Sample records for accuracy binary black

  1. Accuracy of binary black hole waveform models for aligned-spin binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  2. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  3. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  4. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  5. High accuracy binary black hole simulations with an extended wave zone

    NASA Astrophysics Data System (ADS)

    Pollney, Denis; Reisswig, Christian; Schnetter, Erik; Dorband, Nils; Diener, Peter

    2011-02-01

    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be covered with multiple communicating nonsingular coordinate patches. Here we consider a regular Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test case of the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10-6 and spin Sf/Mf2=0.686923±10×10-6.

  6. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Ohme, Frank; Müller, Doreen; Brügmann, Bernd

    2010-12-01

    We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein’s equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is χi=Si/Mi2∈[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M2/M1∈[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to Mω=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins χi>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (ℓ=2,m=±2) modes is larger than the numerical relativity amplitude by between 2-4%.

  7. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannam, Mark; School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA; Husa, Sascha

    We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is {chi}{sub i}=S{sub i}/M{sub i}{sup 2}(set-membership sign)[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M{sub 2}/M{sub 1}(set-membership sign)[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties ofmore » the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to M{omega}=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins {chi}{sub i}>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (l=2, m={+-}2) modes is larger than the numerical relativity amplitude by between 2-4%.« less

  8. Gravitational waveforms for neutron star binaries from binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  9. Gravitational waveforms for neutron star binaries from binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Scheel, Mark A.; Haas, Roland; Ott, Christian D.; Bernuzzi, Sebastiano; Brown, Duncan A.; Szilágyi, Béla; Kaplan, Jeffrey D.; Lippuner, Jonas; Muhlberger, Curran D.; Foucart, Francois; Duez, Matthew D.

    2016-02-01

    Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of <1 radian over ˜15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ .

  10. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  11. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  12. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  13. Simulations of binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2017-01-01

    Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.

  14. Simulations of high-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Lovelace, Geoffrey

    2014-03-01

    Black holes can in principle have spins up to the Kerr limit a = 1 , and some (highly uncertain) estimates from X-ray binaries yield a > 0 . 98 . Because binaries with highly-spinning black holes may be detectable by LIGO, it is important to be able to simulate and understand these systems. We present binary black hole simulations with large spins, including a generic, precessing simulation with a spin of a > 0 . 99 on one of the black holes. We discuss some of the difficulties with simulating high-spin black holes and how to overcome them.

  15. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  16. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  17. BHDD: Primordial black hole binaries code

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  18. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  19. Parameter estimation accuracies of Galactic binaries with eLISA

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz

    2018-09-01

    We study parameter estimation accuracy of nearly monochromatic sources of gravitational waves with the future eLISA-like detectors. eLISA will be capable of observing millions of such signals generated by orbiting pairs of compact binaries consisting of white dwarf, neutron star or black hole and to resolve and estimate parameters of several thousands of them providing crucial information regarding their orbital dynamics, formation rates and evolutionary paths. Using the Fisher matrix analysis we compare accuracies of the estimated parameters for different mission designs defined by the GOAT advisory team established to asses the scientific capabilities and the technological issues of the eLISA-like missions.

  20. MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Meter, James R.; Centrella, Joan; Baker, John G.

    2010-03-10

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne Laser Interferometer Space Antenna. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step toward solving this problem by mapping the flow ofmore » pressureless matter in the dynamic, three-dimensional general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal.« less

  1. Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2015-11-01

    Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O (10 ) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q ,χBH)=(7 ,±0.4 ),(7 ,±0.6 ) , and (5 ,-0.9 ). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3 , with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit

  2. Simulations of nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  3. Binary black hole in a double magnetic monopole field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  4. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  5. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  6. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  7. Formation of black hole x-ray binaries in globular clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.

  8. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  9. Parameter estimates in binary black hole collisions using neural networks

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  10. Visualizing, Approximating, and Understanding Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5

  11. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  12. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  13. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    PubMed

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  14. LIGO Finds Lightest Black-Hole Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  15. Hybrid Black-Hole Binary Initial Data

    NASA Technical Reports Server (NTRS)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  16. Improvements to the construction of binary black hole initial data

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla

    2015-12-01

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  17. Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Kumar, Prayush; Barkett, Kevin; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela; LIGO Collaboration

    2016-03-01

    Detection of gravitational wave involves extracting extremely weak signal from noisy data and their detection depends crucially on the accuracy of the signal models. The most accurate models of compact binary coalescence are known to come from solving the Einstein's equation numerically without any approximations. However, this is computationally formidable. As a more practical alternative, several analytic or semi analytic approximations are developed to model these waveforms. However, the work of Nitz et al. (2013) demonstrated that there is disagreement between these models. We present a careful follow up study on accuracies of different waveform families for spinning black-hole neutron star binaries, in context of both detection and parameter estimation and find that SEOBNRv2 to be the most faithful model. Post Newtonian models can be used for detection but we find that they could lead to large parameter bias. Supported by National Science Foundation (NSF) Awards No. PHY-1404395 and No. AST-1333142.

  18. ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 couldmore » be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.« less

  19. Binary black hole late inspiral: Simulations for gravitational wave observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.

    2007-06-15

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of general relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late-inspiral stage on orbitsmore » with very low eccentricity and evolve for {approx}1200M through {approx}7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass {approx}14 cycle before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to post-Newtonian (PN) calculations for the earlier parts of the inspiral provides a combined waveform with less than one cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform, which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR > or approx. 10 for some intermediate mass binary black holes (IMBBHs) out to z{approx}1, and that LISA can see massive binary black holes (MBBHs) in the range 3x10{sup 4} < or approx. M/M{sub {center_dot}} < or approx. 10{sup 7} at SNR>100 out to the earliest epochs of structure formation at z>15.« less

  20. The birth of a supermassive black hole binary

    NASA Astrophysics Data System (ADS)

    Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo

    2017-11-01

    We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.

  1. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less

  2. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  3. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  4. Black Hole Binaries in Quiescence

    NASA Astrophysics Data System (ADS)

    Bailyn, Charles D.

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  5. Precessional Instability in Binary Black Holes with Aligned Spins.

    PubMed

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-02

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  6. An axion-like scalar field environment effect on binary black hole merger

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  7. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    NASA Astrophysics Data System (ADS)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  8. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.

    2018-01-01

    We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.

  9. Binary black holes' effects on electromagnetic fields.

    PubMed

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  10. Reducing orbital eccentricity of precessing black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Alessandra; Taracchini, Andrea; Kidder, Lawrence E.

    2011-05-15

    Building initial conditions for generic binary black-hole evolutions which are not affected by initial spurious eccentricity remains a challenge for numerical-relativity simulations. This problem can be overcome by applying an eccentricity-removal procedure which consists of evolving the binary black hole for a couple of orbits, estimating the resulting eccentricity, and then restarting the simulation with corrected initial conditions. The presence of spins can complicate this procedure. As predicted by post-Newtonian theory, spin-spin interactions and precession prevent the binary from moving along an adiabatic sequence of spherical orbits, inducing oscillations in the radial separation and in the orbital frequency. For single-spinmore » binary black holes these oscillations are a direct consequence of monopole-quadrupole interactions. However, spin-induced oscillations occur at approximately twice the orbital frequency, and therefore can be distinguished and disentangled from the initial spurious eccentricity which occurs at approximately the orbital frequency. Taking this into account, we develop a new eccentricity-removal procedure based on the derivative of the orbital frequency and find that it is rather successful in reducing the eccentricity measured in the orbital frequency to values less than 10{sup -4} when moderate spins are present. We test this new procedure using numerical-relativity simulations of binary black holes with mass ratios 1.5 and 3, spin magnitude 0.5, and various spin orientations. The numerical simulations exhibit spin-induced oscillations in the dynamics at approximately twice the orbital frequency. Oscillations of similar frequency are also visible in the gravitational-wave phase and frequency of the dominant l=2, m=2 mode.« less

  11. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  12. Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO

    NASA Astrophysics Data System (ADS)

    O'Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence

    2016-06-01

    The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}⊙ . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ˜5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.

  13. Dynamical Formation and Merger of Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  14. First detections of gravitational waves emitted from binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Reitze, D. H.

    2017-11-01

    The LIGO Scientific Collaboration and the Virgo Collaboration carried out the inaugural ‘O1’ observing run from September 12, 2015 through January 19, 2016 using the newly commissioned Advanced LIGO interferometers located in Hanford,WAand Livingston, LA. During theO1 run and the O2 run currently underway, three definitive detections of gravitational waves have occurred, each produced during the mergers of binary stellar mass black holes. A fourth candidate gravitational-wave event was identified, also likely produced from a binary black hole merger. The detected gravitational waveforms allow for the inference of the intrinsic astrophysical parameters of the merging binary systems, as well as the resulting black hole produced by the mergers. The first detect detections of gravitational waves confirm the existence of binary black hole systems and have profound implications for astrophysics using gravitational waves as a new and powerful probe of the universe.

  15. Dual jets from binary black holes.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  16. Binary Black Holes: Mergers, Dynamics, and Waveforms

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2007-04-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  17. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    Massive black hole (MBH) binaries are found at the centers of most galaxies. MBH mergers trace galaxy mergers and are strong sources of gravitational waves. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This presentation shows how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. Focus is on the recent advances that that reveal these waveforms, and the potential for discoveries that arises when these sources are observed by LIGO and LISA.

  18. Dynamic fisheye grids for binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Zilhão, Miguel; Noble, Scott C.

    2014-03-01

    We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement.

  19. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, F.; Camp, J. B.; hide

    2016-01-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M solar mass and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 alpha over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87 probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc-3 yr-1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

  20. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.

  1. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  2. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  3. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  4. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-06-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  5. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-05-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  6. Formation of close binary black holes merging due to gravitational-wave radiation

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2017-10-01

    The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30-100 M ⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a "kick"—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.

  7. Plunge waveforms from inspiralling binary black holes.

    PubMed

    Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R

    2001-09-17

    We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.

  8. THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Fabian; Rezzolla, Luciano; Barausse, Enrico

    2016-07-10

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formulamore » is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.« less

  9. One parameter binary black hole inverse problem using a sparse training set

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    In this paper, we use Artificial Neural Networks (ANNs) to estimate the mass ratio q in a binary black hole collision out of the gravitational wave (GW) strain. We assume the strain is a time series (TS) that contains a part of the orbital phase and the ring-down of the final black hole. We apply the method to the strain itself in the time domain and also in the frequency domain. We present the accuracy in the prediction of the ANNs trained with various values of signal-to-noise ratio (SNR). The core of our results is that the estimate of the mass ratio is obtained with a small sample of training signals and resulting in predictions with errors of the order of 1% for our best ANN configurations.

  10. On the gravitational wave background from black hole binaries after the first LIGO detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias, E-mail: icholis1@jhu.edu

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less

  11. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  12. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  13. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  14. Search for gravitational waves from binary black hole inspiral, merger, and ringdown

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2011-06-01

    We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.

  15. Properties of the Binary Black Hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark, M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M⊙ and 2 9-4+4M⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M⊙ and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  16. Properties of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.

    2016-01-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/-0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/-4) solar mass and spin 0.67(+0.05/-0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  17. Properties of the Binary Black Hole Merger GW150914.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-17

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  18. Shining Light on Quantum Gravity with Pulsar-Black hole Binaries

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2017-03-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ˜ 30 μ {{s}} for a 3{M}⊙ black hole, ˜ 0.3 {ms} for a 30{M}⊙ black hole, and ˜ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR-BH systems as a means of testing models of quantum gravity.

  19. Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes

    NASA Astrophysics Data System (ADS)

    Shandera, Sarah; Jeong, Donghui; Gebhardt, Henry S. Grasshorn

    2018-06-01

    We explore the possible spectrum of binary mergers of subsolar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation process is parallel to Population-III star formation, except that dark molecular cooling can yield a smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.

  20. Improved methods for simulating nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Scheel, Mark A.; Giesler, Matthew; Hemberger, Daniel A.; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilágyi, Béla; Kidder, Lawrence E.

    2015-05-01

    Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S/{{m}2}=0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes (i.e., black holes with S/{{m}2}\\gt 0.93) more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole (BBH) coalescence, where the larger black hole has S/{{m}2}=0.99. We also use these methods to simulate a non-precessing BBH coalescence, where both black holes have S/{{m}2}=0.994, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called ‘orbital hangup’ effect).

  1. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  2. Modeling Flows Around Merging Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  3. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Astrophysics Data System (ADS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  4. Black hole/pulsar binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  5. Periodic self-lensing from accreting massive black hole binaries

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  6. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    DOE PAGES

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less

  7. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  8. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  9. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  10. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  11. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  12. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  13. Binary Black Hole Mergers from Planet-like Migrations.

    PubMed

    Gould; Rix

    2000-03-20

    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.

  14. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    Damour, Thibault

    2018-05-22

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  15. Modelling Gravitational Radiation from Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger and coalescence of binary black holes is a key source of strong gravitational waves for the LISA mission. Observing these systems will allow us to probe the formation of cosmic structure to high redshifts and test general relativity directly in the strong-field, dynamical regime. Recently, major breakthroughs have been made in modeling black hole mergers using numerical relativity. This talk will survey these exciting developments, focusing on the gravitational waveforms and the recoil kicks produced from non-equal mass mergers.

  16. Magnetized Mini-Disk Simulations about Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Noble, Scott; Bowen, Dennis B.; d'Ascoli, Stephane; Mewes, Vassilios; Campanelli, Manuela; Krolik, Julian

    2018-01-01

    Accretion disks around supermassive binary black holes offer a rare opportunity to probe the strong-field limit of dynamical gravity by using the ambient matter as a lighthouse. Accurate simulations of these systems using a variety of configurations will be critical to interpreting future observations of them. We have performed the first 3-d general relativistic magnetohydrodynamic simulations of mini-disks about a pair of equal mass black holes in the inspiral regime of their orbit. In this talk, we will present our latest results of 3-d general relativistic magnetohydrodynamic supercomputer simulations of accreting binary black holes during the post-Newtonian inspiral phase of their evolution. The goal of our work is to explore whether these systems provide a unique means to identify and characterize them with electromagnetic observations. We will provide a brief summary of the known electromagnetic signatures, in particular spectra and images obtained from post-process ray-tracing calculations of our simulation data. We will also provide a context for our results and describe our future avenues of exploration.

  17. Accreting Black Hole Binaries in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  18. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate.

    PubMed

    D'Orazio, Daniel J; Haiman, Zoltán; Schiminovich, David

    2015-09-17

    Because most large galaxies contain a central black hole, and galaxies often merge, black-hole binaries are expected to be common in galactic nuclei. Although they cannot be imaged, periodicities in the light curves of quasars have been interpreted as evidence for binaries, most recently in PG 1302-102, which has a short rest-frame optical period of four years (ref. 6). If the orbital period of the black-hole binary matches this value, then for the range of estimated black-hole masses, the components would be separated by 0.007-0.017 parsecs, implying relativistic orbital speeds. There has been much debate over whether black-hole orbits could be smaller than one parsec (ref. 7). Here we report that the amplitude and the sinusoid-like shape of the variability of the light curve of PG 1302-102 can be fitted by relativistic Doppler boosting of emission from a compact, steadily accreting, unequal-mass binary. We predict that brightness variations in the ultraviolet light curve track those in the optical, but with a two to three times larger amplitude. This prediction is relatively insensitive to the details of the emission process, and is consistent with archival ultraviolet data. Follow-up ultraviolet and optical observations in the next few years can further test this prediction and confirm the existence of a binary black hole in the relativistic regime.

  19. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  20. Distinguishing between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  1. Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization.

    PubMed

    Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin

    2018-04-14

    In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    PubMed

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  3. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    PubMed Central

    Hayasaki, Kimitake; Loeb, Abraham

    2016-01-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188

  4. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  5. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of themore » same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.« less

  6. Constructing binary black hole initial data with high mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  7. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  8. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields. We need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  9. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  10. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  11. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  12. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA

  13. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simutation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  14. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. This situation has changed dramatically in the past year, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA and LIGO.

  15. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    This viewgraph presentation reviews the massive black hole (MBH) binaries that are found at the center of most galaxies, "astronomical messenger", gravitational waves (GW), and the use of numerical relativity understand the features of these phenomena. The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity.. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  16. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  17. Observing binary black hole ringdowns by advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo

    2017-05-01

    The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.

  18. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Zlochower, Yosef

    2013-04-01

    We present results from an extensive study of 88 precessing, equal-mass black-hole binaries with large spins (83 with intrinsic spins |S→i/mi2| of 0.8 and 5 with intrinsic spins of 0.9), and use these data to model new nonlinear contributions to the gravitational recoil imparted to the merged black hole. We find a new effect, the cross kick, that enhances the recoil for partially aligned binaries beyond the hangup kick effect. This has the consequence of increasing the probabilities of recoils larger than 2000kms-1 by nearly a factor of 2, and consequently, of black holes getting ejected from galaxies, as well as the observation of large differential redshifts/blueshifts in the cores of recently merged galaxies.

  19. Observing Mergers of Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.

    2008-01-01

    Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.

  20. Disks around merging binary black holes: From GW150914 to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  1. Measuring the spin of black holes in binary systems using gravitational waves.

    PubMed

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  2. Calculating Gravitational Wave Signature from Binary Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Calculations of the final merger stage of binary black hole evolution can only be carried out using full scale numerical relativity simulations. We review the status of these calculations, highlighting recent progress and current challenges.

  3. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  4. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-01

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  5. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries.

    PubMed

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-20

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  6. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  7. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  8. Black hole binaries dynamically formed in globular clusters

    NASA Astrophysics Data System (ADS)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  9. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  10. Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey

    NASA Astrophysics Data System (ADS)

    High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.

    2016-01-01

    Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.

  11. The Final Merger of Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrealla, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress / these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics

  12. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

  13. Topology of black hole binary-single interactions

    NASA Astrophysics Data System (ADS)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  14. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  15. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  16. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.

    If we assume that nuclei of extragalactic radio sources contain a Binary Black Hole system, the 2 black holes can eject VLBI components and in that case 2 families of different VLBI trajectories will be observed. An important consequence of the presence of a Binary Black Hole system is the following: the VLBI core is associated with one black hole and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the gravity center of the BBH system. We modeled the ejection of the component taking into account the 2 perturbations and we obtained a method to fit the coordinates of a VLBI component and to deduce the characteristics of the BBH system, i.e. the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb the orbital period of the BBH system, the mass ratio M1/M2, the radius of the BBH system Rbin. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279 which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a BBH system which size is Rbin ≈ 60 mu as and 3C 279 contains a BBH system which size is Rbin ≈ 378 mu as. We were able to deduce the separation of the 2 black holes and the coordinates of the second black hole from the VLBI core, this information will be important to make the link between the radio reference frame system deduced from VLBI observations and the optical reference frame system deduced from GAIA.

  17. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  18. Simulating a High-Spin Black Hole-Neutron Star Binary

    NASA Astrophysics Data System (ADS)

    Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration

    2017-01-01

    During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.

  19. Effect of black point on accuracy of LCD displays colorimetric characterization

    NASA Astrophysics Data System (ADS)

    Li, Tong; Xie, Kai; He, Nannan; Ye, Yushan

    2018-03-01

    Black point is the point at which RGB's single channel digital drive value is 0. Due to the problem of light leakage of liquid-crystal displays (LCDs), black point's luminance value is not 0, this phenomenon bring some errors to colorimetric characterization of LCDs, especially low luminance value driving greater sampling effect. This paper describes the characteristic accuracy of polynomial model method and the effect of black point on accuracy, the color difference accuracy is given. When considering the black point in the characteristics equation, the maximum color difference is 3.246, the maximum color difference than without considering the black points reduced by 2.36. The experimental results show that the accuracy of LCDs colorimetric characterization can be improved, if the effect of black point is eliminated properly.

  20. The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Willis, Joshua; LIGO Scientific Collaboration

    2017-01-01

    Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.

  1. Dynamical shift condition for unequal mass black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Doreen; Grigsby, Jason; Bruegmann, Bernd

    Certain numerical frameworks used for the evolution of binary black holes make use of a gamma driver, which includes a damping factor. Such simulations typically use a constant value for damping. However, it has been found that very specific values of the damping factor are needed for the calculation of unequal mass binaries. We examine carefully the role this damping plays and provide two explicit, nonconstant forms for the damping to be used with mass ratios further from one. Our analysis of the resultant waveforms compares well against the constant damping case.

  2. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragkos, Anastasios

    black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.

  3. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Mroué, Abdul H.; Scheel, Mark A.; Szilágyi, Béla; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W.; Zenginoğlu, Anıl; Buchman, Luisa T.; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A.

    2013-12-01

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10-5, black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  4. Catalog of 174 binary black hole simulations for gravitational wave astronomy.

    PubMed

    Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A

    2013-12-13

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  5. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Dennis B.; Campanelli, Manuela; Mewes, Vassilios

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 timesmore » the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.« less

  6. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Campanelli, Manuela; Krolik, Julian H.; Mewes, Vassilios; Noble, Scott C.

    2017-03-01

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.

  7. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  8. Detecting gravity waves from binary black holes

    NASA Technical Reports Server (NTRS)

    Wahlquist, Hugo D.

    1989-01-01

    One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.

  9. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  10. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  11. A massive binary black-hole system in OJ 287 and a test of general relativity.

    PubMed

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.

  12. Detectability of gravitational waves from binary black holes: Impact of precession and higher modes

    NASA Astrophysics Data System (ADS)

    Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre

    2017-05-01

    Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.

  13. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  14. Pragmatic approach to gravitational radiation reaction in binary black holes

    PubMed

    Lousto

    2000-06-05

    We study the relativistic orbit of binary black holes in systems with small mass ratio. The trajectory of the smaller object (another black hole or a neutron star), represented as a particle, is determined by the geodesic equation on the perturbed massive black hole spacetime. Here we study perturbations around a Schwarzschild black hole using Moncrief's gauge invariant formalism. We decompose the perturbations into l multipoles to show that all l-metric coefficients are C0 at the location of the particle. Summing over l, to reconstruct the full metric, gives a formally divergent result. We succeed in bringing this sum to a Riemann's zeta-function regularization scheme and numerically compute the first-order geodesics.

  15. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    NASA Astrophysics Data System (ADS)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  16. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics.

    PubMed

    Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie

    2016-06-17

    The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.

  17. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  18. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  19. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  20. Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore; Gerosa, Davide; Haster, Carl-Johan; Chatziioannou, Katerina; Zimmerman, Aaron

    2017-12-01

    In a regime where data are only mildly informative, prior choices can play a significant role in Bayesian statistical inference, potentially affecting the inferred physics. We show this is indeed the case for some of the parameters inferred from current gravitational-wave measurements of binary black hole coalescences. We reanalyze the first detections performed by the twin LIGO interferometers using alternative (and astrophysically motivated) prior assumptions. We find different prior distributions can introduce deviations in the resulting posteriors that impact the physical interpretation of these systems. For instance, (i) limits on the 90% credible interval on the effective black hole spin χeff are subject to variations of ˜10 % if a prior with black hole spins mostly aligned to the binary's angular momentum is considered instead of the standard choice of isotropic spin directions, and (ii) under priors motivated by the initial stellar mass function, we infer tighter constraints on the black hole masses, and in particular, we find no support for any of the inferred masses within the putative mass gap M ≲5 M⊙.

  1. Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences.

    PubMed

    Vitale, Salvatore; Gerosa, Davide; Haster, Carl-Johan; Chatziioannou, Katerina; Zimmerman, Aaron

    2017-12-22

    In a regime where data are only mildly informative, prior choices can play a significant role in Bayesian statistical inference, potentially affecting the inferred physics. We show this is indeed the case for some of the parameters inferred from current gravitational-wave measurements of binary black hole coalescences. We reanalyze the first detections performed by the twin LIGO interferometers using alternative (and astrophysically motivated) prior assumptions. We find different prior distributions can introduce deviations in the resulting posteriors that impact the physical interpretation of these systems. For instance, (i) limits on the 90% credible interval on the effective black hole spin χ_{eff} are subject to variations of ∼10% if a prior with black hole spins mostly aligned to the binary's angular momentum is considered instead of the standard choice of isotropic spin directions, and (ii) under priors motivated by the initial stellar mass function, we infer tighter constraints on the black hole masses, and in particular, we find no support for any of the inferred masses within the putative mass gap M≲5  M_{⊙}.

  2. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  3. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  4. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    PubMed

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  5. Geometry of deformed black holes. I. Majumdar-Papapetrou binary

    NASA Astrophysics Data System (ADS)

    Semerák, O.; Basovník, M.

    2016-08-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.

  6. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  7. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will

  8. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    PubMed

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  9. Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Ryan N.; Hughes, Scott A.

    The coalescence of massive black holes generates gravitational waves (GWs) that will be measurable by space-based detectors such as LISA to large redshifts. The spins of a binary's black holes have an important impact on its waveform. Specifically, geodetic and gravitomagnetic effects cause the spins to precess; this precession then modulates the waveform, adding periodic structure which encodes useful information about the binary's members. Following pioneering work by Vecchio, we examine the impact upon GW measurements of including these precession-induced modulations in the waveform model. We find that the additional periodicity due to spin precession breaks degeneracies among certain parameters,more » greatly improving the accuracy with which they may be measured. In particular, mass measurements are improved tremendously, by one to several orders of magnitude. Localization of the source on the sky is also improved, though not as much--low redshift systems can be localized to an ellipse which is roughly 10-a fewx10 arcminutes in the long direction and a factor of 2 smaller in the short direction. Though not a drastic improvement relative to analyses which neglect spin precession, even modest gains in source localization will greatly facilitate searches for electromagnetic counterparts to GW events. Determination of distance to the source is likewise improved: We find that relative error in measured luminosity distance is commonly {approx}0.1%-0.4% at z{approx}1. Finally, with the inclusion of precession, we find that the magnitude of the spins themselves can typically be determined for low redshift systems with an accuracy of about 0.1%-10%, depending on the spin value, allowing accurate surveys of mass and spin evolution over cosmic time.« less

  10. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  11. Binary black holes, gravitational waves, and numerical relativity

    NASA Astrophysics Data System (ADS)

    Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2007-07-01

    The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.

  12. Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries

    NASA Astrophysics Data System (ADS)

    Graff, Philip B.; Buonanno, Alessandra; Sathyaprakash, B. S.

    2015-07-01

    We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50 M⊙ to 500 M⊙ and mass ratio 1-4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in distance, orientation and polarization. For low total masses, Mobs≲50 M⊙ , for which the inspiral signal dominates, the observed chirp mass Mobs=Mobsη3 /5 (η being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed, at high Mobs (≥300 M⊙ ), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ˜20 - 25 % while uncertainties in Mobs are ˜50 - 60 % in binaries with unequal masses (those numbers become ˜17 % vs. ˜22 % in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading modes are essential to confirm a signal's presence in the data, with calculated Bayesian evidences yielding a false alarm probability below 10-5 for SNR ≳9 in Gaussian noise. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.

  13. Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2010-01-01

    It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,

  14. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    PubMed

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  15. Minidisks in Binary Black Hole Accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less

  16. Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhirup; Johnson-McDaniel, Nathan K.; Ghosh, Archisman; Kant Mishra, Chandra; Ajith, Parameswaran; Del Pozzo, Walter; Berry, Christopher P. L.; Nielsen, Alex B.; London, Lionel

    2018-01-01

    Advanced LIGO’s recent observations of gravitational waves (GWs) from merging binary black holes have opened up a unique laboratory to test general relativity (GR) in the highly relativistic regime. One of the tests used to establish the consistency of the first LIGO event with a binary black hole merger predicted by GR was the inspiral-merger-ringdown consistency test. This involves inferring the mass and spin of the remnant black hole from the inspiral (low-frequency) part of the observed signal and checking for the consistency of the inferred parameters with the same estimated from the post-inspiral (high-frequency) part of the signal. Based on the observed rate of binary black hole mergers, we expect the advanced GW observatories to observe hundreds of binary black hole mergers every year when operating at their design sensitivities, most of them with modest signal to noise ratios (SNRs). Anticipating such observations, this paper shows how constraints from a large number of events with modest SNRs can be combined to produce strong constraints on deviations from GR. Using kludge modified GR waveforms, we demonstrate how this test could identify certain types of deviations from GR if such deviations are present in the signal waveforms. We also study the robustness of this test against reasonable variations of a variety of different analysis parameters.

  17. Tidal disruption of inclined or eccentric binaries by massive black holes

    NASA Astrophysics Data System (ADS)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-07-01

    Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  18. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  19. Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately < M/Mo approximately < 10(exp 7) at SNR > 100 out to the earliest epochs of structure formation at z > 15.

  20. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  1. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    NASA Astrophysics Data System (ADS)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  2. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayasaki, K.; Sohn, B.W.; Jung, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less

  3. Understanding the "antikick" in the merger of binary black holes.

    PubMed

    Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis

    2010-06-04

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

  4. NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra

    2018-01-01

    Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.

  5. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', I.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ˜105 M⊙.

  6. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  7. Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Buonanno, Alessandra; Mroué, Abdul H.; Pfeiffer, Harald P.; Hemberger, Daniel A.; Lovelace, Geoffrey; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Bela; Taylor, Nicholas W.; Teukolsky, Saul A.

    2013-12-01

    We study the general relativistic periastron advance in spinning black hole binaries on quasicircular orbits, with spins aligned or antialigned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a nonspinning particle orbiting a Kerr black hole of mass M and spin S=-0.5M2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.

  8. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  9. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-07-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.

  10. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Ilídio; Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: silk@astro.ox.ac.uk

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1–10{sup 3} ppm for a solar mass star located at a distance between 1more » au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.« less

  11. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  12. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  13. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  14. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  15. A test of the massive binary black hole hypothesis - Arp 102B

    NASA Technical Reports Server (NTRS)

    Helpern, J. P.; Filippenko, Alexei V.

    1988-01-01

    The emission-line spectra of several AGN have broad peaks which are significantly displaced in velocity with respect to the host galaxy. An interpretation of this effect in terms of orbital motion of a binary black hole predicts periods of a few centuries. It is pointed out here that recent measurements of the masses and sizes of many low-luminosity AGN imply orbital periods much shorter than this. In particular, it is found that the elliptical galaxy Arp 102B is the most likely candidate for observation of radial velocity variations; its period is expected to be about 3 yr. The H-alpha line profile of Arp 102B has been measured for 5 yr without detecting any change in velocity, and it is thus found that a rather restrictive observational test of the massive binary black hole hypothesis already exists, albeit for this one object.

  16. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  17. Pulsar-black hole binaries as a window on quantum gravity

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR-BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.

  18. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei

    2017-07-01

    Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should

  19. Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources

    NASA Astrophysics Data System (ADS)

    Sipior, Michael S.; Sigurdsson, Steinn

    2002-06-01

    Double neutron star (NS-NS) binaries, analogous to the well-known Hulse-Taylor pulsar PSR 1913+16 (documented by Hulse & Taylor in 1974), are guaranteed-to-exist sources of high-frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems (see the work of Phinney in 1991, Narayan and coworkers in 1991, and Kalogera and coworkers in 2001), with conservative estimates of ~1 per 106 yr per galaxy, and optimistic theoretical estimates 1 or more mag larger. Formation rates of low-mass black hole (BH)-neutron star binaries may be higher than those of NS-NS binaries and may dominate the detectable LIGO signal rate. Rate estimates for such binaries are plagued by severe model uncertainties. Recent estimates by Portegies Zwart & Yungelson in 1998 and De Donder & Vanbeveren in 1998 suggest that BH-BH binaries do not coalesce at significant rates despite being formed at high rates. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low-mass black holes like Nova Sco (see the work of Brandt, Podsiadlowski, & Sigurdsson in 1995) and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of black hole masses for which there is significant kick is broad enough. For a standard Salpeter initial mass function, assuming mild natal kicks, we project that the R6 merger rate (the rate of mergers per 106 yr in a Milky Way-like galaxy) of BH-BH systems is ~0.5, smaller than that of NS-NS systems. However, the higher chirp mass of these systems produces a signal nearly 4 times greater, on average, with a commensurate increase in search volume, hence, our claim that BH-BH mergers (and, to a lesser extent, BH-NS coalescence) should comprise a significant fraction of the signal seen by LIGO. The BH-BH coalescence channel considered here also predicts that a substantial fraction of

  20. REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    1996-08-01

    Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.

  1. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  2. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  3. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  4. Low-mass X-ray binaries from black hole retaining globular clusters

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  5. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel

    2018-01-01

    We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.

  6. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  7. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  8. Observing mergers of nonspinning black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWilliams, Sean T.; Baker, John G.; Kelly, Bernard J.

    2010-07-15

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass-ratio on merger signal-to-noise ratios for several detectors, and compare our results with expectations from the test-mass limit. Wemore » note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal-mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass-ratio for mergers of moderate-mass-ratio systems.« less

  9. Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach

    NASA Technical Reports Server (NTRS)

    Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2007-01-01

    Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated until the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1,2/3,1/2 and = 1/4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.

  10. Massive Black Hole Binary Mergers and their Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto

    2017-01-01

    Gravitational Waves (GW) from stellar-mass BH binaries have recently been observed by LIGO, but GW from their supermassive counterparts have remained elusive. Recent upper limits from Pulsar Timing Arrays (PTA) have excluded significant portions of the predicted parameter space. Most previous studies, however, have assumed that most or all Massive Black Hole (MBH) Binaries merge effectively and quickly. I will present results derived—for the first time—from cosmological, hydrodynamic simulations with self-consistently coevolved populations of MBH particles. We perform post-processing simulations of the MBH merger process, using realistic galactic environments, including models of dynamical friction, stellar scattering, gas drag from a circumbinary disk, and GW emission—with no assumptions of merger fractions or timescales. We find that despite only the most massive systems merging effectively (and still on gigayear timescales), the GW Background is only just below current detection limits with PTA. Our models suggest that PTA should make detections within the next decade, and will provide information about MBH binary populations, environments, and even eccentricities. I’ll also briefly discuss prospects for observations of dual-AGN, and the possible importance of MBH triples in the merger process.

  11. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  12. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  13. Simulating Gravitational Wave Emission from Massive Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past few years, this situation has changed dramatically, with a series of amazing breakthroughs. This talk will focus on the recent advances that are revealing these waveforms. highlighting their astrophysical consequences and the dramatic new potential for discovery that arises when merging black holes will be observed using gravitational waves.

  14. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  15. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  16. Geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel, Ilya

    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less

  17. Curious case of gravitational lensing by binary black holes: A tale of two photon spheres, new relativistic images, and caustics

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Mishra, Priti; Narasimha, D.

    2017-01-01

    Binary black holes have been in the limelight of late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as an equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far in the literature. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ various techniques developed for the equatorial lensing in the spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, then the system admits two photon spheres. As in the case of a single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the lens. However, in the presence of the inner (stable) photon sphere, the effective potential after admitting minimum turns upwards and blows up for the smaller values of radii and the light rays that enter the outer photon sphere can turn back, leading to the formation of a new set of infinitely many relativistic images, all of which lie below the critical radius from the lens mentioned above. As the distance between the two black holes is increased, two photon spheres approach one another, merge and eventually disappear. In the absence of the photon sphere, apart from the formation of a finite number of discrete relativistic images, the system remarkably admits a radial caustic, which has never been observed in the context of relativistic lensing before. Thus the system of the binary black hole admits novel features both in the presence and absence of photon spheres. We discuss possible observational signatures and

  18. Targeted numerical simulations of binary black holes for GW170104

    NASA Astrophysics Data System (ADS)

    Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.

    2018-03-01

    In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.

  19. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  20. Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-06-01

    Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.

  1. Supermassive Black Hole Binaries: Multi-Messenger Astrophysics and Long Baselines with the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy

    2018-01-01

    Dual ( < ˜1 kpc separation) and binary (< ˜10 pc separation) supermassive black holes are formed during the merger of two massive galaxies. Their formation and subsequent evolution is controlled by interactions with their environment and, at close separations, the emission of gravitational waves. If we can determine the occurrance rate of dual active nuclei in galaxy mergers, we can directly measure merger-induced active nucleus activity, supermassive black hole growth, and the physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.

  2. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    NASA Astrophysics Data System (ADS)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  3. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    PubMed

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  4. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  5. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, B.; Williams, B. F.; Anderson, S. F.

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less

  6. Observing Mergers of Non-Spinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.

  7. Binary black hole spacetimes with a helical Killing vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Christian

    Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation for the early stage of a binary system, are studied in a projection formalism. In this setting the four-dimensional Einstein equations are equivalent to a three-dimensional gravitational theory with a SL(2,R)/SO(1,1) sigma model as the material source. The sigma model is determined by a complex Ernst equation. 2+1 decompositions of the three-metric are used to establish the field equations on the orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the black holes, the cylinder of light where themore » Killing vector changes from timelike to spacelike, and infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular singularities, i.e., the metric functions can be expanded in a formal power series in the vicinity. The behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a nonaxisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the Weyl tensor near infinity shows that there is no smooth null infinity.« less

  8. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  9. The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Barausse, Enrico

    2017-10-01

    Massive black hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing pulsar timing array (PTA) experiments and the upcoming space-based Laser Interferometer Space Antenna (LISA) interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational wave background obtained by PTAs are starting to be in marginal tension with theoretical models for the pairing and orbital evolution of these systems. This tension can be resolved by assuming that these binaries are more eccentric or interact more strongly with the environment (gas and stars) than expected, or by accounting for possible selection biases in the construction of the theoretical models. However, another (pessimistic) possibility is that these binaries do not merge at all, but stall at large (˜pc) separations. We explore this extreme scenario by using a semi-analytic galaxy formation model including massive black holes (isolated and in binaries), and show that future generations of PTAs will detect the stochastic gravitational wave background from the massive black hole binary population within 10-15 yr of observations, even in the `nightmare scenario' in which all binaries stall at the hardening radius. Moreover, we argue that this scenario is too pessimistic, because our model predicts the existence of a subpopulation of binaries with small mass ratios (q ≲ 10-3) that should merge within a Hubble time simply as a result of gravitational wave emission. This subpopulation will be observable with large signal-to-noise ratios by future PTAs thanks to next-generation radio telescopes such as Square Kilometre Array or Five-hundred-meter Aperture Spherical Telescope, and possibly by LISA.

  10. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  11. Evolution of the magnetized, neutrino-cooled accretion disk in the aftermath of a black hole-neutron star binary merger

    NASA Astrophysics Data System (ADS)

    Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela

    2018-04-01

    Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.

  12. Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?

    NASA Astrophysics Data System (ADS)

    Yang, Huan; East, William E.; Lehner, Luis

    2018-04-01

    The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.

  13. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes

    NASA Astrophysics Data System (ADS)

    Mehta, Ajit Kumar; Mishra, Chandra Kant; Varma, Vijay; Ajith, Parameswaran

    2017-12-01

    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole modes [(ℓ=2 ,m =±1 ),(ℓ=3 ,m =±3 ),(ℓ=4 ,m =±4 ) apart from (ℓ=2 ,m =±2 )]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1-10) describing the late inspiral, merger, and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10-4- 10-2 ) for observation of GWs from nonspinning black-hole binaries and are extremely inexpensive to generate.

  14. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  15. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  16. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  17. Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During the five-year period, our study of "Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries" has been focused on the following aspects: observations, data analysis, Monte-Carlo simulations, numerical calculations, and theoretical modeling. Most of the results of our study have been published in refereed journals and conference presentations.

  18. No tension between assembly models of super massive black hole binaries and pulsar observations.

    PubMed

    Middleton, Hannah; Chen, Siyuan; Del Pozzo, Walter; Sesana, Alberto; Vecchio, Alberto

    2018-02-08

    Pulsar timing arrays are presently the only means to search for the gravitational wave stochastic background from super massive black hole binary populations, considered to be within the grasp of current or near-future observations. The stringent upper limit from the Parkes Pulsar Timing Array has been interpreted as excluding (>90% confidence) the current paradigm of binary assembly through galaxy mergers and hardening via stellar interaction, suggesting evolution is accelerated or stalled. Using Bayesian hierarchical modelling we consider implications of this upper limit for a range of astrophysical scenarios, without invoking stalling, nor more exotic physical processes. All scenarios are fully consistent with the upper limit, but (weak) bounds on population parameters can be inferred. Recent upward revisions of the black hole-galaxy bulge mass relation are disfavoured at 1.6σ against lighter models. Once sensitivity improves by an order of magnitude, a non-detection will disfavour the most optimistic scenarios at 3.9σ.

  19. Optical Variability Signatures from Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam

    2017-01-01

    The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.

  20. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  1. The black hole binary V404 Cygni: a highly accreting obscured AGN analogue

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.

    2017-06-01

    Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.

  2. The effect of gauge conditions on waveforms from binary black hole coalescence

    NASA Astrophysics Data System (ADS)

    Bentivegna, Eloisa; Laguna, Pablo; Shoemaker, Deirdre

    2006-11-01

    Over the past year and a half, a number of groups have produced stable runs of a binary black hole system evolving through merger and ringdown. In [2][3], in particular, the tremendous speedup to the field was driven by special sets of gauge evolution equations, capable of handling several issues that have traditionally plagued black hole simulations: avoiding the singularity, guaranteeing a constraint satisfying solution at least in the exterior region, and advecting the holes through the numerical grid. Since several successful recipes have already been proposed, the goal of this study is to review them and analyze the consistency of the published results. A preliminary comparison of the waveform outcome of each different gauge prescription is presented.

  3. The influence of massive black hole binaries on the morphology of merger remnants

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  4. The mass of the black hole in the X-ray binary LMC X-1

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Antokhina, E. A.; Gostev, N. Yu.; Cherepashchuk, A. M.; Shimansky, V. V.

    2016-12-01

    A dynamical estimate of the mass of the black hole in the LMC X-1 binary system is obtained in the framework of a Roche model for the optical star, based on fitting of the He I 4471 Å and He II 4200 Å absorption lines assuming LTE. The mass of the black hole derived from the radial-velocity curve for the He II 4200 Å line is m x = 10.55 M ⊙, close to the value found earlier based on a model with two point bodies [1].

  5. Dynamics of marginally trapped surfaces in a binary black hole merger: Growth and approach to equilibrium

    NASA Astrophysics Data System (ADS)

    Gupta, Anshu; Krishnan, Badri; Nielsen, Alex B.; Schnetter, Erik

    2018-04-01

    The behavior of quasilocal black hole horizons in a binary black hole merger is studied numerically. We compute the horizon multipole moments, fluxes, and other quantities on black hole horizons throughout the merger. These lead to a better qualitative and quantitative understanding of the coalescence of two black holes: how the final black hole is formed, initially grows, and then settles down to a Kerr black hole. We calculate the rate at which the final black hole approaches equilibrium in a fully nonperturbative situation and identify a time at which the linear ringdown phase begins. Finally, we provide additional support for the conjecture that fields at the horizon are correlated with fields in the wave zone by comparing the in-falling gravitational wave flux at the horizon to the outgoing flux as estimated from the gravitational waveform.

  6. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  7. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  8. Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates

    NASA Astrophysics Data System (ADS)

    Vigneron, Quentin; Lodato, Giuseppe; Guidarelli, Alessio

    2018-06-01

    The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous studies have focused on the disruption by single black holes, for which the fallback rate decays as ∝ t-5/3. In this paper, we generalize the study to the case of a supermassive black hole binary (SMBHB), using both analytical estimates and hydrodynamical simulations, looking for specific observable signatures. The range of binary separation for which it is possible to distinguish between the disruption created by a single or a binary black hole concerns typically separations of the order of a few milliparsecs for a primary of mass ˜106 M⊙. When the fallback rate is affected by the secondary, it undergoes two types interruptions, depending on the initial inclination θ of the orbit of the star relative to the plane of the SMBHB. For θ ≲ 70°, periodic sharp interruptions occur and the time of first interruption depends on the distance of the secondary black hole with the debris. If θ ≳ 70°, a first smooth interruption occurs, but not always followed by a further recovery of the fallback rate. This implies that most of the TDEs around a SMBHB will undergo periodic sharp interruptions of their light curve.

  9. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    NASA Technical Reports Server (NTRS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  10. Measuring neutron star tidal deformability with Advanced LIGO: A Bayesian analysis of neutron star-black hole binary observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.

    2017-02-01

    The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results

  11. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    PubMed

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Black Hole Accretion Discs on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey

    2017-01-01

    We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.

  13. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  14. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    NASA Astrophysics Data System (ADS)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  15. High-Accuracy Comparison Between the Post-Newtonian and Self-Force Dynamics of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    The relativistic motion of a compact binary system moving in circular orbit is investigated using the post-Newtonian (PN) approximation and the perturbative self-force (SF) formalism. A particular gauge-invariant observable quantity is computed as a function of the binary's orbital frequency. The conservative effect induced by the gravitational SF is obtained numerically with high precision, and compared to the PN prediction developed to high order. The PN calculation involves the computation of the 3PN regularized metric at the location of the particle. Its divergent self-field is regularized by means of dimensional regularization. The poles ∝ {(d - 3)}^{-1} that occur within dimensional regularization at the 3PN order disappear from the final gauge-invariant result. The leading 4PN and next-to-leading 5PN conservative logarithmic contributions originating from gravitational wave tails are also obtained. Making use of these exact PN results, some previously unknown PN coefficients are measured up to the very high 7PN order by fitting to the numerical SF data. Using just the 2PN and new logarithmic terms, the value of the 3PN coefficient is also confirmed numerically with very high precision. The consistency of this cross-cultural comparison provides a crucial test of the very different regularization methods used in both SF and PN formalisms, and illustrates the complementarity of these approximation schemes when modeling compact binary systems.

  16. Accreting Neutron Star and Black Hole Binaries with NICER

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2018-01-01

    The NICER mission on the International Space Station has significant new capabilities for the study of accreting neutron stars and blackholes, including large effective area, low background, and excellent low-energy X-ray response. Both the NICER Burst and Accretion Working Group and the Observatory Science Working Group have designed observing programs that probe various aspects of accretion physics. I will present some early results from the first six months of the NICER mission, including observations of the black hole transients MAXI J1535-571 and GX 339-4, the high-mass X-ray binary pulsars GRO J1008-57 and Swift J02436+6124, and the X-ray burster 4U 1820-30.

  17. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  18. Electromagnetic signature of supermassive black hole binaries that enter their gravitational-wave induced inspiral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeb, Abraham

    2010-02-15

    Mergers of gas-rich galaxies lead to black hole binaries that coalesce as a result of dynamical friction on the ambient gas. Once the binary tightens to < or approx. 10{sup 3} Schwarzschild radii, its merger is driven by the emission of gravitational waves (GWs). We show that this transition occurs generically at orbital periods of {approx}1-10 years and an orbital velocity v of a few thousand km s{sup -1}, with a very weak dependence on the supply rate of gas (v{proportional_to}M{sup 1/8}). Therefore, as binaries enter their GW-dominated inspiral, they inevitably induce large periodic shifts in the broad emission linesmore » of any associated quasar(s). The probability of finding a binary in tighter configurations scales as v{sup -8} owing to their much shorter lifetimes. Narrow-band monitoring of the broad emission lines of quasars on time scales of months to decades can set a lower limit on the expected rate of GW sources for the Laser Interferometer Space Antenna.« less

  19. The Upper and Lower Bounds of the Prediction Accuracies of Ensemble Methods for Binary Classification

    PubMed Central

    Wang, Xueyi; Davidson, Nicholas J.

    2011-01-01

    Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162

  20. Searching for Compact Binary Mergers with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander` Harvey

    2017-06-01

    Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.

  1. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  2. Advances in Black-Hole Mergers: Spins and Unequal Masses

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard

    2007-01-01

    The last two years have seen incredible development in numerical relativity: from fractions of an orbit, evolutions of an equal-mass binary have reached multiple orbits, and convergent gravitational waveforms have been produced from several research groups and numerical codes. We are now able to move our attention from pure numerics to astrophysics, and address scenarios relevant to current and future gravitational-wave detectors.Over the last 12 months at NASA Goddard, we have extended the accuracy of our Hahn-Dol code, and used it to move toward these goals. We have achieved high-accuracy simulations of black-hole binaries of low initial eccentricity, with enough orbits of inspiral before merger to allow us to produce hybrid waveforms that reflect accurately the entire lifetime of the BH binary. We are extending this work, looking at the effects of unequal masses and spins.

  3. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  4. Black hole binary inspiral: Analysis of the plunge

    NASA Astrophysics Data System (ADS)

    Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav

    2016-02-01

    Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.

  5. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-10-15

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity inmore » the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, {nu}=10{sup -2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v{sub kick}{sup end}/(c{nu}{sup 2})=0.04474{+-}0.00007 and v{sub kick}{sup max}/(c{nu}{sup 2})=0.05248{+-}0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of

  6. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  7. Gravitational interactions of stars with supermassive black hole binaries - I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-07-01

    Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).

  8. On choosing the start time of binary black hole ringdowns

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Okounkova, Maria; Ballmer, Stefan W.; Brown, Duncan A.; Giesler, Matthew; Scheel, Mark A.; Teukolsky, Saul A.

    2018-05-01

    The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which the ringdown begins. Yet determining this time is important for precision tests of the general theory of relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time in the observed waveform. This method is based on determining how close the strong field is to a Kerr black hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform with a value of each of these Kerrness measures; this map is produced by following outgoing null characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a numerical relativity simulation with parameters consistent with GW150914—the first gravitational-wave detection. We find that the choice of ringdown start time of 3 ms after merger used in the GW150914 study [B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), Phys. Rev. Lett. 116, 221101 (2016)., 10.1103/PhysRevLett.116.221101] to test general relativity corresponds to a high dimensionless perturbation amplitude of ˜7.5 ×10-3 in the strong-field region. This suggests that in higher signal-to-noise detections, one would need to start analyzing the signal at a later time for studies that depend on the validity of black hole perturbation theory.

  9. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  10. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.

    2015-09-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  11. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  12. Effective-one-body model for black-hole binaries with generic mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Taracchini, Andrea; Buonanno, Alessandra; Pan, Yi; Hinderer, Tanja; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Mroué, Abdul H.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla; Taylor, Nicholas W.; Zenginoglu, Anil

    2014-03-01

    Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20 and 200M⊙, the effective-one-body nonprecessing (dominant mode) waveforms have overlap above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. We also show that—without further calibration— the precessing effective-one-body (dominant mode) waveforms have overlap above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.

  13. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  14. A magnetic model for low/hard state of black hole binaries

    NASA Astrophysics Data System (ADS)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  15. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  16. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .

  17. GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma.

  18. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics; Lousto, Carlos O.

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high centralmore » resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.« less

  19. Are LIGO's Black Holes Made from Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Fishbach, Maya; Holz, Daniel; Farr, Ben; LIGO Collaboration

    2017-01-01

    We consider the hierarchical merger model for the formation of stellar mass black holes (such as the binary black holes observable by LIGO). In the hierarchical merger model, each black hole in a black hole binary is the result of a merger of two lesser black holes from a previous generation, and the previous generation's black holes may themselves be merger products of an even earlier generation. We apply the formulas of Hofmann, Barausse and Rezzolla (2016) to show that if black holes form in this hierarchical merger scenario, their spin magnitudes follow a certain probability distribution. We demonstrate how to compare this spin distribution to LIGO spin measurements in order to constrain the hierarchical merger scenario.

  20. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  1. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  2. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  3. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiationmore » with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.« less

  4. Galerkin-collocation domain decomposition method for arbitrary binary black holes

    NASA Astrophysics Data System (ADS)

    Barreto, W.; Clemente, P. C. M.; de Oliveira, H. P.; Rodriguez-Mueller, B.

    2018-05-01

    We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3 +1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary black holes. We use the Bowen-York method for binary systems and the puncture method to solve the Hamiltonian constraint. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU decomposition and Gaussian quadratures. We show convergence of our code for the conformal factor and the ADM mass. Thus, we display features of the conformal factor for different masses, spins and linear momenta.

  5. Evidence Of A Black Hole In The X-ray Binary System Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Lombardi, C.; Virgilli, E.; Titarchuk, L.; Frontera, F.; Farinelli, R.

    2011-09-01

    Recently a close correlation between the photon index of the power law component and either the frequency of Quasi Periodic Oscillations (QPOs) or the flow of accretion disk has been found in the X-ray data concerning Black Holes (BH) in binary systems. The shape of this relationship, characterized by a saturation index when the system achieves high spectral brightness, finds a natural explanation in the processes of thermal and bulk Comptonization which are unique characteristic of the presence of a BH. For the whole set of observation we adopted a model consisting of the spectral component of BMC (Bulk Motion Comptonization model) that takes into account the direct emission of black body and the Comptonization process.

  6. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  7. Outflow-driven Transients from the Birth of Binary Black Holes. II. Primary-induced Accretion Transients

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    2017-12-01

    We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.

  8. An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures

    NASA Astrophysics Data System (ADS)

    Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.

    2018-05-01

    A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).

  9. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  10. Multivariate classification with random forests for gravitational wave searches of black hole binary coalescence

    NASA Astrophysics Data System (ADS)

    Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.

    2015-03-01

    Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.

  11. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  12. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  13. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  14. Tests of general relativity from gravitational wave observations of binary black holes

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter

    2017-01-01

    Gravitational waves emitted during the coalescence of compact binary systems carry a wealth of information about the merging objects, the remnant object as well as their interaction with space-time. The description of the dynamics of such systems is based on solutions of the theory of general relativity. For any given physical configuration of masses, spins and orbital motion, general relativity predicts the dynamical evolution of the binary system as well as the corresponding gravitational wave signal. During the coalescence of extremely compact objects such as binary black holes, the typical curvature and velocity at play are such that, from the observation of the gravitational wave signal, we can access the most extreme dynamical regimes of gravity. In such conditions, we can test our understanding of gravity by looking for potential departures between the solutions of general relativity and the actual dynamics of space-time. The LIGO observations GW150914 and GW151226 provided wonderful testing grounds for general relativity in the, up to now unaccessible, strong-field dynamical regime of gravity. During my talk, I will review and discuss several of the tests that have been devised to detect violations of the predictions of general relativity from the observation of gravitational waves from coalescing binary systems. The discussion will be based on the results of the analysis of GW150914 and GW151226. Finally, I will conclude by discussing some of the future prospects of extending the current state-of-the-art methodologies to further aspects of general relativity.

  15. Brownian motion of massive black hole binaries and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.

    2016-09-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.

  16. Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments

    NASA Astrophysics Data System (ADS)

    Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group

    2018-01-01

    We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.

  17. A magnetic model for low/hard state of black hole binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong

    2015-08-01

    A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disc around a black hole (BH). This model consists of a truncated thin disc with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising stage of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on the transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio-X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model. It is suggested that large-scale magnetic field can be regarded as the second parameter for governing the state transitions in some BHXBs.

  18. Iron lines in model disk spectra of Galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.

    2011-03-01

    Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.

  19. The Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Reitze, David

    2016-03-01

    On September 14, 2015, the two LIGO detectors operating at Hanford, WA and Livingston, LA nearly simultaneously recorded a strong trigger consistent with the passage of gravitational waves. An extensive and thorough analysis by the LIGO Scientific Collaboration and the Virgo Collaboration over the following months determined the gravitational waves to originate from the final stage of the inspiral of two black holes with masses approximately 36 and 29 Msun merging to form a 62 Msun black hole located at a distance of roughly 410 Mpc.This discovery is remarkable in many ways. In addition to being the first direct measurement of a gravitational wave by an earth-based detector, this is the first observation of coalescing binary black hole system and the first evidence that ``heavy'' stellar mass black holes exist. The measured gravitational waveform was determined to be highly consistent with that predicted by general relativity for the merger of two black holes. In this talk, the first of two in this special session on the discovery of GW150914, I'll cover a number of topics related to the detection, including a brief description of the operation and performance of the Advanced LIGO detectors during the first `O1' Observing Run as well as the data quality verification methods used to determine the validity of the detection. I'll also present the searches that were used to find and establish the statistical confidence of the event, as well as provide an estimate of its sky localization. Finally, I will discuss the plans for future observations by LIGO, Virgo and other gravitational wave detectors over the next few years and, time permitting, present the short term and longer term programs for improving the sensitivity and range of gravitational wave detectors over the next ten years.

  20. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2017-02-01

    We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

  1. Inclination dependence of QPO phase lags in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Ingram, A.; Uttley, P.; Motta, S. E.; Belloni, T. M.; Gardenier, D. W.

    2017-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from ˜0.05to30 Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both type-B and type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the type-C QPO frequency strongly depends on inclination, both in evolution with the QPO frequency and sign. Although we find that the type-B QPO soft lags are associated with high-inclination sources, the source sample is too small to confirm that this as a significant inclination dependence. These results are consistent with a geometrical origin of type-C QPOs and a different origin for type-B and type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cycle, while the inclination dependence arises from differences in dominant relativistic effects. We also search for energy dependences in the type-C QPO frequency. We confirm this effect in the three known sources (GRS 1915+105, H1743-322 and XTE J1550-564) and newly detect it in XTE J1859+226. Lastly, our results indicate that the unknown inclination sources XTE J1859+226 and MAXI J1543-564 are most consistent with a high inclination.

  2. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew; Kidder, Lawrence; Ott, Christian; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated truncated moment formalism for neutrino transport. The moment formalism is included as a new module in the SpEC code. We describe the implementation and tests of this new module, and its use to study the formation phase of an accretion disk after a black hole-neutron star merger. We discuss differences with simpler treatments of the neutrinos, the importance of relativistic effects, and the impact of the formation phase of the disk on its expected long-term evolution. We also show that a small amount of material is ejected in the polar region during the circularization of the disk and its interactions with fallback material, and discuss its effects on potential electromagnetic counterparts to the merger.

  3. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Eikenberry, Stephen S.; Garner, Alan; Stelter, Richard D.; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S.; Marsh, Tom R.; Littlefair, Stuart P.; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J.; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A. J.; Charcos, Miguel; Edwards, Michelle L.; Lasso-Cabrera, Nestor M.; Marin-Franch, Antonio; Raines, S. Nicholas; Ackley, Kendall; Bennett, John G.; Cenarro, A. Javier; Chinn, Brian; Donoso, H. Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D.; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H.; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A. N.; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D.; Rodríguez Losada, José A.; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E.; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J. Esteban; Cáceres, J. Israel Fernández; Rodríguez García, Luis A.; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-01

    The binary system V404 Cygni consists of a red giant star orbiting a black hole. In 2015, a surge of accretion by the black hole caused the surrounding plasma to brighten suddenly for the first time since 1989, briefly becoming the brightest x-ray source in the sky. Dallilar et al. combined observations from radio, infrared, optical, and x-ray telescopes taken during the outburst. They compared how fast the flux decayed at each wavelength, which allowed them to constrain the size of the emitting region, determine that the plasma within it cooled through synchrotron radiation, and measure the magnetic field around the black hole.

  4. Outflow-driven Transients from the Birth of Binary Black Holes. I. Tidally Locked Secondary Supernovae

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    2017-12-01

    We propose a new type of electromagnetic transient associated with the birth of binary black holes (BBHs), which may lead to merger events accompanied by gravitational waves in ∼ 0.1{--}1 {Gyr}. We consider the newborn BBHs formed through the evolution of isolated massive stellar binaries. For a close massive binary, consisting of a primary black hole (BH) and a secondary Wolf–Rayet (WR) star that are orbiting around each other, the spin period of the WR star can be tidally synchronized to its orbital period. Then the angular momentum of the outer material of the WR star is large enough to form an accretion disk around a newborn, secondary BH, following its core-collapse. This disk may produce an energetic outflow with a kinetic energy of ∼ {10}50{--}{10}52 {erg} and an outflow velocity of ∼ {10}10 {cm} {{{s}}}-1, resulting in an optical transient with an absolute magnitude from approximately ‑14 to approximatley ‑17 with a duration of around a day. This type of transient also produces detectable radio signals ∼ 1{--}10 years after the birth of BBHs, via synchrotron emission from nonthermal electrons accelerated at external shocks. The predicted optical transients have a shorter duration than ordinary core-collapse supernovae. Dedicated optical transient surveys can detect them and distinguish them from ordinary SNe using the different features of its light curve and late-time spectrum. In this paper (Paper I), we investigate disk-driven outflows from the secondary BH, whereas possible signals from the primary BH will be discussed in Paper II.

  5. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    PubMed

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-07

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

  6. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Chu, T.; Clark, M.; Fauchon-Jones, E.; Fong, H.; Healy, J.; Hemberger, D.; Hinder, I.; Husa, S.; Kalaghati, C.; Khan, S.; Kidder, L. E.; Kinsey, M.; Laguna, P.; London, L. T.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pannarale, F.; Pfeiffer, H. P.; Scheel, M.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Vinuales, A. Vano; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-09-01

    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz∈[64 M⊙-82 M⊙] , mass ratio 1 /q =m2/m1∈[0.6 ,1 ], and effective aligned spin χeff∈[-0.3 ,0.2 ], where χeff=(S1/m1+S2/m2).L ^/M . Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1 ,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole

  7. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  8. Black Hole Mergers in the Universe.

    PubMed

    Portegies Zwart SF; McMillan

    2000-01-01

    Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6x10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.

  9. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2015-08-01

    We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  10. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.

    We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triplesmore » with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.« less

  11. Beyond the Black-White Binary of U.S. Race Relations: A Next Step in Religious Education

    ERIC Educational Resources Information Center

    Goto, Courtney T.

    2017-01-01

    Many if not most people in the academy as well as the public sphere tend to regard race and racism in the United States in terms of a default frame of reference (i.e., a paradigm): the black-white binary. Although this frame is constructive as well as compelling, it displays serious liabilities. This article outlines, for religious educators, nine…

  12. Black-hole Binaries: Life Begins at 40 keV

    NASA Astrophysics Data System (ADS)

    Belloni, Tomaso M.; Motta, Sara

    2009-05-01

    In the study of black-hole transients, an important problem that still needs to be answered is how the high-energy part of the spectrum evolves from the low-hard to the high-soft state, given that they have very different properties. Recent results obtained with RXTE and INTEGRAL have given inconsistent results. With RXTE, we have found that the high-energy cutoff in GX 339-4 during the transition first decreases (during the low-hard state), then increases again across the Hard-Intermediate state, to become unmeasurable in the soft states (possibly because of statistical limitations). We show Simbol-X will be able to determine the spectral shape with superb accuracy. As the high-energy part of the spectrum is relatively less known than the one below 20 keV, Simbol-X will provide important results that will help out understanding of the extreme physical conditions in the vicinity of a stellar-mass black hole.

  13. Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals

    NASA Astrophysics Data System (ADS)

    Lewis, Adam G. M.; Zimmerman, Aaron; Pfeiffer, Harald P.

    2017-06-01

    Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement with the leading order post-Newtonian prediction.

  14. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  15. Obtaining gravitational waves from inspiral binary systems using LIGO data

    NASA Astrophysics Data System (ADS)

    Antelis, Javier M.; Moreno, Claudia

    2017-01-01

    The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

  16. A TRANSIENT SUB-EDDINGTON BLACK HOLE X-RAY BINARY CANDIDATE IN THE DUST LANES OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2012-04-20

    We report the discovery of a bright X-ray transient CXOU J132527.6-430023 in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of (1-2) Multiplication-Sign 10{sup 38} erg s{sup -1} in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star (NS) X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to themore » dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100-fold increase in X-ray flux makes it either the first confirmed transient non-ultraluminous X-ray black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10{sup 38} erg s{sup -1}) transient NS X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disk blackbody model are typical of an accreting {approx}10 M{sub Sun} black hole in the thermally dominant state.« less

  17. A Circumbinary Disk Model for the Rapid Orbital Shrinkage in Black Hole Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Tian; Li, Xiang-Dong

    2018-05-01

    Several black hole low-mass X-ray binaries (BHLMXBs) show very fast orbital shrinkage, which is difficult to understand in the standard picture of the LMXB evolution. Based on the possible detection of a circumbinary (CB) disk in A0620-00 and XTE J1118+480, we investigate the influence of the interaction between a CB disk and the inner binary and calculate the evolution of the binary using the Modules for Experiments in Stellar Astrophysics. We consider two cases for the CB disk formation in which it is fed by mass loss during single outburst or successive outbursts in the LMXB. We show that when taking reasonable values of the initial mass and the dissipating time of the disk, it is possible to explain the fast orbital shrinkage in the BHLMXBs without invoking a high-mass transfer rate.

  18. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  19. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Baker, John G.; Boyle, Michael; Brügmann, Bernd; Chu, Tony; Dorband, Nils; Herrmann, Frank; Hinder, Ian; Kelly, Bernard J.; Kidder, Lawrence E.; Laguna, Pablo; Matthews, Keith D.; van Meter, James R.; Pfeiffer, Harald P.; Pollney, Denis; Reisswig, Christian; Scheel, Mark A.; Shoemaker, Deirdre

    2009-04-01

    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,|m|=2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code’s uncertainty estimates. The mismatch between the (ℓ=2,|m|=2) modes is better than 10-3 for binary masses above 60M⊙ with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙ with respect to Advanced LIGO, Virgo, and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10-4. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14, or less than ≈25 in the best cases.

  20. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Halpern, Jules P.; Eracleous, Michael

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less

  1. Theoretical studies of binaries in astrophysics

    NASA Astrophysics Data System (ADS)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  2. Constraining stellar binary black hole formation scenarios with LISA eccentricity measurements

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Nishizawa, Atsushi; Sesana, Alberto; Klein, Antoine

    2017-01-01

    A space-based interferometer such as LISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where LISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the LISA band. We generate mock LISA observations, folding in measurement errors, and using Bayesian model selection we study whether LISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of a MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A five-year LISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.

  3. Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.

    2008-08-15

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal mass to a 6 ratio 1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wave train, from inspiral through ringdown. We emphasizemore » strong relationships among the l=m modes that persist through the full wave train. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l=m modes among all mass ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.« less

  4. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity

    NASA Astrophysics Data System (ADS)

    Keitel, David; Forteza, Xisco Jiménez; Husa, Sascha; London, Lionel; Bernuzzi, Sebastiano; Harms, Enno; Nagar, Alessandro; Hannam, Mark; Khan, Sebastian; Pürrer, Michael; Pratten, Geraint; Chaurasia, Vivek

    2017-07-01

    For a brief moment, a binary black hole (BBH) merger can be the most powerful astrophysical event in the visible Universe. Here we present a model fit for this gravitational-wave peak luminosity of nonprecessing quasicircular BBH systems as a function of the masses and spins of the component black holes, based on numerical relativity (NR) simulations and the hierarchical fitting approach introduced by X. Jiménez-Forteza et al. [Phys. Rev. D 95, 064024 (2017)., 10.1103/PhysRevD.95.064024]. This fit improves over previous results in accuracy and parameter-space coverage and can be used to infer posterior distributions for the peak luminosity of future astrophysical signals like GW150914 and GW151226. The model is calibrated to the ℓ≤6 modes of 378 nonprecessing NR simulations up to mass ratios of 18 and dimensionless spin magnitudes up to 0.995, and includes unequal-spin effects. We also constrain the fit to perturbative numerical results for large mass ratios. Studies of key contributions to the uncertainty in NR peak luminosities, such as (i) mode selection, (ii) finite resolution, (iii) finite extraction radius, and (iv) different methods for converting NR waveforms to luminosity, allow us to use NR simulations from four different codes as a homogeneous calibration set. This study of systematic fits to combined NR and large-mass-ratio data, including higher modes, also paves the way for improved inspiral-merger-ringdown waveform models.

  5. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero; Volonteri, Marta

    2004-08-01

    We compute the expected low-frequency gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo ``merger tree.'' The merger history of dark matter halos and associated MBHs is followed via cosmological Monte Carlo realizations of the merger hierarchy from redshift z=20 to the present in a ΛCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center because of dynamical friction against the dark matter background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical (three-body) interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. A simple scheme is applied in which the ``loss cone'' is constantly refilled and a constant stellar density core forms because of the ejection of stars by the shrinking binary. The integrated emission from inspiraling MBH binaries at all redshifts is computed in the quadrupole approximation and results in a gravitational wave background (GWB) with a well-defined shape that reflects the different mechanisms driving the late orbital evolution. The characteristic strain spectrum has the standard hc(f)~f-2/3 behavior only in the range f=10-9to10-6 Hz. At lower frequencies the orbital decay of MBH binaries is driven by the ejection of background stars (``gravitational slingshot''), and the strain amplitude increases with frequency, hc(f)~f. In this range the GWB is dominated by 109-1010 Msolar MBH pairs coalescing at 0<~z<~2. At higher frequencies, f>10-6Hz, the strain amplitude, as steep as hc(f)~f-1.3, is shaped by the convolution of last stable circular orbit emission by lighter binaries (102-107 Msolar) populating galaxy halos at all redshifts. We discuss the

  6. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    PubMed

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  7. MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on themore » so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less

  8. Evolution of black holes in the galaxy

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.

    2000-08-01

    In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will

  9. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  10. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.

    2018-07-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  11. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  12. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  13. COSMIC probes into compact binary formation and evolution

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  14. Modelling the energy dependence of black hole binary flows

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ra'ad D.; Done, Chris

    2018-01-01

    We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.

  15. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  16. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates.

    PubMed

    Shapiro, Stuart L

    2017-05-15

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.

  17. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates

    PubMed Central

    Shapiro, Stuart L.

    2018-01-01

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790

  18. Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou

    2010-04-01

    The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.

  19. Implications of Binary Black Hole Detections on the Merger Rates of Double Neutron Stars and Neutron Star–Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Anuradha; Arun, K. G.; Sathyaprakash, B. S., E-mail: axg645@psu.edu, E-mail: kgarun@cmi.ac.in, E-mail: bss25@psu.edu

    We show that the inferred merger rate and chirp masses of binary black holes (BBHs) detected by advanced LIGO (aLIGO) can be used to constrain the rate of double neutron star (DNS) and neutron star–black hole (NSBH) mergers in the universe. We explicitly demonstrate this by considering a set of publicly available population synthesis models of Dominik et al. and show that if all the BBH mergers, GW150914, LVT151012, GW151226, and GW170104, observed by aLIGO arise from isolated binary evolution, the predicted DNS merger rate may be constrained to be 2.3–471.0 Gpc{sup −3} yr{sup −1} and that of NSBH mergersmore » will be constrained to 0.2–48.5 Gpc{sup −3} yr{sup −1}. The DNS merger rates are not constrained much, but the NSBH rates are tightened by a factor of ∼4 as compared to their previous rates. Note that these constrained DNS and NSBH rates are extremely model-dependent and are compared to the unconstrained values 2.3–472.5 Gpc{sup −3} yr{sup −1} and 0.2–218 Gpc{sup −3} yr{sup −1}, respectively, using the same models of Dominik et al. (2012a). These rate estimates may have implications for short Gamma Ray Burst progenitor models assuming they are powered (solely) by DNS or NSBH mergers. While these results are based on a set of open access population synthesis models, which may not necessarily be the representative ones, the proposed method is very general and can be applied to any number of models, thereby yielding more realistic constraints on the DNS and NSBH merger rates from the inferred BBH merger rate and chirp mass.« less

  20. Super-massive binary black holes in galaxies. Dynamical models and observed structures in Arp 5, 87, 214, 240, and NGC 4027, 6946

    NASA Astrophysics Data System (ADS)

    Anosova, Joanna P.

    2017-06-01

    On 14 Sept, 2015 The LIGO reported the first direct detection of gravitational waves and the first direct observation of a binary black hole. These observations demonstrate the existence of binary black holes in stellar systems predicted by Einstein in his general theory of relativity a century earlier.A lot of violent and complicated phenomena take place on different scales in the Universe. Many of them may be caused by multiple centers of gravitational attraction: planetary rings, accretion discs of various scales, peculiar structures of single galaxies and interacting galaxies. In this work, we show that various features of celestial objects can be understood by assuming the existence of two dominant centers of gravity in stellar systems.We study numerically the dynamical evolution of models with the central super-massive binary black holes and extended shells with numerous low-mass particles inside and around the orbits of binaries. These particles could be star clusters or gas and dust complexes. We consider several tens of thousands of initial conditions for the general three-body problem and compile them. We studied the dynamical evolution of all spherical shells together and separately. Our method permits us to study the individual trajectories of particles, their close double and triple approaches, and inspect the time-depending structures in the models. Multiple runs of the models allow us to classify the numerous strong triple interactions of the binary components with low-mass particles; frequently, the "gravitational slingshot" effect occurs in the center of systems. Such strong interactions of bodies are results in various structures with "dumb-bell" bars, close and open spirals, different types of flows, jets etc. These structures are often very similar the observed structures of galaxies.We found some combinations of the initial conditions and model parameters that produce at some time similar structures as that found in the galaxies Arp 5, 87, 214

  1. A model for 3:2 HFQPO pairs in black hole binaries based on cosmic battery

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Yin; Ye, Yong-Chun; Wang, Ding-Xiong; Li, Yang

    2016-04-01

    A model for 3:2 high-frequency quasi-periodic oscillations (HFQPOs) with 3:2 pairs observed in four black hole X-ray binaries (BHXBs) is proposed by invoking the epicyclic resonances with the magnetic connection (MC) between a spinning black hole (BH) with a relativistic accretion disc. It turns out that the MC can be worked out due to Poynting-Robertson cosmic battery, and the 3:2 HFQPO pairs associated with the steep power-law states can be fitted in this model. Furthermore, the severe damping problem in the epicyclic resonance model can be overcome by transferring energy from the BH to the inner disc via the MC process for emitting X-rays with sufficient amplitude and coherence to produce the HFQPOs. In addition, we discuss the important role of the magnetic field in state transition of BHXBs.

  2. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine

    2017-03-01

    A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA) could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using a Bayesian model selection, we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of an MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios.

  3. Gravitational Waves from Binary Black Hole Mergers inside Stars.

    PubMed

    Fedrow, Joseph M; Ott, Christian D; Sperhake, Ulrich; Blackman, Jonathan; Haas, Roland; Reisswig, Christian; De Felice, Antonio

    2017-10-27

    We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed stellar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a 30+30  M_{⊙} BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities ρ≳10^{6}-10^{7}  g cm^{-3} dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations appear to rule out BBH coalescence inside stellar gas of ρ≳10^{7}  g cm^{-3}. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.

  4. The signature of a black hole transit

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    1989-01-01

    This paper considers the possibility of identifying a black hole on the basis of the detection of some unique effect occurring during the transit of a black hole across the stellar disk of a companion star in a binary system. The results of Monte-Carlo calculations show that the amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation, but that a black hole transit might be detectable in a binary having a large separation of the components. No binary system suggested as containing a stellar-mass-sized black hole is a like candidate to exhibit an observable transit signature, with the possible exception of X Persei/4U0352+30 described by White et al. (1976).

  5. Multiwavength Observations of the Black Hole X-Ray Binary A0620-00 in Quiescence

    NASA Astrophysics Data System (ADS)

    Dinçer, Tolga; Bailyn, Charles D.; Miller-Jones, James C. A.; Buxton, Michelle; MacDonald, Rachel K. D.

    2018-01-01

    We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 since 2005, and by a factor of 7 since 2000. The spectrum has not changed significantly over this time, being consistent with a power law of {{Γ }}=2.07+/- 0.13 and a hydrogen column of {N}H=(3.0+/- 0.5)× {10}21 {{cm}}-2. Very Large Array observations of A0620-00 at three frequencies, over the interval of 5.25–22.0 GHz, have provided us with the first broadband radio spectrum of a quiescent stellar mass black hole system at X-ray luminosities as low as 10‑8 times the Eddington luminosity. Compared to previous observations, the source has moved to lower radio and higher X-ray luminosity, shifting it perpendicular to the standard track of the radio/X-ray correlation for X-ray binaries. The radio spectrum is inverted with a spectral index α =0.74+/- 0.19 ({S}ν \\propto {ν }α ). This suggests that the peak of the spectral energy distribution is likely to be between 1012 and 1014 Hz, and that the near-IR and optical flux contain significant contributions from the star, the accretion flow, and from the outflow. Decomposing these components may be difficult, but holds the promise of revealing the interplay between accretion and jet in low luminosity systems.

  6. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, Emanuele; Cardoso, Vitor; Gonzalez, Jose A.

    We study the inspiral, merger, and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M{sub 2}/M{sub 1}=1 to q=4). We compare numerical and post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the post-Newtonian series to the numerical results is nonmonotonic. To leading order, the total energy emitted in the merger phasemore » scales like {eta}{sup 2} and the spin of the final black hole scales like {eta}, where {eta}=q/(1+q){sup 2} is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three different definitions for the ringdown starting time. Applying linear-estimation methods (the so-called Prony methods) to the ringdown phase, we find resolution-dependent time variations in the fitted parameters of the final black hole. By cross correlating information from different multipoles, we show that ringdown fits can be used to obtain precise estimates of the mass and spin of the final black hole, which are in remarkable agreement with energy and angular momentum balance calculations.« less

  7. Bias in estimating accuracy of a binary screening test with differential disease verification

    PubMed Central

    Brinton, John T.; Ringham, Brandy M.; Glueck, Deborah H.

    2011-01-01

    SUMMARY Sensitivity, specificity, positive and negative predictive value are typically used to quantify the accuracy of a binary screening test. In some studies it may not be ethical or feasible to obtain definitive disease ascertainment for all subjects using a gold standard test. When a gold standard test cannot be used an imperfect reference test that is less than 100% sensitive and specific may be used instead. In breast cancer screening, for example, follow-up for cancer diagnosis is used as an imperfect reference test for women where it is not possible to obtain gold standard results. This incomplete ascertainment of true disease, or differential disease verification, can result in biased estimates of accuracy. In this paper, we derive the apparent accuracy values for studies subject to differential verification. We determine how the bias is affected by the accuracy of the imperfect reference test, the percent who receive the imperfect reference standard test not receiving the gold standard, the prevalence of the disease, and the correlation between the results for the screening test and the imperfect reference test. It is shown that designs with differential disease verification can yield biased estimates of accuracy. Estimates of sensitivity in cancer screening trials may be substantially biased. However, careful design decisions, including selection of the imperfect reference test, can help to minimize bias. A hypothetical breast cancer screening study is used to illustrate the problem. PMID:21495059

  8. Jets in black-hole and neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  9. Equation of State Effects on Binary Neutron Star and Neutron Star-Black Hole Merger Ejecta

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; Pankow, Chris; Kalogera, Vassiliki; Coughlin, Scott; Chase, Eve; Imperato, Sam

    2018-01-01

    Binary neutron stars (BNSs) and neutron star-black hole (NSBH) binaries are not only potential sources of gravitational waves (GWs), but also are thought to generate phenomena such as kilonova, which have proven to be difficult to catch with electromagnetic (EM) instruments. Kilonovae are believed to arise from the radioactive decay of nuclear matter ejected from NSBH and BNS mergers. As they spiral toward each other, neutron stars (NSs), composed of highly dense nuclear matter, are torn apart by their companion's gravity and eject matter. The amount of matter they eject depends sensitively on the composition of NSs, which is described by a nuclear equation of state (EOS). Using fit formulas for ejected mass from Kawaguchi et. al. (2016) and T. Dietrich and M. Ujevic (2016), for NSBH and BNS respectively, we calculate the amount of mass ejected given the initial parameters (masses, black hole spin, etc.) of NSBH and BNS systems. We then predict the distribution of ejected matter for populations of NSBH and BNS mergers, assuming a different EOS for each population. Using formulas derived from The Kilonova Handbook (Metzger, 2016), we can use the calculated ejected mass to generate light curves which, along with GW detections, can be used to place constraints on an EOS for NSs when GW detections are made. We find that the amount of ejected matter observed is distinct for most EOSs, though to draw any solid conclusions about NS composition, joint GW wave and EM counterpart detections are necessary.

  10. Reducing junk radiation and eccentricity in binary-black-hole initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Pfeiffer, Harald; Brown, Duncan; Lindblom, Lee; Scheel, Mark; Kidder, Lawrence

    2007-04-01

    Numerical simulations of binary-black-hole (BBH) collisions require initial data that satisfy the Einstein constraint equations. Several well-known methods generate constraint-satisfying BBH data, but the commonly-used simplifying assumptions lead to undesirable effects. BBH data typically assume a conformally flat spatial metric; this leads to an initial pulse of unphysical ``junk'' gravitational radiation. Also, the initial radial velocity of the holes is often neglected; this can lead to significant eccentricity in the holes' trajectories. This talk will discuss efforts to reduce these effects by constructing and evolving generalizations of the BBH initial data of Cook and Pfeiffer (2004). By giving the holes a small radial velocity, the eccentricity can be greatly reduced (although the emitted waves are largely unaffected). The junk radiation for flat and non-flat conformal metrics will also be compared.

  11. Lamb shift and the gravitational binding energy for binary black holes

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.

    2017-07-01

    We show that the correction to the gravitational binding energy for binary black holes due to the tail effect resembles the Lamb shift in the Hydrogen atom. In both cases a conservative effect arises from interactions with radiation modes, and moreover an explicit cancelation between near and far zone divergences is at work. In addition, regularization scheme-dependence may introduce "ambiguity parameters." This is remediated—within an effective field theory approach—by the implementation of the zero-bin subtraction. We illustrate the procedure explicitly for the Lamb shift, by performing an ambiguity-free derivation within the framework of nonrelativistic electrodynamics. We also derive the renormalization group equations from which we reproduce Bethe logarithm (at order αe5log αe), and likewise the contribution to the gravitational potential from the tail effect (proportional to v8log v ).

  12. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    NASA Astrophysics Data System (ADS)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-05-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modelled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106 M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the electromagnetic counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  13. Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotokezaka, Kenta; Piran, Tsvi

    We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf–Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintainsmore » its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ∼2–3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ∼0.5–1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.« less

  14. Binary black hole mergers within the LIGO horizon: statistical properties and prospects for detecting electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof

    2018-07-01

    Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.

  15. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  16. Binary Black Hole Mergers within the LIGO Horizon: Statistical Properties and prospects for detecting Electromagnetic Counterparts

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof

    2018-03-01

    Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.

  17. Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence

    NASA Astrophysics Data System (ADS)

    Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.

    2011-12-01

    We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts z<8. We evaluate the contributions of the inspiral, merger, and ring-down signals to the GWB, and discuss how these depend on the parameters which critically affect the number of coalescing (BH-BH) systems. We find that Advanced LIGO/Virgo have a chance to detect the GWB signal from the inspiral phase with a (S/N)=10 only for the most optimistic model, which predicts the highest local merger rate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated

  18. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  19. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  20. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less

  1. Approaching faithful templates for nonspinning binary black holes using the effective-one-body approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Alessandra; Pan Yi; Baker, John G.

    2007-11-15

    We present an accurate approximation of the full gravitational radiation waveforms generated in the merger of noneccentric systems of two nonspinning black holes. Utilizing information from recent numerical relativity simulations and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms during the last stages of inspiral, merger, and ringdown. By 'successfully' here, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated by the end of the ringdown phase, maximizing only over time of arrival and initial phase. We obtain this result bymore » simply adding a 4-post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m{sub 1}/m{sub 2}=1, 3/2, 2 and 4, m{sub 1} and m{sub 2} being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasinormal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the EOB light ring. The EOB waveforms might be tested and further improved in the future by comparison with extremely long and accurate inspiral numerical relativity waveforms. They may be already employed for coherent searches and parameter estimation of gravitational waves emitted by nonspinning coalescing binary black holes with ground-based laser-interferometer detectors.« less

  2. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  3. Constraining the Orbits of the Supermassive Binary Blackhole Pair 0402+379

    NASA Astrophysics Data System (ADS)

    Holland, Ben; Peck, Alison B.; Taylor, Gregory B.; Zavala, Robert T.; Romani, Roger W.

    2015-01-01

    Galaxy mergers are a relatively common occurrence in the Universe. Given that most large galaxies harbor supermassive black holes in their centers, it should follow that two supermassive black holes could be found in the centers of galaxies that have recently undergone a merger event. Supermassive black hole binaries (SMBHB) with small separation (referred to as "tight binaries"), however, are quite rare, implying that the mergers happen less often than we think, or that the binary black hole merger happens much more quickly than expected from simulations. We present observations of one of the best candidates for a tight SMBHB, 0402+379, made in 2003, 2005, and 2009 using the VLBA at 3 frequencies, and report on their apparent relative component motions over this time frame. Additionally, these results are compared to earlier observations of 0402+379 which can help establish a long time baseline. This information, although still preliminary, can be used to provide constraints on the orbits of this binary system which in turn may yield insight as to why these binary systems are not significantly more commonly detected in, for example, ULIRGs in the late stages of merger.

  4. GPU accelerated manifold correction method for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  5. Shrinking of Binaries in a WIMPY Background at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hills, J. G.

    2001-12-01

    The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.

  6. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.

    PubMed

    Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J

    2018-04-04

    The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  7. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy

    NASA Astrophysics Data System (ADS)

    Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.

    2018-04-01

    The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  8. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE PAGES

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    2017-09-01

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  9. Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102?

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi; Miller, M. Coleman

    2018-05-01

    Graham et al. reported a periodically varying quasar and supermassive black hole binary candidate, PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-time Transient Survey (CRTS). Its combined Lincoln Near-Earth Asteroid Research (LINEAR) and CRTS optical light curve is well fitted to a sinusoid of an observed period of ≈1884 days and well modeled by the relativistic Doppler boosting of the secondary mini-disk. However, the LINEAR+CRTS light curve from MJD ≈52,700 to MJD ≈56,400 covers only ∼2 cycles of periodic variation, which is a short baseline that can be highly susceptible to normal, stochastic quasar variability. In this Letter, we present a reanalysis of PG1302 using the latest light curve from the All-sky Automated Survey for Supernovae (ASAS-SN), which extends the observational baseline to the present day (MJD ≈58,200), and adopting a maximum likelihood method that searches for a periodic component in addition to stochastic quasar variability. When the ASAS-SN data are combined with the previous LINEAR+CRTS data, the evidence for periodicity decreases. For genuine periodicity one would expect that additional data would strengthen the evidence, so the decrease in significance may be an indication that the binary model is disfavored.

  10. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  11. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, Michael R.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both "stellar mass" x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  12. The Nearest Black Hole

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Garcia, Michael

    2005-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  13. Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Haiman, Zoltán

    2017-07-01

    The gravitational waves (GWs) from a binary black hole (BBH) with masses 104≲M ≲107 M⊙ can be detected with the Laser Interferometer Space Antenna (LISA) once their orbital frequency exceeds 10-4- 10-5 Hz . The binary separation at this stage is a =O (100 )Rg (gravitational radius), and the orbital speed is v /c =O (0.1 ). We argue that at this stage, the binary will be producing bright electromagnetic (EM) radiation via gas bound to the individual BHs. Both BHs will have their own photospheres in x-ray and possibly also in optical bands. Relativistic Doppler modulations and lensing effects will inevitably imprint periodic variability in the EM light curve, tracking the phase of the orbital motion, and serving as a template for the GW inspiral waveform. Advanced localization of the source by LISA weeks to months prior to merger will enable a measurement of this EM chirp by wide-field x-ray or optical instruments. A comparison of the phases of the GW and EM chirp signals will help break degeneracies between system parameters, and probe a fractional difference Δ v in the propagation speed of photons and gravitons as low as Δ v /c ≈10-17.

  14. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  15. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  16. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  17. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

    NASA Astrophysics Data System (ADS)

    Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael

    2017-03-01

    Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

  18. A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.

    2016-05-01

    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination I = 55°.

  19. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-06-01

    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.

  20. Is black-hole ringdown a memory of its progenitor?

    PubMed

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  1. The Blazar PG 1553+113 as a Binary System of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Cavaliere, A.; Munar-Adrover, Pere; Argan, A.

    2018-02-01

    The BL Lac PG 1553+113 has been continuously monitored in gamma-rays with Fermi-LAT for over 9 years. Its updated light curve now includes five iterations of a main pattern comprising a high peak and a longer trough, with a period P≃ 2.2 {year}. Our analysis of 2015–2017 data confirms the occurrence in 2017 January of a new peak fitting in with the previous trend. In addition, we identify secondary peaks (“twin peaks”) that occur in closely symmetric pairs on both sides of most main peaks, including the last one; their occurrence is supported by correlated X-ray outbursts. We stress that the above features strongly point to binary dynamics in a system of two black holes (BHs) of some 108 and {10}7 {M}ȯ . At periastron the smaller BH periodically stresses the jet j 1 launched by the heavier companion, and triggers MHD–kinetic tearing instabilities. These lead to magnetic reconnections and to acceleration of electrons that produce synchrotron emission from the optical to X-ray bands, and inverse Compton scattering into the GeV range. We discuss two possible origins of the twin peaks : a single-jet model, based on added instabilities induced in j 1 by the smaller companion BH on its inner orbital arc; and a two-jet model with the smaller BH supporting its own, precessing jet j 2 that contributes lower, specific GeV emissions. Such behaviors combining time stability with amplitude variations betray plasma instabilities driven in either jet by binary dynamics, and can provide a double signature of the long-sought supermassive BH binaries.

  2. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  3. Forecasting Tidal Disruption Events for Binary Black Holes with an Outer Tertiary.

    PubMed

    Seto, Naoki; Kyutoku, Koutarou

    2017-04-14

    We discuss the gravitational wave (GW) emission and the orbital evolution of a hierarchical triple system composed of an inner binary black hole (BBH) and an outer tertiary. Depending on the kick velocity at the merger, the merged BBH could tidally disrupt the tertiary. Even though the fraction of BBH mergers accompanied by such disruptions is expected to be much smaller than unity, the existence of a tertiary and its basic parameters (e.g., semimajor axis, projected mass) can be examined for more than 10^{3} BBHs with the follow-on missions to the space GW detector LISA. This allows us to efficiently prescreen the targets for the follow-up searches for the tidal disruption events (TDEs). The TDE probability would be significantly higher for triple systems with aligned orbital- and spin-angular momenta, compared with random configurations.

  4. A Search for Black Holes and Neutron Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David

    2018-01-01

    Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.

  5. A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2015-04-01

    The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.

  6. Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins

    NASA Astrophysics Data System (ADS)

    Isoyama, Soichiro; Nakano, Hiroyuki

    2018-01-01

    Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than  ∼10) and large aligned-spins (larger than  ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.

  7. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Scheel, Mark A.; Galley, Chad R.; Ott, Christian D.; Boyle, Michael; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla

    2017-07-01

    A generic, noneccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by seven intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einstein's equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all seven dimensions of the intrinsic noneccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of 744 numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to 0.8 and mass ratios up to 2, includes all ℓ≤4 modes, begins about 20 orbits before merger, and can be evaluated in ˜50 ms . We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that were not previously possible when using highly accurate waveforms, such as parameter inference and tests of general relativity with GW observations.

  8. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  9. Using LISA to Learn How Pairs of Black Holes Formed

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Artists impression of the European Space Agencys Laser Interferometer Space Antenna, currently planned for a 2034 launch. [NASA]How are black-hole binaries built? Observations of gravitational waves from these systems made using the European Space Agencys upcoming mission, the Laser Interferometer Space Antenna (LISA) may be able to reveal their origins.Formation ChannelsThere are two primary placeswhere stellar-mass black-hole binaries are thought to form:In isolation in the galactic field, as the components of a stellar binary independently evolve into black holes but remain bound to each other.In dense stellar environments like globular clusters, where the high density of already-formed black holes can cause a pair to dynamically interact and form a binary before being ejected from the cluster.Can we differentiate between these origins based on future detections of gravitational waves from black-hole binaries? A team of scientists led by Katelyn Breivik (CIERA, Northwestern University) thinks that we can!The gravitational-wave spectrum and how we detect it (click for a closer look!). While ground-based interferometers like LIGO detect black-hole binaries in the final moments before merger, LISAs lower frequency band will allow it to detect binaries earlier in their inspiral. [NASA Goddard SFC]Differentiation by EccentricityBreivik and collaborators believe that the key clue is the binarys eccentricity. Gravitational-wave emission will eventually circularize all black-hole binaries during their inspiral. But in the first formation scenario, binary evolution processes like tidal circularization and mass transfer will reduce the binarys eccentricity early on whereas in the second scenario, the binaries that form in globular clusters may retain eccentricity in their orbits long enough that we can detect it.Ground-based interferometers wont be up to this task; by the time the binary orbits shrink enough to evolve into the LIGO frequency band, the orbits wont have

  10. Einstein's Gift: Stellar Mass Black Holes in the LIGO Era

    NASA Astrophysics Data System (ADS)

    Cadonati, Laura; Georgia Institute of Technology, LIGO-Virgo Collaboration

    2017-01-01

    The discovery of gravitational waves from the coalescence of black hole binary systems in LIGO has provided the first evidence for heavy stellar mass black holes. In this talk, I will review the observational evidence for black holes in LIGO data, its astrophysical implications and the plans for the near and long term future of ground based gravitational wave detection of black hole binary coalescences.

  11. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    NASA Astrophysics Data System (ADS)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  12. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  13. Formation of the first three gravitational-wave observations through isolated binary evolution

    PubMed Central

    Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.

    2017-01-01

    During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively. PMID:28378739

  14. Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander H.

    2018-02-01

    ‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a  ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.

  15. Black hole mass function from gravitational wave measurements

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc

    2017-05-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.

  16. On the mass of the compact object in the black hole binary A0620-00

    NASA Technical Reports Server (NTRS)

    Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.

    1993-01-01

    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.

  17. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  18. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  19. A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743-322

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; van der Klis, Michiel; Middleton, Matthew; Done, Chris; Altamirano, Diego; Heil, Lucy; Uttley, Phil; Axelsson, Magnus

    2016-09-01

    Accreting stellar-mass black holes often show a `Type-C' quasi-periodic oscillation (QPO) in their X-ray flux and an iron emission line in their X-ray spectrum. The iron line is generated through continuum photons reflecting off the accretion disc, and its shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The physical origin of the QPO has long been debated, but is often attributed to Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red- and blueshift as the receding and approaching sides of the disc are respectively illuminated. Here we report on XMM-Newton and NuSTAR observations of the black hole binary H1743-322 in which the line energy varies systematically over the ˜4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO is produced by Lense-Thirring precession, constituting the first detection of this effect in the strong gravitation regime. There are however elements of our results harder to explain, with one section of data behaving differently than all the others. Our result enables the future application of tomographic techniques to map the inner regions of black hole accretion discs.

  20. Are merging black holes born from stellar collapse or previous mergers?

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Berti, Emanuele

    2017-06-01

    Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal detection of binary black holes during their first observing run. The first event, GW150914, was from the merger of two black holes much heavier that those whose masses have been estimated so far, indicating a formation scenario that might differ from "ordinary" stellar evolution. One possibility is that these heavy black holes resulted from a previous merger. When the progenitors of a black hole binary merger result from previous mergers, they should (on average) merge later, be more massive, and have spin magnitudes clustered around a dimensionless spin ˜0.7 . Here we ask the following question: can gravitational-wave observations determine whether merging black holes were born from the collapse of massive stars ("first generation"), rather than being the end product of earlier mergers ("second generation")? We construct simple, observationally motivated populations of black hole binaries, and we use Bayesian model selection to show that measurements of the masses, luminosity distance (or redshift), and "effective spin" of black hole binaries can indeed distinguish between these different formation scenarios.

  1. FIRST LONG-TERM OPTICAL SPECTRAL MONITORING OF A BINARY BLACK HOLE CANDIDATE E1821+643. I. VARIABILITY OF SPECTRAL LINES AND CONTINUUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.

    2016-02-15

    We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 daysmore » in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s{sup −1}. However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10{sup 9} M{sub ⊙}. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole.« less

  2. Late time cosmology with LISA: Probing the cosmic expansion with massive black hole binary mergers as standard sirens

    NASA Astrophysics Data System (ADS)

    Tamanini, Nicola

    2017-05-01

    This paper summarises the potential of the LISA mission to constrain the expansion history of the universe using massive black hole binary mergers as gravitational wave standard sirens. After briefly reviewing the concept of standard siren, the analysis and methodologies of Ref [1] are briefly outlined to show how LISA can be used as a cosmological probe, while a selection of results taken from Refs. [1, 2] is presented in order to estimate the power of LISA in constraining cosmological parameters.

  3. Initial data for high-compactness black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-05-01

    For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.

  4. Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor

    NASA Astrophysics Data System (ADS)

    Giacobbo, Nicola; Mapelli, Michela; Spera, Mario

    2018-03-01

    The first four gravitational wave events detected by LIGO were all interpreted as merging black hole binaries (BHBs), opening a new perspective on the study of such systems. Here we use our new population-synthesis code MOBSE, an upgraded version of BSE, to investigate the demography of merging BHBs. MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars. It also accounts for the impact of the electron-scattering Eddington factor on mass-loss. We perform >108 simulations of isolated massive binaries, with 12 different metallicities, to study the impact of mass-loss, core-collapse supernovae and common envelope on merging BHBs. Accounting for the dependence of stellar winds on the Eddington factor leads to the formation of black holes (BHs) with mass up to 65 M⊙ at metallicity Z ˜ 0.0002. However, most BHs in merging BHBs have masses ≲ 40 M⊙. We find merging BHBs with mass ratios in the 0.1-1.0 range, even if mass ratios >0.6 are more likely. We predict that systems like GW150914, GW170814 and GW170104 can form only from progenitors with metallicity Z ≤ 0.006, Z ≤ 0.008 and Z ≤ 0.012, respectively. Most merging BHBs have gone through a common envelope phase, but up to ˜17 per cent merging BHBs at low metallicity did not undergo any common envelope phase. We find a much higher number of mergers from metal-poor progenitors than from metal-rich ones: the number of BHB mergers per unit mass is ˜10-4 M_{⊙}^{-1} at low metallicity (Z = 0.0002-0.002) and drops to ˜10-7 M_{⊙}^{-1} at high metallicity (Z ˜ 0.02).

  5. Searches for all types of binary mergers in the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn

    2017-01-01

    The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations

  6. Robust GRMHD Evolutions of Merging Black-Hole Binaries in Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Kelly, Bernard; Etienne, Zachariah; Giacomazzo, Bruno; Baker, John

    2016-03-01

    Black-hole binary (BHB) mergers are expected to be powerful sources of gravitational radiation at stellar and galactic scales. A typical astrophysical environment for these mergers will involve magnetized plasmas accreting onto each hole; the strong-field gravitational dynamics of the merger may churn this plasma in ways that produce characteristic electromagnetic radiation visible to high-energy EM detectors on and above the Earth. Here we return to a cutting-edge GRMHD simulation of equal-mass BHBs in a uniform plasma, originally performed with the Whisky code. Our new tool is the recently released IllinoisGRMHD, a compact, highly-optimized ideal GRMHD code that meshes with the Einstein Toolkit. We establish consistency of IllinoisGRMHD results with the older Whisky results, and investigate the robustness of these results to changes in initial configuration of the BHB and the plasma magnetic field, and discuss the interpretation of the ``jet-like'' features seen in the Poynting flux post-merger. Work supported in part by NASA Grant 13-ATP13-0077.

  7. Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-05-01

    Binary black holes radiate linear momentum in gravitational waves as they merge. Recoils imparted to the black-hole remnant can reach thousands of km /s , thus ejecting black holes from their host galaxies. We exploit recent advances in gravitational waveform modeling to quickly and reliably extract recoils imparted to generic, precessing, black-hole binaries. Our procedure uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters; then, from this waveform we directly integrate the gravitational-wave linear momentum flux. This entirely bypasses the need for fitting formulas which are typically used to model black-hole recoils in astrophysical contexts. We provide a thorough exploration of the black-hole kick phenomenology in the parameter space, summarizing and extending previous numerical results on the topic. Our extraction procedure is made publicly available as a module for the Python programming language named surrkick. Kick evaluations take ˜0.1 s on a standard off-the-shelf machine, thus making our code ideal to be ported to large-scale astrophysical studies.

  8. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  9. Precision Measurement of Black Hole Binary Dynamics: Analyzing the LISA Data Stream

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Arnaud, Keith A.; Kelly, Bernard J.

    2008-01-01

    One of the richest potential sources of insight into fundamental physics that LISA will be capable of observing is the inspiral of supermassive black hole binaries (BHBs). However, the data analysis challenge presented by the LISA data stream is quite unlike the situation for present day gravitational wave detectors. In order to make the precision measurements necessary to achieve LISA's science goals, the BHB signal must be distinguished from a data stream that not only contains instrumental noise, but potentially thousands of other signals as well, so that the "background" we wish to separate out to focus on the BHB signal is likely to be highly nonstationary and nongaussian, as well as being of scientific interest in its own right. In addition, whereas the theoretical templates that we calculate in order to ultimately estimate the parameters can afford to be somewhat inaccurate and still be effective for present day and near future detectors, this is not the case for LISA, and extremely high fidelity of the theoretical templates for high signal-to-noise signals will be required to prevent theoretical errors from dominating the parameter estimates. NVe, will describe efforts in the community of LISA data analysts to address the challenges regarding the specific issue of BHB signals. These efforts include using a Markov Chain Monte Carlo approach with the freedom to model the BHB and the other signals present in the data stream simultaneously, rather than trying to remove other signals and risk biasing the remaining data. The Mock LISA Data Challenge is a community of LISA scientists who generate rounds of simulated LISA noise with increasingly difficult signal content, and invite the LISA data analysis community to exercise their methods, or develop new methods, in an attempt to extract the parameters for the signals embedded in the mock data. In addition to practical approaches such ,is this to assess the level of parameter accuracy, one can apply the Fisher

  10. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  11. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  12. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  13. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Roedig, C.; Reynolds, M. T.; Dotti, M.

    2012-02-01

    In the decade of the dawn of gravitational wave astronomy, the concept of multimessenger astronomy, combining gravitational wave signals to conventional electromagnetic observation, has attracted the attention of the astrophysical community. So far, most of the effort has been focused on ground- and space-based laser interferometer sources, with little attention devoted to the ongoing and upcoming pulsar timing arrays (PTAs). We argue in this paper that PTA sources, being very massive (>108 M⊙) cosmologically nearby (z < 1) black hole binaries (MBHBs), are particularly appealing multimessenger carriers. According to current models for massive black hole formation and evolution, the planned Square Kilometre Array will observe thousands of such massive systems, being able to individually resolve and locate in the sky several of them (maybe up to a hundred). MBHBs form in galaxy mergers, which are usually accompanied by strong inflows of gas in the centre of the merger remnant. By employing a standard model for the evolution of MBHBs in circumbinary discs, with the aid of dedicated numerical simulations, we characterize the gas-binary interplay, identifying possible electromagnetic signatures of the PTA sources. We concentrate our investigation on two particularly promising scenarios in the high-energy domain, namely the detection of X-ray periodic variability and double broad Kα iron lines. Up to several hundreds of periodic X-ray sources with a flux >10-13 erg s-1 cm-2 will be in the reach of upcoming X-ray observatories; in the most optimistic case, a few of them may be already being observed by the MAXI detector placed on the International Space Station. Double relativistic Kα lines may be observable in a handful of low-redshift (z < 0.3) sources by proposed deep X-ray probes, such as Athena. The exact figures depend on the details of the adopted MBHB population and on the properties of the circumbinary discs, but the existence of a sizeable population of

  14. Critical phenomena at the threshold of immediate merger in binary black hole systems: The extreme mass ratio case

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Akcay, Sarp; Barack, Leor; Nagar, Alessandro

    2012-10-01

    In numerical simulations of black hole binaries, Pretorius and Khurana [Classical Quantum Gravity 24, S83 (2007)CQGRDG0264-938110.1088/0264-9381/24/12/S07] have observed critical behavior at the threshold between scattering and immediate merger. The number of orbits scales as n≃-γln⁡|p-p*| along any one-parameter family of initial data such that the threshold is at p=p*. Hence, they conjecture that in ultrarelativistic collisions almost all the kinetic energy can be converted into gravitational waves if the impact parameter is fine-tuned to the threshold. As a toy model for the binary, they consider the geodesic motion of a test particle in a Kerr black hole spacetime, where the unstable circular geodesics play the role of critical solutions, and calculate the critical exponent γ. Here, we incorporate radiation reaction into this model using the self-force approximation. The critical solution now evolves adiabatically along a sequence of unstable circular geodesic orbits under the effect of the self-force. We confirm that almost all the initial energy and angular momentum are radiated on the critical solution. Our calculation suggests that, even for infinite initial energy, this happens over a finite number of orbits given by n∞≃0.41/η, where η is the (small) mass ratio. We derive expressions for the time spent on the critical solution, number of orbits and radiated energy as functions of the initial energy and impact parameter.

  15. LIGO Discovers the Merger of Two Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Big news: the Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected its first gravitational-wave signal! Not only is the detection of this signal a major technical accomplishment and an exciting confirmation of general relativity, but it also has huge implications for black-hole astrophysics.What did LIGO see?LIGO is designed to detect the ripples in space-time created by two massive objects orbiting each other. These waves can reach observable amplitudes when a binary system consisting of two especially massive objects i.e., black holes or neutron stars reach the end of their inspiral and merge.LIGO has been unsuccessfully searching for gravitational waves since its initial operations in 2002, but a recent upgrade in its design has significantly increased its sensitivity and observational range. The first official observing run of Advanced LIGO began 18 September 2015, but the instruments were up and running in engineering mode several weeks before that. And it was in this time frame before official observing even began! that LIGO spotted its first gravitational wave signal: GW150914.One of LIGOs two detection sites, located near Hanford in eastern Washington. [LIGO]The signal, detected on 14 September, 2015, provides astronomers with a remarkable amount of information about the merger that caused it. From the detection, the LIGO team has extracted the masses of the two black holes that merged, 36+5-4 and 29+4-4 solar masses, as well as the mass of the final black hole formed by the merger, ~62 solar masses. The team also determined that the merger happened roughly a billion light-years away (at a redshift of z~0.1), and the direction of the signal was localized to an area of ~600 square degrees (roughly 1% of the sky).Why is this detection a big deal?This is the firstdirect detection of gravitational waves, providing spectacular further confirmation of Einsteins theory of general relativity. But the implications of GW150914 go far beyond this

  16. On the accuracy of the interdiffusion coefficient measurements of high-temperature binary mixtures under ISS conditions

    NASA Astrophysics Data System (ADS)

    Saez, Núria; Ruiz, Xavier; Pallarés, Jordi; Shevtsova, Valentina

    2013-04-01

    An accelerometric record from the IVIDIL experiment (ESA Columbus module) has exhaustively been studied. The analysis involved the determination of basic statistical properties as, for instance, the auto-correlation and the power spectrum (second-order statistical analyses). Also, and taking into account the shape of the associated histograms, we address another important question, the non-Gaussian nature of the time series using the bispectrum and the bicoherence of the signals. Extrapolating the above-mentioned results, a computational model of a high-temperature shear cell has been performed. A scalar indicator has been used to quantify the accuracy of the diffusion coefficient measurements in the case of binary mixtures involving photovoltaic silicon or liquid Al-Cu binary alloys. Three different initial arrangements have been considered, the so-called interdiffusion, centred thick layer and the lateral thick layer. Results allow us to conclude that, under the conditions of the present work, the diffusion coefficient is insensitive to the environmental conditions, that is to say, accelerometric disturbances and initial shear cell arrangement.

  17. A global study of type B quasi-periodic oscillation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Gao, H. Q.; Zhang, Liang; Chen, Yupeng; Zhang, Zhen; Chen, Li; Zhang, Shuang-Nan; Zhang, Shu; Ma, Xiang; Li, Zi-Jian; Bu, Qing-Cui; Qu, JinLu

    2017-04-01

    We performed a global study on the timing and spectral properties of type-B quasi-periodic oscillations (QPOs) in the outbursts of black hole X-ray binaries. The sample is built based on the observations of Rossi X-ray Timing Explorer (RXTE), via searching in the literature in RXTE era for all the identified type-B QPOs. To enlarge the sample, we also investigated some type-B QPOs that are reported but not yet fully identified. Regarding to the time lag and hard/soft flux ratio, we found that the sources with type-B QPOs behave in two subgroups. In one subgroup, type-B QPO shows a hard time lag that first decreases and then reverse into a soft time lag along with softening of the energy spectrum. In the other subgroup, type-B QPOs distribute only in a small region with hard time lag and relatively soft hardness. These findings may be understood with a diversity of the homogeneity showing up for the hot inner flow of different sources. We confirm the universality of a positive relation between the type-B QPO frequency and the hard component luminosity in different sources. We explain the results by considering that the type-B QPO photons are produced in the inner accretion flow around the central black hole, under a local Eddington limit. Using this relationship, we derived a mass estimation of 9.3-27.1 M⊙ for the black hole in H 1743-322.

  18. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  19. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  20. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  1. Binary Systems as Test-Beds of Gravity Theories

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.

  2. Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system.

    PubMed

    Valsecchi, Francesca; Glebbeek, Evert; Farr, Will M; Fragos, Tassos; Willems, Bart; Orosz, Jerome A; Liu, Jifeng; Kalogera, Vassiliki

    2010-11-04

    The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ∼16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.

  3. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    PubMed

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  4. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  5. Structured Forms Reference Set of Binary Images (SFRS)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images (SFRS) (Web, free access)   The NIST Structured Forms Database (Special Database 2) consists of 5,590 pages of binary, black-and-white images of synthesized documents. The documents in this database are 12 different tax forms from the IRS 1040 Package X for the year 1988.

  6. Supermassive Black Hole Binaries in High Performance Massively Parallel Direct N-body Simulations on Large GPU Clusters

    NASA Astrophysics Data System (ADS)

    Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.

    2012-07-01

    Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.

  7. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  8. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  9. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  10. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation thatmore » is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.« less

  11. Gravitational self-force meets the post-Newtonian approximation in extreme-mass ratio inspiral of binary black holes

    NASA Astrophysics Data System (ADS)

    Detweiler, Steven

    2010-02-01

    Post-Newtonian analysis, numerical relativity and, now, perturbation-based gravitational self-force analysis are all being used to describe various aspects of black hole binary systems. Recent comparisons between self-force analysis, with m1m2, and post-Newtonian analysis, with v/c 1 show excellent agreement in their common domain of validity. This lends credence to the two very different regularization procedures which are invoked in these approximations. When self-force analysis is able to create gravitational waveforms from extreme mass-ratio inspiral, then unprecedented cross cultural comparisons of these three distinct approaches to understanding gravitational waves will reveal the strengths and weaknesses of each. )

  12. surrkick: Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-04-01

    surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

  13. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  14. Investigations of black-hole spectra: Purely-imaginary modes and Kerr ringdown radiation

    NASA Astrophysics Data System (ADS)

    Zalutskiy, Maxim P.

    When black holes are perturbed they give rise to characteristic waves that propagate outwards carrying information about the black hole. In the linear regime these waves are described in terms of quasinormal modes (QNM). Studying QNM is an important topic which may provide a connection to the quantum theory of gravity in addition to their astrophysical applications. Quasinormal modes correspond to complex frequencies where the real part represents oscillation and the imaginary part represents damping. We have developed a new code for calculating QNM with high precision and accuracy, which we applied to the Schwarzschild and Kerr geometries. The high accuracy of our calculations was a significant improvement over prior work, allowing us to compute QNM much closer to the negative imaginary axis (NIA) than it was possible before. The existence of QNM on the NIA has remained poorly understood, but our high accuracy studies have highlighted the importance of understanding their nature. In this work we show how the purely-imaginary modes can be calculated with the help of the theory of confluent Heun polynomials with the conclusion that all modes on the NIA correspond to polynomial solutions. We also show that certain types of these modes correspond to Kerr QNM. Finally, using our highly accurate QNM data we model the ringdown, a remnant black hole's decaying radiation. Ringdown occurs in the final stages of such violent astrophysical events as supernovae and black hole collisions. We use our model to analyse the ringdown waveforms from the publicly available binary black hole coalescence catalog maintained by the SXS collaboration. In our analysis we use a number of methods: Fourier transform, multi-mode nonlinear fitting and waveform overlap. Both our fitting and overlap approach allow inclusion of many modes in the ringdown model with the goal being to extract information about the nature of the astrophysical source of the ringdown signal.

  15. Black hole dynamics in Einstein-Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2018-03-01

    We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.

  16. Are LIGO's Black Holes Made From Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  17. Solving puzzles of GW150914 by primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blinnikov, S.; Dolgov, A.; Porayko, N.K.

    The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the products of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes.more » The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed.« less

  18. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  19. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  20. Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; O'Shaughnessy, Richard; Kesden, Michael; Berti, Emanuele; Sperhake, Ulrich

    2014-06-01

    If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, Smathvariant="bold">1 and Smathvariant="bold">2, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.

  1. Features of globular cluster's dynamics with an intermediate-mass black hole

    NASA Astrophysics Data System (ADS)

    Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.

    2018-02-01

    In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.

  2. Accurate Black Hole Spin Measurements using ABC

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew

    Measuring the spin of black holes provides important insights into the supernova formation mechanism of stellar-mass black holes, galaxy merger scenarios for supermassive black holes, and the launching mechanisms of ballistic jets. It is therefore of crucial importance to measure black hole spins to a high degree of accuracy. Stellar-mass black holes in binary systems (BHBs) have two major advantages over Active Galactic Nuclei (AGN): (1) owing to their proximity and brightness, observations of BHBs are not as limited by counting statistics as their supermassive counter-parts; (2) unlike in AGN, one can use two largely independent methods to measure the spin in BHBs, providing a check on spin measurements. However, the high flux that makes BHBs such excellent targets for spin measurements also proves to be their Achilles heel: modern CCD cameras are optimized for observing faint sources. Consequently, observations of bright BHBs with CCD cameras are subject to non-linear instrumental effects among them pile-up and grade migration that strongly distort the spectrum. Since spin measurements rely on a very precise model of both the continuum X-ray flux and disc reflection signatures superimposed on top of the former, these instrumental effects may cause inferred spin measurements to differ by a factor of two or more. Current mitigation strategies are aimed at removing instrumental effects either during the observations themselves, by requiring simultaneous observations with multiple telescopes, or in post-processing. Even when these techniques are employed, pile-up may remain unrecognized and still distort results, whereas mitigation strategies may introduce additional systematic biases, e.g. due to increased (cross-)calibration uncertainties. Advances in modern statistical methodology allow for efficient modeling of instrumental effects during the analysis stage, largely eliminating the requirements for observations with multiple instruments or increased observation

  3. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  4. Numerical simulations of merging black holes for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2014-03-01

    Gravitational waves from merging binary black holes (BBHs) are among the most promising sources for current and future gravitational-wave detectors. Accurate models of these waves are necessary to maximize the number of detections and our knowledge of the waves' sources; near the time of merger, the waves can only be computed using numerical-relativity simulations. For optimal application to gravitational-wave astronomy, BBH simulations must achieve sufficient accuracy and length, and all relevant regions of the BBH parameter space must be covered. While great progress toward these goals has been made in the almost nine years since BBH simulations became possible, considerable challenges remain. In this talk, I will discuss current efforts to meet these challenges, and I will present recent BBH simulations produced using the Spectral Einstein Code, including a catalog of publicly available gravitational waveforms [black-holes.org/waveforms]. I will also discuss simulations of merging black holes with high mass ratios and with spins nearly as fast as possible, the most challenging regions of the BBH parameter space.

  5. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-01

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick vk≳50 km /s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  6. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks.

    PubMed

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-07

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick v_{k}≳50  km/s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  7. Accretion of clumpy cold gas onto massive black hole binaries: the challenging formation of extended circumbinary structures

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto

    2018-05-01

    Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.

  8. A large systematic search for close supermassive binary and rapidly recoiling black holes - III. Radial velocity variations

    NASA Astrophysics Data System (ADS)

    Runnoe, Jessie C.; Eracleous, Michael; Pennell, Alison; Mathes, Gavin; Boroson, Todd; Sigurðsson, Steinn; Bogdanović, Tamara; Halpern, Jules P.; Liu, Jia; Brown, Stephanie

    2017-06-01

    We have been spectroscopically monitoring 88 quasars selected to have broad Hβ emission lines offset from their systemic redshift by thousands of km s-1. By analogy with single-lined spectroscopic binary stars, we consider these quasars to be candidates for hosting supermassive black hole binaries (SBHBs). In this work, we present new radial velocity measurements, typically three to four per object over a time period of up to 12 yr in the observer's frame. In 29/88 of the SBHB candidates, no variability of the shape of the broad Hβ profile is observed, which allows us to make reliable measurements of radial velocity changes. Among these, we identify three objects that have displayed systematic and monotonic velocity changes by several hundred km s-1 and are prime targets for further monitoring. Because the periods of the hypothetical binaries are expected to be long, we cannot hope to observe many orbital cycles during our lifetimes. Instead, we seek to evaluate the credentials of the SBHB candidates by attempting to rule out the SBHB hypothesis. In this spirit, we present a method for placing a lower limit on the period, and thus the mass, of the SBHBs under the assumption that the velocity changes we observe are due to orbital motion. Given the duration of our monitoring campaign and the uncertainties in the radial velocities, we were able to place a lower limit on the total mass in the range 4.7 × 104-3.8 × 108 M⊙, which does not yet allow us to rule out the SBHB hypothesis for any candidates.

  9. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  10. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  11. BOOSTED TIDAL DISRUPTION BY MASSIVE BLACK HOLE BINARIES DURING GALAXY MERGERS FROM THE VIEW OF N -BODY SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuo; Berczik, Peter; Spurzem, Rainer

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N -body simulations for dry major mergers. According tomore » the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N -body simulation results to reality, and the implications of our results to observations.« less

  12. Designing a Template Bank to Observe Compact Binary Coalescences in Advanced Ligo's Second Observing Run

    NASA Technical Reports Server (NTRS)

    Dal Canton, Tito; Harry, Ian W.

    2017-01-01

    We describe the methodology and novel techniques used to construct a set of waveforms, or template bank, applicable to searches for compact binary coalescences in Advanced LIGO's second observing run. This template bank is suitable for observing systems composed of two neutron stars, two black holes, or a neutron star and a black hole. The Post-Newtonian formulation is used to model waveforms with total mass less than 4 Solar Mass and the most recent effective-one-body model, calibrated to numerical relativity to include the merger and ringdown, is used for total masses greater than 4 Solar Mass. The effects of spin precession, matter, orbital eccentricity and radiation modes beyond the quadrupole are neglected. In contrast to the template bank used to search for compact binary mergers in Advanced LIGO's first observing run, here we are including binary-black-hole systems with total mass up to several hundreds of solar masses, thereby improving the ability to observe such systems. We introduce a technique to vary the starting frequency of waveform filters so that our bank can simultaneously contain binary-neutron-star and high-mass binary-black hole waveforms. We also introduce a lower-bound on the filter waveform length, to exclude very short-duration, high-mass templates whose sensitivity is strongly reduced by the characteristics and performance of the interferometers.

  13. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  14. Mental Effort in Binary Categorization Aided by Binary Cues

    ERIC Educational Resources Information Center

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  15. Numerical binary black hole mergers in dynamical Chern-Simons gravity: Scalar field

    NASA Astrophysics Data System (ADS)

    Okounkova, Maria; Stein, Leo C.; Scheel, Mark A.; Hemberger, Daniel A.

    2017-08-01

    Testing general relativity in the nonlinear, dynamical, strong-field regime of gravity is one of the major goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires numerical inspiral, merger, and ringdown waveforms for binary black hole (BBH) systems in theories beyond GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that have a continuous limit to GR. We demonstrate this scheme by simulating BBH mergers in dynamical Chern-Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent LIGO detections could place on the new dCS length scale, approximately ℓ≲O (10 ) km .

  16. Featured Image: Making a Rapidly Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  17. Stellar binary black holes in the LISA band: a new class of standard sirens

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Sesana, Alberto; Klein, Antoine

    2018-04-01

    The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a new class of cosmological standard sirens. Direct LISA luminosity distance - Dl - measurements, combined with the inhomogeneous redshift - z - distribution of possible host galaxies provide an effective way to populate the Dl-z diagram at z < 0.1, thus allowing a precise local measurement of the Hubble expansion rate. To be effective, the method requires a sufficiently precise LISA distance determination and sky localization of a sizeable number of BHBs, which is best achieved for a six-link detector configuration. We find that, for a BHB population consistent with current fiducial LIGO rates, the Hubble constant H0 can be determined at the ˜5 per cent and ˜2 per cent level (68 per cent confidence), assuming two and five million kilometre arm-length, respectively.

  18. Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Howell, E. J.; Chan, M. L.; Chu, Q.; Jones, D. H.; Heng, I. S.; Lee, H.-M.; Blair, D.; Degallaix, J.; Regimbau, T.; Miao, H.; Zhao, C.; Hendry, M.; Coward, D.; Messenger, C.; Ju, L.; Zhu, Z.-H.

    2018-03-01

    The detection of black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper, we report the science benefits of one or two 8 km arm length detectors based on the doubling of key parameters in an Advanced LIGO-type detector, combined with realizable enhancements. It is shown that the total detection rate for sources similar to those already detected would increase to ˜ 103-105 per year. Within 0.4 Gpc, we find that around 10 of these events would be localizable to within ˜10-1 deg2. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution, and cosmological studies.

  19. Black Hole Kicks as New Gravitational Wave Observables.

    PubMed

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  20. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    PubMed

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  1. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2018-01-01

    Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.

  2. Chandra Reveals Nest of Tight Binaries in Dense Cluster

    NASA Astrophysics Data System (ADS)

    2001-05-01

    than we would expect based on the number of their likely progenitors we found," said co-author Peter Edmonds, also of the CfA. "While there is a general consensus on how some of the millisecond pulsars form, these new data suggest that there need to be other methods to create them." In addition to the millisecond pulsars, Chandra also detected other important populations of binary systems, including those with white dwarf stars and normal stars, and others where pairs of normal stars undergo large flares induced by their close proximity. The Chandra data also indicate an apparent absence of a central black hole. Stellar-sized mass black holes -- those about five to ten times as massive as the Sun -- have apparently not coalesced to the center of the star cluster. All or most stellar-sized black holes that formed over the lifetime of the cluster have likely been ejected by their slingshot encounters with binaries deep in the cluster core. "These results show that binary star systems are a source of gravitational energy which ejects stellar mass black holes and prevents the collapse of the cluster’s core to a more massive, central black hole," said the CfA's Craig Heinke. "In other words, binary systems - not black holes - are the dynamical heat engines that drive the evolution of globular clusters." Chandra observed 47 Tucanae on March 16-17, 2000, for a period of 74,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  3. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  4. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  5. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  6. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  7. Searching for the full symphony of black hole binary mergers

    NASA Astrophysics Data System (ADS)

    Harry, Ian; Bustillo, Juan Calderón; Nitz, Alex

    2018-01-01

    Current searches for the gravitational-wave signature of compact binary mergers rely on matched-filtering data from interferometric observatories with sets of modeled gravitational waveforms. These searches currently use model waveforms that do not include the higher-order mode content of the gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from omitting higher-order modes. We present a new method for searching for compact binary mergers using waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when including the fact that signal-consistency tests can reject some signals that include higher-order mode content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-mass systems. For systems with equal mass, or with total mass ˜50 M⊙, we see more modest sensitivity increases, <10 %, which indicates that the existing search is already performing well. Our new search method is also directly applicable in searches for generic compact binaries.

  8. A new, sophisticated test of the Binary Black Hole Hypothesis for Quasars with Double-peaked Broad Balmer Lines.

    NASA Astrophysics Data System (ADS)

    Nguyen Duy Doan, Anh; Eracleous, Michael; Runnoe, Jessie; Halpern, Jules P.; Liu, Jia; Mathes, Gavin; Flohic, Helene M. L. G.

    2018-01-01

    Displaced peaks in the Balmer lines of quasars could serve as indirect evidence for the existence of close, bound supermassive black hole binaries (SBHBs) at sub-parsec separations. In this work, we test the SBHB hypothesis for 14 quasars with double-peaked emission lines using their long-term radial velocity curves. We make use of a Markov Chain Monte Carlo method to explore the parameter space efficiently. Compared to previous works, we have relaxed the assumption of circular orbits, adding two parameters (eccentricity and argument of periapsis) to the parameter space. We also account for jitter, i.e., short-term fluctuations in the radial velocity curves due to processes that are intrinsic to an individual broad-line region. We have found that the distribution of jitter about a smooth radial velocity curve resembles a Gaussian. Thus, jitter is equivalent to increasing measurement uncertainty in individual measurements. The resulting posterior distributions show the lower mass limit of the SBHBs to be in the range of 10^8 - 10^11 solar masses. For several objects, the mass limit drops by a few orders of magnitude compared to previous results by Liu et. al. However, we note that solutions corresponding to minimum masses often require very high orbital eccentricity ( > 0.9). We also calculate the orbital decay timescale of the binaries due to gravitational radiation, finding values in the range 10^6 - 10^11 years; these values correspond to the minimum-mass solutions. For one third of our targets, we can confidently disfavor the SBHB hypothesis on the basis that the minimum mass exceeds even the most massive black holes measured so far (2 x 10^10 solar masses). For the remaining objects, we must take into account the plausibility of a variety of parameters (e.g. eccentricity, lifetime, etc.) in our evaluation.

  9. Extreme jet ejections from the black hole X-ray binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Rosolowsky, E. W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Russell, T. D.; Sarazin, C. L.

    2017-08-01

    We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of a BHXB jet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well. With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.

  10. GRAVITATIONAL WAVE EXTRACTION FROM AN INSPIRALING CONFIGURATION OF MERGING BLACK HOLES

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Dae-Il, Choi; Koppitz, Michael; van Meter, James

    2005-01-01

    We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.

  11. Orbit of the OJ287 black hole binary as determined from the General Relativity centenary flare

    NASA Astrophysics Data System (ADS)

    Valtonen, Mauri; Gopakumar, Achamveedu; Mikkola, Seppo; Zola, Staszek; Ciprini, Stefano; Matsumoto, Katsura; Sadakane, Kozo; Kidger, Mark; Gazeas, Kosmas; Nilsson, Kari; Berdyugin, Andrei; Piirola, Vilppu; Jermak, Helen; Baliyan, Kiran; Hudec, Rene; Reichart, Daniel

    2016-05-01

    OJ287 goes through large optical flares twice each 12 years. The times of these flares have been predicted successfully now 5 times using a black hole binary model. In this model a secondary black hole goes around a primary black hole, impacting the accretion disk of the latter twice per orbital period, creating a thermal flare. Together with 6 flares from the historical data base, the set of flare timings determines uniquely the 7 parameters of the model: the two masses, the primary spin, the major axis, eccentricity and the phase of the orbit, plus a time delay parameter that gives the extent of time between accretion disk impacts and the related optical flares. Based on observations by the OJ287-15/16 Collaboration, OJ287 went into the phase of rapid flux rise on November 25, on the centenary of Einstein’s General Relativity, and peaked on December 5. At that time OJ287 was the brightest in over 30 years in optical wavelengths. The flare was of low polarization, and did not extend beyond the optical/UV region of the spectrum. On top of the main flare there were a number of small flares; their excess brightness correlates well with the simultaneous X-ray data. With these properties the main flare qualifies as the marker of the orbit of the secondary going around the primary black hole. Since the orbit solution is strongly over-determined, its parameters are known very accurately, at better than one percent level for the masses and the spin. The next flare is predicted to peak on July 28, 2019.Detailed monitoring of this event should allow us to test, for the first time, the celebrated black hole no-hair theorem for a massive black hole at the 10% level. The present data is consistent with the theorem only at a 30% level. The main difficulty in observing OJ287 from Earth at our predicted epoch is its closeness to the sun. Therefore, it is desirable to monitor OJ287 from a space-based telescope not in the vicinity of Earth. Unfortunately, this unique opportunity

  12. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  13. Radio-loudness in black hole transients: evidence for an inclination effect

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Casella, P.; Fender, R.

    2018-06-01

    Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.

  14. Structured Forms Reference Set of Binary Images II (SFRS2)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images II (SFRS2) (Web, free access)   The second NIST database of structured forms (Special Database 6) consists of 5,595 pages of binary, black-and-white images of synthesized documents containing hand-print. The documents in this database are 12 different tax forms with the IRS 1040 Package X for the year 1988.

  15. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  16. REVIEWS OF TOPICAL PROBLEMS: Search for black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    2003-04-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.

  17. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-03-02

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25  Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25  Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  18. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  19. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    PubMed Central

    Stöckel, Andreas; Jenzen, Christoph; Thies, Michael; Rückert, Ulrich

    2017-01-01

    Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP). Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output. PMID:28878642

  20. Hidden Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  1. Gravitational Waves from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  2. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    DTIC Science & Technology

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  3. Impact of Mergers on USA Parameter Estimation for Nonspinning Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Kelly, Bernard J.

    2011-01-01

    We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q > or = 1/10, and total masses 10(exp 5) < M/M_{Sun} < 10(exp 7). We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = approx. 10(exp 6), we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 18% can be localized to within O(1 arcmin).

  4. A Be-type star with a black-hole companion.

    PubMed

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  5. Explaining LIGO's observations via isolated binary evolution with natal kicks

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.

    2018-02-01

    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

  6. Comparing the birth rate of stellar black holes in binary black hole mergers and long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Atteia, J.-L.; Dezalay, J.-P.; Godet, O.; Klotz, A.; Turpin, D.; Bernardini, M. G.

    2018-02-01

    Context. Gravitational wave interferometers have proven the existence of a new class of binary black hole (BBH) weighing tens of solar masses, and have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local Universe. Furthermore, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar-mass BHs, providing a measure of the rate of these events across the history of the Universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. Aim. We compare the birth rates of BHs found in BBH mergers and in long GRBs. Methods: We construct a simple model that makes reasonable assumptions on the history of GRB formation, and takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. Results: We find that in our reference model the birth rate of stellar BHs in BBH mergers represents a significant fraction of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. These numbers, however, do not consider subluminous GRBs, which may represent another population of sources associated with the birth of stellar mass BHs. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and BBH mergers with the same assumptions.

  7. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  8. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  9. Shadows of Bonnor black dihole by chaotic lensing

    NASA Astrophysics Data System (ADS)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang

    2018-03-01

    We numerically study the shadows of a Bonnor black dihole through the technique of backward ray tracing. The presence of a magnetic dipole yields nonintegrable photon motion, which sharply affects the shadow of the compact object. Our results show that there exists a critical value for the shadow. When the magnetic dipole parameter is less than the critical value the shadow is a black disk, but when the magnetic dipole parameter is larger than the critical value the shadow becomes a concave disk with eyebrows possessing a self-similar fractal structure. These behaviors are very similar to those of the equal-mass and nonspinning Majumdar-Papapetrou binary black holes. However, we find that the two larger shadows and the smaller eyebrow-like shadows are joined together by the middle black zone for the Bonnor black dihole, which is different from that in the Majumdar-Papapetrou binary black hole spacetime where they are disconnected. With the increase of the magnetic dipole parameter, the middle black zone connecting the main shadows and the eyebrow-like shadows becomes narrow. Our results show that the spacetime properties arising from the magnetic dipole yield interesting patterns for the shadow cast by a Bonnor black dihole.

  10. Implementing a search for gravitational waves from binary black holes with nonprecessing spin

    NASA Astrophysics Data System (ADS)

    Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra

    2016-06-01

    Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.

  11. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2016-02-01

    We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  12. Searching for gravitational waves from compact binaries with precessing spins

    NASA Astrophysics Data System (ADS)

    Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra

    2016-07-01

    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.

  13. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  14. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  15. Complete waveform model for compact binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin

  16. Optimal two-phase sampling design for comparing accuracies of two binary classification rules.

    PubMed

    Xu, Huiping; Hui, Siu L; Grannis, Shaun

    2014-02-10

    In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

  17. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (I.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  18. The twisted radio structure of PSO J334.2028+01.4075, still a supermassive binary black hole candidate

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Wrobel, J. M.; Anderson, M. M.; Hallinan, G.

    2018-01-01

    Supermassive binary black holes (BBHs) on sub-parsec scales are prime targets for gravitational wave experiments. They also provide insights on close binary evolution and hierarchical structure formation. Sub-parsec BBHs cannot be spatially resolved but indirect methods can identify candidates. In 2015 Liu et al. reported an optical-continuum periodicity in the quasar PSO J334.2028+01.4075, with the estimated mass and rest-frame period suggesting an orbital separation of about 0.006 pc (0.7 μ arcsec). The persistence of the quasar's optical periodicity has recently been disfavoured over an extended baseline. However, if a radio jet is launched from a sub-parsec BBH, the binary's properties can influence the radio structure on larger scales. Here, we use the Very Long Baseline Array (VLBA) and Karl G. Jansky Very Large Array (VLA) to study the parsec- and kiloparsec-scale emission energized by the quasar's putative BBH. We find two VLBA components separated by 3.6 mas (30 pc), tentatively identifying one as the VLBA 'core' from which the other was ejected. The VLBA components contribute to a point-like, time-variable VLA source that is straddled by lobes spanning 8 arcsec (66 kpc). We classify PSO J334.2028+01.4075 as a lobe-dominated quasar, albeit with an atypically large twist of 39° between its elongation position angles on parsec- and kiloparsec-scales. By analogy with 3C 207, a well-studied lobe-dominated quasar with a similarly-rare twist, we speculate that PSO J334.2028+01.4075 could be ejecting jet components over an inner cone that traces a precessing jet in a BBH system.

  19. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  20. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.