Sample records for accumulative roll bonding

  1. Nanostructure formation during accumulative roll bonding of commercial purity titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir

    2016-12-15

    In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less

  2. Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser

    2014-12-01

    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.

  3. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  4. Accumulative Roll Bonding for Bladesmithing: From Book to Burrito to Blade

    NASA Astrophysics Data System (ADS)

    Hawgood, Mary; Hasier, John; Ho, Kathy

    2016-12-01

    A bladesmithing program was undertaken with the aim of producing superior decorative steel from dissimilar starting metals using severe plastic deformation. Accumulative roll bonding using an antiquated rolling mill was performed on 1095, CPM S30V, and 15N20 Hi-Contrast steel. Original attempts using the CPM S30V and the 1095 were unsuccessful, while later attempts using the 1095 and 15N20 Hi-Contrast steels produced a more desirable ingot. Characterization and testing, consisting of both optical and scanning electron microscopy, of the starting and wrought materials as well as the challenges in producing knife steel via synthesis of modern and traditional forging techniques, are discussed and failures analyzed.

  5. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates

    DOE PAGES

    Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...

    2016-02-01

    The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less

  6. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets

    PubMed Central

    Džugan, Ján; Németh, Gergely; Lukáč, Pavel; Bohlen, Jan

    2018-01-01

    Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour. PMID:29303975

  7. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyajima, Yoji, E-mail: miyajima.y.ab@m.titech.ac.jp; Okubo, Satoshi; Abe, Hiroki

    The dislocation density of pure copper fabricated by two severe plastic deformation (SPD) processes, i.e., accumulative roll bonding and equal-channel angular pressing, was evaluated using scanning transmission electron microscopy/transmission electron microscopy observations. The dislocation density drastically increased from ~ 10{sup 13} m{sup −} {sup 2} to about 5 × 10{sup 14} m{sup −} {sup 2}, and then saturated, for both SPD processes.

  8. Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties

    PubMed Central

    Nie, Jinfeng; Liu, Mingxing; Wang, Fang; Zhao, Yonghao; Li, Yusheng; Cao, Yang; Zhu, Yuntian

    2016-01-01

    Al(1060)/Mg(AZ31)/Al(1060) multilayered composite was successfully produced using an accumulative roll bonding (ARB) process for up to four cycles at an elevated temperature (400 °C). The microstructure evolution of the composites and the bonding characteristics at the interfaces between Al and Mg layers with increasing ARB cycles were characterized through optical microscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). It was found that the grains of Al and Mg layers were significantly refined and Al3Mg2 and Al12 Mg17 intermetallic compound layers formed at the Al/Mg bonding interfaces. The strength increased gradually and the ultimate tensile strength (UTS) reached a maximum value of about 240 MPa at the third pass. Furthermore, the strengthening mechanism of the composite was analyzed based on the fracture morphologies. PMID:28774072

  9. Microstructure and Texture of Al-2.5wt.%Mg Processed by Combining Accumulative Roll Bonding and Conventional Rolling

    NASA Astrophysics Data System (ADS)

    Gatti, J. R.; Bhattacharjee, P. P.

    2014-12-01

    Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.

  10. Analysis of factors influencing the bond strength in roll bonding processes

    NASA Astrophysics Data System (ADS)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  11. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  12. Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.

    2015-07-01

    In the present work, electrochemical and passive behaviors of pure copper fabricated by accumulative roll-bonding (ARB) process in 0.01 M borax solution (pH = 9.1) have been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by Vickers microhardness, x-ray diffraction (XRD), and transmission electron microscopy. The results of microhardness tests revealed that microhardness values increased with the increasing number of ARB cycles. Also a sharp increase was seen in microhardness after the first ARB cycle, whereas mediocre additional increases were observed afterward up to the seven cycles. Moreover, XRD patterns showed that the mean crystallite size values decrease with the increasing number of ARB cycles. To investigate the electrochemical and passive behaviors of the samples, the potentiodynamic polarization, Mott-Schottky analysis and electrochemical impedance spectroscopy (EIS) were carried out. Polarization plots revealed that as a result of ARB, the corrosion behavior of the specimens improves compared with the annealed pure copper. Also, the Mott-Schottky analysis and EIS measurements showed that the increasing number of ARB cycles offer better conditions for forming the passive films with higher protection behavior, due to the growth of less-defective films.

  13. Experimental analysis of two-layered dissimilar metals by roll bonding

    NASA Astrophysics Data System (ADS)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  14. The effect of aluminum nanoparticles on the structure, mechanical properties and failure of aluminum processed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Ivanov, K. V.; Fortuna, S. V.; Kalashnikova, T. A.; Rodkevich, N. G.

    2017-12-01

    The microstructure, mechanical properties, and fracture type of aluminum with and without aluminum nanoparticles processed by accumulative roll bonding (ARB) have been studied using transmission and scanning electron microscopy, microhardness measurements, and tensile tests. It is shown that the injection of aluminum nanoparticles increases the structure refinement rate during ARB due to the increasing tendency for dynamic recrystallization. It has a different effect on different mechanical characteristics. The different effect of nanoparticles on different structural features is the reason for the different effect on different mechanical properties related with these features. The fracture mechanism is shown to change from ductile in aluminum to mixed ductile-brittle in the composite with a 1.5-fold decrease in ductility as a result of nanoparticle injection.

  15. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding.

    PubMed

    Kwan, Charles C F; Wang, Zhirui

    2013-08-13

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.

  16. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  17. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding

    PubMed Central

    Kwan, Charles C.F.; Wang, Zhirui

    2013-01-01

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446

  18. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  19. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding.

    PubMed

    Göken, Mathias; Höppel, Heinz Werner

    2011-06-17

    Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing

  20. Roll diffusion bonding of titanium alloy panels

    NASA Technical Reports Server (NTRS)

    Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.

    1968-01-01

    Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.

  1. Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Qi, Zi-chen; Yu, Hui; Xu, Cheng; Xiao, Hong

    2018-03-01

    In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.

  2. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  3. Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process

    PubMed Central

    Nie, Jinfeng; Wang, Fang; Li, Yusheng; Cao, Yang; Liu, Xiangfa; Zhao, Yonghao; Zhu, Yuntian

    2017-01-01

    In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM). The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies. PMID:28772467

  4. An Automatic Braking System That Stabilizes Leukocyte Rolling by an Increase in Selectin Bond Number with Shear

    PubMed Central

    Chen, Shuqi; Springer, Timothy A.

    1999-01-01

    Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin–ligand tether bonds exponentially (1, 4) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (14). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one. PMID:9885254

  5. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear.

    PubMed

    Chen, S; Springer, T A

    1999-01-11

    Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin-ligand tether bonds exponentially (, ) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.

  6. Biomechanics of leukocyte rolling

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus

    2011-01-01

    Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934

  7. Characterization of Al/crystallized Al-based metallic glass composites produced by repeated roll bonding process

    NASA Astrophysics Data System (ADS)

    Alizadeh, Morteza; Khoramkhorshid, Saba; Taghvaei, Amir Hossein; Gokuldoss, Prashanth Konda

    2017-07-01

    Devitrified Al84Gd6Ni7Co3 glassy particles have been used to reinforce Al-matrix composites through repeated roll bonding (RRB) process. Microstructural characterization of the produced composites after various rolling cycles was performed by scanning electron microscopy. Mechanical properties of the fabricated composites were evaluated by the tensile and microhardness tests. The results indicate that the RRB process is successful to produce composites with the negligible amount of flaws and porosity, and it is followed by homogeneous distribution of Al84Gd6Ni7Co3 particles in the Al matrix after nine rolling passes. Elongation of the composites improves significantly upon RRB cycles and the tensile strength and microhardness of them increase more than two times compared to unreinforced Al. According to fractography results, the enhanced mechanical properties are correlated with formation of excellent bonding at the interface of Al84Gd6Ni7Co3 particles and Al matrix. The theoretical values of composites hardness and yield strength calculated based on iso-strain model show a good agreement with respect to the experimental results.

  8. ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS

    DOEpatents

    Patton, G. Jr.; Zirinsky, S.

    1961-06-01

    A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.

  9. Development of interface-dominant bulk Cu/V nanolamellar composites by cross accumulative roll bonding

    PubMed Central

    Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.

    2017-01-01

    Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346

  10. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    PubMed

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  11. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    NASA Astrophysics Data System (ADS)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  12. The effect of orthodontic bonding materials on dental plaque accumulation and composition in vitro.

    PubMed

    Badawi, H; Evans, R D; Wilson, M; Ready, D; Noar, J H; Pratten, J

    2003-08-01

    The aim of this study was to investigate the accumulation and composition of microcosm dental plaque on different orthodontic bonding materials using an in vitro model. Microcosm plaques were grown on discs of a range of bonding materials in a constant depth film fermentor. The biofilms were derived from human saliva and supplied with artificial saliva as a source of nutrients. The number of viable bacteria in the biofilms was determined and the streptococci present were identified to species level. The results showed that there was no significant difference in bacterial accumulation between different bonding materials, however, biofilms grown on materials which were fluoride releasing, did not contain Streptococcus mutans. This in vitro study has shown that the use of fluoride-releasing bonding materials may support the growth of supragingival plaque, which does not contain S. mutans.

  13. Development of selective solar absorbers on the basis of aluminum roll-bond heat exchangers

    NASA Astrophysics Data System (ADS)

    Moeller, M.

    1981-11-01

    A deposition technique comparable to two-stage anodizing and especially suited for solar absorber panels, using roll-bond Al 99.5 and AlMnZr alloys as a substrate, was developed. The coating is of the nickel structure filter type and provides average solar absorptivity values of 94% and thermal emission values of 14%. The setup of a production plant capable of coating surfaces up to 2 sq m is described as well as the development of corrosion resistent hermetically sealed collectors. By means of an appropriate surface treatment the same corrosion resistance was achieved for absorbers mounted in ventilated collectors.

  14. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    USDA-ARS?s Scientific Manuscript database

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  15. Catch bonds govern adhesion through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P

    2004-09-13

    Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.

  16. Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.

    2017-12-01

    The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.

  17. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James

    2017-01-20

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Almore » cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.« less

  18. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  19. Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.

    2017-03-01

    A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.

  20. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  1. Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-09-01

    Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.

  2. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  3. Millimeter Thin and Rubber-Like Solid-State Lighting Modules Fabricated Using Roll-to-Roll Fluidic Self-Assembly and Lamination.

    PubMed

    Park, Se-Chul; Biswas, Shantonu; Fang, Jun; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O

    2015-06-24

    A millimeter thin rubber-like solid-state lighting module is reported. The fabrication of the lighting module incorporates assembly and electrical connection of light-emitting diodes (LEDs). The assembly is achieved using a roll-to-roll fluidic self-assembly. The LEDs are sandwiched in-between a stretchable top and bottom electrode to relieve the mechanical stress. The top contact is realized using a lamination technique that eliminates wire-bonding. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A simplified model for dynamics of cell rolling and cell-surface adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore amore » simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.« less

  5. Ordered and disordered dynamics in monolayers of rolling particles.

    PubMed

    Kim, Byungsoo; Putkaradze, Vakhtang

    2010-12-10

    We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles modeling water molecules. The rolling constraint represents a simplified model of a strong, but rapidly decaying bond with the surface. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We study the dynamics of disordered gas states and show that there is a surprising and universal linear connection between distributions of angular and linear velocity, allowing definition of temperature.

  6. Pauling bond strength, bond length and electron density distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2014-01-18

    A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43( /r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined formore » geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the

  7. Removing bonded skin from a substrate

    NASA Technical Reports Server (NTRS)

    Chartier, E. N.

    1980-01-01

    Metal skin is peeled off like sardine-can cover with key. Method is useful in removing bonded skins from any substrate where substrate is strong enough not to buckle or tear when bonded skin is rolled free. Also, it is useful for removing sections of damaged skin where bladders of other equipment below substrate might be damaged if saw or router were used to cut completely through skin.

  8. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  9. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  10. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    NASA Astrophysics Data System (ADS)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  11. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    PubMed

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded

  12. Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow.

    PubMed

    Morikis, Vasilios A; Chase, Shannon; Wun, Ted; Chaikof, Elliot L; Magnani, John L; Simon, Scott I

    2017-11-09

    E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewis x (sLe x ), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β 2 -integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLe x expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β 2 -integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLe x , resulting in focal clusters that deliver a distinct signal to upshift β 2 -integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β 2 -integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.

  13. Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid

    PubMed Central

    Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.

    2016-01-01

    Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for

  14. Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process

    NASA Astrophysics Data System (ADS)

    Hoseini-Athar, M. M.; Tolaminejad, B.

    2016-07-01

    Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.

  15. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions ofmore » the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).« less

  16. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  17. Fineblanking, Diffusion Bonding, and Testing of Fluidic Laminates.

    DTIC Science & Technology

    1980-07-01

    AD-AU69 347 TRITEC INC COLUMBIA ND F/$ 13/7 FINEBLANKING, DIFFUSION BONDING, AND TESTING OF FLUIDIC LAMINAT --ETCIU) JUL 80 L K PECAN OAAK21-79-C-0074...amplifier assembly. The effects of die roll and burrs can be minimized by secondary operations *such as abrasive machining , but this adds to the expense...clad material. Experience has shown that a clad thickness of 0.038 + 0.008 mm is required for the semi-solid diffusion bonding process. The composition

  18. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  19. Roll-to-Roll production of carbon nanotubes based supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  20. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  1. Advances in roll to roll processing of optics

    NASA Astrophysics Data System (ADS)

    Watts, Michael P. C.

    2008-02-01

    Today, there are a number of successful commercial applications that utilize roll to roll processing and almost all involve optics; unpatterned film, patterned film, and devices on film. The largest applications today are in holograms, and brightness enhancement film (BEF) for LCD. Solar cells are rapidly growing. These are mostly made in large captive facilities with their own proprietary equipment, materials and pattern generation capability. World wide roll to roll volume is > 100M meters2 year -1, and generates sales of > $5B. The vast majority of the sales are in BEF film by 3M.

  2. CONTROL FOR ROLLING MILL

    DOEpatents

    Shuck, A.B.; Shaw, W.C.

    1961-06-20

    A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.

  3. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  4. Toward large-area roll-to-roll printed nanophotonic sensors

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular

  5. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odintsov, S.D.; Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces.more » In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.« less

  6. Leukocyte Rolling on P-Selectin: A Three-Dimensional Numerical Study of the Effect of Cytoplasmic Viscosity

    PubMed Central

    Khismatullin, Damir B.; Truskey, George A.

    2012-01-01

    Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5–30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. PMID:22768931

  7. Computer-aided roll pass design in rolling of airfoil shapes

    NASA Technical Reports Server (NTRS)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  8. Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion.

    PubMed

    Nooij, Suzanne A E; Groen, Eric L

    2011-05-01

    Spatial disorientation (SD) is still a contributing factor in many aviation accidents, stressing the need for adequate SD training scenarios. In this article we focused on the post-roll effect (the sensation of rolling back after a roll maneuver, such as an entry of a coordinated turn) and investigated the effect of roll stimuli on the pilot's ability to stabilize their roll attitude. This resulted in a ground-based demonstration scenario for pilots. The experiments took place in the advanced 6-DOF Desdemona motion simulator, with the subject in a supine position. Roll motions were either fully automated with the subjects blindfolded (BLIND), automated with the subject viewing the cockpit interior (COCKPIT), or self-controlled (LEAD). After the roll stimulus subjects had to cancel all perceived simulator motion without any visual feedback. Both the roll velocity and duration were varied. In 68% of all trials subjects corrected for the perceived motion of rolling back by initiating a roll motion in the same direction as the preceeding roll. The effect was dependent on both rate and duration, in a manner consistent with semicircular canal dynamics. The effect was smallest in the BLIND scenario, but differences between simulation scenarios were non-significant. The results show that the effects of the post-roll illusion on aircraft control can be demonstrated adequately in a flight simulator using an attitude control task. The effect is present even after short roll movements, occurring frequently in flight. Therefore this demonstration is relevant for spatial disorientation training programs for pilots.

  9. Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes

    DTIC Science & Technology

    2011-01-01

    tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP

  10. High-rate, roll-to-roll nanomanufacturing of flexible systems

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.; Wachter, Ralph F.

    2012-10-01

    Since the National Nanotechnology Initiative was first announced in 2000, nanotechnology has developed an impressive catalog of nano-scale structures with building-blocks such as nanoparticles, nanotubes, nanorods, nanopillars, and quantum dots. Similarly, there are accompanying materials processes such as, atomic layer deposition, pulsed layer deposition, nanoprinting, nanoimprinting, transfer printing, nanolithography and nanopatterning. One of the challenges of nanomanufacturing is scaling up these processes reliably and affordably. Roll-to-roll manufacturing is a means for scaling up, for increasing throughput. It is high-speed production using a continuous, moving platform such as a web or a flexible substrate. The adoption of roll-to-roll to nanomanufacturing is novel. The goal is to build structures and devices with nano-scale features and specific functionality. The substrate could be a polymer, metal foil, silk, cloth or paper. The materials to build the structures and multi-level devices could be organic, inorganic or biological. Processing could be solution-based, e.g., ink-jet printing, or vacuum-based, e.g., chemical vapor deposition. Products could be electronics, optoelectronics, membranes, catalysts, microfluidics, lab-on-film, filters, etc. By this means, processing of large and conformal areas is achievable. High-throughput translates into low cost, which is the attraction of roll-to-roll nanomanufacturing. There are technical challenges requiring fundamental scientific advances in materials and process development and in manufacturing and system-integration where achieving nano-scale feature size, resolution and accuracy at high speeds can be major hurdles. We will give an overview of roll-to-roll nanomanufacturing with emphasis on the need to understand the material, process and system complexities, the need for instrumentation, measurement, and process control and describe the concept of cyber-enabled nanomanufacturing for reliable and

  11. Intramolecular amide bonds stabilize pili on the surface of bacilli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili.more » We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.« less

  12. Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.

    PubMed

    Mori, Manami; Yamanaka, Kenta; Sato, Shigeo; Chiba, Akihiko

    2015-11-01

    Crystallographic textures and their effect on the mechanical anisotropy of a hot-rolled biomedical Co-Cr-Mo alloy were investigated. The hot-rolled Co-28Cr-6Mo-0.13N (mass%) alloy examined here exhibited a monotonic strength increment following hot-rolling reduction, eventually reaching a 0.2% proof stress of 1400 MPa while maintaining acceptable ductility (>10%). The dominant hot-rolling texture was a brass-type component, which is characterized by the alloy's peculiarly low stacking fault energy (SFE) even at hot rolling temperatures, although the minor peaks of the near copper component were also identified. However, because of the onset of dynamic recrystallization (DRX) during the hot rolling process, the texture intensity was relatively weak even after 90% hot rolling, although the grain refinement originating from the DRX was not significant (the "less active DRX" condition increased the strain accumulation during the process, resulting in high-strength samples). The weakened texture development resulted in negligible in-plane anisotropy for the hot-rolled specimen strength, when the specimens were tensile strained in the rolling direction (RD) and transverse direction (TD). The elongation-to-failure, however, exhibited a difference with respect to the tensile loading axis. It is suggested that the ductility anisotropy is closely related to a strain-induced γ (fcc) → ε (hcp) martensitic transformation during tensile loading, resulting in a difference in the proportion of quasi-cleavage fracture surfaces. The obtained results will be helpful in the development of high-strength Co-Cr-Mo alloy plates and sheets, and have implications regarding plastic deformation and texture evolution during the hot rolling of non-conventional metallic materials with low SFE at elevated temperatures, where planar dislocation slips of Shockley partial dislocations and thermally activated process interplay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  14. Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco

    NASA Astrophysics Data System (ADS)

    Pujiyanto, Hamdani

    2017-01-01

    A 6-mm thin plate is difficult to produce especially if the product requires wide size and high strength. Flatness is the main quality issue in rolling 6-mm plate using a 4-high reversing mill which use ±1100-mm work roll. Thus some methods are applied to overcome such issue in order to comply to customer quality requirement. Pre-rolling, rolling, and post-rolling conditions have to be considered comprehensively. Roll unit management will be the key factor before rolling condition. The roll unit itself has a significant impact on work roll crown wearness in relation with work roll intial crown and thermal crown. Work roll crown along with the modification of hydraulic gap control (HGC) could directly alter the flatness of the plate.

  15. Anisotropy of mechanical and thermal properties of AZ31 sheets prepared using the ARB technique

    NASA Astrophysics Data System (ADS)

    Halmešová, K.; Trojanová, Z.; Džugan, J.; Drozd, Z.; Minárik, P.; Knapek, M.

    2017-07-01

    In the accumulative roll bonding (ARB) technique, repeated stacking of material followed by conventional roll-bonding is carried out. For this process the surfaces are cleaned with ethanol and then joined together by rolling. The rolled material is then cut into two halves, again surface treated and roll-bonded. This process may be repeated several times. For the magnesium alloy AZ31 (Mg-3Al-1Zn) rolling at an elevated temperature of 400 °C is necessary for ARB because of the low plasticity of hexagonal magnesium alloys at lower temperatures. Samples for this study were prepared using 1 to 3 ARB passes through the rolling mill. It was found that the ARB substantially refined the grain size of sheets to the micrometer scale. The microstructure and texture of the deformed samples were studied by light and electron microscopy. The mechanical properties of the ARB samples were explored using tensile test-pieces cut from the sheets with the tensile axis taken either parallel or perpendicular to the rolling direction, where a significant anisotropy in both mechanical properties and Young’s modulus was found. Anisotropy is explained on the basis of the specific microstructure and texture formed during the ARB process.

  16. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.

    PubMed

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J; Coburn, Leslie; López, José A; Cruz, Miguel A; Dong, Jing-Fei; McIntire, Larry V; McEver, Rodger P; Zhu, Cheng

    2008-09-01

    Arterial blood flow enhances glycoprotein Ibalpha (GPIbalpha) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbalpha/vWF bonds first prolonged ("catch") and then shortened ("slip") bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbalpha dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbalpha-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif-13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbalpha on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.

  17. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  18. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF

    PubMed Central

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J.; Coburn, Leslie; López, José A.; Cruz, Miguel A.; Dong, Jing-Fei; McIntire, Larry V.; McEver, Rodger P.; Zhu, Cheng

    2008-01-01

    Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding. PMID:18725999

  19. Rolled-out collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurcliff, W.A.

    1979-04-01

    SolaRoll is a solar collector material composed of extruded strips of black ethylene propylene diene monomer (EPDM) that is suitable for water or air type collectors. SolaRoll is provided in rolls and consists of an absorber mat with tubes and fins and a framing strip comprising all the parts of the collector frame. The rolls are bent in a counterflow pattern to cover the entire collector area and the mat is fastened with a thermosetting mastic adhesive. The heat transfer fluid is plain water as freezing does not injure the EPDM. Installation of the glazing in the framing strip ismore » described. EPDM has the disadvantage of low thermal conductivity but its use does not require antifreeze or a heat exchanger. Design options and suitable applications of SolaRoll systems are discussed.« less

  20. A deformation mechanism of hard metal surrounded by soft metal during roll forming

    PubMed Central

    YU, Hailiang; TIEU, A. Kiet; LU, Cheng; LIU, Xiong; GODBOLE, Ajit; LI, Huijun; KONG, Charlie; QIN, Qinghua

    2014-01-01

    It is interesting to imagine what would happen when a mixture of soft-boiled eggs and stones is deformed together. A foil made of pure Ti is stronger than that made of Cu. When a composite Cu/Ti foil deforms, the harder Ti will penetrate into the softer Cu in the convex shapes according to previously reported results. In this paper, we describe the fabrication of multilayer Cu/Ti foils by the roll bonding technique and report our observations. The experimental results lead us to propose a new deformation mechanism for a hard metal surrounded by a soft metal during rolling of a laminated foil, particularly when the thickness of hard metal foil (Ti, 25 μm) is much less than that of the soft metal foil (Cu, 300 μm). Transmission Electron Microscope (TEM) imaging results show that the hard metal penetrates into the soft metal in the form of concave protrusions. Finite element simulations of the rolling process of a Cu/Ti/Cu composite foil are described. Finally, we focus on an analysis of the deformation mechanism of Ti foils and its effects on grain refinement, and propose a grain refinement mechanism from the inside to the outside of the laminates during rolling. PMID:24853192

  1. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  2. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  3. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    PubMed

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  4. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    NASA Astrophysics Data System (ADS)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  5. In-Roll Stress Analysis Considering Air-Entrainment at the Roll-Inlet with the Effect of Grooves on Nip Roll Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu

    High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.

  6. Geometrical correlations in the nucleosomal DNA conformation and the role of the covalent bonds rigidity

    PubMed Central

    Ghorbani, Maryam; Mohammad-Rafiee, Farshid

    2011-01-01

    We develop a simple elastic model to study the conformation of DNA in the nucleosome core particle. In this model, the changes in the energy of the covalent bonds that connect the base pairs of each strand of the DNA double helix, as well as the lateral displacements and the rotation of adjacent base pairs are considered. We show that because of the rigidity of the covalent bonds in the sugar-phosphate backbones, the base pair parameters are highly correlated, especially, strong twist-roll-slide correlation in the conformation of the nucleosomal DNA is vividly observed in the calculated results. This simple model succeeds to account for the detailed features of the structure of the nucleosomal DNA, particularly, its more important base pair parameters, roll and slide, in good agreement with the experimental results. PMID:20972223

  7. Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Mahendran, G.

    2018-05-01

    Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.

  8. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  9. Digitalization in roll forming manufacturing

    NASA Astrophysics Data System (ADS)

    Sedlmaier, A.; Dietl, T.; Ferreira, P.

    2017-09-01

    Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.

  10. Rolling Reloaded

    ERIC Educational Resources Information Center

    Jones, Simon A.; Nieminen, John M.

    2008-01-01

    Not so long ago a new observation about rolling motion was described: for a rolling wheel, there is a set of points with instantaneous velocities directed at or away from the centre of the wheel; these points form a circle whose diameter connects the centre of the wheel to the wheel's point of contact with the ground (Sharma 1996 "Eur. J. Phys."…

  11. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of Antidumping Duty Administrative... duty order on certain hot-rolled flat-rolled carbon quality steel products (hot-rolled steel) from... 1, 2008, through February 28, 2009. We preliminarily determine that the sale of hot-rolled steel...

  12. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  13. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  14. Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results

    Treesearch

    Colin Ashmore; Donald L. Sirois; Bryce J. Stokes

    1987-01-01

    Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...

  15. Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods

    NASA Astrophysics Data System (ADS)

    Yogesha, K. K.; Joshi, Amit; Jayaganthan, R.

    2017-05-01

    In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.

  16. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    NASA Astrophysics Data System (ADS)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  17. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  18. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material...) entitled Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, Japan, and Russia: Investigation...

  19. 75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice that it has...-rolled steel from Russia would be likely to lead to continuation or recurrence of material injury...

  20. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  1. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less

  2. Flexure-based Roll-to-roll Platform: A Practical Solution for Realizing Large-area Microcontact Printing

    PubMed Central

    Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi

    2015-01-01

    A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147

  3. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  4. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  5. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  6. In-line metrology for roll-to-roll UV assisted nanoimprint lithography using diffractometry

    NASA Astrophysics Data System (ADS)

    Kreuzer, Martin; Whitworth, Guy L.; Francone, Achille; Gomis-Bresco, Jordi; Kehagias, Nikolaos; Sotomayor-Torres, Clivia M.

    2018-05-01

    We describe and discuss the optical design of a diffractometer to carry out in-line quality control during roll-to-roll nanoimprinting. The tool measures diffractograms in reflection geometry, through an aspheric lens to gain fast, non-invasive information of any changes to the critical dimensions of target grating structures. A stepwise tapered linear grating with constant period was fabricated in order to detect the variation in grating linewidth through diffractometry. The minimum feature change detected was ˜40 nm to a precision of 10 nm. The diffractometer was then integrated with a roll-to-roll UV assisted nanoimprint lithography machine to gain dynamic measurements in situ.

  7. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  8. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  9. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...

  10. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-03-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  11. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  12. The surprising rolling spool: librational motion and failure of the pure rolling condition

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Malgieri, M.; Mascheretti, P.; De Ambrosis, A.

    2015-05-01

    In a previous work (Onorato P, Malgieri M, Mascheretti P and De Ambrosis A 2014 The surprising rolling spool: experiments and theory from mechanics to phase transitions Eur. J. Phys. 35 055011) an asymmetric rolling spool (ARS) was investigated as a simple model for a second-order phase transition. Here, we deepen the study of this system to address critical aspects related both to the characteristic of the oscillatory anharmonic motion and to the role of friction forces in determining it. The experimental data show that for largely asymmetric bodies the rolling condition is not reliably fulfilled because the intensity of the friction force goes below the needed value to ensure rolling without slipping.

  13. Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Wenzinger, Carl J

    1932-01-01

    This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.

  14. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  15. 14 CFR 25.899 - Electrical bonding and protection against static electricity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... static electricity. 25.899 Section 25.899 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Miscellaneous § 25.899 Electrical bonding and protection against static electricity. (a) Electrical bonding and protection against static electricity must be designed to minimize accumulation of...

  16. 14 CFR 25.899 - Electrical bonding and protection against static electricity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... static electricity. 25.899 Section 25.899 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Miscellaneous § 25.899 Electrical bonding and protection against static electricity. (a) Electrical bonding and protection against static electricity must be designed to minimize accumulation of...

  17. 14 CFR 25.899 - Electrical bonding and protection against static electricity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... static electricity. 25.899 Section 25.899 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Miscellaneous § 25.899 Electrical bonding and protection against static electricity. (a) Electrical bonding and protection against static electricity must be designed to minimize accumulation of...

  18. 14 CFR 25.899 - Electrical bonding and protection against static electricity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... static electricity. 25.899 Section 25.899 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Miscellaneous § 25.899 Electrical bonding and protection against static electricity. (a) Electrical bonding and protection against static electricity must be designed to minimize accumulation of...

  19. 14 CFR 25.899 - Electrical bonding and protection against static electricity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... static electricity. 25.899 Section 25.899 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Miscellaneous § 25.899 Electrical bonding and protection against static electricity. (a) Electrical bonding and protection against static electricity must be designed to minimize accumulation of...

  20. Microstructural and mechanical responses to various rolling speeds determined in multi-pass break-down rolling of AZ31B alloy

    NASA Astrophysics Data System (ADS)

    Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong

    2018-04-01

    Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.

  1. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  2. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    PubMed

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  3. Roll forming of eco-friendly stud

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  4. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  5. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    PubMed Central

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties. PMID:28067318

  6. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    NASA Astrophysics Data System (ADS)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  7. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel.

    PubMed

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-09

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  8. Constant-roll (quasi-)linear inflation

    NASA Astrophysics Data System (ADS)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  9. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full Sunset Review of Countervailing... of the countervailing duty (CVD) order on certain hot-rolled flat-rolled carbon-quality steel products (hot-rolled steel) from Brazil, pursuant to section 751(c) of the Tariff Act of 1930, as amended...

  10. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  11. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  12. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    PubMed

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  13. Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao

    2017-10-01

    The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.

  14. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less

  15. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Countervailing Duty Administrative... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...-Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty Administrative Review, 75...

  16. A Roll, Fin, and Fin Controller Prediction Computer Program.

    DTIC Science & Technology

    1980-06-01

    IERATI *EQ. 03 WRITE16920301 ROLL 365 365 3R1TE(G. 26311 ROLL 366 no 505 ImU - 1,NNU ROLL 36? 50S WRITE(G.2011 3U(I’U),OAWPU(1PU,SIGLCfINU) ROLL 360...ROLL DAMPING WILL BE ONE**/$ ROLL 642 2016 FORMAT (/jIX,*LONGCRESTEO SVECTRA AND COMPONENTS WILL SE PRINTED. ROLL 44S 2’) ROLL 444 2019 FORMAT (1/19

  17. Assessment of flat rolling theories for the use in a model-based controller for high-precision rolling applications

    NASA Astrophysics Data System (ADS)

    Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard

    2017-10-01

    In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.

  18. New perspectives on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  19. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  20. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  1. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R; Becker, R; Rhee, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners willmore » be used to produce plate more efficiently and with reduced product loss.« less

  2. Increased compactibility of acetames after roll compaction.

    PubMed

    Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter

    2011-01-01

    A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Adaptive wing static aeroelastic roll control

    NASA Astrophysics Data System (ADS)

    Ehlers, Steven M.; Weisshaar, Terrence A.

    1993-09-01

    Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.

  4. Effect of heat treatment on interfacial and mechanical properties of A6022/A7075/A6022 roll-bonded multi-layer Al alloy sheets

    NASA Astrophysics Data System (ADS)

    Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk

    2016-09-01

    Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.

  5. Systematics of constant roll inflation

    NASA Astrophysics Data System (ADS)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  6. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    PubMed Central

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-01-01

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954

  7. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    PubMed

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  8. Constant-roll tachyon inflation and observational constraints

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  9. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-351-829] Certain Hot-Rolled Flat... Commerce (the Department) published the countervailing duty order on certain hot-rolled flat- rolled carbon-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot...

  10. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  11. Influence of 10 % Cold Rolling Reduction on Ageing Behaviour of Hot Rolled Al-Cu-Si-Mn-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.

    2014-10-01

    In the current study, the effect of 10 % cold rolling on the different ageing phenomena of Al-Cu-Si-Mn-Mg alloy was investigated. Both hot rolled and cold rolled alloys were subjected to both natural and artificial ageing processes. Hardness was measured to understand the change in the mechanical property of the alloy before and after rolling and also during ageing processes. From microscopy, it was evident that the cold rolling and subsequent ageing provided the alloy with a structure in which CuAl2 precipitates were uniformly distributed. The alloy exhibited the peak hardness value of 92 VHN after 2 days of natural ageing, whereas the cold deformed (10 %) alloy exhibited the higher peak hardness value of 139 VHN after 3 days of natural ageing. Peak hardness of the alloy reached 94 VHN, when hot rolled alloy was subjected to ageing at 250 °C for 1 h, whereas 10 % cold rolling followed by ageing (100 °C, 15 min) demonstrated accelerated and elevated hardening. The ageing behaviours thus obtained permit the alloy to provide a range of desirable combinations of strength and ductility for high strength weight saving applications.

  12. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to

  13. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: rolling) direction with Mo concentration varying from 7-13 wt.%. Decomposed areas containing plate-shaped low-Mo phase. A typical Zr/cladding interaction layer with a thickness of 1-2 μm. A visible UZr2 bearing layer with a thickness of 1-2 μm. Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U-Mo matrix. No excessive interaction between cladding and the uncoated fuel edge. Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be

  14. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  15. Ground roll attenuation by synchrosqueezed curvelet transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Chen, Yangkang; Ma, Jianwei

    2018-04-01

    Ground roll is a type of coherent noise in land seismic data that has low frequency, low velocity and high amplitude. It damages reflection events that contain important information about subsurface structures, hence the removal of ground roll is a crucial step in seismic data processing. A suitable transform is needed for removal of ground roll. Curvelet transform is an effective sparse transform that optimally represents seismic events. In addition, the curvelets can provide a multiscale and multidirectional decomposition of the input data in time-frequency and angular domain, which can help distinguish between ground roll and useful signals. In this paper, we apply synchrosqueezed curvelet transform (SSCT) for ground roll attenuation. The synchrosqueezing technique in SSCT is used to precisely reallocate the energy of local wave vectors in order to separate ground roll from the original data with higher resolution and higher fidelity. Examples of synthetic and field seismic data reveal that SSCT performs well in the suppression of aliased and non-aliased ground roll while preserving reflection waves, in comparison with high-pass filtering, wavelet and curvelet methods.

  16. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  17. Continuous roll-to-roll growth of graphene films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hesjedal, Thorsten

    2011-03-01

    Few-layer graphene is obtained in atmospheric chemical vapor deposition on polycrystalline copper in a roll-to-roll process. Raman and x-ray photoelectron spectroscopy were employed to confirm the few-layer nature of the graphene film, to map the inhomogeneities, and to study and optimize the growth process. This continuous growth process can be easily scaled up and enables the low-cost fabrication of graphene films for industrial applications.

  18. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  19. Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid

    2016-01-01

    In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  20. Origins of Rolling Friction

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  1. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  2. LEDs are on a roll

    NASA Astrophysics Data System (ADS)

    Blom, Paul; van Mol, Ton

    2011-11-01

    Light-emitting diodes are more efficient than conventional lighting, but high production costs limit their uptake. Organic versions that can be produced using a cheap newspaper-style "roll-to-roll" printing process are likely to revolutionize our lighting and signage.

  3. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets

    NASA Astrophysics Data System (ADS)

    Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu

    2018-07-01

    The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.

  4. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in realmore » time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.« less

  5. Design and analysis of roll cage

    NASA Astrophysics Data System (ADS)

    Angadi, Gurusangappa; Chetan, S.

    2018-04-01

    Wildlife fire fighting vehicles are used to extinguish fires in forests, in this process vehicles face falling objects like rocks, tree branches and other objects. Also due to uneven conditions of the terrain like cliff edges, uneven surfaces etc. makes the vehicle to roll over and these can cause injuries to both the driver and the operator. Roll over of a vehicle is a common incident which makes fatal injuries to the operator and also stands next to the crash accidents. In order to reduce the injury level and continuous roll over of the vehicle it is necessary to equip suitable roll cage according to standards of vehicle. In this present work roll cage for pump operator in wildfire fighting vehicle is designed and analysis is carried out in computer simulated environment when seating position of operator seated outside of the cabin. According to NFPA 1906 standards wildlife fire apparatus, Design and Test procedures that are carried out in Hyperworks maintaining SAE J1194.1983 standards. G load case, roof crush analysis and pendulum impact analysis tests are carried out on roll cage to ensure the saftey of design. These load cases are considerd to satisfy the situation faced in forest terrain. In these test procedures roll cage is analysed for stresses and deformation in various load cases. After recording results these are compared with standards mentioned in SAE J1194.1983.

  6. Rolling Maneuver Load Alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) has been demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and actuation of the trailing edge inboard control surface pairs to maintain roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of 0.33, .38 and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  7. On the Influence of Surface Heterogeneities onto Roll Convection

    NASA Astrophysics Data System (ADS)

    Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.

    2009-04-01

    Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -zi•L (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.

  8. Development of a continuous roll-to-roll processing system for mass production of plastic optical film

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Tsai, Meng-Hsun

    2015-12-01

    This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.

  9. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  10. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    NASA Astrophysics Data System (ADS)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  11. An advanced dissymmetric rolling model for online regulation

    NASA Astrophysics Data System (ADS)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  12. Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices.

    PubMed

    Bariya, Mallika; Shahpar, Ziba; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Gao, Wei; Nyein, Hnin Yin Yin; Liaw, Tiffany Sun; Tai, Li-Chia; Ngo, Quynh P; Chao, Minghan; Zhao, Yingbo; Hettick, Mark; Cho, Gyoujin; Javey, Ali

    2018-06-25

    As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.

  13. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  14. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers.

    PubMed

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-07-21

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  15. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  16. Unusual folding and rolling of Glacio-Lacustrine sediments, Upper Fraser Canyon, British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, S.

    1987-05-01

    Folding and rolling of graded but unconsolidated sediments by at least 720/sup 0/ produced a structure resembling a large Swiss roll about 6 ft wide and 4 ft high. The sediments were initially horizontal and well sorted, grading from coarse sands to fine silts. About 50 ft away, at the same level, the sediments include irregular layers of poorly sorted, ice-rafted pebbles and boulders. The sequence is unconformably overlain by till. The axis of folding appears to be parallel to the eastern wall of the Fraser Canyon. The outcrop is in the Stevens Pit (sand and gravel) immediately east ofmore » the Trans-Canada Highway, 2 mi south of Lytton, B.C., at an elevation of 1000 ft, approximately 600 ft above the present level of the Fraser River. The sands and silts accumulated in a lake adjacent to the east margin of a stagnant and relatively small glacier occupying the upper part of the Frazer Canyon. Partial or complete melting of small icebergs caused deposition of coarser material. A subsequent cooling trend led to an advance of the glacier, an advance which at this location caused some of the adjacent and by now frozen sediments to be rolled up like an old carpet. Further advance of the glacier caused it to override and thus preserve the deformed sequence.« less

  17. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  18. Roll Casting of Aluminum Alloy Clad Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, R.; Tsuge, H.; Haga, T.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less

  19. Regulation of Catch Bonds by Rate of Force Application*

    PubMed Central

    Sarangapani, Krishna K.; Qian, Jin; Chen, Wei; Zarnitsyna, Veronika I.; Mehta, Padmaja; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2011-01-01

    The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules. PMID:21775439

  20. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  1. The theory and technique of yamuna body rolling.

    PubMed

    Suzuki, Satoshi

    2013-09-01

    [Purpose] This paper provides information about the theory and technique of Yamuna Body Rolling. In order to treat physical problems, using the specialized Yamuna Body Rolling balls, people can target superficial skin, fasciae, muscle fibers, tendons, ligaments, bones, internal organs, and the nervous system by themselves. The extraordinary effect of Yamuna Body Rolling is its multidimensional elongation of muscle fibers. In addition to the regular longitudinal elongation by the conventional stretch method, Yamuna Body Rolling enables the transversal and diagonal expansion of muscle fibers in order to move the body more dynamically. Hamstring, abdominal, and sideline routines are presented as examples for techniques of Yamuna Body Rolling. Yamuna Body Rolling can be applied to functional evaluation and therapeutic uses; therefore, it could provide many benefits in the treatment of different conditions in the medical field.

  2. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

  3. Periodontal considerations in the use of bonds or bands on molars in adolescents and adults.

    PubMed

    Boyd, R L; Baumrind, S

    1992-01-01

    This longitudinal study compared the periodontal status of bonded and banded molars in 20 adult and 40 adolescent patients before, during and after treatment with fixed orthodontic appliances. Plaque accumulation (measured by the Plaque Index), gingival inflammation (measured by the Gingival Index and the bleeding tendency), and pocket depth were assessed by one examiner at sites along the mesio-buccal line angle of the maxillary right first molar and the mandibular left first molar. Assessments were made immediately prior to the placement of fixed appliances (pretreatment), at 1, 3, 6, 9, 12 and 18 months after appliances were placed; and 3 months after appliances were removed (posttreatment). Loss of attachment between the pretreatment and posttreatment visits also was determined. At pretreatment, no significant differences were found in gingival inflammation between maxillary and mandibular banded and bonded molars. During treatment, both maxillary and mandibular banded molars showed significantly (p less than 0.05) greater gingival inflammation and plaque accumulation than did bonded molars. Three months after appliance removal, the maxillary molars that had been banded continued to show significantly more gingival inflammation and loss of attachment than did the maxillary molars that had been bonded. When all banded and bonded teeth were grouped by patient age, mean values for plaque accumulation and gingival inflammation in the maxillary molar regions were significantly greater for adolescents than for adults.

  4. Analytical method for establishing indentation rolling resistance

    NASA Astrophysics Data System (ADS)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  5. Steels For Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Bearing lives increased by attention to details of processing and applications. NASA technical memorandum discusses selection of steels for long-life rolling-element bearings. After brief review of advances in manufacturing, report discusses effect of cleanliness of bearing material on fatigue in rolling element. Also discusses fracture toughnesses of through-hardened and case-hardened materials.

  6. Microstructure, Mechanical Properties, Hot-Die Forming, and Joining of 47XD Gamma TiAl Rolled Sheets

    NASA Technical Reports Server (NTRS)

    Das, G.; Draper, S.; Whittenberger, J. D.; Bartolotta, P. A.

    2001-01-01

    The microstructure and mechanical properties, along with the hot-die forming and joining of Ti-47Al-2Nb-2Mn-0.8 vol% TiB, sheets (known as 47XD), produced by a low-cost rolling process, were evaluated. A near-gamma microstructure was obtained in the as-rolled condition. The microstructures of heat-treated sheets ranged from a recrystallized equiaxed near-gamma microstructure at 1,200 to 1,310 C, to a duplex microstructure at 1,350 C, to a fully lamellar microstructure at 1,376 C. Tensile behavior was determined for unidirectionally rolled and cross-rolled sheets for room temperature (RT) to 816 C. Yield stress decreased gradually with increasing deformation temperature up to 704 C; above 704 C, it declined rapidly. Ultimate tensile strength exhibited a gradual decrease up to 537 C before peaking at 704 C, followed by a rapid decline at 816 C. The modulus showed a gradual decrease with temperature, reaching approximately 72% of the RT value at 816 C. Strain to failure increased slowly from RT to 537 C; between 537 C and 704 C it exhibited a phenomenal increase, suggesting that the ductile-brittle transition temperature was below 704 C. Fracture mode changed from transgranular fracture at low temperature, to a mixture of transgranular and intergranular fracture at intermediate temperature, to ductile fracture at 816 C, coupled with dynamic recrystallization at large strains. Creep rupture response was evaluated between 649 and 816 C over the stress range of 69 to 276 MPa. Deformation parameters for steady-state creep rate and time-to-rupture were similar: activation energies of approximately 350 kJ/mol and stress exponents of approximately 4.5. Hot-die forming of sheets into corrugations was done at elevated temperatures in vacuum. The process parameters to join sheets by diffusion bonding and brazing with TiCuNi 70 filler alloy were optimized for test coupons and successfully used to fabricate large truss-core and honeycomb structures. Nondestructive evaluation

  7. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  8. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  9. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Momore » rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.« less

  10. Retrograde motion of a rolling disk

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Karavaev, Yu L.

    2017-12-01

    This paper presents results of theoretical and experimental research explaining the retrograde final-stage rolling of a disk under certain relations between its mass and geometric parameters. Modifying the no-slip model of a rolling disk by including viscous rolling friction provides a qualitative explanation for the disk’s retrograde motion. At the same time, the simple experiments described in the paper completely reject the aerodynamical drag torque as a key reason for the retro-grade motion of a disk considered, thus disproving some recent hypotheses.

  11. Development of an aerostatic bearing system for roll-to-roll printed electronics

    NASA Astrophysics Data System (ADS)

    Chen, Shasha; Chen, Weihai; Liu, Jingmeng; Chen, Wenjie; Jin, Yan

    2018-06-01

    Roll-to-roll printed electronics is proved to be an effective way to fabricate electrical devices on various substrates. High precision overlay alignment plays a key role to create multi-layer electrical devices. Multiple rollers are adopted to support and transport the substrate web. In order to eliminate the negative effect of the machining error and assembling error of the roller, a whole roll-to-roll system including two aerostatic bearing devices with arrayed restrictors is proposed in this paper. Different to the conventional roller, the aerostatic bearing device can create a layer of air film between the web and the device to realize non-contact support and transport. Based on simplified Navier–Stokes equations, the theoretical model of the air film is established. Moreover, the pressure distribution of the whole flow field and single restrictor in different positions are modeled by conducting numerical simulation with computational fluid dynamics (CFD) software FLUENT. The load capacity curves and stiffness curves are generated to provide guidance for optimizing the structure of the device. A prototype of the aerostatic bearing system is set up and the experiment tests are carried out. For the proposed aerostatic bearing roller with a diameter of 100 mm and length of 200 mm, the experimental results show the aerostatic bearing method can achieve the position accuracy in a range of 1 μm in the vertical direction of the web, which is much better than that using existing methods.

  12. Roll-to-roll Slot-die Printed Polymer Solar Cell by Self-Assembly.

    PubMed

    Yang, Junyu; Lin, Yuanbao; Zheng, Wenhao; Liu, Alei; Cai, Wanzhu; Yu, Xiaomin; Zhang, Fengling; Liang, Quanbin; Wu, Hongbin; Qin, Donghuan; Hou, Lintao

    2018-06-12

    Extremely simplified one-step roll-to-roll slot-die printed flexible ITO-free polymer solar cells (PSCs) are demonstrated based on ternary blends of electron-donor polymer thieno [3,4-b]thiophene/benzodithiophene (PTB7), electron-acceptor fullerene [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and electron extracting polymer poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) at room temperature (RT) in ambient air. The flexible ITO-free PSC exhibits a comparable power conversion efficiency (PCE) with the device employing complicated two-step slot-die printing (5.29% vs 5.41%), which indicates that PFN molecules can migrate from the ternary nanocomposite towards Ag cathode via vertical self-assembly during the one-step slot-die printing process in air. To confirm the migration of PFN, the morphology and elemental analysis as well as charge transport of different active layers are investigated with in-situ transient film drying process, transmission electron microscopy, atomic force microscopy, contact angle and surface energy, X-ray photoelectron spectroscopy, scanning electron microscope, impedance spectroscopy, transient photovoltage and transient photocurrent as well as laser beam induced current. Moreover, the good air and mechanical stability of the flexible device with a decent PCE achieved in 1 cm2 PSCs at RT in air suggests the feasibility of energy-saving and time-saving one-step slot-die printing to large-scale roll-to-roll manufacture in the future.

  13. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  14. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  15. Analysis of rolling fracture of the conticasted and tandem rolled blanks of low alloyed aluminum

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zeng, Lingping; Jiao Xie, Xian

    2018-01-01

    Optical microscopy, electron microscopy and energy spectrum were used to test the morphology of grains, as-cast microstructure and secondary phases in confiscated and tandem rolled planks of 8011 low alloying aluminum alloy. It can be concluded that the existence of inhomogeneous secondary FeSiAl phases lead to the fracture of planks during rolling.

  16. The observational constraint on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2018-07-01

    We discuss the constant-roll inflation with constant ɛ2 and constant \\bar η . By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of ɛ1. The model with constant ɛ2 is ruled out by the observations at the 3σ confidence level, and the model with constant \\bar η is consistent with the observations at the 1σ confidence level. The potential for the model with constant \\bar η is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be the slow-roll inflation, the n s- r results from the constant-roll inflation are not the same as those from the slow-roll inflation even when \\bar η 0.01.

  17. Climate Ready Estuaries Rolling Easements Primer

    EPA Pesticide Factsheets

    Rolling easements enable wetlands and beaches to migrate inland and allow society to avoid the costs and hazards of protecting low lands from rising sea levels. This document provides a primer on more than a dozen rolling easement approaches.

  18. 76 FR 35400 - Continuation of Suspended Antidumping Duty Investigation on Certain Hot-Rolled Flat-Rolled Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Russian Federation (``Russia'') would likely lead to continuation or recurrence of dumping, and material... duty investigation on hot- rolled steel from Russia (``the Agreement''), pursuant to section 751(c) of... the suspended antidumping duty investigation on hot- rolled steel from Russia would likely lead to a...

  19. How rolling forecasting facilitates dynamic, agile planning.

    PubMed

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  20. Rolling resistance forces in pneumatic tires

    DOT National Transportation Integrated Search

    1976-01-31

    An analysis is presented for the influence of test drum curvature on stress levels and resulting rolling resistance forces in pneumatic tires. The influence of test method on the measurement of rolling loss is also considered, and expressions are der...

  1. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  2. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  3. 9 CFR 381.159 - Poultry rolls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or the term “Binders Added” shall be included in the name of the product; e.g., “Turkey Roll-Gelatin... natural cookout juices is added, the product must be labeled to indicate that fact; e.g., “Turkey Roll...

  4. Digital Pitch-And-Roll Monitor

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.; Brown, Jeff; Campbell, Ryland

    1991-01-01

    Highly accurate inclinometer developed. Monitors both pitch and roll simultaneously and provides printed output on demand. Includes three mutually perpendicular accelerometers and signal-conditioning circuitry converting outputs of sensors to digital values of pitch and roll. In addition to wind-tunnel applications, system useful in any application involving steady-state, precise sensing of angles, such as calibration of robotic devices and positioners.

  5. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  6. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  7. 25 CFR 75.3 - Announcement of revision of roll.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...

  8. 25 CFR 75.3 - Announcement of revision of roll.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Announcement of revision of roll. 75.3 Section 75.3... ROLL OF THE EASTERN BAND OF CHEROKEE INDIANS, NORTH CAROLINA § 75.3 Announcement of revision of roll... perform the work necessary to revise the membership roll of the Band and such staff has been employed and...

  9. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion

    NASA Astrophysics Data System (ADS)

    Choi, Taejun; Kim, Sang Jin; Park, Subeom; Hwang, Taek Yong; Jeon, Youngro; Hong, Byung Hee

    2015-04-01

    We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2.We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06991a

  10. Movement patterns of limb coordination in infant rolling.

    PubMed

    Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro

    2016-12-01

    Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.

  11. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    PubMed

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

  12. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface

    PubMed Central

    Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  13. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    NASA Astrophysics Data System (ADS)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  14. Mathematical-Artificial Neural Network Hybrid Model to Predict Roll Force during Hot Rolling of Steel

    NASA Astrophysics Data System (ADS)

    Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.

    2013-07-01

    Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.

  15. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  16. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  17. 33 CFR 159.107 - Rolling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Rolling test. 159.107 Section 159.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.107 Rolling test. (a) The device, with...

  18. Tachyon constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  19. Effect of intermediate annealing on the microstructure and mechanical property of ZK60 magnesium alloy produced by twin roll casting and hot rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui

    2015-08-15

    Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less

  20. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE PAGES

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; ...

    2017-09-25

    Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less

  1. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas

    Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less

  2. Rocking and rolling: A can that appears to rock might actually roll

    NASA Astrophysics Data System (ADS)

    Srinivasan, Manoj; Ruina, Andy

    2008-12-01

    A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.

  3. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  4. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  5. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  6. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  7. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  8. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  9. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  10. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  11. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  12. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  13. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  14. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  15. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  16. Modification of the background flow by roll vortices

    NASA Technical Reports Server (NTRS)

    Shirer, Hampton N.; Haack, Tracy

    1990-01-01

    Use of observed wind profiles, such as those obtained from ascent or descent aircraft soundings, for the identification of the expected roll modes is hindered by the fact that these modes are able to modify the wind profiles. When such modified wind profiles are utilized to estimate the critical values of the dynamic and thermodynamic forcing rates, large errors in the preferred orientation angles and aspect ratios of the rolls may result. Nonlinear analysis of a 14 coefficient spectral model of roll circulations shows that the primary modification of the background wind is the addition of a linear component. When the linear profile having the correct amount of shear is subtracted from the observed cross-roll winds, then the pre-roll wind profile can be estimated. A preliminary test of this hypothesis is given for a case in which cloud streets were observed during FIRE.

  17. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-351-829] Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of Countervailing Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce DATES: Effective Date:...

  18. Adaptive attenuation of aliased ground roll using the shearlet transform

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  19. Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)

    NASA Astrophysics Data System (ADS)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.

  20. Rolling process for producing biaxially textured substrates

    DOEpatents

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  1. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  2. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  3. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    PubMed

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  4. Rolling Uphill

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    In a recent letter to this journal, Mungan noted that translational energy can be converted into gravitational potential energy when an object is projected vertically, but rotational energy is not usually converted in this manner. As an exception, he gave an example where "a ball initially rolling without slipping will travel higher up a…

  5. SASS Applied to Optimum Work Roll Profile Selection in the Hot Rolling of Wide Steel

    NASA Astrophysics Data System (ADS)

    Nolle, Lars

    The quality of steel strip produced in a wide strip rolling mill depends heavily on the careful selection of initial ground work roll profiles for each of the mill stands in the finishing train. In the past, these profiles were determined by human experts, based on their knowledge and experience. In previous work, the profiles were successfully optimised using a self-organising migration algorithm (SOMA). In this research, SASS, a novel heuristic optimisation algorithm that has only one control parameter, has been used to find the optimum profiles for a simulated rolling mill. The resulting strip quality produced using the profiles found by SASS is compared with results from previous work and the quality produced using the original profile specifications. The best set of profiles found by SASS clearly outperformed the original set and performed equally well as SOMA without the need of finding a suitable set of control parameters.

  6. Enhanced bonding property of cold-sprayed Zn-Al coating on interstitial-free steel substrate with a nanostructured surface layer

    NASA Astrophysics Data System (ADS)

    Liang, Y. L.; Wang, Z. B.; Zhang, J.; Zhang, J. B.; Lu, K.

    2016-11-01

    By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.

  7. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...

  8. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface. Ensure...

  9. 40 CFR 1066.225 - Roll runout and diameter verification procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section. (2) Measure roll diameter using a Pi Tape®. Orient the Pi Tape® to the marker line at the desired measurement location with the Pi Tape® hook pointed outward. Temporarily secure the Pi Tape® to the roll near the hook end with adhesive tape. Slowly turn the roll, wrapping the Pi Tape® around the roll surface...

  10. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  11. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  12. Oscillations and Rolling for Duffing's Equation

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Piskovskiy, E. V.; Volovich, I. V.

    2013-01-01

    The Duffing equation has been used to model nonlinear dynamics not only in mechanics and electronics but also in biology and in neurology for the brain process modeling. Van der Pol's method is often used in nonlinear dynamics to improve perturbation theory results when describing small oscillations. However, in some other problems of nonlinear dynamics particularly in case of Duffing-Higgs equation in field theory, for the Einsten-Friedmann equations in cosmology and for relaxation processes in neurology not only small oscillations regime is of interest but also the regime of slow rolling. In the present work a method for approximate solution to nonlinear dynamics equations in the rolling regime is developed. It is shown that in order to improve perturbation theory in the rolling regime it turns out to be effective to use an expansion in hyperbolic functions instead of trigonometric functions as it is done in van der Pol's method in case of small oscillations. In particular the Duffing equation in the rolling regime is investigated using solution expressed in terms of elliptic functions. Accuracy of obtained approximation is estimated. The Duffing equation with dissipation is also considered.

  13. 1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL MILL, ALSO KNOWN AS THE NO. 31 HOT ROLL MILL; LOOKING SOUTHWEST - American Brass Company, Kenosha Works, Hot Roll Mill, Kenosha, Kenosha County, WI

  14. Evolution of the structure and mechanical properties of sheets of the Al-4.7Mg-0.32Mn-0.21Sc-0.09Zr alloy due to deformation accumulated upon rolling

    NASA Astrophysics Data System (ADS)

    Zolotorevskiy, V. S.; Dobrojinskaja, R. I.; Cheverikin, V. V.; Khamnagdaeva, E. A.; Pozdniakov, A. V.; Levchenko, V. S.; Besogonova, E. S.

    2016-11-01

    The mechanical properties and microstructure of sheets of an Al-4.7Mg-0.32Mn-0.21Sc-0.09Zr alloy deformed and annealed after rolling have been investigated. The total accumulated true strain was ɛf = 3.33-5.63, and the true strain at room temperature and at 200 °C was ɛc = 0.25-2.3. The strength properties of the sheets (yield stress σ0.2 = 495 MPa and ultimate tensile strength σu = 525 MPa) in the deformed state were greater than those after equal-channel angular pressing (ECAP) deformation. The mechanical properties of the deformed sheets after annealing depended on the size of subgrains inside the deformed grains bands with high-angle grain boundaries (HABs). With the increase in the annealing temperature from 150 to 300°C, the subgrain size increased from 80 to 300 nm. The relative elongation δ in the as-cast state and after annealing at 200-250°C (δ = 40-50%) was higher than that after annealing at 300-370°C (δ = 24-29%).

  15. Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling

    PubMed Central

    Wang, Ming; Li, Haoqing; Tian, Yujing; Guo, Hong; Fang, Xiaoying; Guo, Yuebin

    2018-01-01

    Changes in various grain interfaces, including the grain boundary and phase boundary, are a strong indication of microstructural changes, particularly ultra-fined grains achieved by large strain deformation and subsequent annealing. After direct rolling and cross rolling with the same strain of ε = 2, the distributions of the interfaces in annealed UNS S32304 duplex stainless steel were investigated using electron backscatter diffraction (EBSD) in this study. The ferrite experienced continued recovery, and a high density of low-angle grain boundaries (LAGBs) was produced. The percentage and number of twin boundaries (TBs) and LAGBs varied within the austenite. TBs were frequently found within austenite, showing a deviation from the Kurdjumov-Sachs (K-S) orientation relationship (OR) with ferrite matrix. However, LAGBs usually occur in austenite, with the K-S OR in the ferrite matrix. LAGBs were prevalent in the precipitated austenite grains, and therefore a strong texture was introduced in the cross-rolled and annealed samples, in which the precipitated austenite readily maintained the K-S OR in the ferrite matrix. By contrast, more TBs and a less robust texture were found in the precipitated austenite in direct-rolled and annealed samples, deviating from the K-S OR. PMID:29772723

  16. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  17. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    PubMed

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  20. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  1. Mathematical modeling of a process the rolling delivery

    NASA Astrophysics Data System (ADS)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  2. Calendering and Rolling of Viscoplastic Materials: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.

    2007-04-01

    The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.

  3. Development of a paper based roll-to-roll nanoimprinting machine

    NASA Astrophysics Data System (ADS)

    Son, Byungwook

    Nanoimprint lithography (NIL) has been developed and studied since 1995. It is a technique where micro- or nanoscale patterns are transferred to soft materials such as polymer through pressing a stamp with certain patterns into this materials and then solidifying it by cooling at lower temperature or curing under ultra violet excitement. High Cost and low throughput of batch mode nanoimprint lithography (NIL) processes are limiting its wide range of applications in meeting industry manufacturing requirements. The roll-to-roll (R2R) nanoimprinting technology is emerged as a solution to this issue. This thesis study presents the design, build and test of an innovative R2R T-NIL process machine for nanofabrication and MEMS fabrication applications, which consists of individual modules of heating, inking, pressuring, and rotational speed control. The system utilizes PDMS as mold material, PMMA as imprinting material, and paper as substrate material. In order to achieve a uniform pressure on PMMA during imprinting process, an innovative air pressure device (APD) was developed and integrated with R2R machine. The APD replaces the conventional 2-roll line contact pressure approach and can cover one third of the surface of the imprinting roller with a uniform pressure (1-3 psi). During the imprinting experiment, a mixture of PMMA (20w %) and 2-Ethoxyethyl acetate is applied on the paper substrate by an inking roller using capillary force and an IR heater is used for pre-heating and drying of polymer layers before it is fed into the imprinting module. Two 500-Watt cartridge heaters are installed on the roller and provide the heat to raise the PMMA film temperature during the imprinting.

  4. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  5. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  6. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    NASA Astrophysics Data System (ADS)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  7. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow

    PubMed Central

    Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.

    2002-01-01

    Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042

  8. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the

  9. Simulation of the hot rolling of steel with direct iteration

    NASA Astrophysics Data System (ADS)

    Hanoglu, Umut; Šarler, Božidar

    2017-10-01

    In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll

  10. Fluid management in roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  11. A rolling phenotype in Crohn's disease.

    PubMed

    Irwin, James; Ferguson, Emma; Simms, Lisa A; Hanigan, Katherine; Carbonnel, Franck; Radford-Smith, Graham

    2017-01-01

    The Montreal classification of disease behaviour in Crohn's disease describes progression of disease towards a stricturing and penetrating phenotype. In the present paper, we propose an alternative representation of the long-term course of Crohn's disease complications, the rolling phenotype. As is commonly observed in clinical practice, this definition allows progression to a more severe phenotype (stricturing, penetrating) but also, regression to a less severe behaviour (inflammatory, or remission) over time. All patients diagnosed with Crohn's Disease between 01/01/1994 and 01/03/2008, managed at a single centre and observed for a minimum of 5 years, had development and resolution of all complications recorded. A rolling phenotype was defined at each time point based on all observed complications in the three years prior to the time point. Phenotype was defined as B1, B2, B3, or B23 (penetrating and stenotic). The progression over time of the rolling phenotype was compared to that of the cumulative Montreal phenotype. 305 patients were observed a median of 10.0 (Intraquartile range 7.3-13.7) years. Longitudinal progression of rolling phenotype demonstrated a consistent proportion of patients with B1 (70%), B2 (20%), B3 (5%) and B23 (5%) phenotypes. These proportions were observed regardless of initial phenotype. In contrast, the cumulative Montreal phenotype progressed towards a more severe phenotype with time (B1 (39%), B2 (26%), B3(35%) at 10 years). A rolling phenotype provides an alternative view of the longitudinal burden of intra-abdominal complications in Crohn's disease. From this viewpoint, 70% of patients have durable freedom from complication over time (>3 years).

  12. Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Huang, Lanqing; Li, Xiaofeng; Liu, Bin; Zhang, Jun A.; Shen, Dongliang; Zhang, Zenghui; Yu, Wenxian

    2018-04-01

    Marine atmospheric boundary layer (MABL) roll plays an important role in the turbulent exchange of momentum, sensible heat, and moisture throughout MABL of tropical cyclone (TC). Hence, rolls are believed to be closely related to TC's development, intensification, and decay processes. Spaceborne synthetic aperture radar (SAR) provides a unique capability to image the sea surface imprints of quasi-linear streaks induced by the MABL rolls within a TC. In this study, sixteen SAR images, including three images acquired during three major hurricanes: Irma, Jose, and Maria in the 2017 Atlantic hurricane season, were utilized to systematically map the distribution and wavelength of MABL rolls under the wide range of TC intensities. The images were acquired by SAR onboard RADARSAT-1/2, ENVISAT, and SENTINEL-1 satellites. Our findings are in agreement with the previous one case study of Hurricane Katrina (2005), showing the roll wavelengths are between 600 and 1,600 m. We also find that there exist roll imprints in eyewall and rainbands, although the boundary layer heights are shallower there. Besides, the spatial distribution of roll wavelengths is asymmetrical. The roll wavelengths are found to be the shortest around the storm center, increase and then decrease with distance from storm center, reaching the peak values in the range of d∗-2d∗, where d∗ is defined as the physical location to TC centers normalized by the radius of maximum wind. These MABL roll characteristics cannot be derived using conventional aircraft and land-based Doppler radar observations.

  13. Effect of friction on rolling tire-pavement interaction

    DOT National Transportation Integrated Search

    2010-11-01

    In this research, a three-dimensional (3-D) tire-pavement interaction model is developed using FEM to analyze the tire-pavement contact stress distributions at various rolling conditions (free rolling, braking/accelerating, and cornering). In additio...

  14. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    NASA Astrophysics Data System (ADS)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  15. Roll seat belt induced injury of the duodenum.

    PubMed

    Bergqvist, D; Hedelin, H

    1976-05-01

    A case of duodenal rupture with a roll three-point seatbelt is described. It is apparently the seventh reported case of duodenal rupture in safety belt users. A female driver fell asleep, and her car went off the road, rolling forward in a ditch, slowing slightly, and then came to a sudden stop. The rupture was unusual: on the first part of duodenum, intraperitoneal, and longitudinal. The rupture mechanism is discussed, and the deficiencies of the roll seatbelt pointed out in accidents like the one described.

  16. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  17. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    PubMed

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  18. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  19. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  20. Research of thread rolling on difficult-to-cut material workpieces

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu; Bugay, I. A.; Nazarov, P. V.; Evdokimova, O. P.; Popov, P. E.; Vasilyev, E. V.

    2018-01-01

    In medicine production Ti-6Al-4V Grade 5 alloys are used. One of the most important tasks is to increase the strength of the products and decrease in value. The possibility to roll special thread on Ti-6Al-4V Grade 5 alloy workpiece on 2-roller thread rolling machine has been studied. This is wrought alloy, treatment of which in cold condition causes difficulties due to low plasticity. To obtain Ti-6Al-4V Grade 5 alloy product with thread by rolling is rather difficult. This is due to large axial workpiece displacements resulting from large alloy resistance to cold plastic deformation. The provision of adequate kinematics requires experimental researches and the selection of modes - speed of rolling and pressure on the movable roller. The purpose of the work is to determine the optimal modes for rolling thread on titanium alloy workpiece. It has been stated that, after rolling, the product strength has increased up to 30%. As a result of the work, the unit has been made and recommendations to choose the optimal rolling process modes have been offered.

  1. Hot forging of roll-cast high aluminum content magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  2. Finite-element modeling of soft tissue rolling indentation.

    PubMed

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  3. Ring rolling process simulation for geometry optimization

    NASA Astrophysics Data System (ADS)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  4. The role of compressional viscoelasticity in the lubrication of rolling contacts.

    NASA Technical Reports Server (NTRS)

    Harrison, G.; Trachman, E. G.

    1972-01-01

    A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.

  5. 78 FR 34550 - Airworthiness Directives; Rolls-Royce plc Turbojet Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Airworthiness Directives; Rolls-Royce plc Turbojet Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Rolls-Royce plc..., contact Defence Aerospace Communications at Rolls-Royce plc, P.O. Box 3, Gypsy Patch Lane, Filton, Bristol...

  6. 15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ROLLING OPERATION. INGOTS AND BAR STOCK WERE ROLLED TO A SPECIFIED THICKNESS IN PREPARATION FOR FURTHER PROCESSING. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  7. A vector-based representation of the chemical bond for the substituted torsion of biphenyl

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Huang, Weijie; Xu, Tianlv; Kirk, Steven R.; Jenkins, Samantha

    2018-06-01

    We use a new interpretation of the chemical bond within QTAIM, the bond-path framework set B = {p, q, r} with associated linkages with lengths H∗, H and the familiar bond-path length is used to describe a torsion θ, 0.0° ≤ θ < 22.0° of para-substituted biphenyl, C12H9-x, x = N(CH3)2, NH2, CH3, CHO, CN, NO2. We include consideration of the H--H bonding interactions and find that the lengths H > H∗ that we explain in terms of the most and least preferred directions of charge density accumulation. We also consider the fractional eigenvector-following path with lengths Hf and Hfθmin.

  8. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  9. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiuling; Huang, Wen

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extendingmore » in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.« less

  10. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  11. Optical scattering from rough-rolled aluminum surfaces.

    PubMed

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  12. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  13. Roll-to-roll nanopatterning using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Sean; Ganapathisubramanian, Maha; Miller, Mike; Yang, Jack; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.

    2012-03-01

    The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area R2R manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we address the key challenges for roll based nanopatterning by introducing a novel concept: Ink Jet based Roll-to-Roll Nanopatterning. To address this challenge, we have introduced a J-FIL based demonstrator product, the LithoFlex 100. Topics that are discussed in the paper include tool design and process performance. In addition, we have used the LithoFlex 100 to fabricate high performance wire grid polarizers on flexible polycarbonate (PC) films. Transmission of better than 80% and extinction ratios on the order of

  14. Fracture of Rolled Homogeneous Steel Armor (Nucleation Threshold Stress).

    DTIC Science & Technology

    1980-01-01

    AD-AO81 618 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/B 19/4 FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOL--ETC(U...ARBRL-MR-02984A QQ FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOLD STRESS) Gerald L Moss Lynn SeamanLy~ S, ,.DTIC S ELECTED January...nucleation stress, Crack threshold stress, Fracture, Fracture stress, Spallation, Armor, Rolled homogeneous steel armor M~ AS$TRACr (Vita ssf -- ebb

  15. Effect of topological patterning on self-rolling of nanomembranes.

    PubMed

    Chen, Cheng; Song, Pengfei; Meng, Fanchao; Ou, Pengfei; Liu, Xinyu; Song, Jun

    2018-08-24

    The effects of topological patterning (i.e., grating and rectangular patterns) on the self-rolling behaviors of heteroepitaxial strained nanomembranes have been systematically studied. An analytical modeling framework, validated through finite-element simulations, has been formulated to predict the resultant curvature of the patterned nanomembrane as the pattern thickness and density vary. The effectiveness of the grating pattern in regulating the rolling direction of the nanomembrane has been demonstrated and quantitatively assessed. Further to the rolling of nanomembranes, a route to achieve predictive design of helical structures has been proposed and showcased. The present study provides new knowledge and mechanistic guidance towards predictive control and tuning of roll-up nanostructures via topological patterning.

  16. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  17. GoQBot: a caterpillar-inspired soft-bodied rolling robot.

    PubMed

    Lin, Huai-Ti; Leisk, Gary G; Trimmer, Barry

    2011-06-01

    Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled wheeling behaviors in nature. Inspired by this behavior, we construct a soft-bodied robot to explore the dynamics and control issues of ballistic rolling. This robot, called GoQBot, closely mimics caterpillar rolling. Analyzing the whole body kinematics and 2D ground reaction forces at the robot ground anchor reveals about 1G of acceleration and more than 200 rpm of angular velocity. As a novel rolling robot, GoQBot demonstrates how morphing can produce new modes of locomotion. Furthermore, mechanical coupling of the actuators improves body coordination without sensory feedback. Such coupling is intrinsic to soft-bodied animals because there are no joints to isolate muscle-generated movements. Finally, GoQBot provides an estimate of the mechanical power for caterpillar rolling that is comparable to that of a locust jump. How caterpillar musculature produces such power in such a short time is yet to be discovered.

  18. Bearing selection in ball-rolling dung beetles: is it constant?

    PubMed

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  19. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  20. 77 FR 6668 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc RB211-Trent 500 series turbofan engines. This AD requires a one-time inspection of... RB211- Trent 560A2-61 turbofan engines that have not complied with Rolls- Royce plc Service Bulletin No...

  1. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  2. Dust Accumulation on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since landing on Mars a year ago, NASA's pair of six-wheeled geologists have been constantly exposed to martian winds and dust. As a result, the Spirit rover has gradually experienced a slight decline in power as a thin layer of dust has accumulated on the solar panels, blocking some of the sunlight that is converted to electricity. In this enlarged image of a postage-stamp-size (3-centimeter-square, 1.2-inch-square) portion of one of Spirit's solar panels, a fine layer of martian dust coats electrical connections and metal surfaces. Individual silt grains or clumps of dust are visible where sediment has accumulated in crevices between solar cells and circuits. The upper right half of the image shows the edge of one of the rover's solar cells. The lower left half shows electrical wires bonded with silicon adhesive to the underlying composite surface; the circular abrasions are the result of sanding by hand on Earth. The braided wire is connected to a thermocouple used to measure temperature based on electrical resistance. Spirit took this image with its microscopic imager on martian day, or sol, 350 (Dec. 26, 2004).

  3. Effects of alignment on the roll-over shapes of prosthetic feet.

    PubMed

    Hansen, Andrew

    2008-12-01

    Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.

  4. Superplastic forming and diffusion bonding of rapidly solidified, dispersion strengthened aluminum alloys for elevated temperature structural applications

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Kennedy, J. R.

    1989-01-01

    Rapidly solidified alloys, based upon the Al-Fe-V-Si system and designed for elevated temperature applications, were evaluated for superplasticity and diffusion bonding behavior. Alloys with 8, 16, 27, and 36 volume percent silicide dispersoids were produced; dispersoid condition was varied by rolling at 300, 400, and 500 C (572, 752, and 932 F). Superplastic behavior was evaluated at strain rates from 1 x 10(exp -6)/s to 8.5/s at elevated temperatures. The results indicate that there was a significant increase in elongation at higher strain rates and at temperatures above 600 C (1112 F). However, the exposure of the alloys to temperatures greater than 600 C (1112 F) resulted in the coarsening of the strengthening dispersoid and the degradation of mechanical properties. Diffusion bonding was possible using low gas pressure at temperatures greater than 600 C (1112 F) which also resulted in degraded properties. The bonding of Al-Fe-V-Si alloys to 7475 aluminum alloy was performed at 516 C (960 F) without significant degradation in microstructure. Bond strengths equal to 90 percent that of the base metal shear strength were achieved. The mechanical properties and microstructural characteristics of the alloys were investigated.

  5. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1989-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  6. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.

    1990-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  7. Recycling strategy of the end-of-life rolling stock in China

    NASA Astrophysics Data System (ADS)

    Guo, L.; Wang, X. W.; Lin, Y.; Shen, X. F.; Liu, Y. Q.

    2018-03-01

    China's high-speed railway industry is growing fast, the side effect is that plenty of rolling stock come to the end of life each year. However, there are not relevant standards nor regulations for the recycling of rolling stock in China, which causes pollution and a waste of resources. In this paper, the basic meaning and characteristics of the circular economy is reviewed and applied to the rolling stock industry. The recycling steps are elaborated in detail according to the characteristics of rolling stock. The result proves that circular economy has both the theoretical and practical meaning in the rolling stock recycling industry in China.

  8. The Six Track Scherzer Rolling Lift Bridge…Two double track spans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Six Track Scherzer Rolling Lift Bridge…Two double track spans closed. One double-track span open. Photocopy of plate xvi in Scherzer Rolling Lift Bridge Company, Scherzer Rolling Lift Bridges. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  9. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    PubMed Central

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-01-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m−2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa−1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production. PMID:26905285

  10. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  11. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    PubMed

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  12. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  13. Engineering nanoscale surface features to sustain microparticle rolling in flow.

    PubMed

    Kalasin, Surachate; Santore, Maria M

    2015-05-26

    Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.

  14. Influence of face-down and face-up bonding on the degree of polarization of superluminescent diode

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai

    2017-12-01

    Face-down and face-up bonded polarization-insensitive buried heterojunction superluminescent diode has been studied in terms of thermal behavior and degree of polarization. Our studies have shown that the thermal rollover of current-power characteristic for face-down bonding was about 1.16 times higher than face-up configurations, and face-down bonding can offer higher heat transfer than face-up one. However, face-down bonding will cause more physical stress to the device, and the average value of degree of polarization for face-down bonding devices (35.3%) was much higher than face-up ones (-2.1%). After 48 h high temperature storage at 85∘C, the stress of face-down devices obtained a better relaxation due to the more stress accumulation.

  15. Develop Roll-to-Roll Manufacturing Process of ZrO 2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO 2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO 2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  16. The record of iceberg roll generated waves from sediments and seismics

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  17. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  18. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2017-11-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  19. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  20. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  1. Microstructure and texture evolution in cold-rolled and annealed alloy MA-956

    NASA Astrophysics Data System (ADS)

    Hosoda, Takashi

    The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.

  2. Closure behavior of spherical void in slab during hot rolling process

    NASA Astrophysics Data System (ADS)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  3. Investigation of pattern transfer to piezoelectric jetted polymer using roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Menezes, Shannon John

    Nanoimprint Lithography (NIL) has existed since the mid 1990s as a proven concept of creating micro- and nanostructures using direct mechanical pattern transfer. Initially seen as a viable option to replace conventional lithography methods, the lack of technology to support large-scale manufacturing using NIL has motivated researchers to explore the application of NIL to create a better, more cost-efficient process with the ability to integrate NIL into a mass manufacturing system. One such method is the roll-to-roll process, similar to that used in printing presses of newspapers and plastics. This thesis is an investigation to characterize polymer deposition using a piezoelectric jetting head and attempt to create micro- and nanostructures on the polymer using R2RNIL technique.

  4. Geometrical accuracy improvement in flexible roll forming lines

    NASA Astrophysics Data System (ADS)

    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.

    2011-01-01

    The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.

  5. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery.

    PubMed

    Kim, Ki-Young; Lee, Jung-Ju

    2012-12-01

    As there is a shortage of scrub nurses in many hospitals, automatic surgical tool exchanging mechanism without human labour has been studied. Minimally invasive robotic surgeries (MIRS) also require scrub nurses. A surgical tool loading mechanism without a scrub nurse's assistance for MIRS is proposed. Many researchers have developed minimally invasive surgical instruments with a wrist joint that can be movable inside the abdomen. However, implementation of a distal rolling joint on a gripper is rare. To implement surgical tool exchanging without a scrub nurse's assistance, a slave manipulator and a tool loader were developed to load and unload a surgical tool unit. A surgical tool unit with a roll-pitch-roll wrist was developed. Several experiments were performed to validate the effectiveness of the slave manipulator and the surgical tool unit. The slave manipulator and the tool loader were able to successfully unload and load the surgical tool unit without human assistance. The total duration of unloading and loading the surgical tool unit was 97 s. Motion tracking experiments of the distal rolling joint were performed. The maximum positioning error of the step input response was 2°. The advantage of the proposed slave manipulator and tool loader is that other robotic systems or human labour are not needed for surgical tool loading. The feasibility of the distal rolling joint in MIS is verified. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  7. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accuratemore » as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.« less

  8. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    NASA Astrophysics Data System (ADS)

    Kang, Dongwoo; duk Kim, Young; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Dongmin

    2013-12-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  9. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping

    2005-12-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  10. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper we propose an innovative channel coding scheme called Accumulate Repeat Accumulate codes. This class of codes can be viewed as trubo-like codes, namely a double serial concatenation of a rate-1 accumulator as an outer code, a regular or irregular repetition as a middle code, and a punctured accumulator as an inner code.

  11. 77 FR 13483 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... service information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31...), or, have Rolls-Royce plc revise Alert Service Bulletin (ASB) No. RB.211-72-AF964 to remove the...

  12. 76 FR 65136 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby...-166679 (76 FR 24793, May 3, 2011), and adding the following new AD: Rolls-Royce plc: Docket No. FAA-2010...

  13. Effect of roll-compaction and milling conditions on granules and tablet properties.

    PubMed

    Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim

    2016-09-01

    Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with

  14. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  15. Large transient fault current test of an electrical roll ring

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1992-01-01

    The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  16. Mathematical Modeling of the Effect of Roll Diameter on the Thermo-Mechanical Behavior of Twin Roll Cast AZ31 Magnesium Alloy Strips

    NASA Astrophysics Data System (ADS)

    Hadadzadeh, Amir; Wells, Mary

    Although the Twin Roll Casting (TRC) process has been used in the aluminum sheet production industry for more than 60 years, the usage of this process to fabricate magnesium sheets is still at its early stages. Similar to other manufacturing processes, the development of the TRC process for magnesium alloys has followed a typical route of preliminary studies using a laboratory-scale facility, followed by pilot-scale testing and most recently attempting to use an industrial-scale twin roll caster. A powerful tool to understand and quantify the trends of the processing conditions and effects of scaling up from a laboratory size TRC machine to an industrial scale one is develop a mathematical model of the process. This can elucidate the coupled fluid-thermo-mechanical behavior of the cast strip during the solidification and then deformation stages of the process. In the present study a Thermal-Fluid-Stress model has been developed for TRC of AZ31 magnesium alloy for three roll diameters by employing the FEM commercial package ALSIM. The roll diameters were chosen as 355mm, 600mm and 1150mm. The effect of casting speed for each diameter was studied in terms of fluid flow, thermal history and stress-strain evolution in the cast strip in the roll bite region.

  17. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, Robert S.; Campbell, Steven L.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  18. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  19. Impact of vertical wind shear on roll structure in idealized hurricane boundary layers

    NASA Astrophysics Data System (ADS)

    Wang, Shouping; Jiang, Qingfang

    2017-03-01

    Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.

  20. Walk and roll robot

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  1. Spectral characteristics of wake vortex sound during roll-up

    DOT National Transportation Integrated Search

    2003-12-01

    This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The : study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensi...

  2. Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  3. Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.

    PubMed

    Hecht, H

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  4. 78 FR 16500 - Rolling Bay, LLC and Indus; Transfer of Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... contract to perform work for OPP, and access to this information will enable Rolling Bay, LLC and its subcontractor, Indus, to fulfill the obligations of the contract. DATES: Rolling Bay, LLC and its subcontractor... Under Contract No. GS-35F-0072Y, Rolling Bay, LLC and its subcontractor, Indus, will: Capture data that...

  5. Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane

    Science.gov Websites

    Michigan School Buses Get Rolling on Propane to someone by E-mail Share Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Facebook Tweet about Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Twitter Bookmark Alternative Fuels Data Center

  6. Roll type conducting polymer legs for rigid-flexible thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Park, Teahoon; Lim, Hanwhuy; Hwang, Jong Un; Na, Jongbeom; Lee, Hyunki; Kim, Eunkyoung

    2017-07-01

    A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT) between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG). The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.

  7. Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.

    2014-12-01

    Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.

  8. 40 CFR 426.30 - Applicability; description of the rolled glass manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolled glass manufacturing subcategory. 426.30 Section 426.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Rolled Glass Manufacturing Subcategory § 426.30 Applicability; description of the rolled glass...

  9. 40 CFR 426.30 - Applicability; description of the rolled glass manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolled glass manufacturing subcategory. 426.30 Section 426.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Rolled Glass Manufacturing Subcategory § 426.30 Applicability; description of the rolled glass...

  10. Rotor Rolling over a Water-Lubricated Bearing

    NASA Astrophysics Data System (ADS)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  11. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    PubMed Central

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-01-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776

  12. THE EFFECTS OF $gamma$-IRRADIATION AND ROLLING ON THE TEARING PROPERTIES OF POLYETHYLENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunekawa, Y.; Awatani, J.; Kojima, K.

    1961-01-01

    Polyethylene samples of 2 mm thickness were gamma irradiated in water. The total dosage for the samples irradiated after the rolling treatraent was 1.5 x lO/sup 5/ r/hr, while the dosage for the saraples irradiated before the rolling was 1.2 x lO/sup 5/ r/hr. The tensile strength of the irradiated and rolled saraple increased with increasing dosage. A comparison of tearing strengths between the rolled samples and the rolled and irradiated samples was raade. (OID)

  13. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.

  14. Transient and steady state viscoelastic rolling contact

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Paramadilok, O.

    1985-01-01

    Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.

  15. Scanning sonar of rolling porpoises during prey capture dives.

    PubMed

    Akamatsu, T; Wang, D; Wang, K; Li, S; Dong, S

    2010-01-01

    Dolphins and porpoises have excellent biosonar ability, which they use for navigation, ranging and foraging. However, the role of biosonar in free-ranging small cetaceans has not been fully investigated. The biosonar behaviour and body movements of 15 free-ranging finless porpoises (Neophocaena phocaenoides) were observed using electronic tags attached to the animals. The porpoises often rotated their bodies more than 60 deg., on average, around the body axis in a dive bout. This behaviour occupied 31% of the dive duration during 186 h of effective observation time. Rolling dives were associated with extensive searching effort, and 23% of the rolling dive time was phonated, almost twice the phonation ratio of upright dives. Porpoises used short inter-click interval sonar 4.3 times more frequently during rolling dives than during upright dives. Sudden speed drops, which indicated that an individual turned around, occurred 4.5 times more frequently during rolling dives than during upright dives. Together, these data suggest that the porpoises searched extensively for targets and rolled their bodies to enlarge the search area by changing the narrow beam axis of the biosonar. Once a possible target was detected, porpoises frequently produced short-range sonar sounds. Continuous searching for prey and frequent capture trials appeared to occur during rolling dives of finless porpoises. In contrast, head movements ranging +/-2 cm, which can also change the beam axis, were regularly observed during both dives. Head movements might assist in instant assessment of the arbitrary direction by changing the beam axis rather than prey searching and pursuit.

  16. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the

  17. Navigating in foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide

    PubMed Central

    Zhao, Binwu

    2017-01-01

    The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017

  18. Modulation of Internal Estimates of Gravity during and after Prolonged Roll-Tilts

    PubMed Central

    Tarnutzer, Alexander A.; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56yo) repetitively adjusted a luminous arrow to the SVV over periods of 5min while upright, roll-tilted (±45°, ±90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5min) were found in 71% (±45°) and 78% (±90°) of runs. At ±90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ±45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most

  19. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  20. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun

    2017-12-01

    The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.

  1. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  2. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  3. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  4. 49 CFR 393.122 - What are the rules for securing paper rolls?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (3) The blocking roll must be at least 38 mm (1.5 in) taller than other rolls, or must be raised at... is at least 1.5 times taller than the diameter of the roll being blocked, or (iii) Placing it in a...

  5. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    NASA Astrophysics Data System (ADS)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  6. σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond.

    PubMed

    Wang, Hui; Wang, Weizhou; Jin, Wei Jun

    2016-05-11

    The σ-hole and π-hole are the regions with positive surface electrostatic potential on the molecule entity; the former specifically refers to the positive region of a molecular entity along extension of the Y-Ge/P/Se/X covalent σ-bond (Y = electron-rich group; Ge/P/Se/X = Groups IV-VII), while the latter refers to the positive region in the direction perpendicular to the σ-framework of the molecular entity. The directional noncovalent interactions between the σ-hole or π-hole and the negative or electron-rich sites are named σ-hole bond or π-hole bond, respectively. The contributions from electrostatic, charge transfer, and other terms or Coulombic interaction to the σ-hole bond and π-hole bond were reviewed first followed by a brief discussion on the interplay between the σ-hole bond and the π-hole bond as well as application of the two types of noncovalent interactions in the field of anion recognition. It is expected that this review could stimulate further development of the σ-hole bond and π-hole bond in theoretical exploration and practical application in the future.

  7. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors.

    PubMed

    Ji, Hengxing; Mei, Yongfeng; Schmidt, Oliver G

    2010-06-14

    We demonstrate a redox Swiss roll micro-supercapacitor by rolling up a multilayered nanomembrane with an electrochemical active layer at either the outer or inner surface for different proton diffusion behaviors. The Swiss roll micro-supercapacitor could achieve high performance (e.g. capacity and life time) in a microscale power source and is helpful for studying charge transfer at the electrolyte/electrode interface.

  8. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  9. Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Jiang, Wanrun; Wang, Bo; Wang, Zhigang

    2017-06-01

    We introduce the orbital-resolved electron density projected integral (EDPI) along the H-bond in the real space to quantitatively investigate the specific contribution from the molecular orbitals (MOs) aspect in (H2O)2. Calculation results show that, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about surprisingly 40% of the electron density at the bond critical point. Moreover, the electronic density difference analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the understanding of H-bond with specific contributions from certain MOs.

  10. On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks

    NASA Astrophysics Data System (ADS)

    Gryschka, Micha; Fricke, Jens; Raasch, Siegfried

    2014-11-01

    We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.

  11. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.

  12. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less

  13. Deformation in Micro Roll Forming of Bipolar Plate

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  14. Skimming the Surface: Teaching Kayak Support Strokes and Rolls.

    ERIC Educational Resources Information Center

    Higgins, Peter; Morgan, Alastair

    1997-01-01

    Teaching novice kayakers only the biomechanics of a roll and other "closed" (nonadaptable) skills does not create opportunities for flexible skill development. A wider approach teaches support strokes and rolls by focusing on "open" skills that can be transferred or adapted to any situation, including emergency decision making,…

  15. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.

    PubMed

    Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee

    2018-01-10

    Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.

  16. Rolling Resistance of Pneumatic Tires

    DOT National Transportation Integrated Search

    1975-01-01

    Potential improvements in tire power transmission efficiency are worth seeking for gaining improved automotive fuel economy. Summaries herein of tire rolling resistance as influenced by tire construction and design, tire materials, and tire operating...

  17. Rolling Resistance of Pneumatic Tires

    DOT National Transportation Integrated Search

    1979-05-01

    Potential improvements in tire power transmission efficiency are worth seeking for gaining improved automotive fuel economy. Summaries herein of tire rolling resistance as influenced by tire construction and design, tire materials, and tire operating...

  18. Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1996-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.

  19. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis

    PubMed Central

    Yasmin-Karim, Sayeda; King, Michael R.; Messing, Edward M.; Lee, Yi-Fen

    2014-01-01

    Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1. PMID:25301730

  20. Effects of False Tilt Cues on the Training of Manual Roll Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.

    2015-01-01

    This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.

  1. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  2. A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds.

    PubMed Central

    Tees, D F; Waugh, R E; Hammer, D A

    2001-01-01

    A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations. PMID:11159435

  3. Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system.

    PubMed

    Chang, Jaehyuk; Lee, Sunggun; Lee, Ki Beom; Lee, Seungjun; Cho, Young Tae; Seo, Jungwoo; Lee, Sukwon; Jo, Gugrae; Lee, Ki-yong; Kong, Hyang-Shik; Kwon, Sin

    2015-05-01

    For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5μm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

  4. A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong

    2018-06-01

    The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.

  5. Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.

    2017-12-01

    Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.

  6. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions

    NASA Astrophysics Data System (ADS)

    Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo

    2017-07-01

    An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.

  7. Application of Roll-Isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEADER,MARK E.

    Roll-isolated inertial measurement units are developed at Sandia for use in the instrumentation, guidance, and control of rapidly spinning vehicles. Roll-isolation is accomplished by supporting the inertial instrument cluster (gyros and accelerometers) on a single gimbal, the axis of which is parallel to the vehicle's spin axis. A rotary motor on the gimbal is driven by a servo loop to null the roll gyro output, thus inertially stabilizing the gimbal and instrument cluster while the vehicle spins around it. Roll-isolation prevents saturation of the roll gyro by the high vehicle spin rate, and vastly reduces measurement errors arising from gyromore » scale factor and alignment uncertainties. Nine versions of Sandia-developed roll-isolated inertial measurement units have been flown on a total of 27 flight tests since 1972.« less

  8. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    NASA Astrophysics Data System (ADS)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  9. Rolling-Tooth Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such

  10. Determination Of Slitting Criterion Parameter During The Multi Slit Rolling Process

    NASA Astrophysics Data System (ADS)

    Stefanik, Andrzej; Mróz, Sebastian; Szota, Piotr; Dyja, Henryk

    2007-05-01

    The rolling of rods with slitting of the strip calls for the use of special mathematical models that would allow for the separating of metal. A theoretical analysis of the effect of the gap of slitting rollers on the process of band slitting during the rolling of 20 mm and 16 mm-diameter ribbed rods rolled according to the two-strand technology was carried out within this study. For the numerical modeling of strip slitting the Forge3® computer program was applied. The strip slitting in the simulation is implemented by the algorithm of removing elements in which the critical value of the normalized Cockroft - Latham criterion has been exceeded. To determine the value of the criterion the inverse method was applied. Distance between a point, where crack begins, and point of contact metal with the slitting rollers was the parameter for analysis. Power and rolling torque during slit rolling were presented. Distribution and change of the stress in strand while slitting were presented.

  11. Fracture Analysis of 40Cr Steel Pin Roll

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jia, Youlu; Xie, Xianjiao

    2018-01-01

    Fracture of 40Cr steel pin roll happened along the cross-section at the spot of filling aperture. By the use of analysis of optical microscopy and microhardness, it can be known that filling aperture and its nitration case (ε phase) and large amounts of non-metal inclusions (bulk obscure inclusions) in steel were the main reasons which led to the facture of 40Cr steel pin roll.

  12. Conceptualizing Rolling Motion through an Extreme Case Reasoning Approach

    ERIC Educational Resources Information Center

    Hasovic, Elvedin; Mešic, Vanes; Erceg, Nataša

    2017-01-01

    In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students…

  13. 14 CFR 25.491 - Taxi, takeoff and landing roll.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Taxi, takeoff and landing roll. 25.491..., takeoff and landing roll. Within the range of appropriate ground speeds and approved weights, the airplane structure and landing gear are assumed to be subjected to loads not less than those obtained when the...

  14. 14 CFR 25.491 - Taxi, takeoff and landing roll.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Taxi, takeoff and landing roll. 25.491..., takeoff and landing roll. Within the range of appropriate ground speeds and approved weights, the airplane structure and landing gear are assumed to be subjected to loads not less than those obtained when the...

  15. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  16. A rolling-sliding bench test for investigating rear axle lubrication

    DOE PAGES

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...

    2018-02-07

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  17. A rolling-sliding bench test for investigating rear axle lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  18. The effect of rolling massage on the excitability of the corticospinal pathway.

    PubMed

    Aboodarda, Saied J; Greene, Rebecca M; Philpott, Devin T; Jaswal, Ramandeep S; Millet, Guillaume Y; Behm, David G

    2018-04-01

    The aim of the present study was to investigate the alterations of corticospinal excitability (motor evoked potential, MEP) and inhibition (silent period, SP) following rolling massage of the quadriceps muscles. Transcranial magnetic and femoral nerve electrical stimuli were used to elicit MEPs and compound muscle action potential (Mmax) in the vastus lateralis and vastus medialis muscles prior to and following either (i) 4 sets of 90-s rolling massage (ROLLING) or (ii) rest (CONTROL). One series of neuromuscular evaluations, performed after each set of ROLLING or CONTROL, included 3 MEPs and 1 Mmax elicited every 4 s during 15-s submaximal contractions at 10% (experiment 1, n = 16) and 50% (experiment 2, n = 10) of maximal voluntary knee extensions (MVC). The MEP/Mmax ratio and electromyographic activity recorded from vastus lateralis at 10% MVC demonstrated significantly lower values during ROLLING than CONTROL (P < 0.05). The ROLLING did not elicit any significant changes in muscle excitability (Mmax area) and duration of transcranial magnetic stimulation-induced SP recorded from any muscle or level of contraction (P > 0.05). The findings suggest that rolling massage can modulate the central excitability of the circuitries innervating the knee extensors; however, the observed effects are dependent on the background contraction intensity during which the neuromuscular measurements are recorded.

  19. Determination of rolling resistance coefficient based on normal tyre stiffness

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  20. Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing

    2017-05-01

    Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.

  1. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  2. Rolling and aging in temperature-ramp soft adhesion

    NASA Astrophysics Data System (ADS)

    Boniello, Giuseppe; Tribet, Christophe; Marie, Emmanuelle; Croquette, Vincent; Zanchi, Dražen

    2018-01-01

    Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above Tc=32 ±1∘C , at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x -y ) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α (f ) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.

  3. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  4. EBSD characterization of twinning in cold-rolled CP-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn

    2013-10-15

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less

  5. A new solution method for wheel/rail rolling contact.

    PubMed

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  6. Raising the Reliability of Forming Rolls by Alloying Their Core with Copper

    NASA Astrophysics Data System (ADS)

    Zhizhkina, N. A.

    2016-11-01

    The mechanical properties and the structure of forming rolls from cast irons of different compositions are studied. A novel iron including a copper additive that lowers its chilling and raises the homogeneity of the structure is suggested for the roll cores. The use of such iron should raise the reliability of the rolls in operation.

  7. Blood-Stable, Tumor-Adaptable Disulfide Bonded mPEG-(Cys)4-PDLLA Micelles for Chemotherapy

    PubMed Central

    Lee, Seung-Young; Kim, Sungwon; Tyler, Jacqueline; Park, Kinam; Cheng, Ji-Xin

    2012-01-01

    Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier made of disulfide (DS) bonded mPEG-(Cys)4-PDLLA micelles. Intravenously injected disulfide bonded micelles stably retained doxorubicin in the bloodstream and efficiently delivered the drug to a tumor, with a 7-fold increase of the drug in the tumor and 1.9-fold decrease in the heart, as compared with self-assembled (SA), non-crosslinked mPEG-PDLLA micelles. In vivo administration of disulfide bonded micelles led to doxorubicin accumulation in cancer cell nuclei, which was not observed after administration of self-assembled micelles. With a doxorubicin dose as low as 2 mg/kg, disulfide bonded micelles almost completely suppressed tumor growth in mice. PMID:23079665

  8. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  9. Effects of surface removal on rolling-element fatigue

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1987-01-01

    The Lundberg-Palmgren equation was modified to show the effect on rolling-element fatigue life of removing by grinding a portion of the stressed volume of the raceways of a rolling-element bearing. Results of this analysis show that depending on the amount of material removed, and depending on the initial running time of the bearing when material removal occurs, the 10-percent life of the reground bearings ranges from 74 to 100 percent of the 10-percent life of a brand new bearing. Three bearing types were selected for testing. A total of 250 bearings were reground. Of this matter, 30 bearings from each type were endurance tested to 1600 hr. No bearing failure occurred related to material removal. Two bearing failures occurred due to defective rolling elements and were typical of those which may occur in new bearings.

  10. Modeling of rolling element bearing mechanics. Theoretical manual

    NASA Technical Reports Server (NTRS)

    Merchant, David H.; Greenhill, Lyn M.

    1994-01-01

    This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  11. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    NASA Astrophysics Data System (ADS)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  12. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    ERIC Educational Resources Information Center

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-01-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…

  13. 49 CFR 393.122 - What are the rules for securing paper rolls?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be loaded on a layer of paper rolls beneath unless the lower layer extends to the front of the vehicle. (2) Paper rolls in the second and subsequent layers must be prevented from forward, rearward or lateral movement by means as allowed for the bottom layer, or by use of a blocking roll from a lower layer...

  14. 21 CFR 136.160 - Raisin bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Raisin bread, rolls, and buns. 136.160 Section 136.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION BAKERY PRODUCTS Requirements for Specific Standardized Bakery Products § 136.160 Raisin bread, rolls, and buns. (a) Each...

  15. 21 CFR 136.115 - Enriched bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched bread, rolls, and buns. 136.115 Section 136.115 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION BAKERY PRODUCTS Requirements for Specific Standardized Bakery Products § 136.115 Enriched bread, rolls, and buns. (a)...

  16. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  17. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE PAGES

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...

    2017-03-07

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  18. 16. VIEW OF A ROLLING MILL THAT WAS USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF A ROLLING MILL THAT WAS USED TO CREATE A METAL SHEET (SHOWN). (4/16/57) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  19. Investigating failure behavior and origins under supposed "shear bond" loading.

    PubMed

    Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B

    2015-07-01

    This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Experience of Application of Liquid Lubricating Materials during Wide Strip Hot Rolling

    NASA Astrophysics Data System (ADS)

    Platov, S. I.; Dema, R. R.; Kharchenko, M. V.; Amirov, R. N.

    2017-12-01

    The paper presents the results of the scientific and practical research of roller systems operation at feed of liquid lubricating materials through the example of the wide strip hot rolling Mill-2000 at PAO MMK. The experiments proved that application of lubricating materials leads to decrease of energy-power parameters of the process by 12 to 15 %, and reduction of work roll wear by 10 to 12%. The practical results of the study are developed recommendations on determination of consumption-volumetric parameters of the supplied lubricating material depending on rheological and geometrical parameters of the rolled strip and current wear of work rolls.

  1. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  2. Frontal Impact of Rolling Spheres.

    ERIC Educational Resources Information Center

    Domenech, A.; Casasus, E.

    1991-01-01

    A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)

  3. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  4. Application of double laser interferometer in the measurement of translational stages' roll characteristics

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin

    2016-10-01

    In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.

  5. Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Goel, Sunkulp; Verma, Raviraj; Jayaganthan, R.; Kumar, Abhishek

    2018-03-01

    To study the effect of room temperature rolling on mechanical properties of 304 Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, tensile and hardness tests were performed in accordance with ASTM standards to study the effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 90% deformation). The improvement in UTS of processed samples is due to combined effect of grain refinement and stress induced martensitic phase transformation. The hardness values also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic measurements were also conducted to confirm the formation of martensitic phase.

  6. Impact of Wind Shear Characteristics on Roll Structure in Idealized Hurricane Boundary Layers

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jiang, Q.

    2016-12-01

    The hurricane boundary layer (HBL) is well known for its critical role in evolutions of tropical cyclones (TCs) as the air-sea interaction represents both the most important source and sink of the moist available energy and the kinetic energy, respectively. One of the frequently occurring features in the HBL is horizontal roll vortices, which have quasi-two dimensional coherent and banded structure extending from the surface to the top of the HBL. It is believed that this highly coherent structure, caused by the inflection point instability in the basic wind profiles, plays an important role in organizing turbulent transport. To understand this role, large-eddy simulations are conducted to investigate how the wind shear characteristics such as the shear strength and inflection-point level can impact the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind profile nudging approach is used in the simulations to maintain the required mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential. The most robust rolls are produced in a simulation with the highest inflection-point level and strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40% in the middle of the boundary layer.

  7. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.

    PubMed

    Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu

    2012-05-30

    Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effects of various cooking conditions on acrylamide formation in rolled patty.

    PubMed

    Ozkaynak, E; Ova, Gulden

    2009-06-01

    In this study on acrylamide formation, the effects of the type of frying oil, frying period and covering with egg during frying of a rolled patty (a traditional Turkish carbohydrate-rich food) were investigated. The differences between frying periods were statistically significant for each oil (p < 0.01). For comparable frying periods, the maximum acrylamide content was found in the rolled patties fried with sunflower oil, and the minimum acrylamide content was found in the rolled patties fried with corn oil. A decrease of 39-65% in acrylamide formation in the rolled patties covered with egg was found for each of the three types of oil. In addition, a high linear correlation (R > 0.90) was found between L (light) values and acrylamide amounts.

  9. Numerical Simulation of Rolling-Airframes Using a Multi-Level Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A supersonic rolling missile with two synchronous canard control surfaces is analyzed using an automated, inviscid, Cartesian method. Sequential-static and time-dependent dynamic simulations of the complete motion are computed for canard dither schedules for level flight, pitch, and yaw maneuver. The dynamic simulations are compared directly against both high-resolution viscous simulations and relevant experimental data, and are also utilized to compute dynamic stability derivatives. The results show that both the body roll rate and canard dither motion influence the roll-averaged forces and moments on the body. At the relatively, low roll rates analyzed in the current work these dynamic effects are modest, however the dynamic computations are effective in predicting the dynamic stability derivatives which can be significant for highly-maneuverable missiles.

  10. A Theory for the Roll-Ratchet Phenomenon in High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1997-01-01

    Roll-ratchet refers to a high frequency oscillation which can occur in pilot-in-the-loop control of roll attitude in high performance aircraft. The frequencies of oscillation are typically well beyond those associated with the more familiar pilot-induced oscillation. A structural model of the human pilot which has been employed to provide a unified theory for aircraft handling qualities and pilot-induced oscillations is employed here to provide a theory for the existence of roll-ratchet. It is hypothesized and demonstrated using the structural model that the pilot's inappropriate use of vestibular acceleration feedback can cause this phenomenon, a possibility which has been discussed previously by other researchers. The possible influence of biodynamic feedback on roll ratchet is also discussed.

  11. 48 CFR 1228.106-1 - Bonds and bond-related forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds and Other Financial Protections 1228.106-1 Bonds and bond-related forms. (b) Standard Form (SF) 25, Performance Bond, prescribed at (FAR) 48 CFR 28...) shall not be used by contractors when a performance bond is required. ...

  12. Influence of support morphology on the bonding of molecules to nanoparticles

    PubMed Central

    Yim, Chi Ming; Pang, Chi L.; Hermoso, Diego R.; Dover, Coinneach M.; Muryn, Christopher A.; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Pérez, Rubén; Thornton, Geoff

    2015-01-01

    Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433

  13. 77 FR 13485 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... series turbofan engines. This AD requires inspecting the front combustion liner head section for cracking.... (c) Applicability This AD applies to Rolls-Royce plc (RR) RB211-Trent 800 turbofan engines, all...

  14. 78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ..., Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis of the record \\1... imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel products, provided for primarily... flat-rolled steel products from Japan. Accordingly, effective March 27, 2013, the Commission instituted...

  15. Experimental investigation on the electrical contact behavior of rolling contact connector.

    PubMed

    Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe

    2015-12-01

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  16. Theoretical and Experimental Methods in the Solution of Missile Nonlinear Roll Problems

    DTIC Science & Technology

    1978-03-01

    OF ILLUSTRATIONS (Continued) 34 Typical Effect of Slot on Induced Rolling Moment .............. 35 35 Effect of Slot on Amplitude of Induced Rolling...Characteristics of Slotted Fill Vehicle .............. 40 41 Effects of Fin Configuration on Stability ..................... 41 42 Release Envelope...missiles depended strongly upon roll rate. The concept of Magnus instability had been developed earlier from the linear theory of missile dynamics, and

  17. Accumulation of unsaturated lipids in monocytes during early phase pyrogen tolerance.

    PubMed

    Szewczenko-Pawlikowski, M; Kozak, W

    2000-04-12

    This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.

  18. 76 FR 15299 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-821] Certain Hot-Rolled Carbon... on certain hot-rolled carbon steel flat products from India. See Antidumping or Countervailing Duty... products covered under this order are certain hot-rolled flat- rolled carbon steel flat products of a...

  19. Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.

    PubMed

    Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim

    2010-05-01

    The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used. (c) 2010 Wiley Periodicals, Inc.

  20. Halogen bonding (X-bonding): A biological perspective

    PubMed Central

    Scholfield, Matthew R; Zanden, Crystal M Vander; Carter, Megan; Ho, P Shing

    2013-01-01

    The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials. PMID:23225628

  1. Roll-Off Test at JPL

    NASA Image and Video Library

    2004-01-11

    This still image illustrates what the Mars Exploration Rover Spirit will look like as it rolls off the northeastern side of the lander on Mars. The image was taken from footage of rover testing at JPL In-Situ Instruments Laboratory, or Testbed.

  2. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  3. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Positional stability test (roll-off... SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.15 Positional stability test (roll-off resistance). (a) Test equipment. (1) Headforms. The test headforms shall comply with the...

  4. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Positional stability test (roll-off... SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.15 Positional stability test (roll-off resistance). (a) Test equipment. (1) Headforms. The test headforms shall comply with the...

  5. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Positional stability test (roll-off... SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS The Standard § 1203.15 Positional stability test (roll-off resistance). (a) Test equipment. (1) Headforms. The test headforms shall comply with the...

  6. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  7. Rolling, slip and traction measurements on low modulus materials

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.

  8. 77 FR 56760 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc (RR) RB211-Trent 800 series turbofan engines. This AD requires removing from...-17, 892-17, 892B-17, and 895-17 turbofan engines that have an intermediate pressure (IP) turbine disc...

  9. 77 FR 73268 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... certain Rolls-Royce plc (RR) RB211-Trent 900 series turbofan engines. This AD requires inspection of the... turbofan engines, all serial numbers. (d) Reason This AD was prompted by a Trent 900 engine experiencing a...

  10. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).

    PubMed

    Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2017-01-11

    A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

  11. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  12. Quantitative metrics for evaluating the phased roll-out of clinical information systems.

    PubMed

    Wong, David; Wu, Nicolas; Watkinson, Peter

    2017-09-01

    We introduce a novel quantitative approach for evaluating the order of roll-out during phased introduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients transferring between clinical areas using both the old and new systems. We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new system to the old system. The model was applied to admission and discharge data acquired from 37,080 patient journeys at the Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically and produced acceptable orders. The development of data-driven approaches to clinical Information system roll-out provides insights that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology. Unlike previous approaches, which are based on clinical opinion, the approach described here quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used to plan and monitor Clinical Information System roll-out. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Miyashita, S.; Iwase, E.

    2017-12-01

    This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.

  14. Results of Rolling Resistance Measurements of Twelve Radial Passenger Car Tires

    DOT National Transportation Integrated Search

    1980-01-01

    The Calspan Tire Research Facility is described, including the test procedure, a tire test schedule, and a tire identification schedule for testing low-rolling resistance radial passenger car tires. The equilibrium rolling resistance was measured on ...

  15. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  16. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  17. Minimization of Roll Firings for Optimal Propellant Maneuvers

    NASA Astrophysics Data System (ADS)

    Leach, Parker C.

    Attitude control of the International Space Station (ISS) is critical for operations, impacting power, communications, and thermal systems. The station uses gyroscopes and thrusters for attitude control, and reorientations are normally assisted by thrusters on docked vehicles. When the docked vehicles are unavailable, the reduction in control authority in the roll axis results in frequent jet firings and massive fuel consumption. To improve this situation, new guidance and control schemes are desired that provide control with fewer roll firings. Optimal control software was utilized to solve for potential candidates that satisfied desired conditions with the goal of minimizing total propellant. An ISS simulation too was then used to test these solutions for feasibility. After several problem reformulations, multiple candidate solutions minimizing or completely eliminating roll firings were found. Flight implementation would not only save massive amounts of fuel and thus money, but also reduce ISS wear and tear, thereby extending its lifetime.

  18. 78 FR 17297 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) RB211 Trent 500 series turbofan engines. That AD currently requires... 9, 2012), for all RR RB211 Trent 500 series turbofan engines. That AD requires a one-time inspection...

  19. 78 FR 11976 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) RB211-524 series turbofan engines. That AD currently requires...-16724 (76 FR 40217, July 8, 2011), for all RR plc RB211-524 series turbofan engines. That AD required...

  20. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  1. Rapid roll inflation with conformal coupling

    NASA Astrophysics Data System (ADS)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  2. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...) Tax Exemption Requirements for State and Local Bonds § 1.144-1 Qualified small issue bonds, qualified...

  3. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...) Tax Exemption Requirements for State and Local Bonds § 1.144-1 Qualified small issue bonds, qualified...

  4. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...) Tax Exemption Requirements for State and Local Bonds § 1.144-1 Qualified small issue bonds, qualified...

  5. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...) Tax Exemption Requirements for State and Local Bonds § 1.144-1 Qualified small issue bonds, qualified...

  6. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...) Tax Exemption Requirements for State and Local Bonds § 1.144-1 Qualified small issue bonds, qualified...

  7. How decoherence affects the probability of slow-roll eternal inflation

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2017-07-01

    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.

  8. Shoulder and hip roll changes during 200-m front crawl swimming.

    PubMed

    Psycharakis, Stelios G; Sanders, Ross H

    2008-12-01

    To determine accurately the magnitude and changes in shoulder roll (SR) and hip roll (HR) throughout a 200-m maximum front crawl swim and whether SR and HR were associated with swimming velocity (V). Bilateral roll asymmetries and timing differences between SR and HR were also investigated. Ten male swimmers of national/international level performed a maximum 200-m front crawl swim. Performance was recorded with four below- and two above-water synchronized cameras and four nonbreathing stroke cycles (SC) were analyzed (one for each 50 m). SR and HR were calculated separately. Swimmers rolled their shoulders significantly more than their hips (P < 0.001). V generally decreased during the test, and HR was significantly higher in SC4 than in SC1 (P = 0.001). SR had a negative and significant correlation with V in each SC (-0.663 roll profiles existed, left-side SR dominance was identified, with swimmers rolling their shoulders significantly more to the left than to the right side (0.000 roll their shoulders less than slower swimmers. The increase in HR as the test progressed is possibly associated with a decrease in stroke frequency and increase in SC duration. Given that all swimmers were right-handed and that SR was significantly greater to the left than to the right side, it seems that factors related to handedness might affect SR symmetry in swimming.

  9. Transient rolling friction model for discrete element simulations of sphere assemblies

    NASA Astrophysics Data System (ADS)

    Kuhn, Matthew R.

    2014-03-01

    The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.

  10. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  11. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  12. Rolling blackout is required for synaptic vesicle exocytosis.

    PubMed

    Huang, Fu-De; Woodruff, Elvin; Mohrmann, Ralf; Broadie, Kendal

    2006-03-01

    Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.

  13. A study of roll attractor and wing rock of delta wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.

    1993-01-01

    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.

  14. Investigation of the rolling motion of a hollow cylinder using a smartphone

    NASA Astrophysics Data System (ADS)

    Puttharugsa, Chokchai; Khemmani, Supitch; Utayarat, Patipan; Luangtip, Wasutep

    2016-09-01

    This paper describes the use of smartphone’s gyroscope sensor to analyse a hollow cylinder rolling down an inclined plane. The smartphone (iPhone 4s) was attached to the end of hollow cylinder and was equipped with the Sensorlog application (Sensorlog app) to record the angular speed of rolling down an inclined plane. The experimental results agree with the theoretical model that is familiar to students for the rolling motion on an inclined plane. Moreover, the coefficients of static friction and kinetic friction were determined to be 0.205 ± 0.011 and 0.178 ± 0.003 from the measurements, respectively. This experiment demonstrated an alternative way to teach the rolling motion in a physics laboratory.

  15. Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.

    PubMed

    Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle

    2016-03-09

    The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Retention of a Bean Phaseolin/Maize γ-Zein Fusion in the Endoplasmic Reticulum Depends on Disulfide Bond Formation[W

    PubMed Central

    Pompa, Andrea; Vitale, Alessandro

    2006-01-01

    Most seed storage proteins of the prolamin class accumulate in the endoplasmic reticulum (ER) as large insoluble polymers termed protein bodies (PBs), through mechanisms that are still poorly understood. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin γ-zein forms ER-located PBs. Zeolin has 6 Cys residues and, like γ-zein with 15 residues, is insoluble unless reduced. The contribution of disulfide bonds to zeolin destiny was determined by studying in vivo the effects of 2-mercaptoethanol (2-ME) and by zeolin mutagenesis. We show that in tobacco (Nicotiana tabacum) protoplasts, 2-ME enhances interactions of newly synthesized proteins with the ER chaperone BiP and inhibits the secretory traffic of soluble proteins with or without disulfide bonds. In spite of this general inhibition, 2-ME enhances the solubility of zeolin and relieves its retention in the ER, resulting in increased zeolin traffic. Consistently, mutated zeolin unable to form disulfide bonds is soluble and efficiently enters the secretory traffic without 2-ME treatment. We conclude that disulfide bonds that lead to insolubilization are a determinant for PB-mediated protein accumulation in the ER. PMID:17041149

  17. 78 FR 17080 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... certain Rolls-Royce Deutschland Ltd & Co KG (RRD) BR700-710 series turbofan engines. This AD requires... applies to Rolls-Royce Deutschland Ltd & Co KG (RRD) BR700-710A1-10 and BR700-710A2-20 turbofan engines...

  18. 78 FR 6749 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Rolls-Royce plc (RR) models RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines... 772B-60 turbofan engines. (d) Reason This AD was prompted by low-pressure (LP) compressor blade partial...

  19. 77 FR 32007 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Rolls-Royce plc (RR) RB211-Trent 800 series turbofan engines. This AD requires removal from...-17, 877- 17, 884-17, 884B-17, 892-17, 892B-17, and 895-17 turbofan engines. (d) Reason This AD was...

  20. Investigation of interactions between limb-manipulator dynamics and effective vehicle roll control characteristics

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).

  1. High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures

    NASA Astrophysics Data System (ADS)

    Onuki, Yusuke; Hara, Kenichiro; Utsunomiya, Hiroshi; Szpunar, Jerzy A.

    2015-02-01

    It is known that magnesium alloys can be rolled up to a large thickness reduction and develop a unique texture when the rolling speed is high (>1000 m/min). In order to understand the texture formation mechanism during high-strain-rate deformation, high-speed rolling of AZ31 magnesium alloy samples having different initial textures was conducted. The main components of the textures after the rolling were the RD-split basal, which consisted of 10°-20° inclining basal poles from the normal direction toward the rolling direction of the sheet, regardless of the different initial textures. With preheating at 473 K, all the samples were rolled without cracking while all were cracked when preheating was not applied. The optical micrographs and EBSD measurements showed a significant amount of twins and the cracks that developed along the shear bands consisted with laminated twins. Based on the texture simulation using the visco-plastic self-consistent model, it is concluded that the rapid development of the RD-split basal component from the initial basal alignment along the transverse direction was attributable to the tension twinning, The effect of the initial texture on the crack formation can be explained by the activation of the twinning system.

  2. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    PubMed

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  3. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  4. Comparison of roll-to-roll replication approaches for microfluidic and optical functions in lab-on-a-chip diagnostic devices

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Baum, Christoph; Bastuck, Thomas

    2015-03-01

    Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.

  5. Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping

    PubMed Central

    Madec, Simon; Irfan, Kamran; Lopez, Jeremy; Comar, Alexis; Hemmerlé, Matthieu; Dutartre, Dan; Praud, Sebastien; Tixier, Marie Helene

    2018-01-01

    Abstract Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00–20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0

  6. 27 CFR 24.147 - Operations bond or unit bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Operations bond or unit... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Bonds and Consents of Surety § 24.147 Operations bond or unit bond. Notwithstanding the provisions of § 24.146, each person...

  7. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  8. Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows.

    PubMed

    Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui

    2017-11-01

    Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun

    2010-05-01

    The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.

  10. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  11. Modeling of roll/pitch determination with horizon sensors - Oblate Earth

    NASA Astrophysics Data System (ADS)

    Hablani, Hari B.

    Model calculations are presented of roll/pitch determinations for oblate Earth, with horizon sensors. Two arrangements of a pair of horizon sensors are considered: left and right of the velocity vactor (i.e., along the pitch axis), and aft and forward (along the roll axis). Two approaches are used to obtain the roll/pitch oblateness corrections: (1) the crossing point approach, where the two crossings of the horizon sensor's scan and the earth's horizon are determined, and (2) by decomposing the angular deviation of the geocentric normal from the geodetic normal into roll and pitch components. It is shown that the two approaches yield essentially the same corrections if two sensors are used simultaneously. However, if the spacecraft is outfitted with only one sensor, the oblateness correction about one axis is far different from that predicted by the geocentric/geodetic angular deviation approach. In this case, the corrections may be calculated on ground for the sensor location under consideration and stored in the flight computer, using the crossing point approach.

  12. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  13. Plastic-bonded electrodes for nickel-cadmium accumulators. IV - Some specific problems of the positive active layer

    NASA Astrophysics Data System (ADS)

    Micka, K.; Mrha, J.; Klapste, B.

    1980-06-01

    The active layer of plastic-bonded nickel oxide electrodes undergoes expansion during discharging and contraction during charging; the latter however does not fully compensate for the expansion. These volume changes can be made reversible by the action of an external pressure. The electro-chemical behavior of the conductive components, carbon black and graphite, shows more or less severe corrosion during anodic current loading.

  14. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    NASA Astrophysics Data System (ADS)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  15. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach

    NASA Astrophysics Data System (ADS)

    Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid

    2018-01-01

    The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

  16. Plain and Rolled Images from Paired Fingerprint Cards

    National Institute of Standards and Technology Data Gateway

    NIST Plain and Rolled Images from Paired Fingerprint Cards (Web, free access)   NIST Special Database 29 is being distributed for use in development and testing fingerprint matching systems. The data consist of 216 ten-print fingerprint card pairs with both the rolled and plains (from a bottom of the fingerprint card) scanned at 19.7 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  17. Heat generation in Aircraft tires under yawed rolling conditions

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1987-01-01

    An analytical model was developed for approximating the internal temperature distribution in an aircraft tire operating under conditions of yawed rolling. The model employs an assembly of elements to represent the tire cross section and treats the heat generated within the tire as a function of the change in strain energy associated with predicted tire flexure. Special contact scrubbing terms are superimposed on the symmetrical free rolling model to account for the slip during yawed rolling. An extensive experimental program was conducted to verify temperatures predicted from the analytical model. Data from this program were compared with calculation over a range of operating conditions, namely, vertical deflection, inflation pressure, yaw angle, and direction of yaw. Generally the analytical model predicted overall trends well and correlated reasonably well with individual measurements at locations throughout the cross section.

  18. 3D analysis of macrosegregation in twin-roll cast AA3003 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šlapáková, Michaela, E-mail: slapakova@karlov.mff.

    Twin-roll cast aluminium alloys have a high potential for industrial applications. However, one of the drawbacks of such materials is an inhomogeneous structure generated by macrosegregation, which appears under certain conditions in the center of sheets during solidification. Segregations in AA3003 alloy form as manganese, iron and silicon rich channels spread in the rolling direction. Their spatial distribution was successfully detected by X-ray computed tomography. Scanning electron microscopy was used for a detailed observation of microstructure, morphology and chemical analysis of the segregation. - Highlights: •Macrosegregations in twin-roll cast sheets stretch along the rolling direction. •X-ray computed tomography is anmore » effective tool for visualization of the segregation. •The segregations copy the shape of grain boundaries.« less

  19. Damage Analysis of Tensile Deformation of Co-rolled SMATed 304SS

    NASA Astrophysics Data System (ADS)

    Guo, X.; Leung, A. Y. T.; Chen, A.; Ruan, H.; Lu, J.

    2010-05-01

    One of recent experimental progresses in strengthening and toughening metals simultaneously is to adopt techniques of surface mechanical attrition treatment (SMAT) and warm co-rolling to 304 stainless steel (SS). To capture deformation behavior and associated damage initiation/evolution process in the co-rolled SMATed 304SS, cohesive finite element method (CFEM) is employed in this paper and simulation results are in agreement with experimental results. Both strengthening effect due to high yield stress of the nanograin layer and toughening effect due to non-localized damage in the nanograin layer are captured. Effect of energy release rate of nanograin layer on failure strain of layered co-rolled SMATed 304SS is investigated. It is found that the more brittle the nanograin layer is, the more potential necking sites in the nanograin layer are, and the more ductile the layered co-rolled SMATed 304SS is.

  20. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.