accumulation vs. gravitational subsidence

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.

    Long-term growth rates of Hawaiian volcanoes are difficult to determine because of the short historical record, problems in dating tholeiitic basalt by K-Ar methods, and concealment of lower volcanic flanks by 5 km of seawater. Combined geologic mapping, petrologic and geochemical studies, geochronologic determinations, marine studies, and scientific drilling have shown that, despite frequent large historical eruptions (avg. 1 per 7 years since mid 19th century), the lower subaerial flanks of Mauna Loa have grown little during the last hundred thousand years. Coastal lava-accumulation rates have averaged less than 2 mm/year since 10 to 100 ka along the Mauna Loa shoreline, slightly less than recent isostatic subsidence rates of 2.4-2.6 mm/yr. Since 30 ka, lava accumulation has been greatest on upper flanks of the volcano at times of summit caldera overflows; rift eruptions have been largely confined to vents at elevations above +2,500 m, and activity has diminished lower along both rift zones. Additional indicators of limited volcanic construction at lower levels and declining eruptive activity include: (1) extensive near-surface preservation of Pahala Ash along the southeast coast, dated as older than about 30 ka; (2) preservation in the Ninole Hills of block-slumped ancestral Mauna Loa lavas erupted at 100-200 ka; (3) preservation low in the subaerial Kealakekua landslide fault scarp of lavas newly dated by K-Ar as 166±53 ka; (4) preservation of submerged coral reefs (150 m depth) dated at 14 ka and fossil shoreline features (as much as 350-400 m depth), with estimated ages of 130-150 ka, that have survived without burial by younger Mauna Loa lavas and related ocean-entry debris; (5) incomplete filling of old landslide breakaway scars; (6) limited deposition of post-landslide lava on lower submarine slopes (accumulation mostly <1,000 m depth); and (7) decreased deformation and gravitational instability of the volcanic edifice. In addition, the estimated recent

  11. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli.

    PubMed

    Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X; Fares, Mario A

    2016-09-26

    The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500-5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil

    USGS Publications Warehouse

    Carrasco, J.J.; Neff, J.C.; Harden, J.W.

    2006-01-01

    Boreal soils are important to the global C cycle owing to large C stocks, repeated disturbance from fire, and the potential for permafrost thaw to expose previously stable, buried C. To evaluate the primary mechanisms responsible for both short- and long-term C accumulation in boreal soils, we developed a multi-isotope (12,14C) Soil C model with dynamic soil layers that develop through time as soil organic matter burns and reaccumulates. We then evaluated the mechanisms that control organic matter turnover in boreal regions including carbon input rates, substrate recalcitrance, soil moisture and temperature, and the presence of historical permafrost to assess the importance of these factors in boreal C accumulation. Results indicate that total C accumulation is controlled by the rate of carbon input, decomposition rates, and the presence of historical permafrost. However, unlike more temperate ecosystems, one of the key mechanisms involved in C preservation in boreal soils examined here is the cooling of subsurface soil layers as soil depth increases rather than increasing recalcitrance in subsurface soils. The propagation of the 14C bomb spike into soils also illustrates the importance of historical permafrost and twentieth century warming in contemporary boreal soil respiration fluxes. Both 14C and total C simulation data also strongly suggest that boreal SOM need not be recalcitrant to accumulate; the strong role of soil temperature controls on boreal C accumulation at our modeling test site in Manitoba, Canada, indicates that carbon in the deep organic soil horizons is probably relatively labile and thus subject to perturbations that result from changing climatic conditions in the future. Copyright 2006 by the American Geophysical Union.

  13. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    PubMed

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.

  14. The Effects of Increasing Information Processing Demands on Rating Outcomes.

    DTIC Science & Technology

    1986-10-01

    Resources Research THE EFFECTS OF INCREASING INFORMATION PROCESSING DEMANDS ON RATING OUTCOMES Roseanne J. Foti € and Neil M.A. Hauenstein October...j** ~-- .. ~ 87 7 0O2 p. THE EFFECTS OF INCREASING INFORMATION PROCESSING DEMANDS ON RATING OUTCOMES Roseanne J. Foti and -Neil M.A. Hauenstein...5- % Performance Ratings 2 Effects of Increasing Information Processing Demands on Rating Outcomes Abstract This research investigated the cognitive

  15. Effect of collagen turnover on the accumulation of advanced glycation end products.

    PubMed

    Verzijl, N; DeGroot, J; Thorpe, S R; Bank, R A; Shaw, J N; Lyons, T J; Bijlsma, J W; Lafeber, F P; Baynes, J W; TeKoppele, J M

    2000-12-15

    Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.

  16. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian--African shield during the Cretaceous--Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation

    NASA Astrophysics Data System (ADS)

    Soudry, D.; Glenn, C. R.; Nathan, Y.; Segal, I.; VonderHaar, D.

    2006-09-01

    The evolution of Tethyan phosphogenesis during the Cretaceous-Eocene is examined to try to explain fluctuations of phosphogenesis through time, and whether or not they reflect long-term changes in ocean circulation or in continental weathering. Twenty-seven time-stratigraphic phosphate levels in various Tethyan sites, covering a time span of about 90 Myr from the Hauterivian to the Eocene, were analyzed for 44Ca/ 42Ca and 143Nd/ 144Nd in their carbonate fluorapatite (CFA) fraction. P and Ca accumulation rates and bulk sedimentation rates were quantified throughout the Cretaceous-Eocene Negev sequence to examine how changes in 44Ca/ 42Ca and 143Nd/ 144Nd are reflected in the intensity of phosphogenesis. A clear-cut change occurs in ɛNd( T) and δ44Ca and in the rates of P and Ca accumulation and bulk sedimentation through the time analyzed. ɛNd( T) is much lower in the Hauterivian-Lower Cenomanian (- 12.8 to - 10.9) than in the Upper Cenomanian-Eocene (- 7.8 to - 5.9). Much lower δ44Ca values occur in the Hauterivian-Turonian (- 0.22 to + 0.02) than in the Coniacian-Eocene (+ 0.23 to + 0.40). P accumulation rates in the Negev steeply increase from < 200 μmol cm - 2 k yr - 1 in the Albian-Coniacian to ˜ 1500 μmol cm - 2 k yr - 1 in the Campanian, whereas a strong decrease is concomitantly recorded in the rates of Ca accumulation and bulk sedimentation. In addition, distinct ɛNd( T) values are shown by the phosphorites of the Negev (- 6.7 to - 6.4) and Egypt (- 9.1 to - 7.6) during the Campanian, and by those of the Negev (- 7.8 to - 6.3) and North Africa (- 10.1 to - 8.9) during the Maastrichtian-Eocene. The culmination of P accumulation rates in the Negev during the Campanian, occurring with a high in ɛNd( T) and δ44Ca and a low in sedimentation rates, indicates that paleoceanographic and paleogeographical factors mostly governed phosphorite accumulation in this area. The abrupt ɛNd( T) rise after the Cenomanian is attributed to increased incursion of

  17. Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in Caenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size.

    PubMed

    Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali

    2017-06-01

    Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Regulation of accumulation of ammonium-inducible glutamate dehydrogenase catalytic activity and antigen during the cell cycle of fully induced, synchronous Chlorella sorokiniana cells.

    PubMed

    Yeung, A T; Bascomb, N F; Turner, K J; Schmidt, R R

    1981-05-01

    By use of a rocket immunoelectrophoresis-activity stain procedure, it was shown that catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) was accompanied by a coincident increase in enzyme antigen during the cell cycle of preinduced synchronous Chlorella sorokiniana cells growing in the continuous presence of ammonia. Between the fourth and fifth hours of the G-1 phase of the cell cycle, a three- to fourfold increase in linear accumulation of enzyme antigen was observed. Pulse-chase studies with [35S]sulfate, coupled with a specific indirect immunoadsorption procedure for enzyme antigen, showed that NADP-GDH antigen undergoes continuous degradation (i.e., a half-life of 88 to 110 min) during its linear pattern of accumulation during the cell cycle. The apparent half-life of the enzyme increased by approximately 23% of the 4.5-h positive rate change in antigen accumulation during the cell cycle. This increase in half-life is insufficient in itself to account for the large change in rate of NADP-GDH antigen accumulation. The data from immunoelectrophoresis, pulse-chase, and initial 35S incorporation rate experiments taken together support the inference that changes in the rate of NADP-GDH synthesis are primarily responsible for the accumulation patterns of NADP-GDH activity during the C. sorokiniana cell cycle.

  19. DISTRIBUTED AND ACCUMULATED REINFORCEMENT ARRANGEMENTS: EVALUATIONS OF EFFICACY AND PREFERENCE

    PubMed Central

    DELEON, ISER G.; CHASE, JULIE A.; FRANK-CRAWFORD, MICHELLE A.; CARREAU-WEBSTER, ABBEY B.; TRIGGS, MANDY M.; BULLOCK, CHRISTOPHER E.; JENNETT, HEATHER K.

    2015-01-01

    We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement. PMID:24782203

  20. Distributed and accumulated reinforcement arrangements: evaluations of efficacy and preference.

    PubMed

    DeLeon, Iser G; Chase, Julie A; Frank-Crawford, Michelle A; Carreau-Webster, Abbey B; Triggs, Mandy M; Bullock, Christopher E; Jennett, Heather K

    2014-01-01

    We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement. © Society for the Experimental Analysis of Behavior.

  1. Increasing influenza vaccination rates via low cost messaging interventions.

    PubMed

    Baskin, Ernest

    2018-01-01

    This article tests low cost interventions to increase influenza vaccination rates. By changing an email announcement sent out to employees in 2014 (n > 30,000), the following interventions are tested: incentives, attention to the negative impacts of not get vaccinated, and showing a map to the vaccination centers at the end of the email announcement. Only the map condition helped increase influenza vaccination rates. The use of low-cost interventions can improve influenza vaccination rates though not all interventions work as well as others in the field. In particular, while including maps helped increase vaccination rates, other factors such as negative impact reminders and incentives, which previous studies have found to be successful in the laboratory, did not.

  2. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates

    PubMed Central

    Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615

  3. Atmospheric mercury accumulation and washoff processes on impervious urban surfaces

    USGS Publications Warehouse

    Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.

    2008-01-01

    The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier

  4. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.

  5. Processes and rates of sediment and wood accumulation in the headwater streams of the Oregon Coast Range, U.S.A.

    Treesearch

    C. L. May; R. E. Gresswell

    2003-01-01

    Abstract - Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was...

  6. The mitochondrial uniporter controls fight or flight heart rate increases.

    PubMed

    Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E

    2015-01-20

    Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.

  7. A long-term high-fat diet changes iron distribution in the body, increasing iron accumulation specifically in the mouse spleen.

    PubMed

    Yamano, Noriko; Ikeda, Yasumasa; Sakama, Minoru; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Miyamoto, Licht; Tomita, Shuhei; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-01-01

    Although iron is an essential trace metal, its presence in excess causes oxidative stress in the human body. Recent studies have indicated that iron storage is a risk factor for type 2 diabetes mellitus. Dietary iron restriction or iron chelation ameliorates symptoms of type 2 diabetes in mouse models. However, whether iron content in the body changes with the development of diabetes is unknown. Here, we investigated the dynamics of iron accumulation and changes in iron absorption-related genes in mice that developed obesity and diabetes by consuming a high-fat diet (HFD-fed mice). HFD-fed mice (18-20 wk) were compared with control mice for hematologic features, serum ferritin levels, and iron contents in the gastrocnemius muscle, heart, epididymal fat, testis, liver, duodenum, and spleen. In addition, the spleen was examined histologically. Iron absorption-related gene expression in the liver and duodenum was also examined. Hemoglobin and serum ferritin levels were increased in HFD-fed mice. The HFD-fed mice showed iron accumulation in the spleen, but not in the heart or liver. Increased percentages of the splenic red pulp and macrophages were observed in HFD-fed mice and iron accumulation in the spleen was found mainly in the splenic red pulp. The HFD-fed mice also showed decreased iron content in the duodenum. The mRNA expression of divalent metal transporter-1 (DMT-1), an iron absorption-related gene, was elevated in the duodenum of HFD-fed mice. These results indicate that iron accumulation (specifically accumulation in the spleen) is enhanced by the development of type 2 diabetes induced by HFD.

  8. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms.

    PubMed

    Meng, Xin; Yang, Jianming; Cao, Yujin; Li, Liangzhi; Jiang, Xinglin; Xu, Xin; Liu, Wei; Xian, Mo; Zhang, Yingwei

    2011-08-01

    Unlike many oleaginous microorganisms, E. coli only maintains a small amount of natural lipids in cells, impeding its utility to overproduce fatty acids. In this study, acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus was expressed in E. coli to redirect the carbon flux to the generation of malonyl-CoA, which resulted in a threefold increase in intracellular lipids. Moreover, providing a high level of NADPH by overexpressing malic enzyme and adding malate to the culture medium resulted in a fourfold increase in intracellular lipids (about 197.74 mg/g). Co-expression of ACC and malic enzyme resulted in 284.56 mg/g intracellular lipids, a 5.6-fold increase compared to the wild-type strain. This study provides some attractive strategies for increasing lipid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms, which could aid the development of a prokaryotic fatty acid producer.

  9. Predicting Regional Pattern of Longitudinal β-Amyloid Accumulation by Baseline PET.

    PubMed

    Guo, Tengfei; Brendel, Matthias; Grimmer, Timo; Rominger, Axel; Yakushev, Igor

    2017-04-01

    Knowledge about spatial and temporal patterns of β-amyloid (Aβ) accumulation is essential for understanding Alzheimer disease (AD) and for design of antiamyloid drug trials. Here, we tested whether the regional pattern of longitudinal Aβ accumulation can be predicted by baseline amyloid PET. Methods: Baseline and 2-y follow-up 18 F-florbetapir PET data from 58 patients with incipient and manifest dementia due to AD were analyzed. With the determination of how fast amyloid deposits in a given region relative to the whole-brain gray matter, a pseudotemporal accumulation rate for each region was calculated. The actual accumulation rate of 18 F-florbetapir was calculated from follow-up data. Results: Pseudotemporal measurements from baseline PET data explained 87% ( P < 0.001) of the variance in longitudinal accumulation rate across 62 regions. The method accurately predicted the top 10 fast and slow accumulating regions. Conclusion: Pseudotemporal analysis of baseline PET images is capable of predicting the regional pattern of longitudinal Aβ accumulation in AD at a group level. This approach may be useful in exploring spatial patterns of Aβ accumulation in other amyloid-associated disorders such as Lewy body disease and atypical forms of AD. In addition, the method allows identification of brain regions with a high accumulation rate of Aβ, which are of particular interest for antiamyloid clinical trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.

    PubMed

    Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang

    2015-11-01

    Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67% decreased the shoot As concentration by 19∼56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae.

  11. Increasing seatbelt usage rate among high school students.

    DOT National Transportation Integrated Search

    2010-01-01

    While seatbelt use has increased considerably during the last two decades, non-use and inconsistent use is still a significant problem, especially among youths. In addition, population-wide seatbelt rates may appear acceptable, but the rate is low in...

  12. Nibbled to Death by Ducks: The Accumulation of Disadvantage

    NASA Astrophysics Data System (ADS)

    Simpson, Caroline E.

    2010-05-01

    One of the consequences of unconscious bias is the accumulation of advantage/disadvantage. Research has shown that over time, minor imbalances will accrue and eventually have major impacts regarding promotion, salary, prestige, and advancement to leadership positions. For example, an unconscious bias during an evaluation leading to an underestimate of performance will result in a lower success rate, which then feeds back into the next evaluation and the cycle repeats. How can we address this? We'll be discussing how to become informed and conscious of the problem, and we'll look at recommendations for developing and implementing departmental and institutional policies and practices aimed at increasing awareness and countering these accumulations of imbalances that impact us all.

  13. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    PubMed

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  14. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  15. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  16. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  17. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  18. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  19. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...

  20. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  1. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis

    PubMed Central

    Feng, Xi; Chen, Zhihong; Heinzmann, David; Rasmussen, Rikke Darling; Alvarez-Garcia, Virginia; Kim, Yeonghwan; Wang, Bingcheng; Tamagno, Ilaria; Zhou, Hao; Li, Xiaoxia; Kettenmann, Helmut; Ransohoff, Richard M.; Hambardzumyan, Dolores

    2015-01-01

    The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G−F4/80−/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM. PMID:25987130

  2. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs

    PubMed Central

    Sivan, Sarit Sara; Tsitron, Eve; Wachtel, Ellen; Roughley, Peter; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Maroudas, Alice

    2006-01-01

    During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1–A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol·(g of protein)−1·year−1. Using previously reported protein turnover rate constants (kT) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (kF) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009–13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81±0.25 compared with 3.71±0.26 μmol of pentosidine·(mol of lysine)−1·year−1 respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year−1 compared with 0.134 year−1 for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective kF values of 1.81±0.25 and 3.18±0.37 μmol of pentosidine·(mol of lysine)−1·year−1. We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of

  3. Soil and biomass carbon re-accumulation after landslide disturbances

    NASA Astrophysics Data System (ADS)

    Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz

    2017-07-01

    In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.

  4. ACCUMULATION RATE OF MICROBIAL BIOMASS AT TWO PERMEABLE REACTIVE BARRIER SITES

    EPA Science Inventory

    Accumulation of mineral precipitates and microbial biomass are key factors that impact the long-term performance of in-situ Permeable Reactive Barriers for treating contaminated groundwater. Both processes can impact remedial performance by decreasing zero-valent iron reactivity...

  5. Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.

    PubMed

    Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K

    2016-07-01

    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.

  6. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    PubMed

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  7. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    NASA Astrophysics Data System (ADS)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.

  8. The effects of moderately high temperature on zeaxanthin accumulation and decay.

    PubMed

    Zhang, Ru; Kramer, David M; Cruz, Jeffrey A; Struck, Kimberly R; Sharkey, Thomas D

    2011-09-01

    Moderately high temperature reduces photosynthetic capacities of leaves with large effects on thylakoid reactions of photosynthesis, including xanthophyll conversion in the lipid phase of the thylakoid membrane. In previous studies, we have found that leaf temperature of 40°C increased zeaxanthin accumulation in dark-adapted, intact tobacco leaves following a brief illumination, but did not change the amount of zeaxanthin in light-adatped leaves. To investigate heat effects on zeaxanthin accumulation and decay, zeaxanthin level was monitored optically in dark-adapted, intact tobacco and Arabidopsis thaliana leaves at either 23 or 40°C under 45-min illumination. Heated leaves had more zeaxanthin following 3-min light but had less or comparable amounts of zeaxanthin by the end of 45 min of illumination. Zeaxanthin accumulated faster at light initiation and decayed faster upon darkening in leaves at 40°C than leaves at 23°C, indicating that heat increased the activities of both violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE). In addition, our optical measurement demonstrated in vivo that weak light enhances zeaxanthin decay relative to darkness in intact leaves of tobacco and Arabidopsis, confirming previous observations in isolated spinach chloroplasts. However, the maximum rate of decay is similar for weak light and darkness, and we used the maximum rate of decay following darkness as a measure of the rate of ZE during steady-state light. A simulation indicated that high temperature should cause a large shift in the pH dependence of the amount of zeaxanthin in leaves because of differential effects on VDE and ZE. This allows for the reduction in ΔpH caused by heat to be offset by increased VDE activity relative to ZE.

  9. Effects of hydrologic connectivity and land use on floodplain sediment accumulation at the Savannah River Site, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, Jeremy Edward

    Floodplains, and the sediment accumulating naturally on them,are important to maintain stream water quality and serve as sinks for organic and inorganic carbon. Newer theories contend that land use and hydrologic connectivity (water-mediated transport of matter, energy, and/or organisms within or between elements of the hydrologic cycle) play important roles in determining sediment accumulation on floodplains. This study hypothesizes that changes in hydrologic connectivity have a greater impact on floodplain sediment accumulation than changes in land use. Nine sediment cores from seven sub-basins were collected from the Savannah River Site (SRS), South Carolina, and processed for grain-size, radionuclide dating (7Be,more » 137Cs, 210Pb), particulate organic carbon (POC), and microscopy. Historical records, including aerial and satellite imagery,were used to identify anthropogenic disturbances in the sub-basins, as well as to calculate the percentages of natural vegetation land cover at the SRS in 1951, and 2014. LiDAR and field survey data identified 251 flow impediments, measured elevation, and recorded standard stream characteristics (e.g., bank height) that canaffect hydrologic connectivity. Radionuclide dating was used to calculate sediment mass accumulation rates (MARs) and linear accumulation rates (LARs) for each core. Results indicate that sedimentation rates have increased across all SRS sub-basins over the past 40-50 years, shortly after site restoration and recovery efforts began.Findings show that hydrologic connectivity proxies (i.e., stream characteristics and impediments) have stronger relationships to MARs and LARs than the land use proxy (i.e., vegetation cover), confirming the hypothesis. Asstream channel depth and the number of impediments increase,floodplain sedimentation rates also increase. This knowledge can help future stream restoration efforts by focusing resources to more efficiently attain stated goals, particularly in terms of

  10. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  11. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  12. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    PubMed

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  13. Metal accumulation in marine bivalves under various tributyltin burdens.

    PubMed

    Tang, Chuan-Ho; Lin, Chan-Shing; Wang, Wei-Hsien

    2009-11-01

    In the present study, a field survey was conducted to measure the accumulation of butyltin, Cu, Zn, and Cd in green mussels (Perna viridis) and Pacific oysters (Crassostrea gigas) at the regions along a tributyltin pollution gradient. A negative correlation was found between the tributyltin/total butyltin ratio (0.87-0.31) and tributyltin content (114-5,817 ng/g as tin dry wt) in oysters, while the Cu content (44.2-381 mg/kg dry wt) was positively correlated with the logarithm of tributyltin content during the summer and winter. This suggests that as the tributyltin burden increases, the rates of tributyltin metabolism may be elevated, leading to enhanced Cu accumulation. A similar accumulation pattern for Zn was also found in oysters. In mussels, however, the tributyltin/total butyltin ratio and the Cu and Zn contents remained relatively constant (~ 0.7, 12, and 100 mg/kg dry wt, respectively) regardless of the tributyltin burden. Clearly, the butyltin and Cu/Zn accumulation processes in oysters differ from those in mussels under tributyltin pollution. These observations provide valuable information for those who evaluate or compare tributyltin and/or Cu/Zn pollution using oysters and mussels as bioindicators.

  14. [Experimental investigations of 211Am accumulation by macrophytes of the Yenisei River].

    PubMed

    Bolsunovskiĭ, A Ia; Zotina, T A

    2002-01-01

    Experiments were carried out in which 241Am was added to water samples containing macrophytes of the Yenisei River, and the radionuclide absorption rates and concentration factors were determined for the plants. It has been shown that the water moss (Fontinalis antipyretica) has a higher capacity to accumulate 241Am than the Canadian pondweed (Elodea canadensis) does. The laboratory experiments revealed that the capacity of dead biomass of the Canadian pondweed to accumulate 241Am is twice higher than that of living biomass. In contrast, no significant increase in 241Am accumulation by dead biomass of the water moss has been recorded. The transuranic element 241Am was firmly fixed by the plant biomass and was not released into water in the course of long-duration experiments.

  15. 19 CFR 10.534 - Accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Singapore Free Trade Agreement Rules of Origin § 10.534 Accumulation. (a) Originating materials of Singapore or the United States that...

  16. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  17. Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Levine, H. G.; Stryjewski, E. C.; Prima, V.; Piastuch, W. C.; Sager, J. S. (Principal Investigator)

    2001-01-01

    In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues. Elevated isoflavonoid levels attributable to the clinorotation treatment were transient, with the greatest increase observed in the three-day-treated tissues and smaller increases in the four- and five-day-treated tissues. Differences between stresses presented by spaceflight and clinorotation and the resulting biochemical adaptations are discussed, as is whether the increase in isoflavonoid concentrations were due to differential rates of development under the "gravity" treatments employed. Results suggest that spaceflight exposure does not impair isoflavonoid accumulation in developing soybean tissues and that isoflavonoids respond positively to microgravity as a biochemical strategy of adaptation.

  18. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  19. [Influence of light and temperature factors on biomass accumulation of winter wheat in field].

    PubMed

    Ma, Peng-li; Pu, Jin-yong; Zhao, Chun-yu; Wang, Wei-tai

    2010-05-01

    To explore the influence of light and temperature factors on the biomass accumulation of winter wheat at its development stages and in different organs, this paper analyzed the variation patterns of the biomass accumulation and the influence of TEP (thermal effectiveness photosynthetically active radiation) on the accumulation at each development stage, based on the observation data from the Xifen Agrometeorological Experiment Station in Gansu Province, including winter wheat phenophase and yield factors in 1981-2008, biomass at three-leaf, over-wintering, jointing, heading, milky maturity, and maturity stages in 1995-2008, and meteorological data in 1995-2008. The biomass accumulation of winter wheat in its whole growth period presented "S" curve, with the maximum value at heading-milky maturity stage. Since 1981, the TEP at heading-milky maturity stage increased with a rate of 3. 314 MJ x m(-2) x a(-1), and the TEP at other stages varied as parable curves. The TEP at turning green-jointing and milky maturity-maturity stages had a higher value in the 1990s and a lower value in the 1980s and early 21st century, while that at jointing-heading stage had a lower value in the 1990s but a higher value in the 1980s and early 21st century. There was a significant correlation between the TEP at each development stage and the actual yield. The LAI (leaf area index) at each development stage also had a significant correlation with the utilization rate of TEP at corresponding stage. When the LAI at jointing and heading stages was increased by 1, the utilization rate of TEP was correspondingly increased by 0.049 and 0.259 g x MJ(-1), respectively.

  20. Trace-metal accumulation, distribution, and fluxes in forests of the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, A.J.

    1985-01-01

    Forest floor was sampled at 78 sites in nine northeastern states in the USA and analyzed for Cu, Zn, Ni, and Cd. Higher levels of trace metals occurred in the southern half of the study region. Earlier work identified that Pb accumulated in the forest floor of the high-elevation regions of New England. The distribution of Pb, Cu, Zn, Ni, and Cd within the forest floor was studied at three different forested states in New England. The greatest concentration of Pb, Cu, Zn, Ni, and Cd occurred in the Oe horizon of the forest floor in all three forests. Thismore » is the zone of greatest biological activity in the forest floor. Because it receives relatively high rates of atmospheric deposition, Camels Hump in northern Vermont was studied in greater detail. Lead concentration and amount in the forest floor increased between 550 and 1160 m elevation. Comparisons with 1966 and 1977 samples from the same stands showed that Pb, Cu, and Zn concentrations increased by as much as 148% in the intervening 14 years. Estimated deposition rates of Pb, Cu, and Zn based on accumulation rates agreed with regional deposition rates reported in the literature. Lead concentrations were an order of magnitude lower in mineral soil and vegetation than in forest floor. Thus the most likely source of forest floor Pb is the atmosphere. Lead was strongly retained by the forest floor and approximately 3% of the current Pb content of the forest floor is added each year by atmospheric deposition. At the current accumulation rates, the amount of Pb in the forest floor will double in three to four decades.« less

  1. Impact of increased collection rates and the use of commingled collection systems on the quality of recovered paper. Part 1: increased collection rates.

    PubMed

    Miranda, Ruben; Monte, M; Blanco, Angeles

    2011-11-01

    The recovery and utilization of recovered paper have increased over past decades all over the world due to economic, environmental, and social issues. However, it is well known that an extended recovered paper collection is detrimental to its quality, either by the exploitation of lower quality sources such as households, or the spreading of commingled systems instead of selective collection systems. The influence of these two factors was assessed by analyzing the quality of different recovered paper grades used as raw material in a mill located in Madrid (Spain) producing newsprint and light weight coated paper from recovered paper. Part 1 of the paper deals with the impact of increased collection rates on the quality of recovered paper and Part 2 with the use of commingled collection systems. Results of Part 1 show that increased collection rates have a large impact on the quality of the recovered paper. The quality, measured as total unusable material and moisture contents, had deteriorated very rapidly in only 4 years (2005-2008) as a consequence of increased collection rates. Collection rates increased in Spain from 58.5% to 68.6% during this period, resulting in more than 50% increase of total unusable material and 25% of moisture content. The downgrading of the quality of recovered paper is one of the major threats for extending the current limits of paper recycling. Therefore, future challenge is to increase its availability but maintaining its quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 19 CFR 10.458 - Accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Chile Free Trade Agreement Rules of Origin § 10.458 Accumulation. (a) Originating goods or materials of Chile or the United States...

  3. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  4. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions.

    PubMed

    Li, Chunji; Zhang, Ning; Li, Bingxue; Xu, Qiong; Song, Jia; Wei, Na; Wang, Wenjing; Zou, Hongtao

    2017-12-15

    Carotenoids represent a class of molecules valuable for food, chemical and pharmaceutical industries. As a microbial carotenoid, torulene possesses potential health-promoting effects in human. However, few studies have been conducted to investigate optimal condition for its large-scale commercial production to date. Sporidiobolus pararoseus NGR, a pigmented yeast, was shown previously to accumulate considerable amounts of torulene, β-carotene, and torularhodin. In this study, the effect of salt stress on the production of carotenoids in S. pararoseus NGR was investigated. After 5days of cultivation, the total amount of carotenoids was significantly higher in 0.75M (3.952mg/L) and 1M (2.89mg/L) NaCl treatments than control (1.636mg/L), respectively. Among them, the increase in torulene accumulation is the main contributor to the improvement in total amount of carotenoids under 0.75 and 1M NaCl treatments. Together, our results should advance the development of metabolic engineering for the commercial production of torulene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  6. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  7. Growth, nitrogen accumulation and nitrogen transfer by legume species established on mine spoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferies, R.A.; Bradshaw, A.D.; Putwain, P.D.

    1981-12-01

    Nitrogen deficiency is an important factor limiting plant growth on many types of mine and mineral spoils. One method of overcoming this problem is to use legume species which are able to accumulate nitrogen in such spoils. The growth, nitrogen accumulation and nitrogen transfer to a companion species was compared in contrasting legume species established on colliery spoil and on sand waste from the extraction of china clay. Legumes can be effective means of accumulating nitrogen in such spoils with rates as high as 295 kg N ha/sup -1/ yr/sup -1/ being measured for Lupinus perennis sown on sand waste.more » Nitrogen transfer from legumes to a companion grass was also apparent. Trifolium repens sown on colliery spoil increased the nitrogen content of the companion grass by 76 kg ha/sup -1/ within 2 yr of sowing. It is concluded that a wider range of legume species than conventionally used is available, offering greater tolerance of the extreme conditions of mine spoils combined with high rates of nitrogen accumulation. It is necessary to develop reclamation strategies which incorporate such species.« less

  8. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Widespread increase of tree mortality rates in the Western United States

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, Joseph M.; Taylor, A.H.; Veblen, T.T.

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.

  10. Accumulation of methylglyoxal increases the advanced glycation end-product levels in DRG and contributes to lumbar disk herniation-induced persistent pain.

    PubMed

    Liu, Cui-Cui; Zhang, Xin-Sheng; Ruan, Yu-Ting; Huang, Zhu-Xi; Zhang, Su-Bo; Liu, Meng; Luo, Hai-Jie; Wu, Shao-Ling; Ma, Chao

    2017-08-01

    Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 μm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain. NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain. Copyright © 2017 the American Physiological Society.

  11. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  12. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  13. Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response

    PubMed Central

    Kunert, Grit; Gershenzon, Jonathan

    2008-01-01

    The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:10.1007/s10886-008-9453-z) contains supplementary material, which is available to authorized users. PMID:18386096

  14. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  15. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance

    PubMed Central

    Liu, Simu; Bartnikas, Lisa M.; Volko, Sigrid M.; Ausubel, Frederick M.; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew. PMID:26973671

  16. 76 FR 29963 - Rate Increase Disclosure and Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... be subject to review based on the analysis of the trend in health care costs and rate increases... health insurance issuers regarding disclosure and review of unreasonable premium increases under section... Affordable Care Act (Pub. L. 111-148) was enacted on March 23, 2010; the Health Care and Education...

  17. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    PubMed Central

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  18. Information accumulation system by inheritance and diffusion

    NASA Astrophysics Data System (ADS)

    Shin, J. K.

    2009-09-01

    This paper suggests a new model, called as the IAS (Information Accumulation System), for the description of the dynamic process that people use to accumulate their information (knowledge or opinion) for specific issues. Using the concept of information, both the internal and the external mechanism of the opinion dynamics are treated on a unified frame. The information is quantified as a real number with fixed bounds. New concepts, such as inheritance and differential absorption, are incorporated in IAS in addition to the conventional diffusive interaction between people. Thus, the dynamics of the IAS are governed by following three factors: inheritance rate, diffusivity and absorption rate. The original set of equations was solved with an agent based modeling technique. In addition, the individual equations for each of the agents were assembled and transformed into a set of equations for the ensemble averages, which are greatly reduced in number and can be solved analytically. The example simulations showed interesting results such as the critical behavior with respect to diffusivity, the information polarization out of zero-sum news and the dependence of the solutions on the initial conditions alone. The results were speculated in relation to today’s modern society where the diffusivity of information has been greatly increased through the internet and mobile phones.

  19. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis.

    PubMed

    Tjellström, Henrik; Strawsine, Merissa; Silva, Jillian; Cahoon, Edgar B; Ohlrogge, John B

    2013-04-02

    Engineering transgenic plants that accumulate high levels of medium-chain fatty acids (MCFA) has been least successful for shorter chain lengths (e.g., C8). We demonstrate that one limitation is the activity of acyl-ACP synthetase (AAE) that re-activates fatty acids released by acyl-ACP thioesterases. Seed expression of Cuphea pulcherrima FATB acyl-ACP thioesterase in a double mutant lacking AAE15/16 increased 8:0 accumulation almost 2-fold compared to expression in wild type. These results also provide an in planta demonstration that AAE enzymes participate not only in activation of exogenously added MCFA but also in activation of MCFA synthesized in plastids. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  1. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE PAGES

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng; ...

    2017-10-01

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  2. Increasing the graduation rates of minority medical students.

    PubMed

    Payne, J L; Nowacki, C M; Girotti, J A; Townsel, J; Plagge, J C; Beckham, T W

    1986-05-01

    The University of Illinois College of Medicine has operated a program since 1969 to recruit minority students into the college and to increase the graduation rates of these students once they enroll. Known as the Medical Opportunities Program (MOP) until 1978, the program was expanded in 1978 and renamed the Urban Health Program (UHP). The authors of the present paper discuss the results of these programs, particularly the effect of granting minority students delays in completing graduation requirements. The MOP (1969 through 1978) increased graduation rates for minority students from 55 percent for those who graduated on time to 81 percent for both on-time and delayed graduates. Under the first seven years of the UHP (1979 through 1985), more minority students have been offered places, and more have enrolled than in the 10 years of the MOP. The retention rate under the UHP, if it holds, will be higher than that under the MOP. For the combined MOP-UHP period, the retention rate for minority students was 88 percent; 69.8 percent of the graduates were on time, and 30.2 were delayed.

  3. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  4. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    PubMed Central

    Huang, Zhang-ting; Li, Yong-fu; Jiang, Pei-kun; Chang, Scott X.; Song, Zhao-liang; Liu, Juan; Zhou, Guo-mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0–40 cm soil layer in bamboo plantations increased by 217 Mg C ha−1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha−1 yr−1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha−1 yr−1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change. PMID:24398703

  5. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    USGS Publications Warehouse

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  6. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.

  7. No saturation in the accumulation of alien species worldwide.

    PubMed

    Seebens, Hanno; Blackburn, Tim M; Dyer, Ellie E; Genovesi, Piero; Hulme, Philip E; Jeschke, Jonathan M; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-02-15

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970-2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.

  8. No saturation in the accumulation of alien species worldwide

    PubMed Central

    Seebens, Hanno; Blackburn, Tim M.; Dyer, Ellie E.; Genovesi, Piero; Hulme, Philip E.; Jeschke, Jonathan M.; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E.; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-01-01

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization. PMID:28198420

  9. Carbon accumulation and sequestration of lakes in China during the Holocene.

    PubMed

    Wang, Mei; Chen, Huai; Yu, Zicheng; Wu, Jianghua; Zhu, Qiu'an; Peng, Changhui; Wang, Yanfen; Qin, Boqiang

    2015-12-01

    Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land-use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr(-1) and 7.7 ± 1.4 g C m(-2)  yr(-1) in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr(-1) ) was higher than those in other regions (P < 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions. © 2015 John Wiley & Sons Ltd.

  10. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Steve A.

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies tomore » optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of

  11. Increased heart rate variability during nondirective meditation.

    PubMed

    Nesvold, Anders; Fagerland, Morten W; Davanger, Svend; Ellingsen, Øyvind; Solberg, Erik E; Holen, Are; Sevre, Knut; Atar, Dan

    2012-08-01

    Meditation practices are in use for relaxation and stress reduction. Some studies indicate beneficial cardiovascular health effects of meditation. The effects on the autonomous nervous system seem to vary among techniques. The purpose of the present study was to identify autonomic nerve activity changes during nondirective meditation. Heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) were monitored in 27 middle-aged healthy participants of both genders, first during 20 min regular rest with eyes closed, thereafter practising Acem meditation for 20 min. Haemodynamic and autonomic data were collected continuously (beat-to-beat) and non-invasively. HRV and BPV parameters were estimated by power spectral analyses, computed by an autoregressive model. Spontaneous activity of baroreceptors were determined by the sequence method. Primary outcomes were changes in HRV, BPV, and BRS between rest and meditation. HRV increased in the low-frequency (LF) and high-frequency (HF) bands during meditation, compared with rest (p = 0.014, 0.013, respectively). Power spectral density of the RR-intervals increased as well (p = 0.012). LF/HF ratio decreased non-significantly, and a reduction of LF-BPV power was observed during meditation (p < 0.001). There was no significant difference in BRS. Respiration and heart rates remained unchanged. Blood pressure increased slightly during meditation. There is an increased parasympathetic and reduced sympathetic nerve activity and increased overall HRV, while practising the technique. Hence, nondirective meditation by the middle aged may contribute towards a reduction of cardiovascular risk.

  12. Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores

    NASA Astrophysics Data System (ADS)

    Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin

    2014-05-01

    The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual

  13. A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation

    USGS Publications Warehouse

    Reheis, M.C.

    2006-01-01

    An ongoing project monitors modern dust accumulation in the arid southwestern United States to (1) determine the rate and composition of dust inputs to soils and (2) relate dust accumulation to weather patterns to help predict the effects of climate change on dust production and accumulation. The 16-year records of 35 dust-trap sites in the eastern Mojave Desert and southern Great Basin reveal how generation and accumulation of dust, including the silt-clay, carbonate, and soluble-salt fractions, is affected by the amount and seasonal distribution of rainfall and the behavior of different source types (alluvium, dry playas, and wet playas). Accumulation rates (fluxes) of the silt-clay fraction of dust, including carbonates, range from about 2-20 g/m2/yr. Average rates are higher in the southern part of the study area (south of latitude 36.5??N) and annually fluctuate over a larger range than rates in the northern part of the area. Sites throughout the study area show peaks in dust flux in the 1984-1985 sampling period and again in 1997-1999; northern sites also show increased flux in 1987-1988 and southern sites in 1989-1991. These peaks of dust flux correspond with both La Nina (dry) conditions and with strong El Nino (wet) periods. The accumulation rates of different components of mineral dusts fluctuate differently. For example, soluble-salt flux increases in 1987-1988, coincident with a moderate El Nino event, and increases very strongly in 1997-1999, overlapping with a strong El Nino event. Both of these high-rainfall winters were preceded and accompanied by strong summer rains. In contrast, little or no change in soluble-salt flux occurred during other periods of high winter rainfall but little summer rain, e.g. 1992-1995. The differences between northern vs. southern sites and between sites with playa dust sources vs. alluvial dust sources indicate that regional differences in the response of precipitation and vegetation growth to ENSO influence and

  14. The Rate of Value Increase for Sugar Maple

    Treesearch

    Joseph J. Mendel; Ted J. Grisez; G.R. Jr. Trimble; G.R. Jr. Trimble

    1973-01-01

    Presents financial-maturity information for sugar maple, based on tree growth and tree-quality data collected in Pennsylvania and West Virginia. Detailed rates of value increase and dollar value increase to be expected for a 10-year period are exhibited. Marking guides in the form of financial-maturity diameters are developed. The effects on financial aturity of...

  15. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  16. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  17. Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay.

    PubMed

    Pérez, A; Machado, W; Gutiérrez, D; Borges, A C; Patchineelam, S R; Sanders, C J

    2018-01-01

    A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm -2 yr -1 ) and after three decades of deforestation (59.7±7.2gm -2 yr -1 ). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (<400) and C:N (~20) molar ratios, as well as increased nutrient accumulation, reflect the dominance of phytoplankton-derived organic matter after deforestation, resulting in less-efficient sedimentary carbon sinks. These results indicate that the organic material deposited from eutrophication may not compensate mangrove deforestation losses on carbon accumulation in mangrove ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mitochondrial accumulation of APP and Aβ: significance for Alzheimer disease pathogenesis

    PubMed Central

    Pavlov, Pavel F; Petersen, Camilla Hansson; Glaser, Elzbieta; Ankarcrona, Maria

    2009-01-01

    Accumulating evidence suggest that alterations in energy metabolism are among the earliest events that occur in the Alzheimer disease (AD) affected brain. Energy consumption is drastically decreased in the AD-affected regions of cerebral cortex and hippocampus pointing towards compromised mitochondrial function of neurons within specific brain regions. This is accompanied by an elevated production of reactive oxygen species contributing to increased rates of neuronal loss in the AD-affected brain regions. In this review, we will discuss the role of mitochondrial function and dysfunction in AD. We will focus on the consequences of amyloid precursor protein and amyloid-β peptide accumulation in mitochondria and their involvement in AD pathogenesis. PMID:19725915

  19. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346

  20. Temporal variability in sediment PAHs accumulation in the northern Gulf of Mexico Shelf

    NASA Astrophysics Data System (ADS)

    Bam, W.; Maiti, K.; Adhikari, P. L.

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous group of organic pollutants, some of which are known to be toxic, and/or carcinogenic to humans. The major source of these PAHs into the northern Gulf of Mexico (NGOM) are Mississippi River discharge, coastal erosion, atmospheric deposition, and numerous natural oil seeps and spills. In addition to these background source of PAHs, the Deepwater Horizon (DWH) oil spill in 2010 added 21,000 tons of PAHs into the NGOM water. In this study, we measured PAHs distribution and accumulation rates in coastal sediments near the Mississippi River mouth in 2011 and 2015 to understand the effect of DWH oil spill in PAHs accumulation in coastal sediments. Sediment cores were collected and sliced at 1 cm interval to measure PAHs concentration, and to estimate 210Pb-based sedimentation and the PAHs' accumulation rates. The results showed that the sediment deposition rates in this region varied between 0.5 to 0.9 cm/yr. The results also showed that the concentration of total PAHs (ΣPAH43) and their accumulation rates vary between 68 - 100 ng g-1 and 7 - 160 ng cm-2 yr-1, respectively. While the PAHs accumulation rate in coastal sediment varied over the years, there is no significant variation in PAHs accumulation rate before and after the DWH oil spill.

  1. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  2. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  3. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE PAGES

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    2016-11-08

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  4. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  5. Increase in accumulation of strontium-90 in the maternal skeleton during pregnancy and lactation: analysis of the Techa River data.

    PubMed

    Tolstykh, Evgenia I; Shagina, Natalia B; Degteva, Marina O

    2014-08-01

    The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived (90)Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of (90)Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of (90)Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal (90)Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of (90)Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health.

  6. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto.

    PubMed

    Souza, Marcelo C de; Bueno, Paula C P; Morellato, Leonor P C; Habermann, Gustavo

    2015-01-01

    The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  7. Heat input and accumulation for ultrashort pulse processing with high average power

    NASA Astrophysics Data System (ADS)

    Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart

    2018-05-01

    Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

  8. Fitting species-accumulation functions and assessing regional land use impacts on avian diversity

    Treesearch

    Curtis H. Flather

    1996-01-01

    As one samples species from a particular assemblage, the initial rapid rate with which new species are encountered declines with increasing effort. Nine candidate models to characterize species-accumulation functions were compared in a search for a model that consistently fit geographically extensive avian survey data from a wide range of environmental conditions....

  9. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, P.C.; Evans, J.J.; Bacon, C.W.

    Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +}more » concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.« less

  10. Heart rates increase after hatching in two species of natricine snakes

    PubMed Central

    Aubret, Fabien

    2013-01-01

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits. PMID:24287712

  11. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    PubMed

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  12. Uridine prevents tamoxifen-induced liver lipid droplet accumulation

    PubMed Central

    2014-01-01

    Background Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Methods Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1−/−and UPase1-TG. Results Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1−/−with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had

  13. Uridine prevents tamoxifen-induced liver lipid droplet accumulation.

    PubMed

    Le, Thuc T; Urasaki, Yasuyo; Pizzorno, Giuseppe

    2014-05-23

    Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1-/-and UPase1-TG. Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1-/-with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had intrinsic liver lipid droplet

  14. Apigenin in Combination with Akt Inhibition Significantly Enhances Thyrotropin-Stimulated Radioiodide Accumulation in Thyroid Cells

    PubMed Central

    Lakshmanan, Aparna; Doseff, Andrea I.; Ringel, Matthew D.; Saji, Motoyasu; Rousset, Bernard; Zhang, Xiaoli

    2014-01-01

    Background: Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. Methods: PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAFV600E, or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. Results: We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAFV600E and in primary cultured thyroid tumor cells from TRβPV/PV mice. Conclusion: Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer. PMID:24400871

  15. 19 CFR 10.597 - Accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade Agreement Rules of Origin § 10.597 Accumulation. (a) Originating materials from the...

  16. Increased degradation rate of nitrososureas in media containing carbonate.

    PubMed

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  17. Microbial Cells as Biosorbents for Heavy Metals: Accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    PubMed Central

    Strandberg, Gerald W.; Shumate, Starling E.; Parrott, John R.

    1981-01-01

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent. Images PMID:16345691

  18. Laboratory Determination of Molybdenum Accumulation Rates as a Measure of Hypoxic Conditions

    EPA Science Inventory

    Redox sensitive metals, such as molybdenum (Mo), are enriched in reducing sediments due to authigenic fixation in anoxic interstitial waters of sediments. This study tested whether the process of fixation and accumulation of Mo in sediments could provide a geochemical indicator o...

  19. Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postma, J.F.; Nugteren, P. van; Buckert-De Jong, M.B.

    1996-03-01

    Cadmium kinetics were studied in cadmium-adapted and nonadapted field populations of the midge Chironomus riparius. Accumulation and elimination experiments were carried out using first-generation laboratory-reared animals. Differences between populations were, therefore, assumed to have a genetic basis. Larvae were dissected to analyze the guts and the remainder of the larvae separately. First-order one-compartment models were not always successful in describing accumulation processes, probably due to acclimation. No interpopulation differences were observed in larval development based on dry weights, whereas some differences existed based on pupation rate. In most cases more than 80% of the total amount of cadmium was foundmore » in the guts of all populations. Larvae from cadmium-adapted populations showed a decreased net accumulation rate as well as higher equilibrium values (15--20%) compared to nonadapted populations. In addition, cadmium excretion efficiency was increased for cadmium-adapted larvae, which was due to an increased elimination rate from the guts. It was concluded that exposure to high cadmium concentrations in the field resulted in populations of C. riparius with an increased storage capability and an increased excretion efficiency, especially regarding the guts.« less

  20. Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae

    NASA Astrophysics Data System (ADS)

    Kohshima, Shiro; Takeuchi, Nozomu; Uetake, Jun; Shiraiwa, Takayuki; Uemura, Ryu; Yoshida, Naohiro; Matoba, Sumito; Godoi, Maria Angelica

    2007-10-01

    Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59'05″S, 73°31'12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes ( 18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na +, K +, Mg 2+, Ca 2+, Cl -, SO 42-) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a - 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a - 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a - 1 from fall 1998 to fall 1999 and 8.6 m a - 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.

  1. Strategies to Increase Adenoma Detection Rates.

    PubMed

    Brand, Eelco C; Wallace, Michael B

    2017-03-01

    The adenoma detection rate (ADR), i.e., the proportion of average risk patients with at least one adenoma detected during screening colonoscopy, is inversely associated with the development of interval colorectal cancer. Increasing the ADR is therefore an important proxy for increase in quality and efficacy of (screening) colonoscopy. Several potentially modifiable factors, such as, procedural and technological factors, and quality improvement programs, and their effect on the ADR will be reviewed. Procedural factors, such as, bowel preparation, withdrawal time, and position changes of the patient are associated with the ADR. While the relation of others, such as inspection during insertion, use of antispasmodic agents, and second inspection in the proximal colon, with the ADR is not completely clear. Many new colonoscopy technologies have been evaluated over recent years and are still under evaluation, but no unequivocal positive effect on the ADR has been observed in randomized trials that have mostly been performed by experienced endoscopists with high baseline ADRs. Several quality improvement programs have been evaluated and seem to have a positive effect on endoscopists' ADR. Increase in ADR is important for the protective benefit of colonoscopy. There are now extensive methods to measure, benchmark, and improve ADR but increased awareness of these is critical. We have provided an overview of potential factors that can be used to increase personal ADRs in every day practice.

  2. Increased Interleukin-23 in Hashimoto's Thyroiditis Disease Induces Autophagy Suppression and Reactive Oxygen Species Accumulation.

    PubMed

    Zheng, Tingting; Xu, Chengcheng; Mao, Chaoming; Mou, Xiao; Wu, Fei; Wang, Xuefeng; Bu, Ling; Zhou, Yuepeng; Luo, Xuan; Lu, Qingyan; Liu, Hongli; Yuan, Guoyue; Wang, Shengjun; Chen, Deyu; Xiao, Yichuan

    2018-01-01

    Hashimoto's thyroiditis (HT) represents the most common organ-specific autoimmune disease. Inflammatory factors and reactive oxygen species (ROS) play detrimental roles during the pathogenesis of HT. In this study, we found that thyroid follicular cells (TFCs) from HT patients expressed an elevated level of interleukin-23 (IL-23), which contributed to autophagy suppression and ROS accumulation. Additionally, IL-23-induced autophagy suppression and ROS accumulation in human TFCs was attributed to AKT/mTOR/NF-κB signaling pathway activation. Inhibition of either IL-23 by a specific neutralization antibody, or mTOR by rapamycin, or NF-κB by IKK-16, significantly reversed the autophagy suppression and ROS accumulation. These results demonstrate a key role for IL-23 in HT pathogenesis and provide a potential therapeutic strategy against IL-23 or its signaling pathway in HT.

  3. 75 FR 9536 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... increase the assessment rate established for the California Olive Committee (Committee) for the 2010 and... fiscal year began January 1 and ends December 31. The assessment rate would remain in effect indefinitely... from such assessments. It is intended that the assessment rate as proposed herein would be applicable...

  4. 19 CFR 10.597 - Accumulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Accumulation. 10.597 Section 10.597 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United...

  5. 19 CFR 10.597 - Accumulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Accumulation. 10.597 Section 10.597 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United...

  6. 19 CFR 10.597 - Accumulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Accumulation. 10.597 Section 10.597 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United...

  7. 19 CFR 10.597 - Accumulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accumulation. 10.597 Section 10.597 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United...

  8. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    PubMed Central

    Newton, Jason; Hait, Nitai C.; Maceyka, Michael; Colaco, Alexandria; Maczis, Melissa; Wassif, Christopher A.; Cougnoux, Antony; Porter, Forbes D.; Milstien, Sheldon; Platt, Nicholas; Platt, Frances M.; Spiegel, Sarah

    2017-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.—Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. PMID:28082351

  9. Estimates of Marine Debris Accumulation on Beaches Are Strongly Affected by the Temporal Scale of Sampling

    PubMed Central

    Smith, Stephen D. A.; Markic, Ana

    2013-01-01

    Marine debris is a global issue with impacts on marine organisms, ecological processes, aesthetics and economies. Consequently, there is increasing interest in quantifying the scale of the problem. Accumulation rates of debris on beaches have been advocated as a useful proxy for at-sea debris loads. However, here we show that past studies may have vastly underestimated the quantity of available debris because sampling was too infrequent. Our study of debris on a small beach in eastern Australia indicates that estimated daily accumulation rates decrease rapidly with increasing intervals between surveys, and the quantity of available debris is underestimated by 50% after only 3 days and by an order of magnitude after 1 month. As few past studies report sampling frequencies of less than a month, estimates of the scale of the marine debris problem need to be critically re-examined and scaled-up accordingly. These results reinforce similar, recent work advocating daily sampling as a standard approach for accurate quantification of available debris in coastal habitats. We outline an alternative approach whereby site-specific accumulation models are generated to correct bias when daily sampling is impractical. PMID:24367607

  10. Increased Dapivirine tissue accumulation through vaginal film codelivery of dapivirine and Tenofovir.

    PubMed

    Akil, Ayman; Devlin, Brid; Cost, Marilyn; Rohan, Lisa Cencia

    2014-05-05

    The HIV-1 replication inhibitor dapivirine (DPV) is one of the most promising drug candidates being used in topical microbicide products for prevention of HIV-1 sexual transmission. To be able to block HIV-1 replication, DPV must have access to the viral reverse transcriptase enzyme. The window for DPV to access the enzyme happens during the HIV-1 cellular infection cycle. Thus, in order for DPV to exert its anti-HIV activity, it must be present in the mucosal tissue or cells where HIV-1 infection occurs. A dosage form containing DPV must be able to deliver the drug to the tissue site of action. Polymeric films are solid dosage forms that dissolve and release their payload upon contact with fluids. Films have been used as vaginal delivery systems of topical microbicide drug candidates including DPV. For use in topical microbicide products containing DPV, polymeric films must prove their ability to deliver DPV to the target tissue site of action. Ex vivo exposure studies of human ectocervical tissue to DPV film revealed that DPV was released from the film and did diffuse into the tissue in a concentration dependent manner indicating a process of passive diffusion. Analysis of drug distribution in the tissue revealed that DPV accumulated mostly at the basal layer of the epithelium infiltrating the upper part of the stroma. Furthermore, as a combination microbicide product, codelivery of DPV and TFV from a polymeric film resulted in a significant increase in DPV tissue concentration [14.21 (single entity film) and 31.03 μg/g (combination film)], whereas no impact on TFV tissue concentration was found. In vitro release experiments showed that this observation was due to a more rapid DPV release from the combination film as compared to the single entity film. In conclusion, the findings of this study confirm the ability of polymeric films to deliver DPV and TFV to human ectocervical tissue and show that codelivery of the two agents has a significant impact on DPV

  11. Increased Dapivirine Tissue Accumulation through Vaginal Film Codelivery of Dapivirine and Tenofovir

    PubMed Central

    2015-01-01

    The HIV-1 replication inhibitor dapivirine (DPV) is one of the most promising drug candidates being used in topical microbicide products for prevention of HIV-1 sexual transmission. To be able to block HIV-1 replication, DPV must have access to the viral reverse transcriptase enzyme. The window for DPV to access the enzyme happens during the HIV-1 cellular infection cycle. Thus, in order for DPV to exert its anti-HIV activity, it must be present in the mucosal tissue or cells where HIV-1 infection occurs. A dosage form containing DPV must be able to deliver the drug to the tissue site of action. Polymeric films are solid dosage forms that dissolve and release their payload upon contact with fluids. Films have been used as vaginal delivery systems of topical microbicide drug candidates including DPV. For use in topical microbicide products containing DPV, polymeric films must prove their ability to deliver DPV to the target tissue site of action. Ex vivo exposure studies of human ectocervical tissue to DPV film revealed that DPV was released from the film and did diffuse into the tissue in a concentration dependent manner indicating a process of passive diffusion. Analysis of drug distribution in the tissue revealed that DPV accumulated mostly at the basal layer of the epithelium infiltrating the upper part of the stroma. Furthermore, as a combination microbicide product, codelivery of DPV and TFV from a polymeric film resulted in a significant increase in DPV tissue concentration [14.21 (single entity film) and 31.03 μg/g (combination film)], whereas no impact on TFV tissue concentration was found. In vitro release experiments showed that this observation was due to a more rapid DPV release from the combination film as compared to the single entity film. In conclusion, the findings of this study confirm the ability of polymeric films to deliver DPV and TFV to human ectocervical tissue and show that codelivery of the two agents has a significant impact on DPV

  12. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes

    PubMed Central

    Cohen, Seth D.; Tarara, Julie M.; Gambetta, Greg A.; Matthews, Mark A.; Kennedy, James A.

    2012-01-01

    Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field-grown grapes (cv. Merlot) were cooled during the day or heated at night by +/–8 °C, from fruit set to véraison in three seasons, to determine the effect of temperature on PA accumulation. Total PA content per berry varied only in one year, when PA content was highest in heated berries (1.46 mg berry−1) and lowest in cooled berries (0.97 mg berry−1). In two years, cooling berries resulted in a significant increase in the proportion of (–)-epigallocatechin as an extension subunit. In the third year, rates of berry development, PA accumulation, and the expression levels of several genes involved in flavonoid biosynthesis were assessed. Heating and cooling berries altered the initial rates of PA accumulation, which was correlated strongly with the expression of core genes in the flavonoid pathway. Both heating and cooling altered the rate of berry growth and coloration, and the expression of several structural genes within the flavonoid pathway. PMID:22268158

  13. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments. ?? 2011 Author(s).

  14. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com; Campbell, Jean S.; Fausto, Nelson

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration inmore » the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.« less

  15. Cholesterol accumulation in tissues of the Niemann-pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ.

    PubMed

    Xie, C; Turley, S D; Dietschy, J M

    1999-10-12

    Niemann-Pick type C (NPC) disease is associated with the accumulation of unesterified cholesterol in nearly all tissues and with progressive neurodegeneration. A murine model of this disease, the NPC mouse, was used to determine whether this sequestered cholesterol represented sterol carried in low density lipoprotein (LDL) and chylomicrons (CMs) taken up into the tissues through the coated-pit pathway. By 7 weeks of age, the sterol pool in the NPC mice had increased from 2,165 to 5,669 mg/kg body weight because of the daily sequestration of 67 mg of cholesterol per kg in the various organs. This was 7-fold greater than the rate of accumulation in control mice. The rate of LDL clearance in the NPC mouse was normal (523 ml/day per kg) and accounted for the uptake of 78 mg/day per kg of cholesterol in LDL whereas 8 mg/day per kg was taken up from CMs. Deletion of the LDL receptor in NPC mice altered the concentration of unesterified cholesterol in every organ in a manner consistent with the changes also observed in the rate of LDL cholesterol uptake in those tissues. Similarly, altering the flow of cholesterol to the liver through the CM pathway changed the concentration of unesterified cholesterol in that organ. Together, these observations strongly support the conclusion that, in NPC disease, it is cholesterol carried in LDL and CMs that is sequestered in the tissues and not sterol that is newly synthesized and carried in high density lipoprotein.

  16. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    PubMed

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis

    PubMed Central

    Howard, Brian; Dvora, Mia; Dums, Jacob; Backman, Patrick; Sederoff, Heike

    2015-01-01

    Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25°C to 35°C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0) into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis. PMID:25992838

  18. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

    PubMed Central

    2013-01-01

    The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544

  19. Evidence Accumulator or Decision Threshold – Which Cortical Mechanism are We Observing?

    PubMed Central

    Simen, Patrick

    2012-01-01

    Most psychological models of perceptual decision making are of the accumulation-to-threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms have received less attention, and their neural basis has usually been sought in subcortical structures. Here I analyze a model of a decision threshold that can be implemented in the same cortical areas as evidence accumulators, and whose behavior bears on two open questions in decision neuroscience: (1) When ramping activity is observed in a brain region during decision making, does it reflect evidence accumulation? (2) Are changes in speed-accuracy tradeoffs and response biases more likely to be achieved by changes in thresholds, or in accumulation rates and starting points? The analysis suggests that task-modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence accumulation as opposed to threshold readout; and that signs of modulated accumulation are as likely to indicate threshold adaptation as adaptation of starting points and accumulation rates. These conclusions imply that how thresholds are modeled can dramatically impact accumulator-based interpretations of this data. PMID:22737136

  20. Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2014-05-15

    The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.

  1. High mutation rates limit evolutionary adaptation in Escherichia coli

    PubMed Central

    Wagner, Andreas

    2018-01-01

    Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649

  2. Increases in Cognitive and Linguistic Processing Primarily Account for Increases in Speaking Rate with Age

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 ("N" = 7), 7 ("N" = 10), 10…

  3. 19 CFR 10.772 - Accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Accumulation. 10.772 Section 10.772 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Morocco Free Trade Agreement...

  4. 19 CFR 10.875 - Accumulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Accumulation. 10.875 Section 10.875 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Oman Free Trade Agreement Rules...

  5. 19 CFR 10.875 - Accumulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Accumulation. 10.875 Section 10.875 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Oman Free Trade Agreement Rules...

  6. 19 CFR 10.875 - Accumulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accumulation. 10.875 Section 10.875 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Oman Free Trade Agreement Rules...

  7. 19 CFR 10.875 - Accumulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Accumulation. 10.875 Section 10.875 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Oman Free Trade Agreement Rules...

  8. Targeted Antiepidermal Growth Factor Receptor (Cetuximab) Immunoliposomes Enhance Cellular Uptake In Vitro and Exhibit Increased Accumulation in an Intracranial Model of Glioblastoma Multiforme

    PubMed Central

    Mortensen, Joachim Høg

    2013-01-01

    Therapeutic advances do not circumvent the devastating fact that the survival rate in glioblastoma multiforme (GBM) is less than 5%. Nanoparticles consisting of liposome-based therapeutics are provided against a variety of cancer types including GBM, but available liposomal formulations are provided without targeting moieties, which increases the dosing demands to reach therapeutic concentrations with risks of side effects. We prepared PEGylated immunoliposomes (ILs) conjugated with anti-human epidermal growth factor receptor (EGFR) antibodies Cetuximab (α-hEGFR-ILs). The affinity of the α-hEGFR-ILs for the EGF receptor was evaluated in vitro using U87 mg and U251 mg cells and in vivo using an intracranial U87 mg xenograft model. The xenograft model was additionally analyzed with respect to permeability to endogenous albumin, tumor size, and vascularization. The in vitro studies revealed significantly higher binding of α-hEGFR-ILs when compared with liposomes conjugated with isotypic nonimmune immunoglobulin. The uptake and internalization of the α-hEGFR-ILs by U87 mg cells were further confirmed by 3D deconvolution analyses. In vivo, the α-hEGFR-ILs accumulated to a higher extent inside the tumor when compared to nonimmune liposomes. The data show that α-hEGFR-ILs significantly enhance the uptake and accumulation of liposomes in this experimental model of GBM suggestive of improved specific nanoparticle-based delivery. PMID:24175095

  9. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2016-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation

  10. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation

  11. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. Copyright © 2015. Published

  12. The antiretrovirus drug 3'-azido-3'-deoxythymidine increases the retrovirus mutation rate.

    PubMed Central

    Julias, J G; Kim, T; Arnold, G; Pathak, V K

    1997-01-01

    It was previously observed that the nucleoside analog 5-azacytidine increased the spleen necrosis virus (SNV) mutation rate 13-fold in one cycle of retrovirus replication (V. K. Pathak and H. M. Temin, J. Virol. 66:3093-3100, 1992). Based on this observation, we hypothesized that nucleoside analogs used as antiviral drugs may also increase retrovirus mutation rates. We sought to determine if 3'-azido-3'-deoxythymidine (AZT), the primary treatment for human immunodeficiency virus type 1 (HIV-1) infection, increases the retrovirus mutation rate. Two assays were used to determine the effects of AZT on retrovirus mutation rates. The strategy of the first assay involved measuring the in vivo rate of inactivation of the lacZ gene in one replication cycle of SNV- and murine leukemia virus-based retroviral vectors. We observed 7- and 10-fold increases in the SNV mutant frequency following treatment of target cells with 0.1 and 0.5 microM AZT, respectively. The murine leukemia virus mutant frequency increased two- and threefold following treatment of target cells with 0.5 and 1.0 microM AZT, respectively. The second assay used an SNV-based shuttle vector containing the lacZ alpha gene. Proviruses were recovered as plasmids in Escherichia coli, and the rate of inactivation of lacZ alpha was measured. The results indicated that treatment of target cells increased the overall mutation rate two- to threefold. DNA sequence analysis of mutant proviruses indicated that AZT increased both the deletion and substitution rates. These results suggest that AZT treatment of HIV-1 infection may increase the degree of viral variation and alter virus evolution or pathogenesis. PMID:9151812

  13. Geomorphic influences on the contribution of vegetation to soil C accumulation and accretion in Spartina alterniflora marshes

    NASA Astrophysics Data System (ADS)

    Elsey-Quirk, Tracy; Unger, Viktoria

    2018-01-01

    Salt marshes are important hotspots of long-term belowground carbon (C) storage, where plant biomass and allochthonous C can be preserved in the soil for thousands of years. However, C accumulation rates, as well as the sources of C, may differ depending on environmental conditions influencing plant productivity, allochthonous C deposition, and C preservation. For this study, we examined the relationship between belowground root growth, turnover, decay, above- and belowground biomass, and previously reported longer-term rates of total, labile, and refractory organic C accumulation and accretion in Spartina alterniflora-dominated marshes across two mid-Atlantic, US estuaries. Tidal range, long-term rates of mineral sedimentation, C accumulation, and accretion were higher and salinities were lower in marshes of the coastal plain estuary (Delaware Bay) than in the coastal lagoon (Barnegat Bay). We expected that the conditions promoting high rates of C accumulation would also promote high plant productivity and greater biomass. We further tested the influence of environmental conditions on belowground growth (roots + rhizomes), decomposition, and biomass of S. alterniflora. The relationship between plant biomass and C accumulation rate differed between estuaries. In the sediment-limited coastal lagoon, rates of total, labile, and refractory organic C accumulation were directly and positively related to above- and belowground biomass. Here, less flooding and a higher mineral sedimentation rate promoted greater above- and belowground biomass and, in turn, higher soil C accumulation and accretion rates. In the coastal plain estuary, the C accumulation rate was related only to aboveground biomass, which was positively related to the rate of labile C accumulation. Soil profiles indicated that live root and rhizome biomass was positively associated with labile C density for most marshes, yet high labile C densities below the live root zone and in marshes with high mineral

  14. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying

    2016-07-01

    A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction

    PubMed Central

    Walker, Thomas; Michaelides, Christos; Ekonomou, Antigoni; Geraki, Kalotina; Parkes, Harold G; Suessmilch, Maria; Herlihy, Amy H; Crum, William R; So, Po-Wah

    2016-01-01

    Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated agerelated in vivo R2 increases in the SN over ages 7 – 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative ‘antibrain aging’ therapies and combining these strategies may be synergistic. PMID:27743512

  16. Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Morell, Kristin D.; Sandiford, Mike; Kohn, Barry; Codilean, Alexandru; Fülöp, Réka-H.; Ahmad, Talat

    2017-11-01

    Rupture associated with the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake highlighted our incomplete understanding of the structural architecture and seismic cycle processes that lead to Himalayan mountain building in Central Nepal. In this paper we investigate the style and kinematics of active mountain building in the Himalayan hinterland of Northwest India, approximately 400 km to the west of the hypocenter of the Nepal earthquake, via a combination of landscape metrics and long- (Ma) and short-term (ka) erosion rate estimates (from low temperature thermochronometry and basin-wide denudation rate estimates from 10Be concentrations). We focus our analysis on the area straddling the PT2, the physiographic transition between the Lesser and High Himalaya that has yielded important insights into the nature of hinterland deformation across much of the Himalaya. Our results from Northwest India reveal a distinctive PT2 that separates a Lesser Himalaya region with moderate relief (∼1000 m) and relatively slow erosion (<1 mm/yr) from a High Himalaya with extreme relief (∼2500 m), steep channels, and erosion rates that approach or exceed 1 mm/yr. The close spatial similarity in relative rates of long- and short-term erosion suggests that the gradient in rock uplift rates inferred from the landscape metrics across the PT2 has persisted in the same relative position since at least the past 1.5 Ma. We interpret these observations to suggest that strain accumulation in this hinterland region throughout at least the past 1.5 Ma has been accomplished both by crustal thickening via duplexing and overthrusting along transient emergent faults. Despite the >400 km distance between them, similar spatiotemporal patterns of erosion and deformation observed in Northwest India and Central Nepal suggest both regions experience similar styles of active strain accumulation and both are susceptible to large seismic events.

  17. [Effects of PASP-KT-NAA on the grain-filling of maize in different accumulated temperature zones of Hilongjiang Province, Norheast China].

    PubMed

    Xu, Tian-Jun; Dong, Zhi-Qiang; Gao, Jiao; Chen, Chuan-Xiao; Jiao, Liu; Xie, Zhen-Xing

    2013-02-01

    Taking the two maize varieties Zhengdan 958 and Fengdan 3 grown on the three accumulated temperature zones (I, II and III) in Heilongjiang Provice as test materials, a field investigation was made in 2010 and 2011 to study the effects of PASP-KT-NAA (PKN), a compound of exogenous plant growth regulators, on the grain filling and yield of the varieties under different environmental temperatures. From zone I to III, the air temperature at the grain filling stage had a decreasing trend, with the average minimum temperature being 12.16, 11.40, and 9.56, respectively. The effective accumulated temperature at the mid-ate amt sae stage of grain filling was too low to be sufficient for grain filling, which severely affected the grain filling process. Applying N, P and K promoted the dry matter accumulation of maize grain and the grain filling rate in the three zones, delayed the peak time (Tmax) of the grain filling rate of Fengdan 3 but advanced that of Zhengdan 958, promoted the growth capacity at peak time of grain filling rate and the maximum grain filling rate of the two varieties, and shortened their active grain filling period. Applying N, P, and K increased the grain yield of the two varieties in the three zones obviously, and, as compared with those in zones I and II , the grain yields of Zhengdan 958 and Fengdan 3 in zone III were increased by 8.2% and 5.1% , and 3.4% and 0.8% , respectively. Therefore, applying N, P and K could help maize utilizing the limited accumulation temperature, improve the grain filling rate, decrease the grain water content, and ultimately, increase the maize yield.

  18. Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.

    2003-01-01

    The spatial variability of Holocene (past 10,000 years) sediment accumulation in Santa Monica Bay (California) was examined to identify controls sediment trapping in a bathymetrically complex coastal embayment and to provide geologic context for the post-industrial sedimentary record and associated pollution gradients. Sediment chronologies based on downcore AMS 14C dates were used to quantify long-term (millennia) accumulation rates in an effort to elucidate particle-transport pathways and sinks. Sediment accumulation rates for the full range of bayfloor environments (50-630 m water depths) range from 22 to 102 mg/cm2/year (15-88 mm/100 year), have an overall mean of 51??21 mg/cm2/year (1??, n=11), and are comparable to rates reported for adjacent borderland basins. Maximal accumulation rates on the Malibu shelf and within a reentrant to Redondo canyon are interpreted to reflect (1) proximity to sediment sources and (2) localized oceanographic and topographic conditions conducive to sediment trapping and deposition. The 14C-derived accumulation rates are 2-10 times lower than rates determined through 210Pb geochronology for the same sites in a related study, revealing that Holocene sediment accumulation has been non-steady-state. Santa Monica Bay is an important sink for suspended matter; averaged over the past several millennia a mass of sediment equivalent to 10-80% of the modern annual river supply is sequestered yearly. Net influx of suspended matter derived from the adjacent Palos Verdes shelf is evinced by a concentration gradient of p,p???-DDE in bayfloor sediments, whereas the distribution of anthropogenic silver suggests transport from Santa Monica shelf to the southeastern boundary of the bay. The results of this study provide new insight to the long-term fates of particulate matter in Los Angeles coastal waters. ?? 2003 Elsevier Science Ltd. All rights reserved.

  19. Influence of catchment vegetation on mercury accumulation in lake sediments from a long-term perspective.

    PubMed

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2015-12-15

    Organic matter (OM) cycling has a large impact on the cycling of mercury (Hg) in the environment. Hence, it is important to have a thorough understanding on how changes in, e.g., catchment vegetation - through its effect on OM cycling - affect the behavior of Hg. To test whether shifts in vegetation had an effect on Hg-transport to lakes we investigated a sediment record from Herrenwieser See (Southern Germany). This lake has a well-defined Holocene vegetation history: at ~8700years BP Corylus avellana (hazel) was replaced by Quercus robur (oak), which was replaced by Abies alba (fir) and Fagus sylvatica (beech) ~5700years BP). We were particularly interested in testing if coniferous vegetation leads to a larger export of Hg to aquatic systems than deciduous vegetation. When hazel was replaced by oak, reduced soil erosion and increased transport of DOM-bound mercury from the catchment resulted in increases in both Hg-concentrations and accumulation rates (61ngg(-1) and 5.5ngcm(-2)yr.(-)(1) to 118ngg(-1) and 8.5ngcm(-2)yr.(-)(1)). However, even if Hg-concentrations increased also in association with the introduction of fir and beech (173ngg(-1)), as a result of higher Hg:C, there was no increase in Hg-accumulation rates (7.6ngcm(-2)yr.(-)(1)), because of a decreased input of OM. At around 2500years BP Hg-accumulation rates and Hg-concentration indicated an additional input of Hg to the sediment (316ngg(-1) and 10.3ngcm(-2)yr.(-)(1)), which might be due to increased human activities in the area, e.g., forest burning or mining. Our results contrast those of several paired-catchment studies that suggest a higher release of Hg from coniferous than deciduous forest, and there is a need for studies with a long-term perspective to increase our understanding of the effects of slow and gradual processes on mercury cycling. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus.

    PubMed

    Zornoza, Pilar; Sánchez-Pardo, Beatriz; Carpena, Ramón O

    2010-09-01

    The effects of the interaction between Mn and Cd on the growth of the white lupin (Lupinus albus), uptake of these metals, their accumulation, and effects on heavy metal stress indicators were studied under glasshouse conditions. Plants were grown with and without Mn and/or Cd for 4 weeks. The absence of Mn and Cd led to lipid peroxidation-induced loss of flavonoids and anthocyanins in the roots, reduced the size of the plant canopy, and led to the appearance of proteoid roots. Sensitivity to Cd in white lupin was enhanced by a low Mn supply, despite lower Cd uptake and accumulation (leaf Mn:Cd concentration ratio <3), as evidenced by increased lipid peroxidation in the leaves and strong inhibition of growth. However, when the Mn supply was adequate, the plants showed few symptoms of Cd toxicity, even though Cd uptake and accumulation increased. A Mn:Cd ratio of up to 20 was enough to minimize Cd stress in the leaf, reflecting the plants' relative tolerance to Cd under such conditions. Irrespective of the Mn supply, the increase in antioxidant compounds observed in the roots of Cd-treated plants might act as a protective mechanism by minimizing the oxidative stress caused by Cd exposure. In summary, high leaf Mn concentrations seem to render white lupins more tolerant to Cd stress. Copyright 2010 Elsevier GmbH. All rights reserved.

  2. 50 CFR 260.81 - Readjustment and increase in hourly rates of fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Readjustment and increase in hourly rates of fees. (a) When Federal Pay Act increases occur, the hourly rates for inspection fees will automatically be increased on the effective date of the pay act by an amount equal to the increase received by the average GS grade level of fishery product inspectors receiving...

  3. 50 CFR 260.81 - Readjustment and increase in hourly rates of fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Readjustment and increase in hourly rates of fees. (a) When Federal Pay Act increases occur, the hourly rates for inspection fees will automatically be increased on the effective date of the pay act by an amount equal to the increase received by the average GS grade level of fishery product inspectors receiving...

  4. Rates of post-fire vegetation recovery and fuel accumulation as a function of burn severity and time-since-burn in four western U.S. ecosystems

    USDA-ARS?s Scientific Manuscript database

    Vegetation recovery and fuel accumulation rates following wildfire are useful measures of ecosystem resilience, yet few studies have quantified these variables over 10 years post-fire. Conventional wisdom is that recovery time to pre-fire condition will be slower as a function of burn severity, as i...

  5. RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS

    PubMed Central

    Purcell, Braden A.; Palmeri, Thomas J.

    2016-01-01

    Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584

  6. Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies

    USGS Publications Warehouse

    Lent, R.M.; Alexander, C.R.

    1997-01-01

    Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake

  7. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Treesearch

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  8. Accumulation of cadmium in tissue and its effect on live performance

    NASA Astrophysics Data System (ADS)

    Akyolcu, M. C.; Ozcelik, D.; Dursun, S.; Toplan, S.; Kahraman, R.

    2003-05-01

    Heavy metal pollution has gained more importance for environment as a result of increased industrialization rate all over the world. In present study investigation of effects of cadmium on live-weight due to accumulation in different tissues that taken in food were aimed. For such a purpose after their birth for four weeks chickens were fed by Cd added fodder (25 mg Cd/kg as cadmium sulfate). At the end offour weeks feeding period the chickens were scaled and sacrificed. For tissue cadmium level measurements, liver, kidney, muscle and bone dissections were performed on both experimental and same age contrai group animals. The measurements were performed in atomic absorption spectrophotometer. At the end of evaluation of data it was observed that live mean weight of experimental group was significantly lower than that of control group animals (p < 0.001). On the other hand tissue cadmium concentrations of experimental group were found to be significantly higher than that of control group values. So accumulation of cadmium in tissue as a heavy metal may lead decreased rate of growth.

  9. The accumulation, transformation, and effects of quinestrol in duckweed (Spirodela polyrhiza L.).

    PubMed

    Geng, Qianqian; Li, Tian; Li, Pingliang; Wang, Xin; Chu, Weijing; Ma, Yanan; Ma, Hui; Ni, Hanwen

    2018-09-01

    Potential risk of endocrine disrupting compounds on non-target organisms has received extensive attentions in recent years. The present work aimed to investigate the behavior and effect of a synthetic steroid estrogen quinestrol in duckweed Spirodela polyrhiza L. Experimental results showed that quinestrol could be uptaken, accumulated, and biotransformed into 17 α-ethynylestradiol in S. polyrhiza L. The accumulation of quinestrol had a positive relation to the exposure concentration. The bioaccumulation rate was higher when the duckweed was exposed to quinestrol solutions at low concentrations than at high concentration. While the transformation of quinestrol showed no concentration-dependent manner. Quinestrol reduced the biomass and pigment content and increased superoxide dismutase and catalase activities and malondialdehyde contents in the duckweed. The results demonstrated that quinestrol could be accumulated and biotransformed in aquatic plant S. polyrhiza L. This work would provide supplemental data on the behavior of this steroid estrogen compound in aquatic system. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    USGS Publications Warehouse

    Trumbore, S.E.; Harden, J.W.

    1997-01-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  12. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    PubMed

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  13. Apparent climatically induced increase of tree mortality rates in a temperate forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2007-01-01

    We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21 338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. ?? 2007 Blackwell Publishing Ltd/CNRS.

  14. Increased Temperature and Protein Oxidation Signal HSP72 mRNA and Protein Accumulation in the In Vivo Exercised Rat Heart

    PubMed Central

    Staib, Jessica L.; Tümer, Nihal; Powers, Scott K.

    2010-01-01

    Myocardial heat shock protein 72 (HSP72) expression, mediated by its transcription factor heat shock factor 1 (HSF1), increases following exercise. However, the up-stream stimuli governing exercise-induced HSF1 activation and subsequent HSP72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal promoting nuclear HSF1 migration and activation of HSP72 expression. Therefore, these experiments tested the hypothesis that preventing exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced body temperature was manipulated by exercising male rats in either cold (4°C) or warm (22°C) ambient conditions. Warm exercise increased both body temperature (+ 3°C) and myocardial protein oxidation whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by 9-fold and increased myocardial HSP72 protein levels by 3-fold compared to cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1 indicating that other transcriptional or posttranscriptional regulatory mechanisms are involved in exercise-induced HSP72 expression. PMID:18931043

  15. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    PubMed

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  16. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  17. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  18. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes.

    PubMed

    Ragot, Kévin; Mackrill, John J; Zarrouk, Amira; Nury, Thomas; Aires, Virginie; Jacquin, Agnès; Athias, Anne; Pais de Barros, Jean-Paul; Véjux, Anne; Riedinger, Jean-Marc; Delmas, Dominique; Lizard, Gérard

    2013-07-01

    There is some evidence that oxidized derivatives of cholesterol, 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7βOHC), are increased in the plasma of patients with neurodegenerative diseases associated with demyelinization of the central nervous system (CNS). It was therefore of interest to investigate the effects of these oxysterols on oligodendrocytes, the myelin-forming cells in the CNS. To this end, 158N murine oligodendrocytes were treated with 7KC or 7βOHC inducing an apoptotic mode of cell death characterized by condensation/fragmentation of the nuclei, dephosphorylation of Akt and GSK3, mitochondrial depolarization involving Mcl-1, and caspase-3 activation. In contrast, under treatment with 27-hydroxycholesterol (27OHC), no cell death was observed. When the cells were stained with Fura-2, no significant Ca(2+) rise was found with the different oxysterols, whereas strong signals were detected with ionomycin used as positive control. At concentrations which induced apoptosis, 7KC but not 7βOHC accumulated in lipid rafts. Although not cytotoxic, 27OHC was mainly detected in lipid rafts. It is noteworthy that α-tocopherol (but not ellagic acid and resveratrol) was able to counteract 7KC- and 7βOHC-induced apoptosis and to decrease the accumulation of 7KC and 27OHC in lipid rafts. Thus, in 158N cells, the ability of oxysterols to trigger a mode of cell death by apoptosis involving GSK-3 and caspase-3 activation is independent of the increase in the Ca(2+) level and of their accumulation in lipid raft microdomains. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and... to a credit card account under an open-end (not home-secured) consumer credit plan, based on the... new credit card accounts under an open-end (not home-secured) consumer credit plan. (2) Rate increases...

  20. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and... to a credit card account under an open-end (not home-secured) consumer credit plan, based on the... new credit card accounts under an open-end (not home-secured) consumer credit plan. (2) Rate increases...

  1. [Status of lead exposure and its impact on health of workers in an accumulator factory].

    PubMed

    Liang, Jiabin; Zhang, Jian; Guo, Xiaojing; Mai, Jianping; Wang, Zhi; Liu, Yimin

    2014-02-01

    To identify the occupational hazard factors in an accumulator factory, to analyze the status of internal and external lead exposure and evaluate the impact of lead exposure on the health of workers in the accumulator industry, and to provide a theoretical basis for improved lead exposure criteria and technical support for the control of lead contamination in the accumulator industry. An on-site investigation was carried out to monitor and evaluate the lead fume and dust in the workplaces of an accumulator factory, and occupational health examination was performed in all workers. The occupational hazard safeguards in the accumulator factory were unadvanced. The contamination of lead fume and dust was serious. The abnormal rate of blood lead was up to 79.80%, and many workers developed anemia and mild peripheral nerve disease. Lead contamination is serious in the accumulator factory, leading to poor health of workers. It is essential to take effective control measures, improve the working environment, provide occupational health education, increase workers' self-protection awareness, and periodically conduct occupational hazard monitoring and health surveillance. The government must reinforce occupational health supervision of such enterprises.

  2. Coulomb Stress Accumulation along the San Andreas Fault System

    NASA Technical Reports Server (NTRS)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  3. Increasing rates of atmospheric mercury deposition in midcontinental North America

    USGS Publications Warehouse

    Swain, Edward B.; Engstrom, Daniel R.; Brigham, Mark E.; Henning, Thomas A.; Brezonik, P.L.

    1992-01-01

    Mercury contamination of remote lakes has been attributed to increasing deposition of atmospheric mercury, yet historic deposition rates and inputs from terrestrial sources are essentially unknown. Sediments of seven headwater lakes in Minnesota and Wisconsin were used to reconstruct regional modern and preindustrial deposition rates of mercury. Whole-basin mercury fluxes, determined from lake-wide arrays of dated cores, indicate that the annual deposition of atmospheric mercury has increased from 3.7 to 12.5 micrograms per square meter since 1850 and that 25 percent of atmospheric mercury deposition to the terrestrial catchment is exported to the lake. The deposition increase is similar among sites, implying regional or global sources for the mercury entering these lakes.

  4. Geomorphic control of landscape carbon accumulation

    USGS Publications Warehouse

    Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.

    2006-01-01

    We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.

  5. Physiological characteristics, dry matter, and active component accumulation patterns of Changium smyrnioides in response to a light intensity gradient.

    PubMed

    Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing

    2017-12-01

    Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.

  6. When do correlations increase with firing rates in recurrent networks?

    PubMed Central

    2017-01-01

    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix. PMID:28448499

  7. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials. II. Metabolic Source of Increased Proline Deposition in the Elongation Zone1

    PubMed Central

    Verslues, Paul E.; Sharp, Robert E.

    1999-01-01

    The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed. PMID:10198094

  8. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    PubMed Central

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  9. Increased Interleukin-23 in Hashimoto’s Thyroiditis Disease Induces Autophagy Suppression and Reactive Oxygen Species Accumulation

    PubMed Central

    Zheng, Tingting; Xu, Chengcheng; Mao, Chaoming; Mou, Xiao; Wu, Fei; Wang, Xuefeng; Bu, Ling; Zhou, Yuepeng; Luo, Xuan; Lu, Qingyan; Liu, Hongli; Yuan, Guoyue; Wang, Shengjun; Chen, Deyu; Xiao, Yichuan

    2018-01-01

    Hashimoto’s thyroiditis (HT) represents the most common organ-specific autoimmune disease. Inflammatory factors and reactive oxygen species (ROS) play detrimental roles during the pathogenesis of HT. In this study, we found that thyroid follicular cells (TFCs) from HT patients expressed an elevated level of interleukin-23 (IL-23), which contributed to autophagy suppression and ROS accumulation. Additionally, IL-23-induced autophagy suppression and ROS accumulation in human TFCs was attributed to AKT/mTOR/NF-κB signaling pathway activation. Inhibition of either IL-23 by a specific neutralization antibody, or mTOR by rapamycin, or NF-κB by IKK-16, significantly reversed the autophagy suppression and ROS accumulation. These results demonstrate a key role for IL-23 in HT pathogenesis and provide a potential therapeutic strategy against IL-23 or its signaling pathway in HT. PMID:29434604

  10. Spatial Variability of accumulation across the Western Greenland Ice Sheet Percolation Zone from ground-penetrating-radar and shallow firn cores

    NASA Astrophysics Data System (ADS)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.

    2017-12-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.

  11. Transfer and accumulation of organochlorines from black-crowned night-heron eggs to chicks

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.

    1995-01-01

    Eggs and sibling 1-, 3-, and 5-d-old chicks from seven black-crowned night-heron (Nycticorax nycticorax) broods were collected from Green Bay, Wisconsin, and analyzed for organochlorines. The concentration (A?g/g) of nine organochlo-rines either decreased (n = 7) or remained the same (n = 2) as the chicks grew older. In contrast, the total mass (A?g) of these nine organochlorines increased (n = 7) or remained the same (n = 2) as the chicks grew older. Accumulation rates of mass (A?g/d) between egg and 5-d-old chicks for each of the nine organochlorines were positive and varied from 0.2 A?g/d (p,pa??-DDT) to 42 A?g/d (PCBs). These results suggest that the loss of contaminant mass from eggs to chicks reported in some earlier studies was because the entire carcass was not analyzed (i.e., not including skin, gastrointestinal tract, etc.). These results also support the use of contaminant accumulation rates as an indicator of local contamination.

  12. Transfer and accumulation of organochlorines from black-crowned night-heron eggs to chicks

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.

    1995-01-01

    Eggs and sibling 1-, 3-, and 5-d-old chicks from seven black-crowned night-heron (Nycticorax nycticorax) broods were collected from Green Bay, Wisconsin, and analyzed for organochlorines. The concentration (mu-g/g) of nine organochlorines either decreased (n = 7) or remained the same (n = 2) as the chicks grew older. In contrast, the total mass (mu-g) of these nine organochlorines increased (n = 7) or remained the same (n = 2) as the chicks grew older. Accumulation rates of mass (mu-g/d) between egg and 5-d-old chicks for each of the nine organochlorines were positive and varied from 0.2 mu-g/d (p,p'-DDT) to 42 mu-g/d (PCBs). These results suggest that the loss of contaminant mass from eggs to chicks reported in some earlier studies was because the entire carcass was not analyzed (i.e., not including skin, gastrointestinal tract, etc.). These results also support the use of contaminant accumulation rates as an indicator of local contamination.

  13. Seasonality of snow accumulation at Mount Wrangell, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Kanamori, Syosaku; Benson, Carl S.; Truffer, Martin; Matoba, Sumito; Solie, Daniel J.; Shiraiwa, Takayuki

    We recorded the burial times of temperature sensors mounted on a specially constructed tower to determine snow accumulation during individual storms in the summit caldera of Mount Wrangell, Alaska, USA, (62°N, 144°W; 4100 m a.s.l.) during the accumulation year June 2005 to June 2006. The experiment showed most of the accumulation occurred in episodic large storms, and half of the total accumulation was delivered in late summer. The timing of individual events correlated well with storms recorded upwind, at Cordova, the closest Pacific coastal weather station (200 km south-southeast), although the magnitude of events showed only poor correlation. Hence, snow accumulation at Mount Wrangell appears to be a reflection of synoptic-scale regional weather systems. The accumulation at Mount Wrangell's summit (>2.5 m w.e.) exceeded the precipitation at Cordova. Although the direct relationship between accumulation of individual storms at the summit of Mount Wrangell and precipitation events at Cordova may be unique in the region, it is useful for interpreting ice cores obtained on Mount Wrangell. This is especially the case here because the high rate of accumulation allows high time resolution within the core.

  14. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates

    PubMed Central

    Schenk, John J.

    2017-01-01

    We combined new sequence data for more than 300 muroid rodent species with our previously published sequences for up to five nuclear and one mitochondrial genes to generate the most widely and densely sampled hypothesis of evolutionary relationships across Muroidea. An exhaustive screening procedure for publically available sequences was implemented to avoid the propagation of taxonomic errors that are common to supermatrix studies. The combined data set of carefully screened sequences derived from all available sequences on GenBank with our new data resulted in a robust maximum likelihood phylogeny for 900 of the approximately 1,620 muroids. Several regions that were equivocally resolved in previous studies are now more decisively resolved, and we estimated a chronogram using 28 fossil calibrations for the most integrated age and topological estimates to date. The results were used to update muroid classification and highlight questions needing additional data. We also compared the results of multigene supermatrix studies like this one with the principal published supertrees and concluded that the latter are unreliable for any comparative study in muroids. In addition, we explored diversification patterns as an explanation for why muroid rodents represent one of the most species-rich groups of mammals by detecting evidence for increasing net diversification rates through time across the muroid tree. We suggest the observation of increasing rates may be due to a combination of parallel increases in rate across clades and high average extinction rates. Five increased diversification-rate-shifts were inferred, suggesting that multiple, but perhaps not independent, events have led to the remarkable species diversity in the superfamily. Our results provide a phylogenetic framework for comparative studies that is not highly dependent upon the signal from any one gene. PMID:28813483

  15. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    PubMed

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  16. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont

    USGS Publications Warehouse

    Mecray, E.L.; King, J.W.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed, for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments

  17. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Levine, L. H.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Exposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.

  18. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

    Treesearch

    Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam

    2016-01-01

    Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...

  19. Inconsistencies between 14C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralization.

    PubMed

    Baskaran, M; Bianchi, T S; Filley, T R

    2017-08-01

    14 C is the most widely utilized geochronometer to investigate geological, geochemical and geophysical problems over the past 5 decades. Establishment of precise sedimentation rates is crucial for the reconstruction of paleo-climate, -ecological and - environmental studies when extrapolation of sedimentation rates is utilized for time scales beyond the dating range. However, agreement between short-term and long-term sedimentation rates in anthropogenically unperturbed sediment cores has not been shown. Here we show that the AMS 14 C-based long-term mass accumulation rate (MAR) of an organic-rich (>70%) sediment core from Mud Lake, Florida to be ∼5 times lower than the short-term MAR obtained using 239,240 Pu, 137 Cs and excess 210 Pb ( 210 Pb xs ). The measured sediment inventories of 210 Pb xs , 137 Cs and 239,240 Pu are comparable to the atmospheric fallout for the sampling site, indicating very little accelerated sediment erosion over the past several decades. Presence of sharp fallout peaks of 239,240 Pu indicates very little sediment mixing. The penetration depths of 137 Cs and 239,240 Pu were found to be much deeper than expected and this is attributed to their post-depositional mobility. MAR calculated using 14 C-ages in successive layers also indicated decreasing MARs with depth, and was reflective of progressive remineralization. Using first-order kinetics, the sediment remineralization rate was found to be 4.4 × 10 -4 y -1 and propose that over the long-term, remineralization of organic-rich sediment affected the long-term MAR, but not the ratio of 14 C/ 12 C. Thus, the MAR and linear sedimentation rate obtained using 14 C (and other isotope-based methods) could be erroneous, although 14 C ages may not be affected by such remineralization. Long-term remineralization rates of organic matter has a direct bearing on the biogeochemical cycling of elements in aqueous systems and mass balance of elements needs to be taken into consideration. Copyright

  20. Intermittent cold exposure enhances fat accumulation in mice.

    PubMed

    Yoo, Hyung Sun; Qiao, Liping; Bosco, Chris; Leong, Lok-Hei; Lytle, Nikki; Feng, Gen-Sheng; Chi, Nai-Wen; Shao, Jianhua

    2014-01-01

    Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.

  1. Activation of the Protein Kinase C1 Pathway upon Continuous Heat Stress in Saccharomyces cerevisiae Is Triggered by an Intracellular Increase in Osmolarity due to Trehalose Accumulation

    PubMed Central

    Mensonides, Femke I. C.; Brul, Stanley; Klis, Frans M.; Hellingwerf, Klaas J.; Teixeira de Mattos, M. Joost

    2005-01-01

    This paper reports on physiological and molecular responses of Saccharomyces cerevisiae to heat stress conditions. We observed that within a very narrow range of culture temperatures, a shift from exponential growth to growth arrest and ultimately to cell death occurred. A detailed analysis was carried out of the accumulation of trehalose and the activation of the protein kinase C1 (PKC1) (cell integrity) pathway in both glucose- and ethanol-grown cells upon temperature upshifts within this narrow range of growth temperatures. It was observed that the PKC1 pathway was hardly activated in a tps1 mutant that is unable to accumulate any trehalose. Furthermore, it was observed that an increase of the extracellular osmolarity during a continuous heat stress prevented the activation of the pathway. The results of these analyses support our hypothesis that under heat stress conditions the activation of the PKC1 pathway is triggered by an increase in intracellular osmolarity, due to the accumulation of trehalose, rather than by the increase in temperature as such. PMID:16085846

  2. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  3. Ocean acidification may increase calcification rates, but at a cost

    PubMed Central

    Wood, Hannah L; Spicer, John I; Widdicombe, Stephen

    2008-01-01

    Ocean acidification is the lowering of pH in the oceans as a result of increasing uptake of atmospheric carbon dioxide. Carbon dioxide is entering the oceans at a greater rate than ever before, reducing the ocean's natural buffering capacity and lowering pH. Previous work on the biological consequences of ocean acidification has suggested that calcification and metabolic processes are compromised in acidified seawater. By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term. PMID:18460426

  4. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    PubMed

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  5. Sequential improvements in organ procurement increase the organ donation rate.

    PubMed

    Billeter, Adrian T; Sklare, Seth; Franklin, Glen A; Wright, Jerry; Morgan, Gary; O'Flynn, Paul E; Polk, Hiram C

    2012-11-01

    Organ demand exceeds availability of transplantable organs. Organ procurement continues to suffer from failures to identify potential donors, inability to obtain consent for donation, as well as failures to retrieve certain organs as donor demographics change. The purpose of this article is to propose how sequentially introduced measures can increase organ donation rates as well as improve organ procurement. We analysed the effect of stepwise improvements in the organ procurement process patients in a university-based surgical intensive care unit over a 20-year period. We related newly introduced measures in the organ retrieval process with changes in donation rates. We specifically targeted these three main steps in the donation process: donor identification, conversion of potential donors to actual donors, and organ protection during the procurement process. Finally, we assessed the effect of the same measures on organ procurement after introduction in other hospitals of the same organ procurement region. Introduction of quality improvement steps increased all of the observed parameters. The number of organ donors was stabilised due to a better identification of potential donors, a major increase in conversion from potential to actual donors, and an increase in extended criteria donor. Improvements in organ protection led to higher rates of organs transplanted per donor and increased recovery of lungs and hearts despite increasing donor age. The same measures were introduced successfully in other hospitals in our organ procurement region. Sequential improvements in organ procurement can increase the yield of retrieved organs. The same measures can be applied to other hospitals and lead to comparable improvements in organ donation. Published by Elsevier Ltd.

  6. Polychlorinated biphenyl concentrations, accumulation rates in soil from atmospheric deposition and analysis of their affecting landscape variables along an urban-rural gradient in Shanghai, China.

    PubMed

    Fang, Shubo; Cui, Qu; Matherne, Brian; Hou, Aixin

    2017-11-01

    This study initiated an in-situ soil experimental system to quantify the annual dynamics of polychlorinated biphenyl (PCB) congener's concentrations and accumulation rates in soil from atmosphere deposition in a rural-urban fringe, and correlated them by landscape physical and demographic variables in the area. The results showed that the concentrations of all PCB congeners significantly increased with the sampling time (p < 0.05); nearly all the PCB congener concentrations decreased while moving outwards from the urban center. The moderate average concentrations along the gradient for PCB 8, 18, and 28 were 31.003, 18.825, and 19.505 ng g-1, respectively. Tetra-CBs including PCB 44, 52, 66, and 77 were 10.243, 31.214, 8.330 and 9.530 ng g-1, respectively. Penta-CBs including PCB 101, 105, 118, and 126 were 9.465, 7.896, 17.703, and 6.363 ng g-1, respectively. Hexa-CBs including PCB 128, 138, 153, 170, 180, and 187 were 6.798, 11.522, 4.969, 6.722, 6.317, and 8.243 ng g-1 respectively. PCB 195, 206, and 209 were 8.259, 9.506, and 14.169 ng g-1, respectively. Most of the PCB congeners had a higher accumulation rate approximately 28 km from the urban center. The computed variables were found to affect the soil PCB concentrations with a threshold effect (p < 0.05). Regression analysis showed that the thresholds were 10-20 km, 1 km/km 2 , 30%, and 20% for distance, road density, population change index, and built-up area percentage, respectively. It was concluded that factors related to industrial development, traffic, and urban sprawling (i.e. built-up areas expanding) were the sources of PCBs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

    PubMed Central

    Kenney, William F.; Brenner, Mark; Curtis, Jason H.; Arnold, T. Elliott; Schelske, Claire L.

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used 210Pb and 14C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50–100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century. PMID:26789518

  8. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    PubMed

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  9. Rising Tide II: Do Black Students Benefit as Grad Rates Increase?

    ERIC Educational Resources Information Center

    Nichols, Andrew Howard; Eberle-Sudré, Kimberlee; Welch, Meredith

    2016-01-01

    "Rising Tide II: Do Black Students Benefit as Grad Rates Increase?" looks at a decade of graduation rates for African American students at four-year, public institutions that improved student success during the past decade. It shows that while a majority (almost 70 percent) of institutions we examined improved graduation rates for black…

  10. Ethanol accumulation in drought-stressed conifer seedlings

    Treesearch

    Daniel K. Manter; Rick G. Kelsey

    2008-01-01

    In this study, we investigated the effect of drought stress on ethanol production and accumulation in tissues from seedlings of three conifers (Douglas-fir, lodgepole pine, and ponderosa pine) with increasing degrees of tolerance to drought stress. Significant ethanol accumulation was only observed in their aerial tissues when severely stressed (water potential

  11. Nesting bird "host funnel" increases mosquito-bird contact rate.

    PubMed

    Caillouët, Kevin A; Riggan, Anna E; Bulluck, Lesley P; Carlson, John C; Sabo, Roy T

    2013-03-01

    Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from < 1 mosquito per trap night to 36.2 in the final 2 wk of the nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a "host funnel," concentrating host-seeking mosquitoes to the few remaining nestlings. The relative abundance of mosquitoes collected by the NMT suggests that significantly more Aedes albopictus (Skuse) and Culex pipiens (L.) /restuans (Theobald) sought nesting bird bloodmeals than were predicted by their relative abundances in CO2-baited Centers for Disease Control and Prevention light and gravid traps. Culex salinarius (Coquillett) and Culex erraticus Dyar and Knab were collected in NMTs in proportion to their relative abundances in the generic traps. Temporal host funnels and nesting bird host specificity may enhance arbovirus amplification and explain observed West Nile virus and St. Louis encephalitis virus amplification periods.

  12. Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami

    2014-08-01

    The 230Th method of determining mass accumulation rates (MARs) assumes that little to no fractionation occurs during sediment redistribution processes at the seafloor. We examine 230Th inventories in radiocarbon-dated multicore sediments from paired winnowed and focused sites at Cocos and Carnegie Ridges, Panama Basin. Radiocarbon-derived sand MARs, which likely represent the vertical rain of particles poorly transported by bottom currents, are similar at each of the paired sites but are different using 230Th normalization. 230Th-normalized MARs are about 60% lower at focused sites and likely underestimate vertical MARs, while the reverse is true for winnowed sites. We hypothesize that size fractionation occurs most frequently at lower current velocities, resulting in the coarse fraction being left behind and primarily the fine 230Th-rich grains being transported downslope. 230Th-normalization works well for recording fine-grained (detrital and opal), but not coarse-grained (carbonate), fluxes in regions that have undergone sediment redistribution.

  13. Bottom-up biodiversity effects increase resource subsidy flux between ecosystems.

    PubMed

    Allen, Daniel C; Vaughn, Caryn C; Kelly, Jeffrey F; Cooper, Joshua T; Engel, Michael H

    2012-10-01

    Although biodiversity can increase ecosystem productivity and adjacent ecosystems are often linked by resource flows between them, the relationship between biodiversity and resource subsidies is not well understood. Here we test the influence of biodiversity on resource subsidy flux by manipulating freshwater mussel species richness and documenting the effects on a trophic cascade from aquatic to terrestrial ecosystems. In a mesocosm experiment, mussel effects on algae were linked through stable isotope analyses to mussel-derived nitrogen subsidies, but mussel biodiversity effects on algal accumulation were not significant. In contrast, mussel biodiversity significantly increased aquatic insect emergence rates, because aquatic insects were responding to mussel-induced changes in algal community structure instead of algal accumulation. In turn, mussel biodiversity also significantly increased terrestrial spider abundance as spiders tracked increases in aquatic insect prey after a reproduction event. In a comparative field study, we found that sites with greater mussel species richness had higher aquatic insect emergence rates. These results show that, because food webs in adjacent ecosystems are often linked, biodiversity effects in one ecosystem can influence adjacent ecosystems as well.

  14. Increased traffic accident rates associated with shale gas drilling in Pennsylvania.

    PubMed

    Graham, Jove; Irving, Jennifer; Tang, Xiaoqin; Sellers, Stephen; Crisp, Joshua; Horwitz, Daniel; Muehlenbachs, Lucija; Krupnick, Alan; Carey, David

    2015-01-01

    We examined the association between shale gas drilling and motor vehicle accident rates in Pennsylvania. Using publicly available data on all reported vehicle crashes in Pennsylvania, we compared accident rates in counties with and without shale gas drilling, in periods with and without intermittent drilling (using data from 2005 to 2012). Counties with drilling were matched to non-drilling counties with similar population and traffic in the pre-drilling period. Heavily drilled counties in the north experienced 15-23% higher vehicle crash rates in 2010-2012 and 61-65% higher heavy truck crash rates in 2011-2012 than control counties. We estimated 5-23% increases in crash rates when comparing months with drilling and months without, but did not find significant effects on fatalities and major injury crashes. Heavily drilled counties in the southwest showed 45-47% higher rates of fatal and major injury crashes in 2012 than control counties, but monthly comparisons of drilling activity showed no significant differences associated with drilling. Vehicle accidents have measurably increased in conjunction with shale gas drilling. Copyright © 2014. Published by Elsevier Ltd.

  15. [Nitrate accumulating capability of some market garden vegetables].

    PubMed

    Blanc, D

    1976-01-01

    Nitrate accumulation in plant is essentially function of the amount of nitrate nitrogen present in the substrate. That can be provided by mineral fertilizers or by organic manure. Due to the amount of nitrogen fertilizers needed in order to obtain sufficient yields the presence of nitrate is a general phenomenon in vegetable. Nevertheless the distribution of nitrate ions in the different parts of the plant influences the importance of the accumulation in the different kinds of vegetable. The experiments reported showed that leaves contain more nitrate ions than roots and roots more than fruit. The results obtained in soilless culture on lettuces, tomatoes and egg-plant demonstrated that the amount of accumulated nitrate is also dependent on the equilibrium between the different ions in the nutrient solution. Ammonium, potassium, sulfate and molybdenum have been shown to influence the rate of nitrate accumulation in the different species. It appears that it is not possible to obtain vegetable without nitrate, but it is possible, by an equilibrated fertilization, to reduce the amount accumulated in the tissue.

  16. Does sex speed up evolutionary rate and increase biodiversity?

    PubMed

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  17. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record

    NASA Astrophysics Data System (ADS)

    Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.

    2017-01-01

    Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various

  18. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. Copyright © 2015 the American Physiological Society.

  19. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor

    PubMed Central

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H.; Hull, Robert; Davis, Mary

    2015-01-01

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1–30 μg/kg) decreased resting heart rate; at high doses (150–300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03–0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. PMID:26408544

  20. Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers

    USGS Publications Warehouse

    Carol E., Adair; Binkley, Dan; Andersen, Douglas C.

    2004-01-01

    Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m−2 year−1 for years 10–70, and 2.7 g N m−2year−1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.

  1. Acute p‐synephrine ingestion increases fat oxidation rate during exercise

    PubMed Central

    Gutiérrez‐Hellín, Jorge

    2016-01-01

    Aims p‐Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p‐synephrine on fat oxidation at rest and during exercise. Methods In a double‐blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p‐synephrine (3 mg kg−1) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. Results In comparison with the placebo, the ingestion of p‐synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min−1; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min−1; P = 0.15). However, the intake of p‐synephrine moved the fat oxidation–exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p‐synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min−1; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak; P = 0.51). Conclusions The acute ingestion of p‐synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low‐to‐moderate exercise intensities. PMID:27038225

  2. Acute p-synephrine ingestion increases fat oxidation rate during exercise.

    PubMed

    Gutiérrez-Hellín, Jorge; Del Coso, Juan

    2016-08-01

    p-Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p-synephrine on fat oxidation at rest and during exercise. In a double-blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p-synephrine (3 mg kg(-1) ) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. In comparison with the placebo, the ingestion of p-synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min(-1) ; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min(-1) ; P = 0.15). However, the intake of p-synephrine moved the fat oxidation-exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p-synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min(-1) ; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak ; P = 0.51). The acute ingestion of p-synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low-to-moderate exercise intensities. © 2016 The British Pharmacological Society.

  3. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  4. Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making

    PubMed Central

    Tremel, Joshua J.; Wheeler, Mark E.

    2015-01-01

    During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821

  5. Virus removal by unsaturated wastewater filtration: effects of biofilm accumulation and hydrophobicity.

    PubMed

    Heistad, A; Scott, T; Skaarer, A M; Seidu, R; Hanssen, J F; Stenström, T A

    2009-01-01

    Enhanced treatment of septic tank effluent can improve the hydraulic function and performance of infiltration systems and constructed wetlands. By intermittent spray application of septic tank effluent onto a coarse-grained filter media, an unsaturated flow regime beneficial for pathogen removal is created. A column filtration study showed an increase in PRD-1 removal by time of operation with corresponding biofilm accumulation in the filter material. The same increased removal was observed for 1 mum polystyrene beads, irrespective of their hydrophilic/hydrophobic surface properties. A control experiment with sorption of 1 mum hydrophobic and hydrophilic polystyrene beads to different glass surfaces with hydrophobic and hydrophilic properties indicate that mechanisms other than hydrophobic interactions may govern the rate of attachment to the filter media. For a given volumetric flow-rate in the columns, the presence of biofilm altered the hydrodynamic characteristics and this resulted in increased retention time and particle removal.

  6. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments.

    PubMed

    Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M

    2016-07-01

    Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. © 2015 SETAC.

  7. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  8. Engineering the bacterial shapes for enhanced inclusion bodies accumulation.

    PubMed

    Jiang, Xiao-Ran; Wang, Huan; Shen, Rui; Chen, Guo-Qiang

    2015-05-01

    Many bacteria can accumulate inclusion bodies such as sulfur, polyphosphate, glycogen, proteins or polyhydroxyalkanoates. To exploit bacteria as factories for effective production of inclusion bodies, a larger intracellular space is needed for more inclusion body accumulation. In this study, polyhydroxybutyrate (PHB) was investigated as an inclusion bodies representative to be accumulated by Escherichia coli JM109SG. Various approaches were taken to increase the bacterial cell sizes including deletion on actin-like protein gene mreB, weak expression of mreB in mreB deletion mutant, and weak expression of mreB in mreB deletion mutant under inducible expression of SulA, the inhibitor of division ring protein FtsZ. All of the methods resulted in different levels of increases in bacterial sizes and PHB granules accumulation. Remarkably, an increase of over 100% PHB accumulation was observed in recombinant E. coli overexpressing mreB in an mreB deletion mutant under inducible expression of FtsZ inhibiting protein SulA. The molecular mechanism of enlarged bacterial size was found to be directly relate to weakened cytoskeleton which was the result of broken skeleton helix. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  10. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  11. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms.

    PubMed

    Lopez-Vazquez, Carlos M; Song, Young-Il; Hooijmans, Christine M; Brdjanovic, Damir; Moussa, Moustafa S; Gijzen, Huub J; van Loosdrecht, Mark C M

    2008-10-01

    Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.

  12. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications

    PubMed Central

    Pérez, Angela L.; Anderson, Kim A.

    2014-01-01

    Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (CdDGT), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of CdDGT. Significant factors contributing to CdDGT concentrations were Cd from fertilizer input (Cdfertilizer), pH, cation exchange capacity (CEC), and total recoverable Cd (Cdtotal). Important factors used to determine Cd concentrations in wheat grain (Cdwheat) and in potato (Cdpotato) were as follows: Cdwheat:Cdfertilizer, and CdDGT; and Cdpotato:Cdfertilizer, CdDGT, % O.M. The effective concentration, CE, calculated from DGT did not correlate well with Cdwheat or with Cdpotato. Direct measurements of CdDGT correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems. PMID:19552942

  13. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  14. Social modernization and the increase in the divorce rate.

    PubMed

    Esser, H

    1993-03-01

    The author develops a micro-model of marital interactions that is used to analyze factors affecting the divorce rate in modern industrialized societies. The core of the model is the concept of production of marital gain and mutual control of this production. "The increase of divorce rates, then, is explained by a steady decrease of institutional and social embeddedness, which helps to solve this kind of an 'assurance game.' The shape of the individual risk is explained by the typical form of change of the 'production functions' of marriages within the first period of adaptation. The inconsistent results concerning womens' labor market participation in linear regression models are explained as a consequence of the (theoretical and statistical) 'interaction' of decreases in embeddedness and increases in external alternatives for women." Comments are included by Karl-Dieter Opp (pp. 278-82) and Ulrich Witt (pp. 283-5). excerpt

  15. Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16

    PubMed Central

    Juengert, Janina R.; Borisova, Marina; Wolz, Christiane; Brigham, Christopher J.; Sinskey, Anthony J.

    2017-01-01

    ABSTRACT In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033–8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutropha. IMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha. This implies that PHB synthase and depolymerase activities

  16. Ecosystem warming increases sap flow rates of northern red oak trees

    DOE PAGES

    Juice, Stephanie M.; Templer, Pamela H.; Phillips, Nathan G.; ...

    2016-03-17

    Over the next century, air temperature increases up to 5°C are projected for the northeastern United States. As evapotranspiration strongly influences water loss from terrestrial ecosystems, the ecophysiological response of trees to warming will have important consequences for forest water budgets. We measured growing season sap flow rates in mature northern red oak ( Quercus rubra L.) trees in a combined air (up to 5.5°C above ambient) and soil (up to 1.85°C above ambient at 6-cm depth) warming experiment at Harvard Forest, Massachusetts, United States. Through principal components analysis, we found air and soil temperatures explained the largest amount ofmore » variance in environmental variables associated with rates of sap flow, with relative humidity, photosynthetically active radiation and vapor pressure deficit having significant, but smaller, effects. On average, each 1°C increase in temperature increased sap flow rates by approximately 1100 kg H 2O m -2 sapwood area day-1 throughout the growing season and by 1200 kg H 2O m -2 sapwood area day -1 during the early growing season. Reductions in the number of cold winter days correlated positively with increased sap flow during the early growing season (a decrease in 100 heating-degree days was associated with a sapflow increase in approximately 5 kg H 2O m -2 sapwood area day -1). Soil moisture declined with increased treatment temperatures, and each soil moisture percentage decrease resulted in a decrease in sap flow of approximately 360 kg H2O m -22 sapwood area day -1. At night, soil moisture correlated positively with sap flow. Finally, these results demonstrate that warmer air and soil temperatures in winter and throughout the growing season lead to increased sap flow rates, which could affect forest water budgets throughout the year.« less

  17. Ecosystem warming increases sap flow rates of northern red oak trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juice, Stephanie M.; Templer, Pamela H.; Phillips, Nathan G.

    Over the next century, air temperature increases up to 5°C are projected for the northeastern United States. As evapotranspiration strongly influences water loss from terrestrial ecosystems, the ecophysiological response of trees to warming will have important consequences for forest water budgets. We measured growing season sap flow rates in mature northern red oak ( Quercus rubra L.) trees in a combined air (up to 5.5°C above ambient) and soil (up to 1.85°C above ambient at 6-cm depth) warming experiment at Harvard Forest, Massachusetts, United States. Through principal components analysis, we found air and soil temperatures explained the largest amount ofmore » variance in environmental variables associated with rates of sap flow, with relative humidity, photosynthetically active radiation and vapor pressure deficit having significant, but smaller, effects. On average, each 1°C increase in temperature increased sap flow rates by approximately 1100 kg H 2O m -2 sapwood area day-1 throughout the growing season and by 1200 kg H 2O m -2 sapwood area day -1 during the early growing season. Reductions in the number of cold winter days correlated positively with increased sap flow during the early growing season (a decrease in 100 heating-degree days was associated with a sapflow increase in approximately 5 kg H 2O m -2 sapwood area day -1). Soil moisture declined with increased treatment temperatures, and each soil moisture percentage decrease resulted in a decrease in sap flow of approximately 360 kg H2O m -22 sapwood area day -1. At night, soil moisture correlated positively with sap flow. Finally, these results demonstrate that warmer air and soil temperatures in winter and throughout the growing season lead to increased sap flow rates, which could affect forest water budgets throughout the year.« less

  18. Changes in muscle activation patterns when running step rate is increased.

    PubMed

    Chumanov, Elizabeth S; Wille, Christa M; Michalski, Max P; Heiderscheit, Bryan C

    2012-06-01

    Running with a step rate 5-10% greater than one's preferred can substantially reduce lower extremity joint moments and powers, and has been suggested as a possible strategy to aid in running injury management. The purpose of this study was to examine how neuromuscular activity changes with an increase in step rate during running. Forty-five injury-free, recreational runners participated in this study. Three-dimensional motion, ground reaction forces, and electromyography (EMG) of 8 muscles (rectus femoris, vastus lateralis, medial gastrocnemius, tibialis anterior, medial and lateral hamstrings, and gluteus medius and maximus) were recorded as each subject ran at their preferred speed for three different step rate conditions: preferred, +5% and +10% of preferred. Outcome measures included mean normalized EMG activity for each muscle at specific periods during the gait cycle. Muscle activities were found to predominantly increase during late swing, with no significant change in activities during the loading response. This increased muscle activity in anticipation of foot-ground contact likely alters the landing posture of the limb and the subsequent negative work performed by the joints during stance phase. Further, the increased activity observed in the gluteus maximus and medius suggests running with a greater step rate may have therapeutic benefits to those with anterior knee pain. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Intermittent Cold Exposure Enhances Fat Accumulation in Mice

    PubMed Central

    Yoo, Hyung sun; Qiao, Liping; Bosco, Chris; Leong, Lok-Hei; Lytle, Nikki; Feng, Gen-Sheng; Chi, Nai-Wen; Shao, Jianhua

    2014-01-01

    Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis. PMID:24789228

  20. Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, central China.

    PubMed

    Li, Yuanping; Ma, Chunmei; Zhu, Cheng; Huang, Run; Zheng, Chaogui

    2016-09-01

    Mercury (Hg) accumulation records spanning the last 16,000 years before present (yr BP, relative to AD 1950) were derived from a peat core collected from Dajiuhu mire, central China. The natural Hg concentration and accumulation rate (free from anthropogenic influence) were 135.5 ± 53.9 ng g(-1) and 6.5 ± 4.5 μg m(-2) yr(-1), respectively. The increase in Hg flux that started from a core depth of 96.5 cm (3358 cal yr BP) is independent of soil erosion and organic matter content. We attribute this to an increase in atmospheric Hg deposition derived from regional anthropogenic activities. Anthropogenic Hg accumulation rates (Hg-ARA) in the pre-industrial period peaked during the Ming and the early Qing dynasties (582-100 cal yr BP), with Hg-ARA of 9.9-24.6 and 10.7-24.4 μg m(-2) yr(-1), respectively. In the industrial interval (post∼1850 AD), Hg-ARA increased progressively and reached 32.7 μg m(-2) yr(-1) at the top of the core. Our results indicate the existence of regional atmospheric Hg pollution spanning the past ∼3400 years, and place recent Hg enrichment in central China in a broader historical context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation

    PubMed Central

    Zou, Ying-Ning; Wu, Qiang-Sheng; Huang, Yong-Ming; Ni, Qiu-Dan; He, Xin-Hua

    2013-01-01

    Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation. PMID:24260421

  2. Historical Accumulation of Nonindigenous Forest Pests in the Continental United States

    Treesearch

    J.E. Aukema; D.G. McCullough; B.V. Holle; A.M. Liebhold; S.J. Frankel

    2010-01-01

    Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...

  3. Historical accumulation of nonindigenous forest pests in the Continental United States

    Treesearch

    J.E. Aukema; D.G. McCullough; B. Von Holle; Andrew Liebhold; Kerry Britton; S.J. Frankel

    2010-01-01

    Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...

  4. Holocene depocenter migration and sediment accumulation in Delaware Bay: A submerging marginal marine sedimentary basin

    USGS Publications Warehouse

    Fletcher, C. H.; Knebel, H.J.; Kraft, J.C.

    1992-01-01

    The Holocene transgression of the Delaware Bay estuary and adjacent Atlantic coast results from the combined effect of regional crustal subsidence and eustasy. Together, the estuary and ocean coast constitute a small sedimentary basin whose principal depocenter has migrated with the transgression. A millenial time series of isopach and paleogeographic reconstructions for the migrating depocenter outlines the basin-wide pattern of sediment distribution and accumulation. Upland sediments entering the basin through the estuarine turbidity maximum accumulate in tidal wetland or open water sedimentary environments. Wind-wave activity at the edge of the tidal wetlands erodes the aggraded Holocene section and builds migrating washover barriers. Along the Atlantic and estuary coasts of Delaware, the area of the upland environment decreases from 2.0 billion m2 to 730 million m2 during the transgression. The area of the tidal wetland environment increases from 140 million to 270 million m2, and due to the widening of the estuary the area of open water increases from 190 million to 1.21 billion m2. Gross uncorrected rates of sediment accumulation for the tidal wetlands decrease from 0.64 mm/yr at 6 ka to 0.48 mm/yr at 1 ka. In the open water environments uncorrected rates decrease from 0.50 mm/yr to 0.04 mm/yr over the same period. We also present data on total sediment volumes within the tidal wetland and open water environments at specific intervals during the Holocene. 

  5. Field Validation of Molybdenum Accumulation as an Indicator of Hypoxic Water Conditions

    EPA Science Inventory

    Laboratory experiments have shown that the accumulation rate of authigenic molybdenum (Mo) in marine sediments may serve as a quantitative surrogate for direct measurement of hypoxic conditions in overlying waters: Mo accumulation in the top 1 cm of sediment is linearly related t...

  6. 78 FR 77604 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Service 7 CFR Part 966 [Doc. No. AMS-FV-13-0076; FV13-966-1 PR] Tomatoes Grown in Florida; Increased... rule would increase the assessment rate established for the Florida Tomato Committee (Committee) for the 2013- 14 and subsequent fiscal periods from $0.024 to $0.0375 per 25-pound carton of tomatoes...

  7. 77 FR 21492 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Service 7 CFR Part 966 [Doc. No. AMS-FV-11-0080; FV11-966-1 PR] Tomatoes Grown in Florida; Increased... increase the assessment rate established for the Florida Tomato Committee (Committee) for the 2011-12 and subsequent fiscal periods from $0.0275 to $0.037 per 25-pound carton of tomatoes handled. The Committee...

  8. Carbon accumulation in high-altitude peatlands of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Llanos, Romina; Moreira-Turcq, Patricia; Huaman, Yizet; Espinoza, Raul; Apaestegui, James; Turcq, Bruno; Willems, Bram

    2017-04-01

    Despite covering only 6 - 8% of the world's land surface, peatlands contain around one third of the global organic soil carbon (C) and are an important component of the global C cycle. Most studies of peatland C dynamics have been carried out on boreal and subarctic peatlands, but less is known about peatlands at lower latitudes, yet there are significant peatland C stocks in these regions that may be more vulnerable to future climate change because they are closer to the climatic limit of peatland distribution. In South America, peatlands in high altitudes called "bofedales" represent one of the most important water resources and also provide key environmental services that support both Andean mountain biodiversity and the wellbeing of human populations. Nowdays, the need for conservation and wise use of these ecosystems is increasingly being recognized. So, a useable assessment of peatlands in the global C cycle requires accurate estimates of carbon pools and fluxes. In order to understand the impact of different altitudes on the growth, production and carbon accumulation, several short (about 30 cm) peatlands cores were collected in the headwater of the Cachi river basin, in the Central Andes of Peru. Two Distichia muscoides cushion plant-dominated "bofedales" which elevations exceed 4000 m were studied. The sedimentation rates, based on radiocarbon dating of peat samples from the two sites studied, were very variable. Cores from the bofedal located at 4200 m present an age of approximately 55 years, while the site at the highest altitude site has an age of approximately about 450 years. Our results point out very different rates of sedimentation in the two peatlands that may be related to the climatic changes observed during the recent past, with a direct consequence on the carbon accumulation rates. In the determination of the annual growth, we observed that this one presented smaller values in the first centimeters of the peatland with lower elevation, while

  9. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    PubMed Central

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  10. 75 FR 37740 - Apricots Grown in Designated Counties in Washington; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Washington; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This rule would increase the assessment rate established for the Washington Apricot Marketing..., June 30, 2010 / Proposed Rules#0;#0; [[Page 37740

  11. Strontium-90 Accumulation on Plant Foliage During Rainfall.

    PubMed

    Menzel, R G; Roberts, H; Stewart, E H; Mackenzie, A J

    1963-11-01

    Accumulation of strontium-90 in field-grown crops was measured during the spring of 1962. Each rainfall markedly increased the strontium-90 content of the crops, except when the plants were very small. Accumulation between rains was comparatively small, about equal to the expected uptake from the soil.

  12. Snow interception, accumulation, accumulation, and melt in lodgepole pine forests in the Blue Mountains of eastern Oregon.

    Treesearch

    Norman H. Miner; James M. Trappe

    1957-01-01

    Lodgepole pine (Pinus contorta) forests in the Blue Mountains of eastern Oregon occupy important water-producing lands. These forests generally occur at middle to high elevations on north slopes, where a substantial portion of the precipitation is snow. To learn more about the influence of lodgepole pine forests on accumulation of mow and rate of...

  13. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress.

    PubMed

    Kaplan, Fatma; Guy, Charles L

    2005-12-01

    It has been suggested that beta-amylase (BMY) induction during temperature stress in Arabidopsis could lead to starch-dependent maltose accumulation, and that maltose may contribute to protection of the electron transport chain and proteins in the chloroplast stroma during acute stress. A time-course transcript profiling analysis for cold shock at 4 degrees C revealed that BMY8 (At4g17090) was induced specifically in response to cold shock, while major induction was not observed for any of the other eight beta-amylases. A parallel metabolite-profiling analysis revealed a robust transient maltose accumulation during cold shock. BMY8 RNAi lines with lower BMY8 expression exhibited a starch-excess phenotype, and a dramatic decrease in maltose accumulation during a 6-h cold shock at 4 degrees C. The decreased maltose content was also accompanied by decreased glucose, fructose and sucrose content in the BMY8 RNAi plants, consistent with the roles of beta-amylase and maltose in transitory starch metabolism. BMY8 RNAi lines with reduced soluble sugar content exhibited diminished chlorophyll fluorescence as F(v)/F(m) ratio compared with wild type, suggesting that PSII photochemical efficiency was more sensitive to freezing stress. Together, carbohydrate analysis and freezing stress results of BMY8 RNAi lines indicate that increased maltose content, by itself or together through a maltose-dependent increase in other soluble sugars, contributes to the protection of the photosynthetic electron transport chain during freezing stress.

  14. Cell swelling increases the severity of spreading depression in Locusta migratoria

    PubMed Central

    Chin, Brittany; Witiuk, Kelsey L. M.

    2015-01-01

    Progressive accumulation of extracellular potassium ions can trigger propagating waves of spreading depression (SD), which are associated with dramatic increases in extracellular potassium levels ([K+]o) and arrest in neural activity. In the central nervous system the restricted nature of the extracellular compartment creates an environment that is vulnerable to disturbances in ionic homeostasis. Here we investigate how changes in the size of the extracellular space induced by alterations in extracellular osmolarity affect locust SD. We found that hypotonic exposure increased susceptibility to experimentally induced SD evidenced by a decrease in the latency to onset and period between individual events. Hypertonic exposure was observed to delay the onset of SD or prevent the occurrence altogether. Additionally, the magnitude of extracellular K+ concentration ([K+]o) disturbance during individual SD events was significantly greater and they were observed to propagate more quickly under hypotonic conditions compared with hypertonic conditions. Our results are consistent with a conclusion that hypotonic exposure reduced the size of the extracellular compartment by causing cell swelling and thus facilitated the accumulation of K+ ions. Lastly, we found that pharmacologically reducing the accumulation of extracellular K+ using the K+ channel blocker tetraethylammonium slowed the rate of SD propagation while increasing [K+]o through inhibition of the Na-K-2Cl cotransporter increased propagation rates. Overall our findings indicate that treatments or conditions that act to reduce the accumulation of extracellular K+ help to protect against the development of SD and attenuate the spread of ionic disturbance adding to the evidence that diffusion of K+ is a leading event during locust SD. PMID:26378209

  15. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    PubMed

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  16. Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans.

    PubMed

    Shen, Peiyi; Kershaw, Jonathan C; Yue, Yiren; Wang, Ou; Kim, Kee-Hong; McClements, D Julian; Park, Yeonhwa

    2018-05-30

    Conjugated linoleic acid (CLA) has been reported to reduce fat storage in cell culture and animal models. In the current study, the effects of CLA on the fat accumulation, activities, and proteomics were investigated using Caenorhabditis elegans. 100 µM CLA-TG nanoemulsion significantly reduced fat accumulation by 29% compared to linoleic acid (LA)-TG treatment via sir-2.1 (the ortholog of Sirtuin 1), without altering the worm size, growth rate, and pumping rate of C. elegans. CLA significantly increased moving speed and amplitude (the average centroid displacement over the entire track) of wild type worms compared to the LA group and these effects were dependent on aak-2 (AMPKα ortholog) and sir-2.1. Proteomics analysis showed CLA treatment influences various proteins associated in reproduction and development, translation, metabolic processes, and catabolism and proteolysis, in C. elegans. We have also confirmed the proteomics data that CLA reduced the fat accumulation via abs-1 (ATP Synthase B homolog). However, there were no significant effects of CLA on brood size, progeny numbers, and hatchability compared to LA treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    PubMed

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable.

  18. Mutation rates among RNA viruses

    PubMed Central

    Drake, John W.; Holland, John J.

    1999-01-01

    The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population. PMID:10570172

  19. Sub-annual North Pacific hydroclimate variability since 1450AD from updated St. Elias ice core isotope and accumulation rate records

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.

    2017-12-01

    A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. Ice core records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from ice cores collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of ice core and geophysical measurements. Low- and high-frequency ice penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter ice core drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. Ice velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/ice cores (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter ice core drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new ice core chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal ice flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional

  20. Variations in respiratory sounds in relation to fluid accumulation in the upper airways.

    PubMed

    Yadollahi, Azadeh; Rudzicz, Frank; Montazeri, Aman; Bradley, T Douglas

    2013-01-01

    Obstructive sleep apnea (OSA) is a common disorder due to recurrent collapse of the upper airway (UA) during sleep that increases the risk for several cardiovascular diseases. Recently, we showed that nocturnal fluid accumulation in the neck can narrow the UA and predispose to OSA. Our goal is to develop non-invasive methods to study the pathogenesis of OSA and the factors that increase the risks of developing it. Respiratory sound analysis is a simple and non-invasive way to study variations in the properties of the UA. In this study we examine whether such analysis can be used to estimate the amount of neck fluid volume and whether fluid accumulation in the neck alters the properties of these sounds. Our acoustic features include estimates of formants, pitch, energy, duration, zero crossing rate, average power, Mel frequency power, Mel cepstral coefficients, skewness, and kurtosis across segments of sleep. Our results show that while all acoustic features vary significantly among subjects, only the variations in respiratory sound energy, power, duration, pitch, and formants varied significantly over time. Decreases in energy and power over time accompany increases in neck fluid volume which may indicate narrowing of UA and consequently an increased risk of OSA. Finally, simple discriminant analysis was used to estimate broad classes of neck fluid volume from acoustic features with an accuracy of 75%. These results suggest that acoustic analysis of respiratory sounds might be used to assess the role of fluid accumulation in the neck on the pathogenesis of OSA.

  1. Changes in rates of salivary estriol increases before parturition at term.

    PubMed

    Hedriana, H L; Munro, C J; Eby-Wilkens, E M; Lasley, B L

    2001-01-01

    The aim of this study was to characterize the increases of salivary estriol concentrations before the onset of labor at term. Salivary estriol concentrations were measured in weekly patient-collected samples by means of a sensitive (mean +/- SD threshold, 0.025 +/- 0.001 ng/mL; coefficient of variation, 3.8%) direct enzyme immunoassay in a microtiter plate format. The salivary estriol concentrations in 16 healthy pregnant women were characterized from 30 weeks' gestation until the time of parturition and delivery. Samples were stored frozen at collection and analyzed in batches after delivery. The median salivary estriol concentration profile revealed a nonlinear rise beginning from 30 weeks' gestation (0.89 ng/mL) until term (2.70 ng/mL, an increase of 201%). At 35 weeks' gestation the salivary estriol concentration median value increased sharply (positive inflection point, 50%-93% increase) at a demarcation between a slower increase during early pregnancy and a more rapid increase during late pregnancy. This positive inflection point associated with a late pregnancy increase characterized subgroups of pregnancies according to the lengths of gestation as follows: early term (delivered at <38 weeks 1 day's gestation), middle term (delivered at 38 weeks 1 day-40 weeks' gestation), and late term (delivered at >40 weeks' gestation). Five weeks before delivery the mean (+/-SEM) rate of rise in salivary estriol concentration was 0.50 +/- 0.13 ng/mL per week to 0.84 +/- 0.26 ng/mL per week in the early term group. The increase in rate for the middle term group was 0.32 +/- 0.06 ng/mL per week to 0.37 +/- 0.26 ng/mL per week, whereas in the late term group the rate of salivary estriol concentration rise was 0.37 +/- 0.03 ng/mL per week to -0.03 +/- 0.25 ng/mL per week. These data demonstrate in normal pregnancies (1) that a direct, nonradiometric measure of salivary estriol concentration can be used to monitor the late pregnancy increase in estriol production, (2) that 35

  2. Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr

    NASA Astrophysics Data System (ADS)

    Cavitte, Marie G. P.; Parrenin, Frédéric; Ritz, Catherine; Young, Duncan A.; Van Liefferinge, Brice; Blankenship, Donald D.; Frezzotti, Massimo; Roberts, Jason L.

    2018-04-01

    We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, since the last glacial. We use a set of 18 isochrones spanning all observable depths of the ice column, interpreted from various ice-penetrating radar surveys and a 1-D ice flow model to invert for accumulation rates in the region. The shallowest four isochrones are then used to calculate paleoaccumulation rates between isochrone pairs using a 1-D assumption where horizontal advection is negligible in the time interval of each layer. We observe that the large-scale (100s km) surface accumulation gradient is spatially stable through the last 73 kyr, which reflects current modeled and observed precipitation gradients in the region. We also observe small-scale (10 s km) accumulation variations linked to snow redistribution at the surface, due to changes in its slope and curvature in the prevailing wind direction that remain spatially stationary since the last glacial.

  3. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  4. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  5. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  6. Endotoxin increases pulmonary vascular protein permeability in the dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, C.H.; Dauber, I.M.; Weil, J.V.

    Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. /sup 113m/In-labeled protein and /sup 99m/Tc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonellamore » enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.« less

  7. Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice

    PubMed Central

    Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B.; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M.; Li, Elizabeth; Dreyfuss, Jonathan M.; Gall, Walt; Kim, Jason K.; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E.

    2016-01-01

    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21−/− mice, demonstrating that Fgf21 is necessary for betaine’s beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359

  8. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  9. Widespread increase of tree mortality rates in the western United States

    Treesearch

    Phillip J. van Mantgem; Nathan L. Stephenson; John C. Byrne; Lori D. Daniels; Jerry F. Franklin; Peter Z. Fule; Mark E. Harmon; Andrew J. Larson; Jeremy M. Smith; Alan H. Taylor; Thomas T. Veblen

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29...

  10. Increased rates of cesarean sections and large families: a potentially dangerous combination.

    PubMed

    Saleh, Ahmed M; Dudenhausen, Joachim W; Ahmed, Badreldeen

    2017-07-26

    Rates of cesarean sections have been on the rise over the past three decades all over the world, despite the ideal rate of 10-15% that had been set by the World Health Organization (WHO) in 1985, in Fortaleza, Brazil. This epidemic increase in the rate of cesarean delivery is due to many factors which include, cesarean delivery on request, advanced maternal age at first pregnancy, decrease in number of patients who are willing to try vaginal birth after cesarean delivery, virtual disappearance of vaginal breech delivery, perceived increase in the weight of the fetus and increase in the number of women with chronic medical conditions such as Diabetes Mellitus and congenital heart disease in the reproductive age. There is no doubt that cesarean delivery is a safe procedure and it is getting safer and safer for many reasons. However, like all other surgical procedures it is not without risks both to the mother and the new born. There is a substantial increase in the incidence of morbidly adherent placenta and the risk of scar pregnancy. In the Middle East and many African and Asian countries women tend to have large families. The number of previous cesarean section deliveries is directly proportional to the risk of developing morbidly adherent placenta. Morbidly adherent placenta is the most common cause of emergency postpartum hysterectomy, which is often associated with multiple surgical complications, severe maternal morbidity and mortality. The increased rates of cesarean sections lead to increased rates of scar pregnancies, which can have lethal consequences. Cesarean delivery has a negative impact on the infant immune system. This effect on the infant led to the introduction of a new concept called "Vaginal seeding". This refers to the practice of transferring some maternal vaginal fluid to the infant born via cesarean section in an effort to enhance its immune system.

  11. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  12. A closer look at the increase in suicide rates in South Korea from 1986-2005.

    PubMed

    Kwon, Jin-Won; Chun, Heeran; Cho, Sung-il

    2009-02-27

    Suicide rates have recently been decreasing on average among OECD countries, but increasing trends have been detected in South Korea, particularly since the 1997 economic crisis. There have been no detailed analyses about the changes of the suicide rates over time periods in Korea. We examined trends in both absolute and proportional suicide rates over the time period of economic development, crisis, and recovery (1986 - 2005) as well as in birth cohorts from 1924 to 1978. We used data on total mortality and suicide rates from 1986 to 2005 published online by the Korean National Statistical Office (NSO) and extracted data for individuals under 80 years old. The analyses of the trends for 1) the sex-age-specific total mortality rate, 2) the sex-age-specific suicide rate, and 3) the sex-age-specific proportional suicide rate in 1986-2005 were conducted. To demonstrate the birth cohort effect on the proportional suicide rate, the synthetic birth cohort from 1924 to 1978 from the successive cross-sectional data was constructed. Age standardized suicide rates in South Korea increased by 98% in men (from 15.3 to 30.3 per 100,000) and by 124% in women (from 5.8 to 13.0 per 100,000). In both genders, the proportional increase in suicide rates was more prominent among the younger group aged under 45, despite the absolute increase being attributed to the older group. There were distinct cohort effects underlying increasing suicide rates particularly among younger age groups. Increasing suicide rates in Korea was composed of a greater absolute increase in the older group and a greater proportional increase in the younger group.

  13. Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increasedaccumulation and microglial activation.

    PubMed

    Gallagher, J J; Minogue, A M; Lynch, M A

    2013-01-01

    Alzheimer's disease (AD) is characterized by progressive neuronal loss and cognitive decline. Epidemiological studies suggest that the risk of AD is higher in women even when data are adjusted for age. We set out to compare changes in 9-month-old male and female mice which overexpress amyloid precursor protein (APP) with presenilin (PS1; APP/PS1 mice) and to evaluate whether any changes were coupled with deficits in spatial learning. APP/PS1 mice were assessed for their ability to learn in the Morris water maze and Aβ burden assessed by Congo Red and Aβ triple ultrasensitive assay. Neuroinflammatory changes were examined in brain tissue along with expression of Aβ-generating and Aβ-degrading enzymes. A deficit in reversal phase learning in the Morris water maze was observed in female mice and was paralleled by evidence of increased accumulation of Aβ, microglial activation and expression of IL-1β. Accumulation of Aβ was coupled with an increase in expression of BACE-1 and a decrease in insulin-degrading enzyme (IDE). The results indicate that the observed impairment in spatial memory in female APP/PS1 mice correlated with increased Aβ burden and the changes in Aβ may have occurred as a result of enhanced BACE-1 and decreased IDE expression. Copyright © 2012 S. Karger AG, Basel.

  14. Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna.

    PubMed

    Tsui, Martin T K; Wang, Wen-Xiong

    2004-12-10

    Temperature is an important environmental variable affecting the physiology and metabolism of aquatic invertebrates and can potentially affect the rate and pathway of the uptake and elimination of contaminants. In this study, we studied the effects of the ambient temperature on the uptake (from water and food) and elimination of inorganic mercury [Hg(II)] and methymercury (MeHg) in a freshwater cladoceran, Daphnia magna, in the laboratory. At different temperatures (i.e., 14, 19 and 24 degrees C), the assimilation efficiencies of both Hg species from ingested alga were not significantly different while the dissolved uptake rates were 32 and 73% lower at 14 degrees C than at 24 degrees C for Hg(II) and MeHg, respectively. The reduced uptake rates of Hg(II) at 14 degrees C could be adequately explained by the reduced filtration rate (40% reduction), but for MeHg, the reduced filtration rate could not completely explain reduction in MeHg uptake rate. Despite the elimination rates of both Hg compounds not being affected by the temperature, the relative importance of different routes of Hg loss (i.e., excretion, egestion, molting and reproduction) was significantly different at various temperatures. The relative importance of excretion to MeHg loss increased from 24 to 14 degrees C (i.e., 52 to 85% of Hg loss) while that of reproduction to MeHg loss decreased from 43 to 11% simultaneously. Using a kinetic model, we showed that the fraction of MeHg accumulated in the daphnids coming from the dietary phase was higher at lower temperature, while there was increased accumulation of both Hg(II) and MeHg in the daphnids at higher temperatures. Nevertheless, the trophic transfer potentials for both Hg species in this algae-daphnids food chain were not influenced by the temperature.

  15. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  16. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    PubMed Central

    Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190

  17. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    PubMed

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  18. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.

    PubMed

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-20

    The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits' hearts after SXSM treatment. Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation

  19. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins

  20. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2006-10-15

    Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.

  1. In Vitro Microvibration Increases Implantation Rate after Embryonic Cell Transplantation

    PubMed Central

    Isachenko, Vladimir; Sterzik, Karl; Maettner, Robert; Isachenko, Evgenia; Todorov, Plamen; Rahimi, Gohar; Mallmann, Peter; Strehler, Erwin; Pereligin, Igor; Alabarte, José Luis; Merzenich, Markus

    2017-01-01

    In natural conditions the oocyte and embryo are subjected to ever-changing dynamic processes. However, the routine assisted reproductive technologies today involve the use of static in vitro culture systems. The objective was to determine whether there is any difference in the viability of embryos after in vitro culture under static and mechanical microvibration conditions. The viability of embryonic cells (9,624 embryos) generated from 4,436 couples after in vitro culture was evaluated. For groups ≤29, 30-34, 35-39, and ≥40 years, the following rates of high-quality embryos without fragmentation (two to four blastomeres on day 2; six to eight blastomeres and compacting morula on day 3; blastocyst, expanded and hatching blastocyst on day 5) were detected (static vs. vibration, respectively): 65% versus 71%, 44% versus 69%, 67% versus 76% (for statistically significant differences between respective rates in these three groups, p <0.05), and 67% versus 66% (p > 0.1). The following baby-take-home rates were determined for groups ≤29, 30-34, 35-39, and ≥40 years (static vs. vibration, respectively): 30% versus 31% (p > 0.1, increasing only on the level of tendency), 28% versus 37%, 23% versus 29%, and 9% versus 15% (differences between respective rates in these three groups with p < 0.05). It was concluded that in vitro culture of embryos under microvibration (with a mimic of conditions in nature whereby oviductal fluid is mechanically agitated by the epithelial cilia) significantly increases the baby-take-home rate for patients 30 years and older. PMID:27725062

  2. Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function

    PubMed Central

    Jones, Kenneth R.; Herman, James P.; D'Alessio, David A.; Woods, Stephen C.; Seeley, Randy J.

    2011-01-01

    Central administration of glucagon-like peptide-1 (GLP-1) causes a dose-dependent reduction in food intake, but the role of endogenous CNS GLP-1 in the regulation of energy balance remains unclear. Here, we tested the hypothesis that CNS GLP-1 activity is required for normal energy balance by using two independent methods to achieve chronic CNS GLP-1 loss of function in rats. Specifically, lentiviral-mediated expression of RNA interference was used to knock down nucleus of the solitary tract (NTS) preproglucagon (PPG), and chronic intracerebroventricular (ICV) infusion of the GLP-1 receptor (GLP-1r) antagonist exendin (9-39) (Ex9) was used to block CNS GLP-1r. NTS PPG knockdown caused hyperphagia and exacerbated high-fat diet (HFD)-induced fat accumulation and glucose intolerance. Moreover, in control virus-treated rats fed the HFD, NTS PPG expression levels correlated positively with fat mass. Chronic ICV Ex9 also caused hyperphagia; however, increased fat accumulation and glucose intolerance occurred regardless of diet. Collectively, these data provide the strongest evidence to date that CNS GLP-1 plays a physiologic role in the long-term regulation of energy balance. Moreover, they suggest that this role is distinct from that of circulating GLP-1 as a short-term satiation signal. Therefore, it may be possible to tailor GLP-1-based therapies for the prevention and/or treatment of obesity. PMID:21389245

  3. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function.

    PubMed

    Barrera, Jason G; Jones, Kenneth R; Herman, James P; D'Alessio, David A; Woods, Stephen C; Seeley, Randy J

    2011-03-09

    Central administration of glucagon-like peptide-1 (GLP-1) causes a dose-dependent reduction in food intake, but the role of endogenous CNS GLP-1 in the regulation of energy balance remains unclear. Here, we tested the hypothesis that CNS GLP-1 activity is required for normal energy balance by using two independent methods to achieve chronic CNS GLP-1 loss of function in rats. Specifically, lentiviral-mediated expression of RNA interference was used to knock down nucleus of the solitary tract (NTS) preproglucagon (PPG), and chronic intracerebroventricular (ICV) infusion of the GLP-1 receptor (GLP-1r) antagonist exendin (9-39) (Ex9) was used to block CNS GLP-1r. NTS PPG knockdown caused hyperphagia and exacerbated high-fat diet (HFD)-induced fat accumulation and glucose intolerance. Moreover, in control virus-treated rats fed the HFD, NTS PPG expression levels correlated positively with fat mass. Chronic ICV Ex9 also caused hyperphagia; however, increased fat accumulation and glucose intolerance occurred regardless of diet. Collectively, these data provide the strongest evidence to date that CNS GLP-1 plays a physiologic role in the long-term regulation of energy balance. Moreover, they suggest that this role is distinct from that of circulating GLP-1 as a short-term satiation signal. Therefore, it may be possible to tailor GLP-1-based therapies for the prevention and/or treatment of obesity.

  4. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production

  5. Increasing response rates to lifestyle surveys: a pragmatic evidence review.

    PubMed

    McCluskey, S; Topping, A E

    2011-03-01

    Lifestyle surveys are often a key component of a local Joint Strategic Needs Assessment (JSNA), undertaken to inform public health planning. They are usually administered to a large number of people in order to provide a comprehensive profile of population health. However, declining response rates coupled with the under-representation of certain population groups in lifestyle survey data has led to doubts concerning the reliability of findings. In order to inform the design of their own lifestyle survey, NHS Calderdale commissioned an evidence-based review of the methodological literature relating to the administration of lifestyle surveys, with the specific aim of identifying practical and resource-efficient strategies shown to be effective for maximizing whole-population response rates. A pragmatic review of the published literature was undertaken, specifically to explore the most practical and resource-efficient ways to maximize lifestyle survey response rates to the most commonly used methods (postal surveys, face-to-face interviews, telephone interviews and electronic surveys). Electronic databases including MEDLINE, CINAHL, DARE, EMBASE and PsychINFO were searched. Empirical evidence published in the last 10 years was identified and citation tracking performed on all retrieved articles. An internet search for 'grey literature' was also conducted. The postal questionnaire remains an important lifestyle survey tool, but reported response rates have decreased rapidly in recent years. Interviews and telephone surveys are recommended in order to supplement data from postal questionnaires and increase response rates in some population groups, but costs may be prohibitive. Electronic surveys are a cheaper alternative, but the empirical evidence on effectiveness is inconclusive. Careful planning and tailoring of survey design to the characteristics of target populations can increase response rates and representativeness of lifestyle survey data. The results of this

  6. The impact of shrubbification on soil organic matter accumulation

    NASA Astrophysics Data System (ADS)

    Street, L.; Wookey, P. A.; Subke, J. A.; Baxter, R.; Garnett, M.

    2017-12-01

    The degree to which increasing vegetation productivity in the Arctic can offset permafrost carbon emissions under a warming climate is highly uncertain. Most ecosystem or earth system models predict that plant C inputs to permafrost soils will balance or exceed losses with warming, at least until about mid-century. Observations on the ground however, question whether vegetation change in Arctic ecosystems will result in even a transient net C sink. In the European Arctic, for example, rhizosphere processes associated with ectomycorrhizal (ECM) fungi have been implicated in driving rapid cycling - and thus lower storage - of soil organic C (SOC) under deciduous shrubs. Short-term incubation studies also show that decomposition of SOC can be stimulated or "primed" by new inputs of labile plant C. The implication is that as Arctic vegetation shifts towards a greater abundance of productive, and mostly ECM, deciduous trees and shrubs, net C losses from soils may result. Over decadal timescales however, the impact of changing vegetation and associated rhizosphere processes on C stock trajectories is complex - shifts in productivity and mycorrhizal status will be accompanied by other biological and physical changes that can impact decomposition. Encroachment of shrubs will likely influence both litter quality and quantity, as well as soil temperature and moisture regimes due to altered transpiration rates, shading and snow accumulation. Short-term studies, and those based on instantaneous flux measurements, can provide only limited information as to what the impact of shrubbification on SOC stocks will be. Here we use radiocarbon data, in combination with a vertically-resolved isotopic model, to examine how and why SOC accumulation in tundra soils differs between vegetation types over decades to centuries. We compare soil profiles under ECM birch, N-fixing alder, and ericaceous/lichen heath tundra in the Canadian Arctic. Early model results suggest that under alder

  7. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas

    NASA Astrophysics Data System (ADS)

    Droxler, Andre W.; Schlager, Wolfgang

    1985-11-01

    The southern Tongue of the Ocean is a 1300-m-deep, flat-floored basin in the Bahamas that receives large amounts of sediment from the carbonate platforms surrounding it on three sides. We have examined five 8 13-m-long piston cores and determined bulk sedimentation rates, turbidite frequency, and turbidite accumulation rates for the past two glacial and interglacial periods. The mean of bulk sedimentation rates is four to six times higher in interglacial periods; average accumulation rates of recognizable turbidites are higher by a factor of 21 to 45, and interglacial turbidite frequency is higher by a factor of 6 to 14. Sediment composition indicates that increased interglacial rates are due to higher accumulation of platform-derived material. Additional data from other Bahamian basins as well as published material from the Caribbean strongly suggest that highstand shedding is a general trend in pure carbonate depositional systems. Carbonate platforms without a siliciclastic component export more material during highstands of sea level when the platform tops are flooded and produce sediment. The response of carbonate platforms to Quaternary sea-level cycles is opposed to that of siliciclastic ocean margins, where sediment is stored on the inner shelf during highstands and passed on to continental rises and abyssal plains during lowstands of sea level.

  8. Digital accumulators in phase and frequency tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Statman, Joseph I.

    1990-01-01

    Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.

  9. Sludge accumulation pattern inside oxidation ditch case study.

    PubMed

    Fouad, Moharram; El-Morsy, Ahmed

    2014-01-01

    The sludge accumulation pattern of an oxidation ditch (OD) plant treating municipal wastewater was observed under dry and wet weather conditions, during 3 years of operation. The accumulation patterns along the ditches and their rates were revealed. In addition, the composition of the accumulation was investigated. Finally, the ratio of sand and volatile particles, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids, as well as the removal efficiency were also observed against the accumulated sludge. Further, a laboratory-scale channel was used to investigate the settleability of grit after mixing with variable values of MLSS. The observed results indicated that the economical design and operation of ODs using a velocity value between 0.3-0.35 m/s is not recommended, to avoid the settling of all solids. High values of MLSS and sludge age need high horizontal velocity (more than 0.35 m/s) and more power to avoid settling problems and system failure. The influence of flow velocity on the sludge settleability was studied, enabling better planning of future ditch design and operation.

  10. Kinetic model of cadmium accumulation and elimination and metallothionein response in Ruditapes decussatus.

    PubMed

    Serafim, Angela; Bebianno, Maria João

    2007-05-01

    The aim of the present study was to determine the response of metallothionein (MT) during Cd accumulation and elimination in different tissues of the estuarine bivalve Ruditapes decussatus exposed to two nominal Cd concentrations (4 and 40 microg/L) for 40 d, followed by a depuration period of 50 d. Cadmium was accumulated in all tissues of R. decussatus at both exposure concentrations, and the accumulation was tissue dependent. Use of the kinetic model showed that in the gills and remaining tissues, Cd was assimilated faster at the beginning of the exposure and decreased with time, possibly limited by the diffusion rate of this metal within the cell. In the digestive gland, however, the Cd was continuously accumulated. This could reflect that the Cd uptake rate is considerably higher than the loss rate and, therefore, that this tissue has a higher capacity to accumulate Cd compared to the other two tissues. Moreover, the application of this kinetic model in the different subcellular fractions showed that the bioconcentration factor was significantly higher in the low-molecular-weight fraction (where MT is found), suggesting that this fraction binds Cd faster, with a high uptake rate (K(u) = 32/d), and eliminates this metal more slowly (K(1) = 0.005/d). During the depuration phase, MT decreased simultaneously with Cd elimination in all tissues, although with a shorter half-life. In conclusion, the MT response prevented Cd in the tissues of R. decussatus from interfering in the normal clam metabolism; therefore, MT acts as a detoxification mechanism of Cd.

  11. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Ceiling on the rate of increase in hospital...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Limits on Cost Reimbursement § 413.40 Ceiling on the rate of increase in hospital inpatient costs...

  12. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Ceiling on the rate of increase in hospital...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Limits on Cost Reimbursement § 413.40 Ceiling on the rate of increase in hospital inpatient costs...

  13. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Ceiling on the rate of increase in hospital...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Limits on Cost Reimbursement § 413.40 Ceiling on the rate of increase in hospital inpatient costs...

  14. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Ceiling on the rate of increase in hospital...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Limits on Cost Reimbursement § 413.40 Ceiling on the rate of increase in hospital inpatient costs...

  15. The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibert, W.A.; Duncan, J.H.; Keaton, D.E.

    1994-12-31

    An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facilitymore » to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.« less

  16. Music increases alcohol consumption rate in young females.

    PubMed

    Stafford, Lorenzo D; Dodd, Hannah

    2013-10-01

    Previous field research has shown that individuals consumed more alcohol and at a faster rate in environments paired with loud music. Theoretically, this effect has been linked to approach/avoidance accounts of how music influences arousal and mood, but no work has tested this experimentally. In the present study, female participants (n = 45) consumed an alcoholic (4% alcohol-by-volume) beverage in one of three contexts: slow tempo music, fast tempo music, or a no-music control. Results revealed that, compared with the control, the beverage was consumed fastest in the two music conditions. Interestingly, whereas arousal and negative mood declined in the control condition, this was not the case for either of the music conditions, suggesting a downregulation of alcohol effects. We additionally found evidence for music to disrupt sensory systems in that, counterintuitively, faster consumption was driven by increases in perceived alcohol strength, which, in turn, predicted lower breath alcohol level (BrAL). These findings suggest a unique interaction of music environment and psychoactive effects of alcohol itself on consumption rate. Because alcohol consumed at a faster rate induces greater intoxication, these findings have implications for applied and theoretical work. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. An evaluation of temporal changes in sediment accumulation and impacts on carbon burial in Mobile Bay, Alabama, USA

    USGS Publications Warehouse

    Smith, Christopher G.; Osterman, Lisa E.

    2014-01-01

    The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm−2) were 60–80 % less than those observed at the head (0.361 g cm−2) and mouth (0.564 g cm−2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.

  18. Increasing rock-avalanche frequency correlates with increasing seismic moment release in New Zealand's Southern Alps

    NASA Astrophysics Data System (ADS)

    McSaveney, Mauri; Cox, Simon; Hancox, Graham

    2015-04-01

    The occurrence rate of large, spontaneous rock avalanches in New Zealand's Southern Alps has increasing over the last 50 years. The rate has been about 20 events per decade for the last 10 years, whereas for the period 1976-1999, it was 4 per decade. Allen et al. 2011 and Allen and Huggel, 2013 link the increase to alpine permafrost decay due to anthropogenic global warming, similar to the increased occurrence rate in the European Alps which is attributed to this cause. We however suggest a different primary cause, linking the increase to tectonic strain, which has been shown to also affect valley-bottom hot springs in the region. The altitudes from which these landslides have fallen are coincident with the region's topographically protruding slopes which favour stress concentration and failure, and many, but not all, failures have been from already highly fractured rock masses, for which an explanation of the fracturing is called for. Also, the earliest documented spontaneous rock avalanche in the Southern Alps occurred in 1873 and fell from a similar altitude on the same face of the same mountain as the most recent event in 2014. Cox et al. (2014) shows that valley-bottom hot springs in the Southern Alps respond to distant strong earthquakes in a manner suggesting weak local ground deformation and increased bedrock permeability. We suggest that the surrounding slopes respond to the same stimuli. We find that the observed occurrence-rate increase has occurred simultaneously with a seismic-moment-release increase in New Zealand, which follows the trend of global seismic moment release. It may also be associated with the accumulating slope deformations since about 1717 AD, when a great earthquake triggered much slope collapse in the region. In support of this link, Barff (1873) which reports the 1873 landslide from Aoraki/Mount Cook, also reports a seemingly associated but unexplained shift of hot springs in the area. The timing of both coincides with a distant

  19. Iron Accumulates in Huntington’s Disease Neurons: Protection by Deferoxamine

    PubMed Central

    Chen, Jianfang; Lai, Barry; Zhang, Zhaojie; Duce, James A.; Lam, Linh Q.; Volitakis, Irene; Bush, Ashley I.; Hersch, Steven

    2013-01-01

    Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD. PMID:24146952

  20. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  1. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic.

    PubMed

    Lebreton, L; Slat, B; Ferrari, F; Sainte-Rose, B; Aitken, J; Marthouse, R; Hajbane, S; Cunsolo, S; Schwarz, A; Levivier, A; Noble, K; Debeljak, P; Maral, H; Schoeneich-Argent, R; Brambini, R; Reisser, J

    2018-03-22

    Ocean plastic can persist in sea surface waters, eventually accumulating in remote areas of the world's oceans. Here we characterise and quantify a major ocean plastic accumulation zone formed in subtropical waters between California and Hawaii: The Great Pacific Garbage Patch (GPGP). Our model, calibrated with data from multi-vessel and aircraft surveys, predicted at least 79 (45-129) thousand tonnes of ocean plastic are floating inside an area of 1.6 million km 2 ; a figure four to sixteen times higher than previously reported. We explain this difference through the use of more robust methods to quantify larger debris. Over three-quarters of the GPGP mass was carried by debris larger than 5 cm and at least 46% was comprised of fishing nets. Microplastics accounted for 8% of the total mass but 94% of the estimated 1.8 (1.1-3.6) trillion pieces floating in the area. Plastic collected during our study has specific characteristics such as small surface-to-volume ratio, indicating that only certain types of debris have the capacity to persist and accumulate at the surface of the GPGP. Finally, our results suggest that ocean plastic pollution within the GPGP is increasing exponentially and at a faster rate than in surrounding waters.

  2. Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe

    DOE PAGES

    Dunn, Aaron; Dingreville, Remi; Capolungo, Laurent

    2015-11-27

    A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses.more » With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10 –2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. In conclusion, the development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.« less

  3. Sexual selection and maintenance of sex: evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis.

    PubMed

    Artieri, Carlo G; Haerty, Wilfried; Gupta, Bhagwati P; Singh, Rama S

    2008-05-01

    Several hypotheses have been proposed to explain the persistence of dioecy despite the reproductive advantages conferred to hermaphrodites, including greater efficiency at purging deleterious mutations in the former. Dioecy can benefit from both mutation purging and accelerated evolution by bringing together beneficial mutations in the same individual via recombination and shuffling of genotypes. In addition, mathematical treatment has shown that sexual selection is also capable of mitigating the cost of maintaining separate sexes by increasing the overall fitness of sexual populations, and genomic comparisons have shown that sexual selection can lead to accelerated evolution. Here, we examine the advantages of dioecy versus hermaphroditism by comparing the rate of evolution in sex-related genes and the rate of accumulation of deleterious mutations using a large number of orthologs (11,493) in the dioecious Caenorhabditis remanei and the hermaphroditic Caenorhabditis briggsae. We have used this data set to estimate the deleterious mutation rate per generation, U, in both species and find that although it is significantly higher in hermaphrodites, both species are at least 2 orders of magnitude lower than the value required to explain the persistence of sex by efficiency at purging deleterious mutations alone. We also find that genes expressed in sperm are evolving rapidly in both species; however, they show a greater increase in their rate of evolution relative to genes expressed in other tissues in C. remanei, suggesting stronger sexual selection pressure acting on these genes in dioecious species. Interestingly, the persistence of a signal of rapid evolution of sperm genes in C. briggsae suggests a recent evolutionary origin of hermaphrodism in this lineage. Our results provide empirical evidence of increased sexual selection pressure in dioecious animals, supporting the possibility that sexual selection may play an important role in the maintenance of sexual

  4. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation

    NASA Technical Reports Server (NTRS)

    Wing, S. S.; Haas, A. L.; Goldberg, A. L.

    1995-01-01

    The rapid loss of skeletal-muscle protein during starvation and after denervation occurs primarily through increased rates of protein breakdown and activation of a non-lysosomal ATP-dependent proteolytic process. To investigate whether protein flux through the ubiquitin (Ub)-proteasome pathway is enhanced, as was suggested by related studies, we measured, using specific polyclonal antibodies, the levels of Ub-conjugated proteins in normal and atrophying muscles. The content of these critical intermediates had increased 50-250% after food deprivation in the extensor digitorum longus and soleus muscles 2 days after denervation. Like rates of proteolysis, the amount of Ub-protein conjugates and the fraction of Ub conjugated to proteins increased progressively during food deprivation and returned to normal within 1 day of refeeding. During starvation, muscles of adrenalectomized rats failed to increase protein breakdown, and they showed 50% lower levels of Ub-protein conjugates than those of starved control animals. The changes in the pools of Ub-conjugated proteins (the substrates for the 26S proteasome) thus coincided with and can account for the alterations in overall proteolysis. In this pathway, large multiubiquitinated proteins are preferentially degraded, and the Ub-protein conjugates that accumulated in atrophying muscles were of high molecular mass (> 100 kDa). When innervated and denervated gastrocnemius muscles were fractionated, a significant increase in ubiquitinated proteins was found in the myofibrillar fraction, the proteins of which are preferentially degraded on denervation, but not in the soluble fraction. Thus activation of this proteolytic pathway in atrophying muscles probably occurs initially by increasing Ub conjugation to cell proteins. The resulting accumulation of Ub-protein conjugates suggests that their degradation by the 26S proteasome complex subsequently becomes rate-limiting in these catabolic states.

  5. Cost-Sharing Rates Increase During Deep Recession: Preliminary Data From Greece.

    PubMed

    Gouvalas, Athanasios; Igoumenidis, Michael; Theodorou, Mamas; Athanasakis, Kostas

    2016-05-28

    Measures taken over the past four years in Greece to reduce pharmaceutical expenditure have led to significant price reductions for medicines, but have also changed patient cost-sharing rates for prescription drugs. This study attempts to capture the resulting increase in patients' out-of-pocket (OOP) expenses for prescription drugs during the 2011-2014 period. The authors conducted a retrospective review of financial data derived from 39 883 prescriptions, dispensed at three randomly chosen pharmacies located in Lamia, central Greece. The study recorded an average contribution rate per prescription as follows: 11.28% for 2011 (95% CI: 10.76-11.80), 14.10% for 2012, 19.97% for 2013, and 29.08% for 2014. Correspondingly, the mean patient charge per prescription for 2011 was €6.58 (95% CI: 6.22-6.94), €8.28 for 2012, €8.35 for 2013, and €10.87 for 2014. During the 2011-2014 period, mean percentage rate of patient contribution increased by 157.75%, while average patient charge per prescription in current prices increased by 65.22%. The use of a newly introduced internal reference price (IRP) system increased the level of prescription charge at a rate of 2.41% for 2012 (100% surcharge on patients), 26.24% for 2013 (49.95% on patients and 50.04% on the appropriate health insurance funds), and 47.72% for 2014 (85.06% on patients and 14.94% on funds). Increased cost-sharing rates for prescription drugs can reduce public pharmaceutical expenditure, but international experience shows that rising OOP expenses can compromise patients' ability to pay, particularly when it comes to chronic diseases and vulnerable populations. Various suggestions could be effective in refining the cost-sharing approach by giving greater consideration to chronic patients, and to the poor and elderly. © 2016 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http

  6. 5 CFR 530.306 - Evaluating agency requests for new or increased special rates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Evaluating agency requests for new or... Retention General Provisions § 530.306 Evaluating agency requests for new or increased special rates. (a) In evaluating agency requests for new or increased special rates, OPM may consider the following factors: (1...

  7. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation.

    PubMed

    Carbonell-Barrachina, A A; Burló, F; López, E; Martínez-Sánchez, F

    1999-07-01

    Arsenic (As) uptake by Rhapanus sativus L. (radish), cv. Nueva Orleans, growing in soil-less culture conditions was studied in relation to the chemical form and concentration of As. A 4 x 3 factorial experiment was conducted with treatments consisting of four As chemical forms [As(III), As(V), MMAA, DMAA] and three As concentrations (1.0, 2.0, and 5.0 mg As L-1). None of the As treatments were clearly phytotoxic to this radish cultivar. Arsenic phytoavailability was primarily determined by the As chemical form present in the nutrient solution and followed the trend DMAA < or = As(V) < or = As(III) < MMAA. Root and shoot As concentrations significantly increased with increasing As application rates. Monomethyl arsonic acid treatments caused the highest As accumulation in both roots and shoots, and this organic arsenical showed a higher uptake rate than the other As compounds. Inner root As concentrations were, in general, within the normal range for As contents in food crops but root skin As levels were close or above the maximum threshold set for As content in edible fruit, crops and vegetables. The statement that toxicity limits plant As uptake to safe levels was not confirmed in our study. If radish plants are exposed to a large pulse of As, as growth on contaminated nutrient solutions, they may accumulate residues which are unacceptable for animal and human consumption without exhibiting symptoms of phytotoxicity.

  8. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  9. Increasing low birth weight rates: deliveries in a tertiary hospital in istanbul.

    PubMed

    Akin, Yasemin; Cömert, Serdar; Turan, Cem; Unal, Orhan; Piçak, Abdülkadir; Ger, Lale; Telatar, Berrin

    2010-09-01

    Prevalence of low birth weight deliveries may vary across different environments. The necessity of determination of regional data prompted this study. Information of all deliveries from January 2004 to December 2008 was obtained from delivery registry records retrospectively. Initial data including birth weight, vital status, sex, maternal age and mode of delivery were recorded using medical files. The frequency of low birth weight, very low birth weight, extremely low birth weight and stillbirth deliveries were determined. Among 19,533 total births, there were 450 (23.04 per 1000) stillbirths. Low birth weight rate was 10.61%. A significant increase in yearly distribution of low birth weight deliveries was observed (P<0.001). Very low birth weight and extremely low birth weight delivery rates were 3.14% and 1.58% respectively. Among 2073 low birth weight infants, 333 (16.06%) were stillbirths. The stillbirth delivery rate and the birth of a female infant among low birth weight deliveries were significantly higher than infants with birth weight ≥2500g (P<0.001, OR=28.37), (P<0.001) retrospectively. There was no statistical difference between low birth weight and maternal age. The rate of cesarean section among low birth weight infants was 49.4%. High low birth weight and stillbirth rates, as well as the increase in low birth weight deliveries over the past five years in this study are striking. For reduction of increased low birth weight rates, appropriate intervention methods should be initiated.

  10. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging.

    PubMed Central

    Schleicher, E D; Wagner, E; Nerlich, A G

    1997-01-01

    N(epsilon)-(Carboxymethyl)lysine (CML), a major product of oxidative modification of glycated proteins, has been suggested to represent a general marker of oxidative stress and long-term damage to proteins in aging, atherosclerosis, and diabetes. To investigate the occurrence and distribution of CML in humans an antiserum specifically recognizing protein-bound CML was generated. The oxidative formation of CML from glycated proteins was reduced by lipoic acid, aminoguanidine, superoxide dismutase, catalase, and particularly vitamin E and desferrioxamine. Immunolocalization of CML in skin, lung, heart, kidney, intestine, intervertebral discs, and particularly in arteries provided evidence for an age-dependent increase in CML accumulation in distinct locations, and acceleration of this process in diabetes. Intense staining of the arterial wall and particularly the elastic membrane was found. High levels of CML modification were observed within atherosclerotic plaques and in foam cells. The preferential location of CML immunoreactivity in lesions may indicate the contribution of glycoxidation to the processes occurring in diabetes and aging. Additionally, we found increased CML content in serum proteins in diabetic patients. The strong dependence of CML formation on oxidative conditions together with the increased occurrence of CML in diabetic serum and tissue proteins suggest a role for CML as endogenous biomarker for oxidative damage. PMID:9022079

  11. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil

    DOE PAGES

    Yu, Xiao-Hong; Cahoon, Rebecca E.; Horn, Patrick J.; ...

    2017-09-20

    Modified fatty acids (mFA) have diverse uses, e.g., cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics, and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. In order to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation, and seedlingmore » development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon coexpression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. Finally, the identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.« less

  12. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Hong; Cahoon, Rebecca E.; Horn, Patrick J.

    Modified fatty acids (mFA) have diverse uses, e.g., cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics, and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. In order to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation, and seedlingmore » development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon coexpression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. Finally, the identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.« less

  13. Is Increasing Coal Seam Gas Well Development Activity Associated with Increasing Hospitalisation Rates in Queensland, Australia? An Exploratory Analysis 1995-2011.

    PubMed

    Werner, Angela K; Cameron, Cate M; Watt, Kerrianne; Vink, Sue; Jagals, Paul; Page, Andrew

    2017-05-18

    The majority of Australia's coal seam gas (CSG) reserves are in Queensland, where the industry has expanded rapidly in recent years. Despite concerns, health data have not been examined alongside CSG development. This study examined hospitalisation rates as a function of CSG development activity in Queensland, during the period 1995-2011. Admissions data were examined with CSG well numbers, which served as a proxy for CSG development activity. Time series models were used to assess changes in hospitalisation rates for periods of "low", "medium", "high", and "intense" activity compared to a period of "very low" activity, adjusting for covariates. "All-cause" hospitalisation rates increased monotonically with increasing gas well development activity in females (324.0 to 390.3 per 1000 persons) and males (294.2 to 335.4 per 1000 persons). Hospitalisation rates for "Blood/immune" conditions generally increased for both sexes. Female and male hospitalisation rates for "Circulatory" conditions decreased with increasing CSG activity. Hospitalisation rates were generally low for reproductive and birth outcomes; no clear associations were observed. This study showed some outcomes were associated with increasing CSG development activity. However, as a condition of data access, the population and outcomes were aggregated to a broad geographic study area rather than using higher geographic resolution data. Higher resolution data, as well as other data sources, should be explored. Further research should be conducted with an expanded time period to determine if these trends continue as the industry grows.

  14. MODELING LONG-TERM DYNAMICS OF LITTER ACCUMULATION IN RESPONSE TO STATIC AND VARIABLE HYDROPERIODS

    EPA Science Inventory

    Accumulated litter from emergent species like the cattail hybrid (Typha glauca Godr.) can influence local abiotic conditions, other biota, and ecosystem processes. Litter accumulation results from high production coupled with slow breakdown rates. Wetland managers regularly mani...

  15. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp.

    PubMed

    Casas, Jérôme; Body, Mélanie; Gutzwiller, Florence; Giron, David; Lazzari, Claudio R; Pincebourde, Sylvain; Richard, Romain; Llandres, Ana L

    2015-08-01

    Metabolic rate is a positive function of body weight, a rule valid for most organisms and the basis of several theories of metabolic ecology. For adult insects, however, the diversity of relationships between body mass and respiration remains unexplained. The aim of this study is to relate the respiratory metabolism of a parasitoid with body weight and foraging activity. We compared the metabolic rate of groups of starving and host-fed females of the parasitoid Eupelmus vuilleti recorded with respirometry for 7days, corresponding to the mean lifetime of starving females and over half of the lifetime of foraging females. The dynamics of carbohydrate, lipid and protein in the body of foraging females were quantified with biochemical techniques. Body mass and all body nutrients declined sharply from the first day onwards. By contrast, the CO2 produced and the O2 consumed increased steadily. Starving females showed the opposite trend, identifying foraging as the reason for the respiration increase of feeding females. Two complementary physiological processes explain the unexpected relationship between increasing metabolic rate and declining body weight. First, host hemolymph is a highly unbalanced food, and the excess nutrients (protein and carbohydrate) need to be voided, partially through excretion and partially through respiration. Second, a foraging young female produces eggs at an increasing rate during the first half of its lifetime, a process that also increases respiration. We posit that the time-varying metabolic rate contributions of the feeding and reproductive processes supplements the contribution of the structural mass and lead to the observed trend. We extend our explanations to other insect groups and discuss the potential for unification using Dynamic Energy Budget theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

    PubMed Central

    Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.

    2016-01-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265

  17. Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS).

    PubMed

    Yabuki, Yoshinori; Nagai, Takashi; Inao, Keiya; Ono, Junko; Aiko, Nobuyuki; Ohtsuka, Nobutoshi; Tanaka, Hitoshi; Tanimori, Shinji

    2016-10-01

    Laboratory experiments were performed to determine the sampling rates of pesticides for the polar organic chemical integrative samplers (POCIS) used in Japan. The concentrations of pesticides in aquatic environments were estimated from the accumulated amounts of pesticide on POCIS, and the effect of water temperature on the pesticide sampling rates was evaluated. The sampling rates of 48 pesticides at 18, 24, and 30 °C were obtained, and this study confirmed that increasing trend of sampling rates was resulted with increasing water temperature for many pesticides.

  18. The contradiction of space: Oil, imperialism and the accumulation of capital

    NASA Astrophysics Data System (ADS)

    Labban, Mazen

    This essay examines the relations between the production of oil and gas, the global expansion of capital and the territorial control and division of geographical space. The main argument is that the historical expansion of capital, and the subsequent inter-capitalist competition, has produced and has come to depend on a geographical contradiction between an open and integrated world economy and its division into exclusive economic territories. This contradiction is the result of the contradiction between the conditions for accumulation for individual (national) capitals and the conditions for accumulation for capital as a whole. The objective natural conditions of accumulation are of specific importance, and they gain more importance as capital accumulation comes to rely on more intensive and expansive exploitation of natural resources---specifically crucial resources such as oil and gas. The development of productivity and the concentration of capital cause the rates of profit to decline; the exploitation of natural resources at an increasing scale results from the increase in the mass of raw material required to counter the tendency of the rate of profit ton fall and to resume the accumulation of capital at an expanded scale. This is common to all branches of industry, including the extractive industry---the competition for natural resources is ultimately determined by the competition for increasing, or at least maintaining, the profitability of competing capitals. The contemporary competition among US, Japanese, Indian, Chinese and Western European transnational oil and gas companies for investment in the oil and gas industry of Russia and Iran is examined against the ongoing competition among the US, Russia, China and India for the geopolitical control of the former Soviet republics of Central Asia and the Caucasus. This process is a development of the inter-imperialist competition that began in the late nineteenth century and which resumed in full force since

  19. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernieri, P.; Pardossi, A.; Tognoni, F.

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change inmore » ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.« less

  20. Assessing the adequacy of contribution rates towards employees' provident fund in Malaysia

    NASA Astrophysics Data System (ADS)

    Saidi, Nurul Athirah Nabila; Yusuf, Mazlynda Md; Basah, Mohamad Yazis Ali

    2017-04-01

    The vital role of Malaysian Employees' Provident Fund (EPF) is to provide financial support for its participants during retirement years. However, the issues of inadequacy have risen and EPF has been through various improvements in order to cope with current living situations, including making adjustment in the contribution rates. This study intends to provide the projection of EPF accumulations for three different types of contribution rates namely contribution rates at current fixed rate, increasing and decreasing proportion. Then, the replacement ratio is calculated and is used as an indicator to determine the adequacy of retirement income delivered by EPF. The ideal replacement ratio recommended by financial advisors is at 70%. Based on the findings in this study, contribution rates following a decreasing proportion gives replacement ratio that exceeds or nearest to the ideal replacement ratio, while contribution rates at current fixed rate gives replacement rates that fall far from 70%. Therefore, this study shows that the accumulated amount in the fund with contribution rates following a decreasing proportion gives higher replacement ratio and is recommended to be applied by the Malaysian EPF.