Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
Goksel, Orcun; Zahiri-Azar, Reza; Salcudean, Septimiu E
2007-01-01
Motion estimation in sequences of ultrasound echo signals is essential for a wide range of applications. In time domain cross correlation, which is a common motion estimation technique, the displacements are typically not integral multiples of the sampling period. Therefore, to estimate the motion with sub-sample accuracy, 1D and 2D interpolation methods such as parabolic, cosine, and ellipsoid fitting have been introduced in the literature. In this paper, a simulation framework is presented in order to compare the performance of currently available techniques. First, the tissue deformation is modeled using the finite element method (FEM) and then the corresponding pre-/post-deformation radio-frequency (RF) signals are generated using Field II ultrasound simulation software. Using these simulated RF data of deformation, both axial and lateral tissue motion are estimated with sub-sample accuracy. The estimated displacements are then evaluated by comparing them to the known displacements computed by the FEM. This simulation approach was used to evaluate three different lateral motion estimation techniques employing (i) two separate 1D sub-sampling, (ii) two consecutive 1D sub-sampling, and (iii) 2D joint sub-sampling estimators. The estimation errors during two different tissue compression tests are presented with and without spatial filtering. Results show that RF signal processing methods involving tissue deformation can be evaluated using the proposed simulation technique, which employs accurate models. PMID:18002416
Audiovisual biofeedback improves motion prediction accuracy
Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho
2013-01-01
Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
Bayesian estimation of turbulent motion.
Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo D
2013-06-01
Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non--Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation. PMID:23599051
Accuracy of patient-reported range of elbow motion
Robinson, Paul M; van Rensburg, Lee
2016-01-01
Background Patient-reported outcome meaures (PROMs) not only provide valuable insights into subjective indices of joint health, but also may provide limited objective information about range of motion (ROM). We sought to evaluate the accuracy of patient-reported range of elbow motion compared to measured ROM. Methods Sixty clinic patients were recruited, of whom 26 had elbow pathologies and 34 had pathologies other than at the elbow joint. Each patient independently estimated ROM for extension, flexion, pronation and supination before this was measured by a clinician using a universal goniometer, with the mean being the gold standard. Results We found that patients’ ROM estimates were significantly different from measured ROM (p < 0.00001 at 95% confidence interval). There was no statistically significant difference between elbow pathology and non-elbow pathology patients’ estimated ROM. Conclusions There was great disparity between patient-estimated and measured ROM, although estimates of patients with known elbow pathology did not demonstrate any significant difference from their healthy counterparts. These differences may be too great for patient-estimated range of motion to be used as a reliable tool for assessing outcomes.
Cloud motion estimation using a sky imager
NASA Astrophysics Data System (ADS)
Chauvin, R.; Nou, J.; Thil, S.; Grieu, S.
2016-05-01
The present paper deals with an image processing methodology based on a sky-imaging system developed at the PROMES-CNRS laboratory (France). It is part of a project which aims at improving solar plant control procedures using Direct Normal Irradiance (DNI) forecasts under various sky conditions at short term horizon (5-30 minutes) and high spatial resolution (~1 km2). This work focuses on estimating cloud motion, based on a block-wise cross correlation algorithm. The choice of the algorithm is explained in the first section of this paper. The second section aims at optimizing the algorithm parameters in order to reduce as much as possible the computational time while keeping the best possible accuracy. The paper ends with the spatial and temporal filtering processes that allow estimating the mean cloud motion. The stability of the estimation over time tends to validate the proposed approach.
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2015-01-01
Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their
Estimation of ground motion parameters
Boore, David M.; Oliver, Adolph A., III; Page, Robert A.; Joyner, William B.
1978-01-01
Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. Data from the San Fernando earthquake are examined to assess the effects of associated structures and of geologic site conditions on peak recorded motions. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity, and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. Values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Three recently published relationships for predicting peak horizontal acceleration are compared and discussed. Considerations are reviewed relevant to ground motion predictions at close distances where there are insufficient recorded data points.
Validation and Comparison of Approaches to Respiratory Motion Estimation
NASA Astrophysics Data System (ADS)
Kabus, Sven; Klinder, Tobias; Murphy, Keelin; Werner, René; Sarrut, David
The accuracy of respiratory motion estimation has a direct impact on the success of clinical applications such as diagnosis, as well as planning, delivery, and assessment of therapy for lung or other thoracic diseases. While rigid registration is well suited to validation and has reached a mature state in clinical applications, for non-rigid registration no gold-standard exists. This chapter investigates the validation of non-rigid registration accuracy with a focus on lung motion. The central questions addressed in this chapter are (1) how to measure registration accuracy, (2) how to generate ground-truth for validation, and (3) how to interpret accuracy assessment results.
Estimation of ground motion parameters
Boore, David M.; Joyner, W.B.; Oliver, A.A.; Page, R.A.
1978-01-01
Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. A subset of the data (from the San Fernando earthquake) is used to assess the effects of structural size and of geologic site conditions on peak motions recorded at the base of structures. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. The peak acceleration tends to b3e less and the peak velocity and displacement tend to be greater on the average at the base of large structures than at the base of small structures. In the distance range used in the regression analysis (15-100 km) the values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Some consideration is given to the prediction of ground motions at close distances where there are insufficient recorded data points. As might be expected from the lack of data, published relations for predicting peak horizontal acceleration give widely divergent estimates at close distances (three well known relations predict accelerations between 0.33 g to slightly over 1 g at a distance of 5 km from a magnitude 6.5 earthquake). After considering the physics of the faulting process, the few available data close to faults, and the modifying effects of surface topography, at the present time it would be difficult to accept estimates less than about 0.8 g, 110 cm/s, and 40 cm, respectively, for the mean values of peak acceleration, velocity, and displacement at rock sites
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
NASA Astrophysics Data System (ADS)
Schwarz, M.; Teske, H.; Stoll, M.; Bendl, Rolf
2014-03-01
Purpose: Conformal radiation of moving tumours is a challenging task in radiotherapy. Tumour motion induced by respiration can be visualized in fluoroscopic images recorded during patients breathing. Markerless methods making use of registration techniques can be used to estimate tumour motion. However, registration methods might fail when the tumour is hidden by ribs. Using motion of anatomical surrogates, like the diaphragm, is promising to model tumour motion. Methods: A sequence of 116 fluoroscopic images was analyzed and the tumour positions were manually defined by three experts. A block matching (BM) technique is used to calculate the displacement vector relatively to a selected reference image of the first breathing cycle. An enhanced method was developed: Positions, when the tumour is not located behind a rib, are taken as valid estimations of the tumour position. Furthermore, these valid estimations are used to establish a linear model of tumour position and diaphragm motion. For invalid estimations the calculated tumour positions are not taken into consideration, and instead the model is used to determine tumour motion. Results: Enhancing BM with a model of tumour motion from diaphragm motion improves the tracking accuracy when the tumour moves behind a rib. The error (mean ± SD) in longitudinal dimension was 2.0 ± 1.5mm using only BM and 1.0 ± 1.1mm when the enhanced approach was used. Conclusion: The enhanced tracking technique is capable to improve tracking accuracy compared to BM in the case that the tumour is occluded by ribs.
Robust Sparse Matching and Motion Estimation Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P.
2015-03-01
In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poorperspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency.
A simplified motion model for estimating respiratory motion from orbiting views
NASA Astrophysics Data System (ADS)
Zeng, Rongping; Fessler, Jeffrey A.; Balter, James M.
2007-03-01
We have shown previously that the internal motion caused by a patient's breathing can be estimated from a sequence of slowly rotating 2D cone-beam X-ray projection views and a static prior of of the patient's anatomy. 1, 2 The estimator iteratively updates a parametric 3D motion model so that the modeled projection views of the deformed reference volume best match the measured projection views. Complicated motion models with many degrees of freedom may better describe the real motion, but the optimizations assiciated with them may overfit noise and may be easily trapped by local minima due to a large number of parameters. For the latter problem, we believe it can be solved by offering the optimization algorithm a good starting point within the valley containing the global minimum point. Therefore, we propose to start the motion estimation with a simplified motion model, in which we assume the displacement of each voxel at any time is proportional to the full movement of that voxel from extreme exhale to extreme inhale. We first obtain the full motion by registering two breath-hold CT volumes at end-expiration and end-inspiration. We then estimate a sequence of scalar displacement proportionality parameters. Thus the goal simplifies to finding a motion amplitude signal. This estimation problem can be solved quickly using the exhale reference volume and projection views with coarse (downsampled) resolution, while still providing acceptable estimation accuracy. The estimated simple motion then can be used to initialize a more complicated motion estimator.
Estimating Motion From MRI Data
OZTURK, CENGIZHAN; DERBYSHIRE, J. ANDREW; MCVEIGH, ELLIOT R.
2007-01-01
Invited Paper Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI. PMID:18958181
Repurposing video recordings for structure motion estimations
NASA Astrophysics Data System (ADS)
Khaloo, Ali; Lattanzi, David
2016-04-01
Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The diﬃculty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are ﬁrst reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical ﬂow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical ﬂow algorithm, as well as study the impact of video encoding artifacts on motion estimates.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
A Fourier approach to cloud motion estimation
NASA Technical Reports Server (NTRS)
Arking, A.; Lo, R. C.; Rosenfield, A.
1977-01-01
A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.
Optimal quad-tree-based motion estimator
NASA Astrophysics Data System (ADS)
Schuster, Guido M.; Katsaggelos, Aggelos K.
1996-09-01
In this paper we propose an optimal quad-tree (QT)-based motion estimator for video compression. It is optimal in the sense that for a given bit budget for encoding the displacement vector field (DVF) and the QT segmentation, the scheme finds a DVF and a QT segmentation which minimizes the energy of the resulting displaced frame difference (DFD). We find the optimal QT decomposition and the optimal DVF jointly using the Lagrangian multiplier method and a multilevel dynamic program. The resulting DVF is spatially inhomogeneous since large blocks are used in areas with simple motion and small blocks in areas with complex motion. We present results with the proposed QT-based motion estimator which show that for the same DFD energy the proposed estimator uses about 30% fewer bits than the commonly used block matching algorithm.
A Fourier approach to cloud motion estimation
NASA Technical Reports Server (NTRS)
Arking, A.; Lo, R. C.; Rosenfeld, A.
1978-01-01
A Fourier phase-difference technique for cloud motion estimation from pairs of pictures is described, and results obtained using this technique are compared with the results of a Fourier-domain cross-correlation scheme. The phase-difference technique makes use of the phase of the cross-spectral density and allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. When objects being tracked do not change their shape, size, and orientation to more than a limited degree, both techniques are effective. The phase difference technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects; in these circumstances, the cross-correlation scheme is preferable. It is suggested that the Fourier transform phase difference estimation methods can be applied in problems such as landmark matching.
Wang, Hongsheng; Zheng, Naiqaun Nigel
2010-12-01
Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone. PMID:21142329
NASA Astrophysics Data System (ADS)
Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing
2015-11-01
Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.
Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing
2015-11-21
Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324
Improving visual estimates of cervical spine range of motion.
Hirsch, Brandon P; Webb, Matthew L; Bohl, Daniel D; Fu, Michael; Buerba, Rafael A; Gruskay, Jordan A; Grauer, Jonathan N
2014-11-01
Cervical spine range of motion (ROM) is a common measure of cervical conditions, surgical outcomes, and functional impairment. Although ROM is routinely assessed by visual estimation in clinical practice, visual estimates have been shown to be unreliable and inaccurate. Reliable goniometers can be used for assessments, but the associated costs and logistics generally limit their clinical acceptance. To investigate whether training can improve visual estimates of cervical spine ROM, we asked attending surgeons, residents, and medical students at our institution to visually estimate the cervical spine ROM of healthy subjects before and after a training session. This training session included review of normal cervical spine ROM in 3 planes and demonstration of partial and full motion in 3 planes by multiple subjects. Estimates before, immediately after, and 1 month after this training session were compared to assess reliability and accuracy. Immediately after training, errors decreased by 11.9° (flexion-extension), 3.8° (lateral bending), and 2.9° (axial rotation). These improvements were statistically significant. One month after training, visual estimates remained improved, by 9.5°, 1.6°, and 3.1°, respectively, but were statistically significant only in flexion-extension. Although the accuracy of visual estimates can be improved, clinicians should be aware of the limitations of visual estimates of cervical spine ROM. Our study results support scrutiny of visual assessment of ROM as a criterion for diagnosing permanent impairment or disability. PMID:25379754
A robust motion estimation system for minimal invasive laparoscopy
NASA Astrophysics Data System (ADS)
Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer
2012-02-01
Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.
Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking
ERIC Educational Resources Information Center
Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas
2012-01-01
This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…
Ground motion estimation and nonlinear seismic analysis
McCallen, D.B.; Hutchings, L.J.
1995-08-14
Site specific predictions of the dynamic response of structures to extreme earthquake ground motions are a critical component of seismic design for important structures. With the rapid development of computationally based methodologies and powerful computers over the past few years, engineers and scientists now have the capability to perform numerical simulations of many of the physical processes associated with the generation of earthquake ground motions and dynamic structural response. This paper describes application of a physics based, deterministic, computational approach for estimation of earthquake ground motions which relies on site measurements of frequently occurring small (i.e. M < 3 ) earthquakes. Case studies are presented which illustrate application of this methodology for two different sites, and nonlinear analyses of a typical six story steel frame office building are performed to illustrate the potential sensitivity of nonlinear response to site conditions and proximity to the causative fault.
[An improved motion estimation of medical image series via wavelet transform].
Zhang, Ying; Rao, Nini; Wang, Gang
2006-10-01
The compression of medical image series is very important in telemedicine. The motion estimation plays a key role in the video sequence compression. In this paper, an improved square-diamond search (SDS) algorithm is proposed for the motion estimation of medical image series. The improved SDS algorithm reduces the number of the searched points. This improved SDS algorithm is used in wavelet transformation field to estimate the motion of medical image series. A simulation experiment for digital subtraction angiography (DSA) is made. The experiment results show that the algorithm accuracy is higher than that of other algorithms in the motion estimation of medical image series. PMID:17121333
Motion Estimation System Utilizing Point Cloud Registration
NASA Technical Reports Server (NTRS)
Chen, Qi (Inventor)
2016-01-01
A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.
Intensity-Based Registration for Lung Motion Estimation
NASA Astrophysics Data System (ADS)
Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.
Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.
Complex Principal Components for Robust Motion Estimation
Mauldin, F. William; Viola, Francesco; Walker, William F.
2010-01-01
Bias and variance errors in motion estimation result from electronic noise, decorrelation, aliasing, and inherent algorithm limitations. Unlike most error sources, decorrelation is coherent over time and has the same power spectrum as the signal. Thus, reducing decorrelation is impossible through frequency domain filtering or simple averaging and must be achieved through other methods. In this paper, we present a novel motion estimator, termed the principal component displacement estimator (PCDE), which takes advantage of the signal separation capabilities of principal component analysis (PCA) to reject decorrelation and noise. Furthermore, PCDE only requires the computation of a single principal component, enabling computational speed that is on the same order of magnitude or faster than the commonly used Loupas algorithm. Unlike prior PCA strategies, PCDE uses complex data to generate motion estimates using only a single principal component. The use of complex echo data is critical because it allows for separation of signal components based on motion, which is revealed through phase changes of the complex principal components. PCDE operates on the assumption that the signal component of interest is also the most energetic component in an ensemble of echo data. This assumption holds in most clinical ultrasound environments. However, in environments where electronic noise SNR is less than 0 dB or in blood flow data for which the wall signal dominates the signal from blood flow, the calculation of more than one PC is required to obtain the signal of interest. We simulated synthetic ultrasound data to assess the performance of PCDE over a wide range of imaging conditions and in the presence of decorrelation and additive noise. Under typical ultrasonic elasticity imaging conditions (0.98 signal correlation, 25 dB SNR, 1 sample shift), PCDE decreased estimation bias by more than 10% and standard deviation by more than 30% compared with the Loupas method and normalized
Motion estimation using the correlation transform.
Drulea, Marius; Nedevschi, Sergiu
2013-08-01
The zero-mean normalized cross-correlation is shown to improve the accuracy of optical flow, but its analytical form is quite complicated for the variational framework. This paper addresses this issue and presents a new direct approach to this matching measure. Our approach uses the correlation transform to define very discriminative descriptors that are precomputed and that have to be matched in the target frame. It is equivalent to the computation of the optical flow for the correlation transforms of the images. The smoothness energy is non-local and uses a robust penalty in order to preserve motion discontinuities. The model is associated with a fast and parallelizable minimization procedure based on the projected-proximal point algorithm. The experiments confirm the strength of this model and implicitly demonstrate the correctness of our solution. The results demonstrate that the involved data term is very robust with respect to changes in illumination, especially where large illumination exists. PMID:23686953
Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1997-01-01
An important put of building mathematical models based on measured date is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. An expression is developed for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates when the output residuals are colored. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle. As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, whereas conventional parameter accuracy measures were optimistic.
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Bayesian Estimation of Combined Accuracy for Tests with Verification Bias
Broemeling, Lyle D.
2011-01-01
This presentation will emphasize the estimation of the combined accuracy of two or more tests when verification bias is present. Verification bias occurs when some of the subjects are not subject to the gold standard. The approach is Bayesian where the estimation of test accuracy is based on the posterior distribution of the relevant parameter. Accuracy of two combined binary tests is estimated employing either “believe the positive” or “believe the negative” rule, then the true and false positive fractions for each rule are computed for two tests. In order to perform the analysis, the missing at random assumption is imposed, and an interesting example is provided by estimating the combined accuracy of CT and MRI to diagnose lung cancer. The Bayesian approach is extended to two ordinal tests when verification bias is present, and the accuracy of the combined tests is based on the ROC area of the risk function. An example involving mammography with two readers with extreme verification bias illustrates the estimation of the combined test accuracy for ordinal tests. PMID:26859487
A Nonparametric Approach to Estimate Classification Accuracy and Consistency
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2014-01-01
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.
2015-01-01
Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764
Chen, Chia-Hsiung; Azari, David P; Hu, Yu Hen; Lindstrom, Mary J; Thelen, Darryl; Yen, Thomas Y; Radwin, Robert G
2015-01-01
Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross-correlation template-matching algorithm for tracking a region of interest on the upper extremities. Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s(2) for acceleration, and less than 93 mm/s for speed and 656 mm/s(2) for acceleration when camera pan and tilt were within ± 30 degrees. Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary: This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value(®) for repetitive motion when the camera is located within ± 30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764
Zakkaroff, Constantine; Biglands, John D; Greenwood, John P; Plein, Sven; Boyle, Roger D; Radjenovic, Aleksandra; Magee, Derek R
2016-04-01
Respiratory motion is a significant obstacle to the use of quantitative perfusion in clinical practice. Increasingly complex motion correction algorithms are being developed to correct for respiratory motion. However, the impact of these improvements on the final diagnosis of ischemic heart disease has not been evaluated. The aim of this study was to compare the performance of four automated correction methods in terms of their impact on diagnostic accuracy. Three strategies for motion correction were used: (1) independent translation correction for all slices, (2) translation correction for the basal slice with transform propagation to the remaining two slices assuming identical motion in the remaining slices, and (3) rigid correction (translation and rotation) for the basal slice. There were no significant differences in diagnostic accuracy between the manual and automatic motion-corrected datasets ([Formula: see text]). The area under the curve values for manual motion correction and automatic motion correction were 0.93 and 0.92, respectively. All of the automated motion correction methods achieved a comparable diagnostic accuracy to manual correction. This suggests that the simplest automated motion correction method (method 2 with translation transform for basal location and transform propagation to the remaining slices) is a sufficiently complex motion correction method for use in quantitative myocardial perfusion. PMID:27213166
Estimation of accuracy of earth-rotation parameters in different frequency bands
NASA Astrophysics Data System (ADS)
Vondrak, J.
1986-11-01
The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.
High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.
Marre, Olivier; Botella-Soler, Vicente; Simmons, Kristina D; Mora, Thierry; Tkačik, Gašper; Berry, Michael J
2015-07-01
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits. PMID:26132103
High Accuracy Decoding of Dynamical Motion from a Large Retinal Population
Marre, Olivier; Botella-Soler, Vicente; Simmons, Kristina D.; Mora, Thierry; Tkačik, Gašper; Berry, Michael J.
2015-01-01
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits. PMID:26132103
Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng
2016-05-01
Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. PMID:26712656
Increasing accuracy in the assessment of motion sickness: A construct methodology
NASA Technical Reports Server (NTRS)
Stout, Cynthia S.; Cowings, Patricia S.
1993-01-01
The purpose is to introduce a new methodology that should improve the accuracy of the assessment of motion sickness. This construct methodology utilizes both subjective reports of motion sickness and objective measures of physiological correlates to assess motion sickness. Current techniques and methods used in the framework of a construct methodology are inadequate. Current assessment techniques for diagnosing motion sickness and space motion sickness are reviewed, and attention is called to the problems with the current methods. Further, principles of psychophysiology that when applied will probably resolve some of these problems are described in detail.
Testing the Accuracy of a Projectile Motion Apparatus
NASA Astrophysics Data System (ADS)
Henderson, Bret; Martell, Eric
2013-03-01
The purpose of this research is to predict where a ball would land given initial velocity, angular velocity, and atmospheric conditions. A spinning spherical object flying through air is affected by gravity, quadratic drag forces, and the Magnus force. Mathematica was used to numerically solve predictions for the equations of motion. These predictions were compared with experimental data gathered by launching tennis balls, baseballs, and/or soccer balls from a machine we designed to propel the balls with a pre-determined initial velocity and initial angular velocity.
Estimating Software-Development Costs With Greater Accuracy
NASA Technical Reports Server (NTRS)
Baker, Dan; Hihn, Jairus; Lum, Karen
2008-01-01
COCOMOST is a computer program for use in estimating software development costs. The goal in the development of COCOMOST was to increase estimation accuracy in three ways: (1) develop a set of sensitivity software tools that return not only estimates of costs but also the estimation error; (2) using the sensitivity software tools, precisely define the quantities of data needed to adequately tune cost estimation models; and (3) build a repository of software-cost-estimation information that NASA managers can retrieve to improve the estimates of costs of developing software for their project. COCOMOST implements a methodology, called '2cee', in which a unique combination of well-known pre-existing data-mining and software-development- effort-estimation techniques are used to increase the accuracy of estimates. COCOMOST utilizes multiple models to analyze historical data pertaining to software-development projects and performs an exhaustive data-mining search over the space of model parameters to improve the performances of effort-estimation models. Thus, it is possible to both calibrate and generate estimates at the same time. COCOMOST is written in the C language for execution in the UNIX operating system.
Colored noise effects on batch attitude accuracy estimates
NASA Technical Reports Server (NTRS)
Bilanow, Stephen
1991-01-01
The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.
Pose estimation for one-dimensional object with general motion
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Song, Ge; Zhang, Xiaohu
2014-11-01
Our primary interest is in real-time one-dimensional object's pose estimation. In this paper, a method to estimate general motion one-dimensional object's pose, that is, the position and attitude parameters, using a single camera is proposed. Centroid-movement is necessarily continuous and orderly in temporal space, which means it follows at least approximately certain motion law in a short period of time. Therefore, the centroid trajectory in camera frame can be described as a combination of temporal polynomials. Two endpoints on one-dimensional object, A and B, at each time are projected on the corresponding image plane. With the relationship between A, B and centroid C, we can obtain a linear equation system related to the temporal polynomials' coefficients, in which the camera has been calibrated and the image coordinates of A and B are known. Then in the cases that object moves continuous in natural temporal space within the view of a stationary camera, the position of endpoints on the one-dimensional object can be located and also the attitude can be estimated using two end points. Moreover the position of any other point aligned on one-dimensional object can also be solved. Scene information is not needed in the proposed method. If the distance between the endpoints is not known, a scale factor between the object's real positions and the estimated results will exist. In order to improve the algorithm's performance from accuracy and robustness, we derive a pain of linear and optimal algorithms. Simulations' and experiments' results show that the method is valid and robust with respect to various Gaussian noise levels. The paper's work contributes to making self-calibration algorithms using one-dimensional objects applicable to practice. Furthermore, the method can also be used to estimate the pose and shape parameters of parallelogram, prism or cylinder objects.
Variable disparity-motion estimation based fast three-view video coding
NASA Astrophysics Data System (ADS)
Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo
2009-02-01
In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.
Accuracy of blood glucose estimates in adolescents with diabetes mellitus.
Ruggiero, L; Kairys, S; Fritz, G; Wood, M
1991-03-01
Although self-monitoring of blood glucose (SMBG) is an integral part of the daily self-care regimen for the effective management of insulin-dependent diabetes mellitus (IDDM), compliance with this task remains a significant problem, particularly for adolescents. Research should be focused on identifying other management approaches which may supplement SMBG. One potential approach involves placing greater reliance on the patient's own ability to estimate glucose levels. Although some research has examined blood glucose self-estimation in adults, little is known about this construct in children and adolescents. The purpose of the current study was to examine the accuracy of blood glucose self-estimates in adolescents with IDDM and examine the relation between child characteristics and accuracy. The results for 70 adolescents with IDDM indicated that as a group they were moderately accurate in estimating their glucose levels; however, much variability in accuracy was found among subjects. Subject characteristics were not found to be significantly related to accuracy. PMID:2015234
Frame rate up conversion via Bayesian motion estimation
NASA Astrophysics Data System (ADS)
Wang, Yue; Ma, Siwei; Gao, Wen
2010-07-01
In this paper, a novel block-based motion compensated frame interpolation (MCI) algorithm is proposed to enhance the temporal resolution of video sequences. We formulated motion estimation into MAP framework, and solved it via Bayesian belief propagation. By effectively incorporating a priori knowledge of the motion field and optimizing the whole motion field synchronously, it could derive more accurate motion vectors than traditional methods. Finally, adaptive overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Experimental results show that the proposed method outperforms other methods in both objective and subjective quality.
Wang, Liang; Basarab, Adrian; Girard, Patrick R; Croisille, Pierre; Clarysse, Patrick; Delachartre, Philippe
2015-08-01
Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2) Preliminary filtering is not required due to the bilinear model. The proposed algorithm, integrating phase-based optical flow motion estimation and the combination of global motion compensation with local bilinear transform, allows spatio-temporal cardiac motion analysis, e.g. strain and dense trajectory estimation over the cardiac cycle. Results from 7 realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the two methods. In our work, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial Lagrangian cardiac strains and point trajectories. Indeed, from the estimated trajectories in time on 11 in vivo data sets (9 patients and 2 healthy volunteers), the shape of myocardial point trajectories belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic
Improving Estimation Accuracy of Aggregate Queries on Data Cubes
Pourabbas, Elaheh; Shoshani, Arie
2008-08-15
In this paper, we investigate the problem of estimation of a target database from summary databases derived from a base data cube. We show that such estimates can be derived by choosing a primary database which uses a proxy database to estimate the results. This technique is common in statistics, but an important issue we are addressing is the accuracy of these estimates. Specifically, given multiple primary and multiple proxy databases, that share the same summary measure, the problem is how to select the primary and proxy databases that will generate the most accurate target database estimation possible. We propose an algorithmic approach for determining the steps to select or compute the source databases from multiple summary databases, which makes use of the principles of information entropy. We show that the source databases with the largest number of cells in common provide the more accurate estimates. We prove that this is consistent with maximizing the entropy. We provide some experimental results on the accuracy of the target database estimation in order to verify our results.
Interferometric estimation of ice sheet motion and topography
NASA Technical Reports Server (NTRS)
Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad
1997-01-01
With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
Wang, Jing; Gu, Xuejun
2013-10-15
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion
Estimating nonrigid motion from inconsistent intensity with robust shape features
Liu, Wenyang; Ruan, Dan
2013-12-15
Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided
Analysis of the Accuracy and Robustness of the Leap Motion Controller
Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis
2013-01-01
The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678
Effectiveness of external respiratory surrogates for in vivo liver motion estimation
Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw
2012-08-15
Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This
The Effect of Transponder Motion on the Accuracy of the Calypso Electromagnetic Localization System
Murphy, Martin J. Eidens, Richard; Vertatschitsch, Edward; Wright, J. Nelson
2008-09-01
Purpose: To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Methods and Materials: Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. Results: No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. Conclusions: The accuracy of the localization system is unaffected by transponder motion.
Estimating Myocardial Motion by 4D Image Warping
Sundar, Hari; Litt, Harold; Shen, Dinggang
2009-01-01
A method for spatio-temporally smooth and consistent estimation of cardiac motion from MR cine sequences is proposed. Myocardial motion is estimated within a 4-dimensional (4D) registration framework, in which all 3D images obtained at different cardiac phases are simultaneously registered. This facilitates spatio-temporally consistent estimation of motion as opposed to other registration-based algorithms which estimate the motion by sequentially registering one frame to another. To facilitate image matching, an attribute vector (AV) is constructed for each point in the image, and is intended to serve as a “morphological signature” of that point. The AV includes intensity, boundary, and geometric moment invariants (GMIs). Hierarchical registration of two image sequences is achieved by using the most distinctive points for initial registration of two sequences and gradually adding less-distinctive points to refine the registration. Experimental results on real data demonstrate good performance of the proposed method for cardiac image registration and motion estimation. The motion estimation is validated via comparisons with motion estimates obtained from MR images with myocardial tagging. PMID:20379351
Method for estimating dynamic EM tracking accuracy of surgical navigation tools
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; Beauregard, Lee; Anderson, Peter
2006-03-01
Optical tracking systems have been used for several years in image guided medical procedures. Vendors often state static accuracies of a single retro-reflective sphere or LED. Expensive coordinate measurement machines (CMM) are used to validate the positional accuracy over the specified working volume. Users are interested in the dynamic accuracy of their tools. The configuration of individual sensors into a unique tool, the calibration of the tool tip, and the motion of the tool contribute additional errors. Electromagnetic (EM) tracking systems are considered an enabling technology for many image guided procedures because they are not limited by line-of-sight restrictions, take minimum space in the operating room, and the sensors can be very small. It is often difficult to quantify the accuracy of EM trackers because they can be affected by field distortion from certain metal objects. Many high-accuracy measurement devices can affect the EM measurements being validated. EM Tracker accuracy tends to vary over the working volume and orientation of the sensors. We present several simple methods for estimating the dynamic accuracy of EM tracked tools. We discuss the characteristics of the EM Tracker used in the GE Healthcare family of surgical navigation systems. Results for other tracking systems are included.
Adamson, Justus; Wu, Qiuwen
2008-01-01
Margin reduction for prostate radiotherapy is limited by uncertainty in prostate localization during treatment. We investigated the feasibility and accuracy of measuring prostate intrafraction motion using kV fluoroscopy performed simultaneously with radiotherapy. Three gold coils used for target localization were implanted into the patient’s prostate gland before undergoing hypofractionated online image-guided step-and-shoot intensity modulated radiation therapy (IMRT) on an Elekta Synergy linear accelerator. At each fraction, the patient was aligned using a cone-beam computed tomography (CBCT), after which the IMRT treatment delivery and fluoroscopy were performed simultaneously. In addition, a post-treatment CBCT was acquired with the patient still on the table. To measure the intrafraction motion, we developed an algorithm to register the fluoroscopy images to a reference image derived from the post-treatment CBCT, and we estimated coil motion in three-dimensional (3D) space by combining information from registrations at different gantry angles. We also detected the MV beam turning on and off using MV scatter incident in the same fluoroscopy images, and used this information to synchronize our intrafraction evaluation with the treatment delivery. In addition, we assessed the following: the method to synchronize with treatment delivery, the dose from kV imaging, the accuracy of the localization, and the error propagated into the 3D localization from motion between fluoroscopy acquisitions. With 0.16 mAs∕frame and a bowtie filter implemented, the coils could be localized with the gantry at both 0° and 270° with the MV beam off, and at 270° with the MV beam on when multiple fluoroscopy frames were averaged. The localization in two-dimensions for phantom and patient measurements was performed with submillimeter accuracy. After backprojection into 3D the patient localization error was (−0.04±0.30) mm, (0.09±0.36) mm, and (0.03±0.68) mm in the right
Adamson, Justus; Wu Qiuwen
2008-05-15
Margin reduction for prostate radiotherapy is limited by uncertainty in prostate localization during treatment. We investigated the feasibility and accuracy of measuring prostate intrafraction motion using kV fluoroscopy performed simultaneously with radiotherapy. Three gold coils used for target localization were implanted into the patient's prostate gland before undergoing hypofractionated online image-guided step-and-shoot intensity modulated radiation therapy (IMRT) on an Elekta Synergy linear accelerator. At each fraction, the patient was aligned using a cone-beam computed tomography (CBCT), after which the IMRT treatment delivery and fluoroscopy were performed simultaneously. In addition, a post-treatment CBCT was acquired with the patient still on the table. To measure the intrafraction motion, we developed an algorithm to register the fluoroscopy images to a reference image derived from the post-treatment CBCT, and we estimated coil motion in three-dimensional (3D) space by combining information from registrations at different gantry angles. We also detected the MV beam turning on and off using MV scatter incident in the same fluoroscopy images, and used this information to synchronize our intrafraction evaluation with the treatment delivery. In addition, we assessed the following: the method to synchronize with treatment delivery, the dose from kV imaging, the accuracy of the localization, and the error propagated into the 3D localization from motion between fluoroscopy acquisitions. With 0.16 mAs/frame and a bowtie filter implemented, the coils could be localized with the gantry at both 0 deg. and 270 deg. with the MV beam off, and at 270 deg. with the MV beam on when multiple fluoroscopy frames were averaged. The localization in two-dimensions for phantom and patient measurements was performed with submillimeter accuracy. After backprojection into 3D the patient localization error was (-0.04{+-}0.30) mm, (0.09{+-}0.36) mm, and (0.03{+-}0.68) mm in the
The Plus or Minus Game - Teaching Estimation, Precision, and Accuracy
NASA Astrophysics Data System (ADS)
Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.
2016-03-01
A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in TPT (Larry Weinstein's "Fermi Questions.") For several years the authors (a college physics professor, a retired algebra teacher, and a fifth-grade teacher) have been playing a game, primarily at home to challenge each other for fun, but also in the classroom as an educational tool. We call the game "The Plus or Minus Game." The game combines estimation with the principle of precision and uncertainty in a competitive and fun way.
Proceedings: Earthquake Ground-Motion Estimation in Eastern North America
1988-08-01
Experts in seismology and earthquake engineering convened to evaluate state-of-the-art methods for estimating ground motion from earthquakes in eastern North America. Workshop results presented here will help focus research priorities in ground-motion studies to provide more-realistic design standards for critical facilities.
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery
Rottmann, Joerg; Berbeco, Ross; Keall, Paul
2013-09-15
Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.
Accuracy and precision of alternative estimators of ectoparasiticide efficacy.
Schall, Robert; Burger, Divan A; Luus, Herman G
2016-06-15
While there is consensus that the efficacy of parasiticides is properly assessed using the Abbott formula, there is as yet no general consensus on the use of arithmetic versus geometric mean numbers of surviving parasites in the formula. The purpose of this paper is to investigate the accuracy and precision of various efficacy estimators based on the Abbott formula which alternatively use arithmetic mean, geometric mean and median numbers of surviving parasites; we also consider a maximum likelihood estimator. Our study shows that the best estimators using geometric means are competitive, with respect to root mean squared error, with the conventional Abbott estimator using arithmetic means, as they have lower average and lower median root mean square error over the parameter scenarios which we investigated. However, our study confirms that Abbott estimators using geometric means are potentially biased upwards, and this upward bias is substantial in particular when the test product has substandard efficacy (90% and below). For this reason, we recommend that the Abbott estimator be calculated using arithmetic means. PMID:27198777
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates. PMID:18289956
Studies on dynamic motion compensation and positioning accuracy on star tracker.
Jun, Zhang; Yuncai, Hao; Li, Wang; Da, Liu
2015-10-01
Error from motion is the dominant restriction on the improvement of dynamic performance on a star tracker. As a remarkable motion error, the degree of nonuniformity of the star image velocity field on the detector is studied, and thus a general model for the moving star spot is built. To minimize velocity nonuniformity, a novel general method is proposed to derive the proper motion compensation and location accuracy in cases of both uniform velocity and acceleration. Using this method, a theoretic analysis on the accuracy of time-delayed integration and similar techniques, which are thought of as state-of-the-art approaches to reduce error from motion, is conducted. The simulations and experimental results validate the proposed method. Our method shows a more steady performance than the dynamic binning algorithm. The positional error could be neglected when the smear length is far less than 3.464 times the scale of star spot, which suggests accuracy can be maintained by changing frame-integration time inverse proportional to the velocity on the focal plane. It also shows that the acceleration effect must be compensated to achieve accuracy close to the Cramér-Rao lower bound. PMID:26479618
NASA Astrophysics Data System (ADS)
Taki, Hirofumi; Yamakawa, Makoto; Shiina, Tsuyoshi; Sato, Toru
2015-07-01
High-accuracy ultrasound motion estimation has become an essential technique in blood flow imaging, elastography, and motion imaging of the heart wall. Speckle tracking has been one of the best motion estimators; however, conventional speckle-tracking methods neglect the effect of out-of-plane motion and deformation. Our proposed method assumes that the cross-correlation between a reference signal and a comparison signal depends on the spatio-temporal distance between the two signals. The proposed method uses the decrease in the cross-correlation value in a reference frame to compensate for the intrinsic error caused by out-of-plane motion and deformation without a priori information. The root-mean-square error of the estimated lateral tissue motion velocity calculated by the proposed method ranged from 6.4 to 34% of that using a conventional speckle-tracking method. This study demonstrates the high potential of the proposed method for improving the estimation of tissue motion using an ultrasound speckle-tracking method in medical diagnosis.
Estimated Accuracy of Three Common Trajectory Statistical Methods
NASA Technical Reports Server (NTRS)
Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.
2011-01-01
Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h
Accuracy of the HVAD Pump Flow Estimation Algorithm.
Reyes, Carlos; Voskoboynikov, Neil; Chorpenning, Katherine; LaRose, Jeffrey A; Brown, Michael C; Nunez, Nathalie J; Burkhoff, Daniel; Tamez, Daniel
2016-01-01
Controller algorithms are an important feature for assessment of ventricular assist device performance. Flow estimation is one algorithm implemented in the HeartWare continuous-flow ventricular assist device pump system. This parameter estimates flow passing through the pump and is calculated using speed, current, and hematocrit. In vitro and in vivo studies were conducted to assess the algorithm accuracy. During in vitro testing, three pumps were tested in four water-glycerol solutions at 37°C with viscosities equivalent to hematocrits of 20, 30, 40, and 50%. By using a linear regression model, a correlation coefficient of >0.94 was observed between measured and estimated flow for all conditions. In vivo studies (n = 9) were conducted in an ovine model where a reference flow probe was placed on the outflow graft and speed was adjusted from 1,800 to 4,000 revolutions per minute. During in vivo experiments, estimated pump flow (mean, minimum, and maximum) was compared with measured pump flow. The best-fit linear regression equation for the data is y = 0.96x + 0.54, r = 0.92. In addition, waveform fidelity was high (r > 0.96) in normal (i.e., nonsuction) cases where flow pulsatility was >2 L/min. The flow estimation algorithm demonstrated strong agreement with measured flow, both when analyzing average waveform magnitude and fidelity. PMID:26479467
ERIC Educational Resources Information Center
Morgan, Grant B.; Zhu, Min; Johnson, Robert L.; Hodge, Kari J.
2014-01-01
Common estimators of interrater reliability include Pearson product-moment correlation coefficients, Spearman rank-order correlations, and the generalizability coefficient. The purpose of this study was to examine the accuracy of estimators of interrater reliability when varying the true reliability, number of scale categories, and number of…
Image-based camera motion estimation using prior probabilities
NASA Astrophysics Data System (ADS)
Sargent, Dusty; Park, Sun Young; Spofford, Inbar; Vosburgh, Kirby
2011-03-01
Image-based camera motion estimation from video or still images is a difficult problem in the field of computer vision. Many algorithms have been proposed for estimating intrinsic camera parameters, detecting and matching features between images, calculating extrinsic camera parameters based on those features, and optimizing the recovered parameters with nonlinear methods. These steps in the camera motion inference process all face challenges in practical applications: locating distinctive features can be difficult in many types of scenes given the limited capabilities of current feature detectors, camera motion inference can easily fail in the presence of noise and outliers in the matched features, and the error surfaces in optimization typically contain many suboptimal local minima. The problems faced by these techniques are compounded when they are applied to medical video captured by an endoscope, which presents further challenges such as non-rigid scenery and severe barrel distortion of the images. In this paper, we study these problems and propose the use of prior probabilities to stabilize camera motion estimation for the application of computing endoscope motion sequences in colonoscopy. Colonoscopy presents a special case for camera motion estimation in which it is possible to characterize typical motion sequences of the endoscope. As the endoscope is restricted to move within a roughly tube-shaped structure, forward/backward motion is expected, with only small amounts of rotation and horizontal movement. We formulate a probabilistic model of endoscope motion by maneuvering an endoscope and attached magnetic tracker through a synthetic colon model and fitting a distribution to the observed motion of the magnetic tracker. This model enables us to estimate the probability of the current endoscope motion given previously observed motion in the sequence. We add these prior probabilities into the camera motion calculation as an additional penalty term in RANSAC
Potential accuracy of translation estimation between radar and optical images
NASA Astrophysics Data System (ADS)
Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.
2015-10-01
This paper investigates the potential accuracy achievable for optical to radar image registration by area-based approach. The analysis is carried out mainly based on the Cramér-Rao Lower Bound (CRLB) on translation estimation accuracy previously proposed by the authors and called CRLBfBm. This bound is now modified to take into account radar image speckle noise properties: spatial correlation and signal-dependency. The newly derived theoretical bound is fed with noise and texture parameters estimated for the co-registered pair of optical Landsat 8 and radar SIR-C images. It is found that difficulty of optical to radar image registration stems more from speckle noise influence than from dissimilarity of the considered kinds of images. At finer scales (and higher speckle noise level), probability of finding control fragments (CF) suitable for registration is low (1% or less) but overall number of such fragments is high thanks to image size. Conversely, at the coarse scale, where speckle noise level is reduced, probability of finding CFs suitable for registration can be as high as 40%, but overall number of such CFs is lower. Thus, the study confirms and supports area-based multiresolution approach for optical to radar registration where coarse scales are used for fast registration "lock" and finer scales for reaching higher registration accuracy. The CRLBfBm is found inaccurate for the main scale due to intensive speckle noise influence. For other scales, the validity of the CRLBfBm bound is confirmed by calculating statistical efficiency of area-based registration method based on normalized correlation coefficient (NCC) measure that takes high values of about 25%.
Gaze estimation using a hybrid appearance and motion descriptor
NASA Astrophysics Data System (ADS)
Xiong, Chunshui; Huang, Lei; Liu, Changping
2015-03-01
It is a challenging problem to realize a robust and low cost gaze estimation system. Existing appearance-based and feature-based methods both have achieved impressive progress in the past several years, while their improvements are still limited by feature representation. Therefore, in this paper, we propose a novel descriptor combining eye appearance and pupil center-cornea reflections (PCCR). The hybrid gaze descriptor represents eye structure from both feature level and topology level. At the feature level, a glints-centered appearance descriptor is presented to capture intensity and contour information of eye, and a polynomial representation of normalized PCCR vector is employed to capture motion information of eyeball. At the topology level, the partial least squares is applied for feature fusion and selection. At last, sparse representation based regression is employed to map the descriptor to the point-of-gaze (PoG). Experimental results show that the proposed method achieves high accuracy and has a good tolerance to head movements.
Accuracy of selected techniques for estimating ice-affected streamflow
Walker, John F.
1991-01-01
This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.
Viola, Francesco; Coe, Ryan L.; Owen, Kevin; Guenther, Drake A.; Walker, William F.
2008-01-01
Image registration and motion estimation play central roles in many fields, including RADAR, SONAR, light microscopy, and medical imaging. Because of its central significance, estimator accuracy, precision, and computational cost are of critical importance. We have previously presented a highly accurate, spline-based time delay estimator that directly determines sub-sample time delay estimates from sampled data. The algorithm uses cubic splines to produce a continuous representation of a reference signal and then computes an analytical matching function between this reference and a delayed signal. The location of the minima of this function yields estimates of the time delay. In this paper we describe the MUlti-dimensional Spline-based Estimator (MUSE) that allows accurate and precise estimation of multidimensional displacements/strain components from multidimensional data sets. We describe the mathematical formulation for two- and three-dimensional motion/strain estimation and present simulation results to assess the intrinsic bias and standard deviation of this algorithm and compare it to currently available multi-dimensional estimators. In 1000 noise-free simulations of ultrasound data we found that 2D MUSE exhibits maximum bias of 2.6 × 10−4 samples in range and 2.2 × 10−3 samples in azimuth (corresponding to 4.8 and 297 nm, respectively). The maximum simulated standard deviation of estimates in both dimensions was comparable at roughly 2.8 × 10−3 samples (corresponding to 54 nm axially and 378 nm laterally). These results are between two and three orders of magnitude better than currently used 2D tracking methods. Simulation of performance in 3D yielded similar results to those observed in 2D. We also present experimental results obtained using 2D MUSE on data acquired by an Ultrasonix Sonix RP imaging system with an L14-5/38 linear array transducer operating at 6.6 MHz. While our validation of the algorithm was performed using ultrasound data, MUSE
Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging
NASA Astrophysics Data System (ADS)
Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.
2016-03-01
Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear. PMID:10504093
Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian
2013-01-01
Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to
Estimation and filtering techniques for high-accuracy GPS applications
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1989-01-01
Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.
Self-Motion and Depth Estimation from Image Sequences
NASA Technical Reports Server (NTRS)
Perrone, John
1999-01-01
An image-based version of a computational model of human self-motion perception (developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center) has been generated and tested. The research included in the grant proposal sought to extend the utility of the self-motion model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. The model can now be tested with video input sequences (including computer generated imagery) which enables simulation of human self-motion estimation in a variety of applied settings.
NASA Astrophysics Data System (ADS)
Wilms, M.; Werner, R.; Ehrhardt, J.; Schmidt-Richberg, A.; Schlemmer, H.-P.; Handels, H.
2014-03-01
Breathing-induced location uncertainties of internal structures are still a relevant issue in the radiation therapy of thoracic and abdominal tumours. Motion compensation approaches like gating or tumour tracking are usually driven by low-dimensional breathing signals, which are acquired in real-time during the treatment. These signals are only surrogates of the internal motion of target structures and organs at risk, and, consequently, appropriate models are needed to establish correspondence between the acquired signals and the sought internal motion patterns. In this work, we present a diffeomorphic framework for correspondence modelling based on the Log-Euclidean framework and multivariate regression. Within the framework, we systematically compare standard and subspace regression approaches (principal component regression, partial least squares, canonical correlation analysis) for different types of common breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-dimensional: skin surface tracking). Experiments are based on 4D CT and 4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-session motion variations. Only small differences in internal motion estimation accuracy are observed between the 1D surrogates. Increasing the surrogate dimensionality, however, improved the accuracy significantly; this is shown for both 2D signals, which consist of a common 1D signal and its time derivative, and high-dimensional signals containing the motion of many skin surface points. Eventually, comparing the standard and subspace regression variants when applied to the high-dimensional breathing signals, only small differences in terms of motion estimation accuracy are found.
Wilms, M; Werner, R; Ehrhardt, J; Schmidt-Richberg, A; Schlemmer, H-P; Handels, H
2014-03-01
Breathing-induced location uncertainties of internal structures are still a relevant issue in the radiation therapy of thoracic and abdominal tumours. Motion compensation approaches like gating or tumour tracking are usually driven by low-dimensional breathing signals, which are acquired in real-time during the treatment. These signals are only surrogates of the internal motion of target structures and organs at risk, and, consequently, appropriate models are needed to establish correspondence between the acquired signals and the sought internal motion patterns. In this work, we present a diffeomorphic framework for correspondence modelling based on the Log-Euclidean framework and multivariate regression. Within the framework, we systematically compare standard and subspace regression approaches (principal component regression, partial least squares, canonical correlation analysis) for different types of common breathing signals (1D: spirometry, abdominal belt, diaphragm tracking; multi-dimensional: skin surface tracking). Experiments are based on 4D CT and 4D MRI data sets and cover intra- and inter-cycle as well as intra- and inter-session motion variations. Only small differences in internal motion estimation accuracy are observed between the 1D surrogates. Increasing the surrogate dimensionality, however, improved the accuracy significantly; this is shown for both 2D signals, which consist of a common 1D signal and its time derivative, and high-dimensional signals containing the motion of many skin surface points. Eventually, comparing the standard and subspace regression variants when applied to the high-dimensional breathing signals, only small differences in terms of motion estimation accuracy are found. PMID:24557007
Quantitative Assessment of Shockwave Lithotripsy Accuracy and the Effect of Respiratory Motion*
Bailey, Michael R.; Shah, Anup R.; Hsi, Ryan S.; Paun, Marla; Harper, Jonathan D.
2012-01-01
Abstract Background and Purpose Effective stone comminution during shockwave lithotripsy (SWL) is dependent on precise three-dimensional targeting of the shockwave. Respiratory motion, imprecise targeting or shockwave alignment, and stone movement may compromise treatment efficacy. The purpose of this study was to evaluate the accuracy of shockwave targeting during SWL treatment and the effect of motion from respiration. Patients and Methods Ten patients underwent SWL for the treatment of 13 renal stones. Stones were targeted fluoroscopically using a Healthtronics Lithotron (five cases) or Dornier Compact Delta II (five cases) shockwave lithotripter. Shocks were delivered at a rate of 1 to 2 Hz with ramping shockwave energy settings of 14 to 26 kV or level 1 to 5. After the low energy pretreatment and protective pause, a commercial diagnostic ultrasound (US) imaging system was used to record images of the stone during active SWL treatment. Shockwave accuracy, defined as the proportion of shockwaves that resulted in stone motion with shockwave delivery, and respiratory stone motion were determined by two independent observers who reviewed the ultrasonographic videos. Results Mean age was 51±15 years with 60% men, and mean stone size was 10.5±3.7 mm (range 5–18 mm). A mean of 2675±303 shocks was delivered. Shockwave-induced stone motion was observed with every stone. Accurate targeting of the stone occurred in 60%±15% of shockwaves. Conclusions US imaging during SWL revealed that 40% of shockwaves miss the stone and contribute solely to tissue injury, primarily from movement with respiration. These data support the need for a device to deliver shockwaves only when the stone is in target. US imaging provides real-time assessment of stone targeting and accuracy of shockwave delivery. PMID:22471349
Incorporating Uncertainty in Ground Motion into Damage Estimation Calculations
NASA Astrophysics Data System (ADS)
Latchman, S.; Simic, M.
2012-04-01
It is well known that a ground motion prediction equation produces not just a point estimate but a variation around this point estimate. This variation in ground motion is given by a standard deviation and ground motions can be said to be lognormally distributed. When estimating the damage to a property from an earthquake, for a given fixed ground motion intensity of say 0.5g there would be a variation in damage modelled. Therefore, there are two properties varying - the intensity of the earthquake and the vulnerability of the structure. Typically, combining the two probability distributions would be computationally expensive and possibly unrealistic if a large number of locations were being modelled. This paper seeks to investigate theoretically how the two distributions can be combined to give a single probability distribution of damage and we also investigate methods which allow this computation to be speeded up through approximations. Finally the change in mean damage amount and standard deviation after accounting for uncertainty in the ground motion (as opposed to using a point estimate) is also investigated.
Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo
2014-01-01
Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402
Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S.; Sahn, David J.; Song, Xubo
2014-01-01
Purpose: Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. Methods: The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. Results: The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. Conclusions: The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the
NASA Astrophysics Data System (ADS)
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-08-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-08-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1991-01-01
Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.
On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion.
Ricci, Luca; Taffoni, Fabrizio; Formica, Domenico
2016-01-01
The accuracy in orientation tracking attainable by using inertial measurement units (IMU) when measuring human motion is still an open issue. This study presents a systematic quantification of the accuracy under static conditions and typical human dynamics, simulated by means of a robotic arm. Two sensor fusion algorithms, selected from the classes of the stochastic and complementary methods, are considered. The proposed protocol implements controlled and repeatable experimental conditions and validates accuracy for an extensive set of dynamic movements, that differ in frequency and amplitude of the movement. We found that dynamic performance of the tracking is only slightly dependent on the sensor fusion algorithm. Instead, it is dependent on the amplitude and frequency of the movement and a major contribution to the error derives from the orientation of the rotation axis w.r.t. the gravity vector. Absolute and relative errors upper bounds are found respectively in the range [0.7° ÷ 8.2°] and [1.0° ÷ 10.3°]. Alongside dynamic, static accuracy is thoroughly investigated, also with an emphasis on convergence behavior of the different algorithms. Reported results emphasize critical issues associated with the use of this technology and provide a baseline level of performance for the human motion related application. PMID:27612100
Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency
Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang
2011-11-15
Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle{sup 3} planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle{sup 3} planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan
Pan, Xiaochang; Liu, Ke; Shao, Jinghua; Gao, Jing; Huang, Lingyun; Bai, Jing; Luo, Jianwen
2015-11-01
Tissue motion estimation is widely used in many ultrasound techniques. Rigid-model-based and nonrigid-modelbased methods are two main groups of space-domain methods of tissue motion estimation. The affine model is one of the commonly used nonrigid models. The performances of the rigid model and affine model have not been compared on ultrasound RF signals, which have been demonstrated to obtain higher accuracy, precision, and resolution in motion estimation compared with B-mode images. In this study, three methods, i.e., the normalized cross-correlation method with rigid model (NCC), the optical flow method with rigid model (OFRM), and the optical flow method with affine model (OFAM), are compared using ultrasound RF signals, rather than the B-mode images used in previous studies. Simulations, phantom, and in vivo experiments are conducted to make the comparison. In the simulations, the root-mean-square errors (RMSEs) of axial and lateral displacements and strains are used to assess the accuracy of motion estimation, and the elastographic signal-tonoise ratio (SNRe) and contrast-to-noise ratio (CNRe) are used to evaluate the quality of axial strain images. In the phantom experiments, the registration error between the pre- and postdeformation RF signals, as well as the SNRe and CNRe of axial strain images, are utilized as the evaluation criteria. In the in vivo experiments, the registration error is used to evaluate the estimation performance. The results show that the affinemodel- based method (i.e., OFAM) obtains the lowest RMSE or registration error and the highest SNRe and CNRe among all the methods. The affine model is demonstrated to be superior to the rigid model in motion estimation based on RF signals. PMID:26559623
Improvement of sub-pixel global motion estimation in UAV image stabilization
NASA Astrophysics Data System (ADS)
Li, Yingjuan; Ji, Ming; He, Junfeng; Zhen, Kang; Yang, Yizhou; Chen, Ying
2016-01-01
Global motion estimation within frames is very important in the UAV(unmanned aerial vehicle) image stabilization system. A fast algorithm based on phase correlation and image down-sampling in sub-pixel was proposed. First, down-sampling of the two frames to quantitatively reduce calculate data. Then, take the method based of phase correlation to realize the global motion estimation in integer-pixel. When it calculated out, chooses the overlapped area of the two frames and interpolated them with zero, then adopts the method based on phase correlation to achieve the global motion estimation in sub-pixel. At last, weighted calculate the result in integer-pixel and the result in sub-pixel, the global motion displacement in sub-pixel of the two images will be calculated out. Experimental results show that, using the proposed algorithm can not only achieve good robustness to the influence of noise, illumination and partially sheltered but also improve the accuracy of motion estimation and efficiency of computing significantly.
NASA Astrophysics Data System (ADS)
Wentz, T.; Fayad, H.; Bert, J.; Pradier, O.; Clement, J. F.; Vourch, S.; Boussion, N.; Visvikis, D.
2012-07-01
Time-of-flight (ToF) camera technology provides a real-time depth map of a scene with adequate frequency for the monitoring of physiological patient motion. However, dynamic surface motion estimation using a ToF camera is limited by issues such as the raw measurement accuracy and the absence of fixed anatomical landmarks. In this work we propose to overcome these limitations using surface modeling through B-splines. This approach was assessed in terms of both motion estimation accuracy and associated variability improvements using acquisitions of an anthropomorphic surface phantom for a range of observation distances (0.6-1.4 m). In addition, feasibility was demonstrated on patient acquisitions. Using the proposed B-spline modeling, the mean motion estimation error and associated repeatability with respect to the raw measurements decreased by a factor of 3. Significant correlation was found between patients’ surfaces motion extracted using the proposed B-spline approach applied to the ToF data and the one extracted from synchronized 4D-CT acquisitions as the ground truth. ToF cameras represent a promising alternative for contact-less patient surface monitoring for respiratory motion synchronization or modeling in imaging and/or radiotherapy applications.
Image deblurring by motion estimation for remote sensing
NASA Astrophysics Data System (ADS)
Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun
2010-08-01
The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.
Accuracy of age estimation of radiographic methods using developing teeth.
Maber, M; Liversidge, H M; Hector, M P
2006-05-15
Developing teeth are used to assess maturity and estimate age in a number of disciplines, however the accuracy of different methods has not been systematically investigated. The aim of this study was to determine the accuracy of several methods. Tooth formation was assessed from radiographs of healthy children attending a dental teaching hospital. The sample was 946 children (491 boys, 455 girls, aged 3-16.99 years) with similar number of children from Bangladeshi and British Caucasian ethnic origin. Panoramic radiographs were examined and seven mandibular teeth staged according to Demirjian's dental maturity scale [A. Demirjian, Dental development, CD-ROM, Silver Platter Education, University of Montreal, Montreal, 1993-1994; A. Demirjian, H. Goldstein, J.M. Tanner, A new system of dental age assessment, Hum. Biol. 45 (1973) 211-227; A. Demirjian, H. Goldstein, New systems for dental maturity based on seven and four teeth, Ann. Hum. Biol. 3 (1976) 411-421], Nolla [C.M. Nolla, The development of the permanent teeth, J. Dent. Child. 27 (1960) 254-266] and Haavikko [K. Haavikko, The formation and the alveolar and clinical eruption of the permanent teeth. An orthopantomographic study. Proc. Finn. Dent. Soc. 66 (1970) 103-170]. Dental age was calculated for each method, including an adaptation of Demirjian's method with updated scoring [G. Willems, A. Van Olmen, B. Spiessens, C. Carels, Dental age estimation in Belgian children: Demirjian's technique revisited, J. Forensic Sci. 46 (2001) 893-895]. The mean difference (+/-S.D. in years) between dental and real age was calculated for each method and in the case of Haavikko, each tooth type; and tested using t-test. Mean difference was also calculated for the age group 3-13.99 years for Haavikko (mean and individual teeth). Results show that the most accurate method was by Willems [G. Willems, A. Van Olmen, B. Spiessens, C. Carels, Dental age estimation in Belgian children: Demirjian's technique revisited, J. Forensic Sci
Human heading estimation during visually simulated curvilinear motion
NASA Technical Reports Server (NTRS)
Stone, L. S.; Perrone, J. A.
1997-01-01
Recent studies have suggested that humans cannot estimate their direction of forward translation (heading) from the resulting retinal motion (flow field) alone when rotation rates are higher than approximately 1 deg/sec. It has been argued that either oculomotor or static depth cues are necessary to disambiguate the rotational and translational components of the flow field and, thus, to support accurate heading estimation. We have re-examined this issue using visually simulated motion along a curved path towards a layout of random points as the stimulus. Our data show that, in this curvilinear motion paradigm, five of six observers could estimate their heading relatively accurately and precisely (error and uncertainty < approximately 4 deg), even for rotation rates as high as 16 deg/sec, without the benefit of either oculomotor or static depth cues signaling rotation rate. Such performance is inconsistent with models of human self-motion estimation that require rotation information from sources other than the flow field to cancel the rotational flow.
An Adaptive Motion Estimation Scheme for Video Coding
Gao, Yuan; Jia, Kebin
2014-01-01
The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313
Accuracy of an UWB-based position tracking system used for time-motion analyses in game sports.
Leser, Roland; Schleindlhuber, Armin; Lyons, Keith; Baca, Arnold
2014-01-01
The main aim of this study was to determine the accuracy of the ultra-wideband (UWB)-based positioning system Ubisense, which is used for time-motion analysis in sports. Furthermore, some alternatives for positioning the system's transponders on the atheletes, as well as the accuracy depending on the location of measurement, were tested. Therefore, in a pre-study, some basic issues were examined (measurement assumptions and consistency and location of the system's transponder used for position detection), and position measurements at the borders and in the centre of a basketball field were performed. In the main study, 13 male basketball players (15.8 years ± 0.6; 187.9 height ± 3.4; 77.5 weight ± 3.7), equipped with a Ubisense transponder mounted on top of their heads, handled a trundle wheel during simulated match play. The players with the trundle wheel participated passively in the match by following one of the ten competing players. The distance measurements of the trundle wheel were used as reference values and compared to the Ubisense distance estimations. Best results were found with the measurements of a single mounted transponder on top of the athlete's heads. No differences were detectable in the accuracy between measurements in the centre and at the borders of the basketball field. The (Ubisense) system's difference to the (trundle wheel) reference was 3.45 ± 1.99%, resulting in 95% limits of agreement of -0.46-7.35%. The study indicates the examined system's sufficient accuracy for time-motion analysis in basketball. PMID:24512176
Lin, Chin-Teng; Tsai, Shu-Fang; Ko, Li-Wei
2013-10-01
Motion sickness is a common experience for many people. Several previous researches indicated that motion sickness has a negative effect on driving performance and sometimes leads to serious traffic accidents because of a decline in a person's ability to maintain self-control. This safety issue has motivated us to find a way to prevent vehicle accidents. Our target was to determine a set of valid motion sickness indicators that would predict the occurrence of a person's motion sickness as soon as possible. A successful method for the early detection of motion sickness will help us to construct a cognitive monitoring system. Such a monitoring system can alert people before they become sick and prevent them from being distracted by various motion sickness symptoms while driving or riding in a car. In our past researches, we investigated the physiological changes that occur during the transition of a passenger's cognitive state using electroencephalography (EEG) power spectrum analysis, and we found that the EEG power responses in the left and right motors, parietal, lateral occipital, and occipital midline brain areas were more highly correlated to subjective sickness levels than other brain areas. In this paper, we propose the use of a self-organizing neural fuzzy inference network (SONFIN) to estimate a driver's/passenger's sickness level based on EEG features that have been extracted online from five motion sickness-related brain areas, while either in real or virtual vehicle environments. The results show that our proposed learning system is capable of extracting a set of valid motion sickness indicators that originated from EEG dynamics, and through SONFIN, a neuro-fuzzy prediction model, we successfully translated the set of motion sickness indicators into motion sickness levels. The overall performance of this proposed EEG-based learning system can achieve an average prediction accuracy of ~82%. PMID:24808604
An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data
Breen, Alan C; Muggleton, Jennifer M; Mellor, Fiona E
2006-01-01
Background Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. Methods Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptomatic volunteers. Calibration model 1 (mobile) was screened upright, in 7 inter-vertebral positions. The volunteers and calibration model 2 (fixed) were screened on a motorised table comprising 2 horizontal sections, one of which moved through 80 degrees. Model 2 was screened during motion 5 times and the L2-S1 levels of the volunteers twice. Images were digitised at 5fps. Inter-vertebral motion from model 1 was compared to its pre-settings to investigate accuracy. For volunteers and model 2, the first digitised image in each sequence was marked with templates. Vertebrae were tracked throughout the motion using automated frame-to-frame registration. For each frame, vertebral angles were subtracted giving inter-vertebral motion graphs. Volunteer data were acquired twice on the same day and analysed by two blinded observers. The root-mean-square (RMS) differences between paired data were used as the measure of reliability. Results RMS difference between reference and computed inter-vertebral angles in model 1 was 0.32 degrees for side-bending and 0.52 degrees for flexion-extension. For model 2, X-ray positioning contributed more to the variance of range measurement than did automated registration. For volunteer image sequences, RMS inter-observer variation in intervertebral motion range in the coronal plane was 1.86 degreesand intra-subject biological variation was between 2.75 degrees and 2.91 degrees. RMS inter-observer variation in the sagittal plane was 1.94 degrees. Radiation dosages
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
NASA Astrophysics Data System (ADS)
Dhou, S.; Hurwitz, M.; Mishra, P.; Cai, W.; Rottmann, J.; Li, R.; Williams, C.; Wagar, M.; Berbeco, R.; Ionascu, D.; Lewis, J. H.
2015-05-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-01-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction. PMID:16521625
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-07-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction. PMID:16939159
Estimation of self-motion duration and distance in rodents
Kautzky, Magdalena
2016-01-01
Spatial orientation and navigation rely on information about landmarks and self-motion cues gained from multi-sensory sources. In this study, we focused on self-motion and examined the capability of rodents to extract and make use of information about own movement, i.e. path integration. Path integration has been investigated in depth in insects and humans. Demonstrations in rodents, however, mostly stem from experiments on heading direction; less is known about distance estimation. We introduce a novel behavioural paradigm that allows for probing temporal and spatial contributions to path integration. The paradigm is a bisection task comprising movement in a virtual reality environment in combination with either timing the duration ran or estimating the distance covered. We performed experiments with Mongolian gerbils and could show that the animals can keep track of time and distance during spatial navigation. PMID:27293792
Analysis of accuracy in optical motion capture - A protocol for laboratory setup evaluation.
Eichelberger, Patric; Ferraro, Matteo; Minder, Ursina; Denton, Trevor; Blasimann, Angela; Krause, Fabian; Baur, Heiner
2016-07-01
Validity and reliability as scientific quality criteria have to be considered when using optical motion capture (OMC) for research purposes. Literature and standards recommend individual laboratory setup evaluation. However, system characteristics such as trueness, precision and uncertainty are often not addressed in scientific reports on 3D human movement analysis. One reason may be the lack of simple and practical methods for evaluating accuracy parameters of OMC. A protocol was developed for investigating the accuracy of an OMC system (Vicon, volume 5.5×1.2×2.0m(3)) with standard laboratory equipment and by means of trueness and uncertainty of marker distances. The study investigated the effects of number of cameras (6, 8 and 10), measurement height (foot, knee and hip) and movement condition (static and dynamic) on accuracy. Number of cameras, height and movement condition affected system accuracy significantly. For lower body assessment during level walking, the most favorable setting (10 cameras, foot region) revealed mean trueness and uncertainty to be -0.08 and 0.33mm, respectively. Dynamic accuracy cannot be predicted based on static error assessments. Dynamic procedures have to be used instead. The significant influence of the number of cameras and the measurement location suggests that instrumental errors should be evaluated in a laboratory- and task-specific manner. The use of standard laboratory equipment makes the proposed procedure widely applicable and it supports the setup process of OCM by simple functional error assessment. Careful system configuration and thorough measurement process control are needed to produce high-quality data. PMID:27230474
An Alternative Estimate of the Motion of the Capricorn Plate
NASA Astrophysics Data System (ADS)
Burris, S. G.; Gordon, R. G.
2013-12-01
Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2
Influence of outliers on accuracy estimation in genomic prediction in plant breeding.
Estaghvirou, Sidi Boubacar Ould; Ogutu, Joseph O; Piepho, Hans-Peter
2014-12-01
Outliers often pose problems in analyses of data in plant breeding, but their influence on the performance of methods for estimating predictive accuracy in genomic prediction studies has not yet been evaluated. Here, we evaluate the influence of outliers on the performance of methods for accuracy estimation in genomic prediction studies using simulation. We simulated 1000 datasets for each of 10 scenarios to evaluate the influence of outliers on the performance of seven methods for estimating accuracy. These scenarios are defined by the number of genotypes, marker effect variance, and magnitude of outliers. To mimic outliers, we added to one observation in each simulated dataset, in turn, 5-, 8-, and 10-times the error SD used to simulate small and large phenotypic datasets. The effect of outliers on accuracy estimation was evaluated by comparing deviations in the estimated and true accuracies for datasets with and without outliers. Outliers adversely influenced accuracy estimation, more so at small values of genetic variance or number of genotypes. A method for estimating heritability and predictive accuracy in plant breeding and another used to estimate accuracy in animal breeding were the most accurate and resistant to outliers across all scenarios and are therefore preferable for accuracy estimation in genomic prediction studies. The performances of the other five methods that use cross-validation were less consistent and varied widely across scenarios. The computing time for the methods increased as the size of outliers and sample size increased and the genetic variance decreased. PMID:25273862
Estimating Classification Consistency and Accuracy for Cognitive Diagnostic Assessment
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark J.; Chang, Hua-Hua
2012-01-01
This article introduces procedures for the computation and asymptotic statistical inference for classification consistency and accuracy indices specifically designed for cognitive diagnostic assessments. The new classification indices can be used as important indicators of the reliability and validity of classification results produced by…
Carr, J.R.; Roberts, K.P.
1989-02-01
Universal kriging is compared with ordinary kriging for estimation of earthquake ground motion. Ordinary kriging is based on a stationary random function model; universal kriging is based on a nonstationary random function model representing first-order drift. Accuracy of universal kriging is compared with that for ordinary kriging; cross-validation is used as the basis for comparison. Hypothesis testing on these results shows that accuracy obtained using universal kriging is not significantly different from accuracy obtained using ordinary kriging. Test based on normal distribution assumptions are applied to errors measured in the cross-validation procedure; t and F tests reveal no evidence to suggest universal and ordinary kriging are different for estimation of earthquake ground motion. Nonparametric hypothesis tests applied to these errors and jackknife statistics yield the same conclusion: universal and ordinary kriging are not significantly different for this application as determined by a cross-validation procedure. These results are based on application to four independent data sets (four different seismic events).
Strong Ground Motion Estimation During the Kutch, India Earthquake
NASA Astrophysics Data System (ADS)
Iyengar, R. N.; Kanth, S. T. G. Raghu
2006-01-01
In the absence of strong motion records, ground motion during the 26th January, 2001 Kutch, India earthquake, has been estimated by analytical methods. A contour map of peak ground acceleration (PGA) values in the near source region is provided. These results are validated by comparing them with spectral response recorder data and field observations. It is found that very near the epicenter, PGA would have exceeded 0.6 g. A set of three aftershock records have been used as empirical Green's functions to simulate ground acceleration time history and 5% damped response spectrum at Bhuj City. It is found that at Bhuj, PGA would have been 0.31 g 0.37 g. It is demonstrated that source mechanism models can be effectively used to understand spatial variability of large-scale ground movements near urban areas due to the rupture of active faults.
Accuracy of Estimations of Measurements by Students with Visual Impairments
ERIC Educational Resources Information Center
Jones, M. Gail; Forrester, Jennifer H.; Robertson, Laura E.; Gardner, Grant E.; Taylor, Amy R.
2012-01-01
There is a dearth of information about how students with visual impairments learn science-process skills. This study investigated students' concepts and skills in one science area: the estimation of measurements. The estimation of measurements is one of the fundamental concepts that connects all science disciplines that provide the necessary…
Accuracy and precision of gait events derived from motion capture in horses during walk and trot.
Boye, Jenny Katrine; Thomsen, Maj Halling; Pfau, Thilo; Olsen, Emil
2014-03-21
This study aimed to create an evidence base for detection of stance-phase timings from motion capture in horses. The objective was to compare the accuracy (bias) and precision (SD) for five published algorithms for the detection of hoof-on and hoof-off using force plates as the reference standard. Six horses were walked and trotted over eight force plates surrounded by a synchronised 12-camera infrared motion capture system. The five algorithms (A-E) were based on: (A) horizontal velocity of the hoof; (B) Fetlock angle and horizontal hoof velocity; (C) horizontal displacement of the hoof relative to the centre of mass; (D) horizontal velocity of the hoof relative to the Centre of Mass and; (E) vertical acceleration of the hoof. A total of 240 stance phases in walk and 240 stance phases in trot were included in the assessment. Method D provided the most accurate and precise results in walk for stance phase duration with a bias of 4.1% for front limbs and 4.8% for hind limbs. For trot we derived a combination of method A for hoof-on and method E for hoof-off resulting in a bias of -6.2% of stance in the front limbs and method B for the hind limbs with a bias of 3.8% of stance phase duration. We conclude that motion capture yields accurate and precise detection of gait events for horses walking and trotting over ground and the results emphasise a need for different algorithms for front limbs versus hind limbs in trot. PMID:24529754
A mathematical model for efficient estimation of aircraft motions
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1983-01-01
In the usual formulation of the aircraft state-estimation problem, motions along a flight trajectory are represented by a plant consisting of nonlinear state and measurement models. Problem solution using this formulation requires that both state- and measurement-dependent Jacobian matrices be evaluated along any trajectory. In this paper it is shown that a set of state variables can be chosen to realize a linear state model of very simple form, such that all nonlinearities appear in the measurement model. The potential advantage of the new formulation is computational: the Jacobian matrix corresponding to a linear state model is constant, a feature that should outweigh the fact that the measurement model is more complicated than in the conventinal formulation. To compare the modeling methods, aircraft motions from typical flight-test and accident data were estimated, using each formulation with the same off-line (smoothing) algorithm. The results of these experiments, reported in the paper, demonstrate clearly the computational superiority of the linear state-variable formulation. The procedure advocated here may be extended to other nonlinear estimation problems, including on-line (filtering) applications.
Accuracy of Same-Subject Estimates: Are Two Judgements Better Than One.
ERIC Educational Resources Information Center
Bastick, Tony
The accuracy of the mean of two estimates was compared with the accuracy of a single independent estimate from the same subject. A subject was asked to estimate the size of one attribute of a constant stimulus, e.g., the total of a set of numbers. The same subject was also asked to give an estimate for an upper and lower bound on the size of the…
SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking
Patel, R; Block, A; Harkenrider, M; Roeske, J
2015-06-15
Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking, we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.
Accuracy of heritability estimations in presence of hidden population stratification.
Dandine-Roulland, Claire; Bellenguez, Céline; Debette, Stéphanie; Amouyel, Philippe; Génin, Emmanuelle; Perdry, Hervé
2016-01-01
The heritability of a trait is the proportion of its variance explained by genetic factors; it has historically been estimated using familial data. However, new methods have appeared for estimating heritabilities using genomewide data from unrelated individuals. A drawback of this strategy is that population stratification can bias the estimates. Indeed, an environmental factor associated with the phenotype may differ among population subgroups. This factor being associated both with the phenotype and the genetic variation in the population would be a confounder. A common solution consists in adjusting on the first Principal Components (PCs) of the genomic data. We study this procedure on simulated data and on 6000 individuals from the Three-City Study. We analyse the geographical coordinates of the birth cities, which are not genetically determined, but the heritability of which should be overestimated due to population stratification. We also analyse various anthropometric traits. The procedure fails to correct the bias in geographical coordinates heritability estimates. The heritability estimates of the anthropometric traits are affected by the inclusion of the first PC, but not by the following PCs, contrarily to geographical coordinates. We recommend to be cautious with heritability estimates obtained from a large population. PMID:27220488
Auditory/visual distance estimation: accuracy and variability
Anderson, Paul W.; Zahorik, Pavel
2014-01-01
Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR) measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the participant's perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Participants were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A), visual only (V), and congruent auditory/visual stimuli (A+V). Each condition was presented within its own block. Sixty-two participants were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition. PMID:25339924
Accuracy of heritability estimations in presence of hidden population stratification
Dandine-Roulland, Claire; Bellenguez, Céline; Debette, Stéphanie; Amouyel, Philippe; Génin, Emmanuelle; Perdry, Hervé
2016-01-01
The heritability of a trait is the proportion of its variance explained by genetic factors; it has historically been estimated using familial data. However, new methods have appeared for estimating heritabilities using genomewide data from unrelated individuals. A drawback of this strategy is that population stratification can bias the estimates. Indeed, an environmental factor associated with the phenotype may differ among population subgroups. This factor being associated both with the phenotype and the genetic variation in the population would be a confounder. A common solution consists in adjusting on the first Principal Components (PCs) of the genomic data. We study this procedure on simulated data and on 6000 individuals from the Three-City Study. We analyse the geographical coordinates of the birth cities, which are not genetically determined, but the heritability of which should be overestimated due to population stratification. We also analyse various anthropometric traits. The procedure fails to correct the bias in geographical coordinates heritability estimates. The heritability estimates of the anthropometric traits are affected by the inclusion of the first PC, but not by the following PCs, contrarily to geographical coordinates. We recommend to be cautious with heritability estimates obtained from a large population. PMID:27220488
A Visual mining based framework for classification accuracy estimation
NASA Astrophysics Data System (ADS)
Arun, Pattathal Vijayakumar
2013-12-01
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images. Techniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Han, Wei; Wang, Peng; Dong, Li-quan; Zhao, Yue-jin
2010-12-01
Image block matching is one of the motion estimation methods for video inter-frame coding and digital image stabilization. The methods used for matching and searching will greatly affect the accuracy and speed of block matching. The block matching method based on the oblique vectors is suggested in this paper where matching parameters contain both horizontal and vertical vectors in the image blocks at the same time. Improved matching information can be obtained after making correlative calculations in the oblique direction. A novel search method of matching block based on the idea of simulated annealing is presented in this paper to improve the searching speed, accuracy and robustness in the fast operation of the block-matching motion estimation. The simulated annealing algorithm can easily escape from the trap of local minima effectively. With the two methods the block matching can be used for motion estimation at the real-time image processing system and high estimation accuracy can be achieved. An image stabilization system based on DSP (Digital Signal Processing) system is developed to verify this algorithm. Results show that both the matching accuracy and the search speed are improved with the methods presented.
Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.
2016-07-01
Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.
Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.
Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T
2016-07-21
Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy. PMID:27362636
NASA Astrophysics Data System (ADS)
Wu, Shunguang; Hong, Lang
2008-04-01
A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.
Real time estimation of ship motions using Kalman filtering techniques
NASA Technical Reports Server (NTRS)
Triantafyllou, M. S.; Bodson, M.; Athans, M.
1983-01-01
The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.
Fast-coding robust motion estimation model in a GPU
NASA Astrophysics Data System (ADS)
García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel
2015-02-01
Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.
Flow in left atrium using MR fluid motion estimation
NASA Astrophysics Data System (ADS)
Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Steve M.; Sanders, Prash; Mazumdar, Jagannath; Abbott, Derek
2007-12-01
A recent development based on optical flow applied onto Fast Imaging in Steady State Free Precession (TrueFISP) magnetic resonance imaging is able to deliver good estimation of the flow profile in the human heart chamber. The examination of cardiac flow based on tracking of MR signals emitted by moving blood is able to give medical doctors insight into the flow patterns within the human heart using standard MRI procedure without specifically subjecting the patient to longer scan times using more dedicated scan protocols such as phase contrast MRI. Although MR fluid motion estimation has its limitations in terms of accurate flow mapping, the use of a comparatively quick scan procedure and computational post-processing gives satisfactory flow quantification and can assist in management of cardiac patients. In this study, we present flow in the left atria of five human subjects using MR fluid motion tracking. The measured flow shows that vortices exist within the atrium of heart. Although the scan is two-dimensional, we have produced multiple slices of flow maps in a spatial direction to show that the vortex exist in a three-dimensional space.
Misregistration's effects on classification and proportion estimation accuracy
NASA Technical Reports Server (NTRS)
Juday, R. D.; Hall, F.
1982-01-01
The estimates of crop type and acreage are undertaken in the AgRISTARS program by registering multiple date acquisitions of small subareas of LANDSAT scenes (termed segments), and applying multispectral analysis to them. An important contribution to errors in classification and acreage estimates is misregistration between multiple acquisitions. The formula used to express this relationship is given and the operations applied are so shown in diagrams. The taking of a LANDSAT feature vector and the derivation of the brightness and greeness are illustrated. It is shown that for any given sensor IFOV geometry, typical populations of fields can be derived and histograms can be plotted of the number of fields against field size according to ground truth. As a function of the resolution element, the IFOV of the sensor can draw the proportion of pure pixels in a given crop. Because the thematic mapper has a smaller resolution, the proportion of pixels that are pure in any given area will be larger.
Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2000-01-01
This paper extends Farrenkopf's analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only part of the state update resulting from the angle sensor measurement is propagated to future times.
Reliable camera motion estimation from compressed MPEG videos using machine learning approach
NASA Astrophysics Data System (ADS)
Wang, Zheng; Ren, Jinchang; Wang, Yubin; Sun, Meijun; Jiang, Jianmin
2013-05-01
As an important feature in characterizing video content, camera motion has been widely applied in various multimedia and computer vision applications. A novel method for fast and reliable estimation of camera motion from MPEG videos is proposed, using support vector machine for estimation in a regression model trained on a synthesized sequence. Experiments conducted on real sequences show that the proposed method yields much improved results in estimating camera motions while the difficulty in selecting valid macroblocks and motion vectors is skipped.
Biomechanical model-based displacement estimation in micro-sensor motion capture
NASA Astrophysics Data System (ADS)
Meng, X. L.; Zhang, Z. Q.; Sun, S. Y.; Wu, J. K.; Wong, W. C.
2012-05-01
In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework.
Multi-GPU based on multicriteria optimization for motion estimation system
NASA Astrophysics Data System (ADS)
Garcia, Carlos; Botella, Guillermo; Ayuso, Fermin; Prieto, Manuel; Tirado, Francisco
2013-12-01
Graphics processor units (GPUs) offer high performance and power efficiency for a large number of data-parallel applications. Previous research has shown that a GPU-based version of a neuromorphic motion estimation algorithm can achieve a ×32 speedup using these devices. However, the memory consumption creates a bottleneck due to the expansive tree of signal processing operations performed. In the present contribution, an improvement in memory reduction was carried out, which limited accelerator viability usage. An evolutionary algorithm was used to find the best configuration. It supposes a trade-off solution between consumption resources, parallel efficiency, and accuracy. A multilevel parallel scheme was exploited: grain level by means of multi-GPU systems, and a finer level by data parallelism. In order to achieve a more relevant analysis, some optical flow benchmarks were used to validate this study. Satisfactory results opened the chance of building an intelligent motion estimation system that auto-adapted according to real-time, resource consumption, and accuracy requirements.
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
NASA Technical Reports Server (NTRS)
Elyasberg, P. Y.; Kugayenko, B. V.; Voyskovskiy, M. I.
1975-01-01
The effects of disturbing forces on position calculation, and errors in the initial conditions of motion and in the selected assignment calculation schemes are estimated. It is shown that the main disturbing effects on the accuracy are due to density variations of the upper atmosphere. Recommendations are presented for estimating the calculation accuracy along with an example of such an estimate for the Interkosmos-7 artificial earth satellite. Other factors considered include the adopted scheme and computational algorithms used, effects of disturbing forces not taken into account earlier, and errors in the values of constants and in models of disturbing forces.
Real-Time Baseline Error Estimation and Correction for GNSS/Strong Motion Seismometer Integration
NASA Astrophysics Data System (ADS)
Li, C. Y. N.; Groves, P. D.; Ziebart, M. K.
2014-12-01
Accurate and rapid estimation of permanent surface displacement is required immediately after a slip event for earthquake monitoring or tsunami early warning. It is difficult to achieve the necessary accuracy and precision at high- and low-frequencies using GNSS or seismometry alone. GNSS and seismic sensors can be integrated to overcome the limitations of each. Kalman filter algorithms with displacement and velocity states have been developed to combine GNSS and accelerometer observations to obtain the optimal displacement solutions. However, the sawtooth-like phenomena caused by the bias or tilting of the sensor decrease the accuracy of the displacement estimates. A three-dimensional Kalman filter algorithm with an additional baseline error state has been developed. An experiment with both a GNSS receiver and a strong motion seismometer mounted on a movable platform and subjected to known displacements was carried out. The results clearly show that the additional baseline error state enables the Kalman filter to estimate the instrument's sensor bias and tilt effects and correct the state estimates in real time. Furthermore, the proposed Kalman filter algorithm has been validated with data sets from the 2010 Mw 7.2 El Mayor-Cucapah Earthquake. The results indicate that the additional baseline error state can not only eliminate the linear and quadratic drifts but also reduce the sawtooth-like effects from the displacement solutions. The conventional zero-mean baseline-corrected results cannot show the permanent displacements after an earthquake; the two-state Kalman filter can only provide stable and optimal solutions if the strong motion seismometer had not been moved or tilted by the earthquake. Yet the proposed Kalman filter can achieve the precise and accurate displacements by estimating and correcting for the baseline error at each epoch. The integration filters out noise-like distortions and thus improves the real-time detection and measurement capability
Accurate motion parameter estimation for colonoscopy tracking using a regression method
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2010-03-01
Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.
Improving the Accuracy of Estimation of Climate Extremes
NASA Astrophysics Data System (ADS)
Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.
2010-12-01
Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.
Hashi, S.; Ishiyama, K.; Yabukami, S.; Kanetaka, H.; Arai, K. I.
2010-05-15
Integration of the exciting coil and the pick-up coil array for the wireless magnetic motion sensing system has been investigated to clear the limitation of the system arrangement. From the comparison of the integrated-type and the sandwich-type, which was proposed by our previous study, regardless of the lower signal-to-noise ratio of the integrated-type than that of the sandwich-type a repeatable detection accuracy of around 1 mm is obtained at the distance of 120 mm from the pick-up coil array (sandwich-type: up to 140 mm). A different tendency of the detection errors in detection was also observed. In spite of different tendency, the cause of the errors has been clarified. The impedance change of the exciting coil due to a resonance of the LC marker perturbs strength of the magnetic field which is used for marker excitation. However, the errors are able to compensate to the actual positions and orientations of the marker by using compensatory method which was already established.
Determining the Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1995-01-01
An important part of building mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. In this work, an expression for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates with colored residuals is developed and validated. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle (HARV). As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, while conventional parameter accuracy measures were optimistic.
Stereo image motion monitor for atmospheric mitigation and estimation
NASA Astrophysics Data System (ADS)
Gibson, Kristofor B.
2015-09-01
The knowledge of the turbulence strength in the atmosphere is important for many applications. Imagery in the atmosphere experience significant blur when the turbulence is strong. This can be automatically improved (without user intervention) if the turbulence strength is known. The performance of a high-power laser emitting in the atmosphere can be predicted if the statistics of the turbulence strength is known. If not predicted correctly, the laser may unintentionally destroy a target or fail to be able to disable a target. In this article, we review existing methods that estimate turbulence strength, provide a more in depth error analysis, and propose a new method for estimating and mitigating turbulence in the atmosphere. We focus on methods that are passive in design in order to prevent detection in surveillance scenarios and tactical situations. We also propose a new method, stereo image motion monitor (SIMM) which is a system containing two independent apertures. Our goal in this approach is threefold: 1) We can measure r0 using the DIMM method 2) We can simultaneously estimate r0 individually for each aperture and 3) We have multiple views of the same scene thus can increase the number of frames used in turbulence mitigation methods.
Influence of ultrasound speckle tracking strategies for motion and strain estimation.
Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago
2016-08-01
Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. PMID:27132112
Fractional-order variational optical flow model for motion estimation.
Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü
2013-05-13
A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order. PMID:23547225
Object tracking by combining detection, motion estimation, and verification
NASA Astrophysics Data System (ADS)
Sidla, Oliver
2010-01-01
Object detection and tracking play an increasing role in modern surveillance systems. Vision research is still confronted with many challenges when it comes to robust tracking in realistic imaging scenarios. We describe a tracking framework which is aimed at the detection and tracking of objects in real-world situations (e.g. from surveillance cameras) and in real-time. Although the current system is used for pedestrian tracking only, it can easily be adapted to other detector types and object classes. The proposed tracker combines i) a simple background model to speed up all following computations, ii)1 a fast object detector realized with a cascaded HOG detector, iii) motion estimation with a KLT Tracker iv) object verification based on texture/color analysis by means of DCT coefficients and , v) dynamic trajectory and object management. The tracker has been successfully applied in indoor and outdoor scenarios it a public transportation hub in the City of Graz, Austria.
Ground motions estimates for a cascadia earthquake from liquefaction evidence
Dickenson, S.E.; Obermeier, S.F.
1998-01-01
Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.
Accuracy of estimating wolf summer territories by daytime locations
Demma, D.J.; Mech, L.D.
2011-01-01
We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800-2000 Ah; nighttime = 2000-0800 Ah; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods. ?? 2011 American Midland Naturalist.
Accuracy of estimating wolf summer territories by daytime locations
Demma, Dominic J.; Mech, L. David
2011-01-01
We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800–2000 h; nighttime = 2000–0800 h; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods.
Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2013-01-01
Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…
Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach
de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José
2015-01-01
This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796
Use of motion estimation algorithms for improved flux measurements using SO2 cameras
NASA Astrophysics Data System (ADS)
Peters, Nial; Hoffmann, Alex; Barnie, Talfan; Herzog, Michael; Oppenheimer, Clive
2015-07-01
SO2 cameras are rapidly gaining popularity as a tool for monitoring SO2 emissions from volcanoes. Several different SO2 camera systems have been developed with varying patterns of image acquisition in space, time and wavelength. Despite this diversity, there are two steps common to the workflows of most of these systems; aligning images of different wavelengths to calculate apparent absorbance and estimating plume transport speeds, both of which can be achieved using motion estimation algorithms. Here we present two such algorithms, a Dual Tree Complex Wavelet Transform-based algorithm and the Farnebäck Optical Flow algorithm. We assess their accuracy using a synthetic dataset created using the numeric cloud-resolving model ATHAM, and then apply them to real world data from Villarrica volcano. Both algorithms are found to perform well and the ATHAM simulations offer useful datasets for benchmarking and validating future algorithms.
Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System
Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil
2014-01-01
In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636
Glover, C.W.; Barhen, J.; Aminzadeh, F.; Toomarian, N.B.
1997-01-01
The accuracy of an artificial neural network (ANN) algorithm is a crucial issue in the estimation of an oil field reservoir`s properties from remotely sensed seismic data. This paper demonstrates the use of the k-fold cross validation technique to obtain confidence bounds on an ANN`s accuracy statistic from a finite sample set. In addition, we also show that an ANN`s classification accuracy is dramatically improved by transforming the ANN`s input feature space to a dimensionally smaller, new input space. The new input space represents a feature space that maximizes the linear separation between classes. Thus, the ANN`s convergence time and accuracy are improved because the ANN must merely find nonlinear perturbations to the starting linear decision boundaries. These techniques for estimating ANN accuracy bounds and feature space transformations are demonstrated on the problem of estimating the sand thickness in an oil field reservoir based only on remotely sensed seismic data.
Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy
NASA Astrophysics Data System (ADS)
Dong, Bin; Jiang Graves, Yan; Jia, Xun; Jiang, Steve B.
2012-12-01
Using fiducial markers on the patient’s body surface to predict the tumor location is a widely used approach in lung cancer radiotherapy. The purpose of this work is to propose an algorithm that automatically identifies a sparse set of locations on the patient’s surface with the optimal prediction power for the tumor motion. In our algorithm, it is assumed that there is a linear relationship between the surface marker motion and the tumor motion. The sparse selection of markers on the external surface and the linear relationship between the marker motion and the internal tumor motion are represented by a prediction matrix. Such a matrix is determined by solving an optimization problem, where the objective function contains a sparsity term that penalizes the number of markers chosen on the patient’s surface. Bregman iteration is used to solve the proposed optimization problem. The performance of our algorithm has been tested on realistic clinical data of four lung cancer patients. Thoracic 4DCT scans with ten phases are used for the study. On a reference phase, a grid of points are casted on the patient’s surfaces (except for the patient’s back) and propagated to other phases via deformable image registration of the corresponding CT images. Tumor locations at each phase are also manually delineated. We use nine out of ten phases of the 4DCT images to identify a small group of surface markers that are mostly correlated with the motion of the tumor and find the prediction matrix at the same time. The tenth phase is then used to test the accuracy of the prediction. It is found that on average six to seven surface markers are necessary to predict tumor locations with a 3D error of about 1 mm. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation with the tumor motion. Our method can automatically select sparse locations on the patient’s external surface and
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores
ERIC Educational Resources Information Center
Douglas, Karen M.; Mislevy, Robert J.
2010-01-01
Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…
NASA Astrophysics Data System (ADS)
Altyntsev, M. A.; Arbuzov, S. A.; Popov, R. A.; Tsoi, G. V.; Gromov, M. O.
2016-06-01
A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.
NASA Astrophysics Data System (ADS)
Haimovich, Alexander M.; Peckham, C. D.; Teti, Joseph G., Jr.
1994-06-01
It is well known that targets moving along track within a Synthetic Aperture Radar (SAR) field of view are imaged as defocused objects. The SAR stripmap mode is tuned to stationary ground targets and the mismatch between the SAR processing parameters and the target motion parameters causes the energy to spill over to adjacent image pixels, thus not only hindering target feature extraction, but also reducing the probability of detection. The problem can be remedied by generating the image using a filter matched to the actual target motion parameters, effectively focusing the SAR image on the target. For a fixed rate of motion the target velocity can be estimated from the slope of the Doppler frequency characteristic. The processing is carried out on the range compressed data but before azimuth compression. The problem is similar to the classical problem of estimating the instantaneous frequency of a linear FM signal (chirp). This paper investigates the application of three different time-frequency analysis techniques to estimate the instantaneous Doppler frequency of range compressed SAR data. In particular, we compare the Wigner-Ville distribution, the Gabor expansion and the Short-Time Fourier transform with respect to their performance in noisy SAR data. Criteria are suggested to quantify the performance of each method in the joint time- frequency domain. It is shown that these methods exhibit sharp signal-to-noise threshold effects, i.e., a certain SNR below which the accuracy of the velocity estimation deteriorates rapidly. It is also shown that the methods differ with respect to their representation of the SAR data.
Estimation of measurement accuracy of track point coordinates in nuclear photoemulsion
NASA Astrophysics Data System (ADS)
Shamanov, V. V.
1995-03-01
A simple method for an estimation of the measurement accuracy of track point coordinates in nuclear photoemulsion is described. The method is based on analysis of residual deviations of measured track points from a straight line approximating the track. Reliability of the algorithm is illustrated by Monte Carlo simulation. Examples of using the method for an estimation of the accuracy of track point coordinates measured with the microscope KSM-1 (VEB Carl Zeiss Jena) are given.
Quantum limits on optical phase estimation accuracy from classical rate-distortion theory
Nair, Ranjith
2014-12-04
The classical information-theoretic lower bound on the distortion of a random variable upon transmission through a noisy channel is applied to quantum-optical phase estimation. An approach for obtaining Bayesian lower bounds on the phase estimation accuracy is described that employs estimates of the classical capacity of the relevant quantum-optical channels. The Heisenberg limit for lossless phase estimation is derived for arbitrary probe state and prior distributions of the phase, and shot-noise scaling of the phase accuracy is established in the presence of nonzero loss for a parallel entanglement-assisted strategy with a single probe mode.
Poulsen, Per Rugaard Cho, Byungchul; Keall, Paul J.
2008-12-01
Purpose: To develop a probability-based method for estimating the mean position, motion magnitude, and trajectory of a tumor using cone-beam CT (CBCT) projections. Method and Materials: CBCT acquisition was simulated for more than 80 hours of patient-measured trajectories for thoracic/abdominal tumors and prostate. The trajectories were divided into 60-second segments for which CBCT was simulated by projecting the tumor position onto a rotating imager. Tumor (surrogate) visibility on all projections was assumed. The mean and standard deviation of the tumor position and motion correlation along the three axes were determined with maximum likelihood estimation based on the projection data, assuming a Gaussian spatial distribution. The unknown position component along the imager axis was approximated by its expectation value, determined by the Gaussian distribution. Transformation of the resulting three-dimensional position to patient coordinates provided the estimated trajectory. Two trajectories were experimentally investigated by CBCT acquisition of a phantom. Results: The root-mean-square error of the estimated mean position was 0.05 mm. The root-mean-square error of the trajectories was <1 mm in 99.1% of the thorax/abdomen cases and in 99.7% of the prostate cases. The experimental trajectory estimation agreed with the actual phantom trajectory within 0.44 mm in any direction. Clinical applicability was demonstrated by estimating the tumor trajectory for a pancreas cancer case. Conclusions: A method for estimation of mean position, motion magnitude, and trajectory of a tumor from CBCT projections has been developed. The accuracy was typically much better than 1 mm. The method is applicable to motion-inclusive, respiratory-gated, and tumor-tracking radiotherapy.
Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
Vallery, Heike; van Asseldonk, Edwin H F; Buss, Martin; van der Kooij, Herman
2009-02-01
For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of "correct" gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robot's other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain. PMID:19211320
The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1981-01-01
Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.
Determining the accuracy of maximum likelihood parameter estimates with colored residuals
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1994-01-01
An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.
Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu
2016-01-01
Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127
Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu
2016-01-01
Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127
Cardiac motion estimation by joint alignment of tagged MRI sequences.
Oubel, E; De Craene, M; Hero, A O; Pourmorteza, A; Huguet, M; Avegliano, G; Bijnens, B H; Frangi, A F
2012-01-01
Image registration has been proposed as an automatic method for recovering cardiac displacement fields from tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the α-entropy (H(α)) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p<0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presents an interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging. PMID:22000567
Arterial Mechanical Motion Estimation Based on a Semi-Rigid Body Deformation Approach
Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo
2014-01-01
Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987
Arterial mechanical motion estimation based on a semi-rigid body deformation approach.
Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo
2014-01-01
Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987
NASA Astrophysics Data System (ADS)
Xin, Tiantian; Zhao, Hongying; Liu, Sijie; Wang, Lu
2015-03-01
Videos from a small Unmanned Aerial Vehicle (UAV) are always unstable because of the wobble of the vehicle and the impact of surroundings, especially when the motion has a large drifting. Electronic image stabilization aims at removing the unwanted wobble and obtaining the stable video. Then estimation of intended motion, which represents the tendency of global motion, becomes the key to image stabilization. It is usually impossible for general methods of intended motion estimation to obtain stable intended motion remaining as much information of video images and getting a path as much close to the real flying path at the same time. This paper proposed a fuzzy Kalman filtering method to estimate the intended motion to solve these problems. Comparing with traditional methods, the fuzzy Kalman filtering method can achieve better effect to estimate the intended motion.
The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy
ERIC Educational Resources Information Center
Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.
2016-01-01
A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…
ERIC Educational Resources Information Center
Kolen, Michael J.; Whitney, Douglas R.
The application of latent trait theory to classroom tests necessitates the use of small sample sizes for parameter estimation. Computer generated data were used to assess the accuracy of estimation of the slope and location parameters in the two parameter logistic model with fixed abilities and varying small sample sizes. The maximum likelihood…
"Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines
ERIC Educational Resources Information Center
Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken
2011-01-01
Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a number line.…
SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation
O'Shea, T; Harris, E; Bamber, J; Evans, P
2014-06-01
Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.
The accuracy of photo-based structure-from-motion DEMs
NASA Astrophysics Data System (ADS)
James, M. R.; Robson, S.
2012-04-01
Data for detailed digital elevation models (DEMs) are usually collected by expensive laser-based techniques, or by photogrammetric methods that require expertise and specialist software. However, recent advances in computer vision research now permit 3D models to be automatically derived from unordered collections of photographs, offering the potential for significantly cheaper and quicker DEM production. Here, we assess the accuracy of this approach for geomorphological applications using examples from a coastal cliff and a volcanic edifice. The reconstruction process is based on a combination of structure-from-motion and multi-view stereo algorithms (SfM-MVS). Using multiple photographs of a scene taken from different positions with a consumer-grade camera, dense point clouds (millions of points) can be derived. Processing is carried out by automated 'reconstruction pipeline' software downloadable from the internet, e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Unlike traditional photogrammetric approaches, the initial reconstruction process does not require the identification of any control points or initial camera calibration and is carried out with little or no operator intervention. However, such reconstructions are initally un-scaled and un-oriented so additional software (http://www.lancs.ac.uk/staff/jamesm/software/sfm_georef.htm) has been developed to permit georeferencing. Although this step requires the presence of some control points or features within the scene, it does not have the relatively strict image acquisition and control requirements of traditional photogrammetry. For accuracy, and to allow error analysis, georeferencing observations are made within the image set, rather than requiring feature matching within the point cloud. In our coastal example, 133 photos taken with a Canon EOS 450D and 28 mm prime lens, from viewing distances of ~20 m, were used to reconstruct a ~60 m long section of eroding cliff. The
Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe
2015-05-01
Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.
NASA Astrophysics Data System (ADS)
Santos, C. Almeida; Costa, C. Oliveira; Batista, J.
2016-05-01
The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.
Estimating object proper motion using optical flow, kinematics, and depth information.
Schmüdderich, Jens; Willert, Volker; Eggert, Julian; Rebhan, Sven; Goerick, Christian; Sagerer, Gerhard; Körner, Edgar
2008-08-01
For the interaction of a mobile robot with a dynamic environment, the estimation of object motion is desired while the robot is walking and/or turning its head. In this paper, we describe a system which manages this task by combining depth from a stereo camera and computation of the camera movement from robot kinematics in order to stabilize the camera images. Moving objects are detected by applying optical flow to the stabilized images followed by a filtering method, which incorporates both prior knowledge about the accuracy of the measurement and the uncertainties of the measurement process itself. The efficiency of this system is demonstrated in a dynamic real-world scenario with a walking humanoid robot. PMID:18632403
Baltali, Evre; Zhao, Kristin D.; Koff, Matthew F.; Keller, Eugene E.; An, Kai-Nan
2008-01-01
The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5 mm for 3D curvilinear path calculations, 0.05 mm for 3D linear distance calculations, and 0.2° for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable. PMID:18617178
Ekisheva, Svetlana
2010-01-01
Probabilistic models for biological sequences (DNA and proteins) have many useful applications in bioinformatics. Normally, the values of parameters of these models have to be estimated from empirical data. However, even for the most common estimates, the maximum likelihood (ML) estimates, properties have not been completely explored. Here we assess the uniform accuracy of the ML estimates for models of several types: the independence model, the Markov chain and the hidden Markov model (HMM). Particularly, we derive rates of decay of the maximum estimation error by employing the measure concentration as well as the Gaussian approximation, and compare these rates. PMID:21318122
Motion estimation for nuclear medicine: a probabilistic approach
NASA Astrophysics Data System (ADS)
Smith, Rhodri; Abd. Rahni, Ashrani Aizzuddin; Jones, John; Tahavori, Fatemeh; Wells, Kevin
2014-03-01
Accurate, Respiratory Motion Modelling of the abdominal-thoracic organs serves as a pre-requisite for motion correction of Nuclear Medicine (NM) Images. Many respiratory motion models to date build a static correspondence between a parametrized external surrogate signal and internal motion. Mean drifts in respiratory motion, changes in respiratory style and noise conditions of the external surrogate signal motivates a more adaptive approach to capture non-stationary behavior. To this effect we utilize the application of our novel Kalman model with an incorporated expectation maximization step to allow adaptive learning of model parameters with changing respiratory observations. A comparison is made with a popular total least squares (PCA) based approach. It is demonstrated that in the presence of noisy observations the Kalman framework outperforms the static PCA model, however, both methods correct for respiratory motion in the computational anthropomorphic phantom to < 2mm. Motion correction performed on 3 dynamic MRI patient datasets using the Kalman model results in correction of respiratory motion to ≍ 3mm.
Fuerweger, Christoph; Drexler, Christian; Kufeld, Markus; Muacevic, Alexander; Wowra, Berndt; Schlaefer, Alexander
2010-11-01
Purpose: To evaluate clinical targeting precision and assess patient movement data during fiducial-free, single-fraction spinal radiosurgery with the Cyberknife (CK). Methods and Materials: Image-guided spine tracking accuracy was tested using two phantoms. Movement patterns (three translations, roll, pitch and yaw) were obtained from log files of 260 patient treatments (47 cervical, 89 thoracic, 90 lumbar, and 34 pelvic/sacral). For two treatments (average and maximum motion scenario), we added offsets to all beams according to recorded patient movements and recalculated the delivered dose distribution to simulate the dosimetric impact of intrafraction motion. Results: Phantom spine position was registered with an accuracy of <0.2 mm for translational and <0.3{sup o} for rotational directions. Residual patient motion yielded mean targeting errors per beam of 0.28 {+-} 0.13 mm (X), 0.25 {+-} 0.15 mm (Y), 0.19 {+-} 0.11 mm (Z) and 0.40 {+-} 0.20{sup o} (roll), 0.20 {+-} 0.08{sup o} (pitch), and 0.19 {+-} 0.08{sup o} (yaw). Spine region had little influence on overall targeting error, which was <1 mm for more than 95% of treatments (median, 0.48 mm). In the maximum motion case, target coverage decreased by 1.7% (from 92.1% to 90.4%) for the 20-Gy prescription isodose. Spinal cord volume receiving more than 8 Gy increased slightly, from 2.41 to 2.46 cm{sup 3}. Conclusions: Submillimeter targeting precision was obtained for fiducial-free spinal radiosurgery despite patient motion. Patient motion has little effect on the delivered dose distribution when image-guided correction of beam aiming is employed.
Hardware architecture design of a fast global motion estimation method
NASA Astrophysics Data System (ADS)
Liang, Chaobing; Sang, Hongshi; Shen, Xubang
2015-12-01
VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.
Facial motion parameter estimation and error criteria in model-based image coding
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
Estimation of diagnostic test accuracy without full verification: a review of latent class methods
Collins, John; Huynh, Minh
2014-01-01
The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172
Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo
2016-01-01
Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910
Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo
2016-01-01
Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910
NASA Astrophysics Data System (ADS)
Brüggemann, Matthias; Kays, Rüdiger; Springer, Paul; Erdler, Oliver
2015-03-01
In this paper we present a combination of block-matching and differential motion field estimation. We initialize the motion field using a predictive hierarchical block-matching approach. This vector field is refined by a pixel-recursive differential motion estimation method. We integrate image warping and adaptive filter kernels into the Horn and Schunck differential optical flow estimation approach to break the block structure of the initial correspondence vector fields and compute motion field updates to fulfill the smoothness constraint inside motion boundaries. The influence of occlusion areas is reduced by integrating an in-the-loop occlusion detection and adjusting the adaptive filter weights in the iteration process. We integrate the combined estimation into a hierarchical multi-scale framework. The refined motion on the current scale is upscaled and used as prediction for block-matching motion estimation on the next scale. With the proposed system we are able to combine the advantages of block-matching and differential motion estimation and achieve a dense vector field with floating point precision even for large motion.
Estimating satellite pose and motion parameters using a novelty filter and neural net tracker
NASA Technical Reports Server (NTRS)
Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne
1989-01-01
A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Accuracy and precision of stream reach water surface slopes estimated in the field and from maps
Isaak, D.J.; Hubert, W.A.; Krueger, K.L.
1999-01-01
The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.
NASA Astrophysics Data System (ADS)
Yoon, Jungsoo; Choi, Dayoung; Suk, Mi-Kyung; Nam, Kyung-Yeub; Lee, Sangmi; Ko, Jeong-Seok
2016-04-01
Weather Radar Center (WRC) in Korea Meteorological Administration (KMA) have tried to improve the accuracy of the radar rainfall. WRC introduced Radar-AWS Rainrate (RAR) algorithm in 2001 to quantitatively improve the accuracy of the radar rainfall. Whereafter, RAR algorithm have been advanced and still used to estimate the radar rainfall. WRC has developed Korean dual-pol radar rainfall estimation algorithm from 2014 when the project of constructing the dual-pol radar network was initiated. WRC therefore suggested first Korean dual-pol radar rainfall estimation equations (R(Z), R(Z, ZDR), R(ZDR, KDP), and R(KDP)) in 2014 and developed the equations in 2015. Since WRC just suggested each equation, it needs to algorithmize the equations. This study suggested Korean dual-pol radar rainfall estimation algorithm and examined on the accuracy of the radar rainfall estimated by the algorithm. The radar measurements obtained by dual-pol radars (BRI, BSL, and SBS) which were introduced in 2015 were used.
ERIC Educational Resources Information Center
Lafferty, Mark T.
2010-01-01
The number of project failures and those projects completed over cost and over schedule has been a significant issue for software project managers. Among the many reasons for failure, inaccuracy in software estimation--the basis for project bidding, budgeting, planning, and probability estimates--has been identified as a root cause of a high…
Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System.
Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung
2016-01-01
Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user's eye and screen coordinates. It is applied on the basis of the information of the user's pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045
Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System
Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung
2016-01-01
Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user’s eye and screen coordinates. It is applied on the basis of the information of the user’s pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045
WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation
NASA Astrophysics Data System (ADS)
Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco
2016-06-01
Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.
Comparing Accuracy of Parameter Estimation Using IRT Models in the Presence of Guessing
ERIC Educational Resources Information Center
Fu, Qiong
2010-01-01
This research investigated how the accuracy of person ability and item difficulty parameter estimation varied across five IRT models with respect to the presence of guessing, targeting, and varied combinations of sample sizes and test lengths. The data were simulated with 50 replications under each of the 18 combined conditions. Five IRT models…
ERIC Educational Resources Information Center
Kelley, Ken; Rausch, Joseph R.
2006-01-01
Methods for planning sample size (SS) for the standardized mean difference so that a narrow confidence interval (CI) can be obtained via the accuracy in parameter estimation (AIPE) approach are developed. One method plans SS so that the expected width of the CI is sufficiently narrow. A modification adjusts the SS so that the obtained CI is no…
Technology Transfer Automated Retrieval System (TEKTRAN)
Knowledge of the extent of the symptoms of a plant disease, generally referred to as severity, is key to both fundamental and applied aspects of plant pathology. Most commonly, severity is obtained visually and the accuracy of each estimate (closeness to the actual value) by individual raters is par...
Accuracy of Estimates and Statistical Power for Testing Meditation in Latent Growth Curve Modeling
ERIC Educational Resources Information Center
Cheong, JeeWon
2011-01-01
The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including…
Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT
ERIC Educational Resources Information Center
Lathrop, Quinn N.
2015-01-01
There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…
Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Hong, Yuan; Deng, Weiling
2010-01-01
To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…
Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Accuracy of hands v. household measures as portion size estimation aids.
Gibson, Alice A; Hsu, Michelle S H; Rangan, Anna M; Seimon, Radhika V; Lee, Crystal M Y; Das, Arpita; Finch, Charles H; Sainsbury, Amanda
2016-01-01
Accurate estimation of food portion size is critical in dietary studies. Hands are potentially useful as portion size estimation aids; however, their accuracy has not been tested. The aim of the present study was to test the accuracy of a novel portion size estimation method using the width of the fingers as a 'ruler' to measure the dimensions of foods ('finger width method'), as well as fists and thumb or finger tips. These hand measures were also compared with household measures (cups and spoons). A total of sixty-seven participants (70 % female; age 32·7 (sd 13·7) years; BMI 23·2 (sd 3·5) kg/m(2)) attended a 1·5 h session in which they estimated the portion sizes of forty-two pre-weighed foods and liquids. Hand measurements were used in conjunction with geometric formulas to convert estimations to volumes. Volumes determined with hand and household methods were converted to estimated weights using density factors. Estimated weights were compared with true weights, and the percentage difference from the true weight was used to compare accuracy between the hand and household methods. Of geometrically shaped foods and liquids estimated with the finger width method, 80 % were within ±25 % of the true weight of the food, and 13 % were within ±10 %, in contrast to 29 % of those estimated with the household method being within ±25 % of the true weight of the food, and 8 % being within ±10 %. For foods that closely resemble a geometric shape, the finger width method provides a novel and acceptably accurate method of estimating portion size. PMID:27547392
Schall, Mark C; Fethke, Nathan B; Chen, Howard; Gerr, Fred
2015-05-01
The performance of an inertial measurement unit (IMU) system for directly measuring thoracolumbar trunk motion was compared to that of the Lumbar Motion Monitor (LMM). Thirty-six male participants completed a simulated material handling task with both systems deployed simultaneously. Estimates of thoracolumbar trunk motion obtained with the IMU system were processed using five common methods for estimating trunk motion characteristics. Results of measurements obtained from IMUs secured to the sternum and pelvis had smaller root-mean-square differences and mean bias estimates in comparison to results obtained with the LMM than results of measurements obtained solely from a sternum mounted IMU. Fusion of IMU accelerometer measurements with IMU gyroscope and/or magnetometer measurements was observed to increase comparability to the LMM. Results suggest investigators should consider computing thoracolumbar trunk motion as a function of estimates from multiple IMUs using fusion algorithms rather than using a single accelerometer secured to the sternum in field-based studies. PMID:25683549
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
Noel, Camille; Parikh, Parag J. Roy, Meghana; Kupelian, Patrick; Mahadevan, Arul; Weinstein, Geoffrey; Enke, Charles; Flores, Nicholas; Beyer, David; Levine, Lisa
2009-03-01
Purpose: To evaluate whether pre- and post-treatment imaging (immediately before and after a radiation therapy treatment fraction) and intermittent imaging (at intervals during a treatment fraction) are accurate predictors of prostate motion during the delivery of radiation. Methods and Materials: The Calypso 4D Localization System was used to continuously track the prostate during radiation delivery in 35 prostate cancer patients, for a total of 1,157 fractions (28-45 per patient). Predictions of prostate motion away from isocenter were modeled for a pre- and post-treatment imaging schedule and for multiple intermittent intrafraction imaging schedules and compared with the actual continuous tracking data. The endpoint was drift of the prostate beyond a certain radial displacement for a duration of more than 30 s, 1 min, and 2 min. Results were used to evaluate the sensitivity and specificity of these models as an evaluation of intrafraction prostate motion. Results: The sensitivity of pre- and post-treatment imaging in determining 30 s of intrafraction prostate motion greater than 3, 5, or 7 mm for all fractions was low, with values of 53%, 49%, and 39%, respectively. The specificity of pre- and post-treatment imaging was high for all displacements. The sensitivity of intermittent imaging improved with increasing sampling rate. Conclusions: These results suggest that pre- and post-treatment imaging is not a sensitive method of assessing intrafraction prostate motion, and that intermittent imaging is sufficiently sensitive only at a high sampling rate. These findings support the value of continuous, real-time tracking in prostate cancer radiation therapy.
Prediction accuracy of a sample-size estimation method for ROC studies
Chakraborty, Dev P.
2010-01-01
Rationale and Objectives Sample-size estimation is an important consideration when planning a receiver operating characteristic (ROC) study. The aim of this work was to assess the prediction accuracy of a sample-size estimation method using the Monte Carlo simulation method. Materials and Methods Two ROC ratings simulators characterized by low reader and high case variabilities (LH) and high reader and low case variabilities (HL) were used to generate pilot data sets in 2 modalities. Dorfman-Berbaum-Metz multiple-reader multiple-case (DBM-MRMC) analysis of the ratings yielded estimates of the modality-reader, modality-case and error variances. These were input to the Hillis-Berbaum (HB) sample-size estimation method, which predicted the number of cases needed to achieve 80% power for 10 readers and an effect size of 0.06 in the pivotal study. Predictions that generalized to readers and cases (random-all), to cases only (random-cases) and to readers only (random-readers) were generated. A prediction-accuracy index defined as the probability that any single prediction yields true power in the range 75% to 90% was used to assess the HB method. Results For random-case generalization the HB-method prediction-accuracy was reasonable, ~ 50% for 5 readers in the pilot study. Prediction-accuracy was generally higher under low reader variability conditions (LH) than under high reader variability conditions (HL). Under ideal conditions (many readers in the pilot study) the DBM-MRMC based HB method overestimated the number of cases. The overestimates could be explained by the observed large variability of the DBM-MRMC modality-reader variance estimates, particularly when reader variability was large (HL). The largest benefit of increasing the number of readers in the pilot study was realized for LH, where 15 readers were enough to yield prediction accuracy > 50% under all generalization conditions, but the benefit was lesser for HL where prediction accuracy was ~ 36% for 15
About accuracy of the discrimination parameter estimation for the dual high-energy method
NASA Astrophysics Data System (ADS)
Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.
2015-04-01
A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.
Accuracy of Estimates and Statistical Power for Testing Meditation in Latent Growth Curve Modeling
Cheong, JeeWon
2016-01-01
The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including sample size, effect size of mediated effect, number of measurement occasions, and R2 of measured variables. In general, the results showed that relatively large samples were needed to accurately estimate the mediated effects and to have adequate statistical power, when testing mediation in the LGCM framework. Guidelines for designing studies to examine longitudinal mediation and ways to improve the accuracy of the estimates and statistical power were discussed.
The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control
ERIC Educational Resources Information Center
Page, A.; Moreno, R.; Candelas, P.; Belmar, F.
2008-01-01
In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…
NASA Astrophysics Data System (ADS)
Damljanovic, G.
2009-09-01
Commission 19 (Earth Rotation) of the International Astronomical Union (IAU) established the Working Group on Earth Rotation in the Hipparcos Reference Frame (WG ERHRF) in 1995 to collect the optical observations of latitude and universal time variations, made during 1899.7 -- 1992.0 in line with the Earth orientation programmes (to derive Earth Orientation Parameters -- EOP), with Dr. Jan Vondrák (Astronomical Institute of Academy of Sciences of the Czech Republic, Prague) as the head of WG ERHRF. We participated in this international project using Belgrade Visual Zenith -- Telescope (BLZ) latitude data for the period 1949.0 -- 1986.0, after a new reduction of BLZ data made in my MSc thesis, finished in 1997 at the Faculty of Mathematics of University of Belgrade. Dr. Vondrák collected 4.4 million optical observations of latitude/universal time variations made at 33 observatories. The data were used for the EOP investigations, Hipparcos satellite Catalogue -- radio sources connection, etc. Nowadays, it is customary to correct the positions and proper motions of stars of Hipparcos Catalogue (as an optical reference frame) using ground -- based observations of some Hipparcos stars. In this PhD thesis we use the latitude observations made with several types of classical astrometric instruments: visual (ZT) and floating zenith -- telescope (FZT), visual zenith tube (VZT) and photographic zenith tube (PZT); 26 different instruments located at many observatories all over the world (used in the programs of monitoring the Earth orientation during the 20th century). We received the data from Dr. Vondrák via private communication. The observatories and instruments are: International Latitude Service -- ILS (Carloforte -- CA ZT, Cincinnati -- CI ZT, Gaithersburg -- GT ZT, Kitab -- KZ ZT, Mizusawa -- MZZ ZT, Tschardjui -- TS ZT and Ukiah -- UK ZT), Belgrade (BLZ ZT), Blagoveschtschensk (BK ZT), Irkutsk (IRZ ZT), Poltava (POL ZT), Pulkovo (PU and PUZ ZT), Varsovie (VJZ ZT
Accuracy or precision: Implications of sample design and methodology on abundance estimation
Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.
2015-01-01
Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.
Estimation of muscle strength during motion recognition using multichannel surface EMG signals.
Nagata, Kentaro; Nakano, Takemi; Magatani, Kazushige; Yamada, Masafumi
2008-01-01
The use of kinesiological electromyography is established as an evaluation tool for various kinds of applied research, and surface electromyogram (SEMG) has been widely used as a control source for human interfaces such as in a myoelectric prosthetic hand (we call them 'SEMG interfaces'). It is desirable to be able to control the SEMG interfaces with the same feeling as body movement. The existing SEMG interface mainly focuses on how to achieve accurate recognition of the intended movement. However, detecting muscular strength and reduced number of electrodes are also an important factor in controlling them. Therefore, our objective in this study is the development of and the estimation method for muscular strength that maintains the accuracy of hand motion recognition to reflect the result of measured power in a controlled object. Although the muscular strength can be evaluated by various methods, in this study a grasp force index was applied to evaluate the muscular strength. In order to achieve our objective, we directed our attention to measuring all valuable information for SEMG. This work proposes an application method of two simple linear models, and the selection method of an optimal electrode configuration to use them effectively. Our system required four SEMG measurement electrodes in which locations differed for every subject depending on the individual's characteristics, and those were selected from a 96ch multi electrode using the Monte Carlo method. From the experimental results, the performance in six normal subjects indicated that the recognition rate of four motions were perfect and the grasp force estimated result fit well with the actual measurement result. PMID:19162665
NASA Astrophysics Data System (ADS)
Tomosada, M.
2005-12-01
Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate
NASA Astrophysics Data System (ADS)
Khoshelham, Kourosh
2016-04-01
Registration is often a prerequisite step in processing point clouds. While planar surfaces are suitable features for registration, most of the existing plane-based registration methods rely on iterative solutions for the estimation of transformation parameters from plane correspondences. This paper presents a new closed-form solution for the estimation of a rigid motion from a set of point-plane correspondences. The role of normalization is investigated and its importance for accurate plane fitting and plane-based registration is shown. The paper also presents a thorough evaluation of the closed-form solutions and compares their performance with the iterative solution in terms of accuracy, robustness, stability and efficiency. The results suggest that the closed-form solution based on point-plane correspondences should be the method of choice in point cloud registration as it is significantly faster than the iterative solution, and performs as well as or better than the iterative solution in most situations. The normalization of the point coordinates is also recommended as an essential preprocessing step for point cloud registration. An implementation of the closed-form solutions in MATLAB is available at: http://people.eng.unimelb.edu.au/kkhoshelham/research.html#directmotion
Estimation of motion parameters for a rigid body from its orthogonal projection
NASA Technical Reports Server (NTRS)
Ganguly, S.; Ghosh, B.; Tarn, T. J.; Bejczy, A. K.
1989-01-01
An estimate is presented of the motion parameters, namely, linear and angular velocities of a rigid body rotating and translating in three-dimensional-space. It is assumed that the velocities are constant and that only the orthogonal projection of the motion is observable. In particular, if (x, y, z) is the Cartesian coordinate, it is assumed that the projection of the motion on the x-y plane is observed and the information along the z coordinate is lost.
Motion estimation in the frequency domain using fuzzy c-planes clustering.
Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E
2001-01-01
A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method. PMID:18255527
NASA Astrophysics Data System (ADS)
Wang, Shi-tai; Peng, Jun-huan
2015-12-01
The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.
Davis-Stober, Clintin P; Dana, Jason
2014-03-01
We develop a general measure of estimation accuracy for fundamental research designs, called v. The v measure compares the estimation accuracy of the ubiquitous ordinary least squares (OLS) estimator, which includes sample means as a special case, with a benchmark estimator that randomizes the direction of treatment effects. For sample and effect sizes common to experimental psychology, v suggests that OLS produces estimates that are insufficiently accurate for the type of hypotheses being tested. We demonstrate how v can be used to determine sample sizes to obtain minimum acceptable estimation accuracy. Software for calculating v is included as online supplemental material (R Core Team, 2012). PMID:23661222
Motion Detection in Diffusion MRI via Online ODF Estimation
Caruyer, Emmanuel; Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid
2013-01-01
The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2°) with no delay and robustness to noise. PMID:23509445
Dorsomedial prefrontal cortex activity predicts the accuracy in estimating others' preferences
Kang, Pyungwon; Lee, Jongbin; Sul, Sunhae; Kim, Hackjin
2013-01-01
The ability to accurately estimate another person's preferences is crucial for a successful social life. In daily interactions, we often do this on the basis of minimal information. The aims of the present study were (a) to examine whether people can accurately judge others based only on a brief exposure to their appearances, and (b) to reveal the underlying neural mechanisms with functional magnetic resonance imaging (fMRI). Participants were asked to make guesses about unfamiliar target individuals' preferences for various items after looking at their faces for 3 s. The behavioral results showed that participants estimated others' preferences above chance level. The fMRI data revealed that higher accuracy in preference estimation was associated with greater activity in the dorsomedial prefrontal cortex (DMPFC) when participants were guessing the targets' preferences relative to thinking about their own preferences. These findings suggest that accurate estimations of others' preferences may require increased activity in the DMPFC. A functional connectivity analysis revealed that higher accuracy in preference estimation was related to increased functional connectivity between the DMPFC and the brain regions that are known to be involved in theory of mind processing, such as the temporoparietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, during correct vs. incorrect guessing trials. On the contrary, the tendency to refer to self-preferences when estimating others' preference was related to greater activity in the ventromedial prefrontal cortex. These findings imply that the DMPFC may be a core region in estimating the preferences of others and that higher accuracy may require stronger communication between the DMPFC and the TPJ and PCC/precuneus, part of a neural network known to be engaged in mentalizing. PMID:24324419
Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6
NASA Technical Reports Server (NTRS)
Vickers, Dean; Mahrt, L.
2005-01-01
Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.
Space-to-Space Based Relative Motion Estimation Using Direct Relative Orbit Parameters
NASA Astrophysics Data System (ADS)
Bennett, T.; Schaub, H.
There has been an increasing interest in space-based space situational awareness around satellite assets and the tracking of orbital debris. Of particular interest is the space-based tracking of objects near critical circular orbit regimes, for example near the Geostationary belt or the International Space Station. Relative orbit descriptions such as the Clohessy-Wiltshire equations describe the motion using time-varying Cartesian or curvilinear coordinates. Orbit element differences describe the unperturbed motion using constant variations of inertial orbit elements. With perturbations these only vary slowly, but can be challenging to estimate. Linearized Relative Orbit Elements (LROEs) employ invariants of the linearized relative motion, are thus constant for the unperturbed linear case, and share the benefit of the CW equations in that they directly related to space-based relative motion measurements. The variational LROE equations enable the relative orbit to be directly propagated including perturbation forces. Utilization of the invariant-inspired relative motion parameters exhibits exciting applications in relative motion sensing and control. Many methods of relative motion estimation involve the direct estimation of time-evolving position and velocity variables. Developed is an angles-only relative orbit Extended Kalman filter (EKF) navigation approach that directly estimates these nominally constant LROEs. The proposed variational equations and filtering scheme enables direct estimation of geometric parameters with clear geometric insight. Preliminary numerical simulation results demonstrate the relative orbit insight gained and speed of convergence. EKF implementations often exhibit significant sensitivity to initial conditions, however, initial results show that the LROE filter converges within fractions of an orbit with initialization errors that exceed 100 percent. The manuscript presents the invariants of motion, develops the variational equations for
The Accuracy of Surgeons' Provided Estimates for the Duration of Hysterectomies: A Pilot Study
Roque, Dario R.; Robison, Katina; Raker, Christina A.; Wharton, Gary G.; Frishman, Gary N.
2016-01-01
Study Objective To determine the accuracy of gynecologic surgeons' estimate of operative times for hysterectomies and to compare these with the existing computer-generated estimate at our institution. Design Pilot prospective cohort study (Canadian Task Force classification II-2). Setting Academic tertiary women's hospital in the Northeast United States. Participants Thirty gynecologic surgeons including 23 general gynecologists, 4 gynecologic oncologists, and 3 urogynecologists. Intervention Via a 6-question survey, surgeons were asked to predict the operative time for a hysterectomy they were about to perform. The surgeons' predictions were then compared with the time predicted by the scheduling system at our institution and with the actual operative time, to determine accuracy and differences between actual and predicted times. Patient and surgery data were collected to perform a secondary analysis to determine factors that may have significantly affected the prediction. Measurements and Main Results Of 75 hysterectomies analyzed, 36 were performed abdominally, 18 vaginally, and 21 laparoscopically. Accuracy was established if the actual procedure time was within the 15-minute increment predicted by either the surgeons or the scheduling system. The surgeons accurately predicted the duration of 20 hysterectomies (26.7%), whereas the accuracy of the scheduling system was only 9.3%. The scheduling system accuracy was significantly less precise than the surgeons, primarily due to overestimation (p = .01); operative time was overestimated on average 34 minutes. The scheduling system overestimated the time required to a greater extent than the surgeons for nearly all data examined, including patient body mass index, surgical approach, indication for surgery, surgeon experience, uterine size, and previous abdominal surgery. Conclusion Although surgeons' accuracy in predicting operative time was poor, it was significantly better than that of the computerized scheduling
Theory and Validation of Magnetic Resonance Fluid Motion Estimation Using Intensity Flow Data
Wong, Kelvin Kian Loong; Kelso, Richard Malcolm; Worthley, Stephen Grant; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek
2009-01-01
Background Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth. Methodology/Principal Findings In this study, we create flow vectors based on an ideal analytical vortex, and generate artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of magnetic resonance fluid motion estimation can be applicable practically. Conclusions/Significance The results of this work will allow us to progress further in the investigation of fluid motion prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging. PMID:19270756
Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.
2013-02-15
MLC sequences. For all phantoms and plans, time-resolved (10 Hz) ion chamber dose was collected. In addition, coronal (XY) films were exposed in the cube phantom to a VMAT beam with two different starting phases, and compared to the reconstructed motion-perturbed dose planes. Results: For the X or Y motions with the moving strip and geometrical phantoms, the maximum difference between perturbation-reconstructed and ion chamber doses did not exceed 1.9%, and the average for any motion pattern/starting phase did not exceed 1.3%. For the VMAT plans on the cubic and thoracic phantoms, one point exhibited a 3.5% error, while the remaining five were all within 1.1%. Across all the measurements (N = 22), the average disagreement was 0.5 {+-} 1.3% (1 SD). The films exhibited {gamma}(3%/3 mm) passing rates {>=}90%. Conclusions: The dose to an arbitrary moving voxel in a patient can be estimated with acceptable accuracy for a VMAT delivery, by performing a single QA measurement with a cylindrical phantom and applying two consecutive perturbations to the TPS-calculated patient dose. The first one accounts for the differences between the planned and delivered static doses, while the second one corrects for the motion.
Respiratory liver motion estimation and its effect on scanned proton beam therapy
NASA Astrophysics Data System (ADS)
Zhang, Ye; Boye, D.; Tanner, C.; Lomax, A. J.; Knopf, A.
2012-04-01
Proton therapy with active scanning beam delivery has significant advantages compared to conventional radiotherapy. However, so far only static targets have been treated in this way, since moving targets potentially lead to interplay effects. For 4D treatment planning, information on the target motion is needed to calculate time-resolved dose distributions. In this study, respiratory liver motion has been extracted from 4D CT data using two deformable image registration algorithms. In moderately moving patient cases (mean motion range around 6 mm), the registration error was no more than 3 mm, while it reached 7 mm for larger motions (range around 13 mm). The obtained deformation fields have then been used to calculate different time-resolved 4D treatment plans. Averaged over both motion estimations, interplay effects can increase the D5-D95 value for the clinical target volume (CTV) from 8.8% in a static plan to 23.4% when motion is considered. It has also been found that the different deformable registration algorithms can provide different motion estimations despite performing similarly for the selected landmarks, which in turn can lead to differing 4D dose distributions. Especially for single-field treatments where no motion mitigation is used, a maximum (mean) dose difference (averaged over three cases) of 32.8% (2.9%) can be observed. However, this registration ambiguity-induced uncertainty can be reduced if rescanning is applied or if the treatment plan consists of multiple fields, where the maximum (mean) difference can decrease to 15.2% (0.57%). Our results indicate the necessity to interpret 4D dose distributions for scanned proton therapy with some caution or with error bars to reflect the uncertainties resulting from the motion estimation. On the other hand, rescanning has been found to be an appropriate motion mitigation technique and, furthermore, has been shown to be a robust approach to also deal with these motion estimation uncertainties.
Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip
2005-06-01
A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement. PMID:16060418
NASA Astrophysics Data System (ADS)
Xie, Pingping; Joyce, Robert; Wu, Shaorong
2015-04-01
As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of
Accuracy testing using thick source alpha-particle spectroscopy for the U and Th series estimations.
Michael, C T; Zacharias, N; Hein, A
2010-01-01
The new technique for the calculation of U and Th based on the alpha particle spectrum taken from a thick sample by using a silicon detector (PIPS) is tested and some technical problems are encountered and also some notifications for better accuracy are addressed. This technique which is mainly developed to be used for dose rate determination in TL, OSL and ESR dating applications, gives also the possibility for detecting and estimating possible disequilibrium in U and Th series. PMID:19900816
NASA Astrophysics Data System (ADS)
Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim
2011-09-01
Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman- McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques.
NASA Astrophysics Data System (ADS)
Jakobsen, Jakob; Jensen, Anna B. O.; Nielsen, Allan Aasbjerg
2015-05-01
The paper describes the development and testing of a simulation tool, called QualiSIM. The tool estimates GNSS-based position accuracy based on a simulation of the environment surrounding the GNSS antenna, with a special focus on city-scape environments with large amounts of signal reflections from non-line-of-sight satellites. The signal reflections are implemented using the extended geometric path length of the signal path caused by reflections from the surrounding buildings. Based on real GPS satellite positions, simulated Galileo satellite positions, models of atmospheric effect on the satellite signals, designs of representative environments e.g. urban and rural scenarios, and a method to simulate reflection of satellite signals within the environment we are able to estimate the position accuracy given several prerequisites as described in the paper. The result is a modelling of the signal path from satellite to receiver, the satellite availability, the extended pseudoranges caused by signal reflection, and an estimate of the position accuracy based on a least squares adjustment of the extended pseudoranges. The paper describes the models and algorithms used and a verification test where the results of QualiSIM are compared with results from collection of real GPS data in an environment with much signal reflection.
Estimating accuracy of land-cover composition from two-stage cluster sampling
Stehman, S.V.; Wickham, J.D.; Fattorini, L.; Wade, T.D.; Baffetta, F.; Smith, J.H.
2009-01-01
Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), root mean square error (RMSE), and correlation (CORR) to quantify accuracy of land-cover composition for a general two-stage cluster sampling design, and for the special case of simple random sampling without replacement (SRSWOR) at each stage. The bias of the estimators for the two-stage SRSWOR design is evaluated via a simulation study. The estimators of RMSE and CORR have small bias except when sample size is small and the land-cover class is rare. The estimator of MAD is biased for both rare and common land-cover classes except when sample size is large. A general recommendation is that rare land-cover classes require large sample sizes to ensure that the accuracy estimators have small bias. ?? 2009 Elsevier Inc.
Makeyev, Oleksandr; Besio, Walter G
2016-01-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933
Evaluation of spatial filtering on the accuracy of wheat area estimate
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.
1982-01-01
A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.
Makeyev, Oleksandr; Besio, Walter G.
2016-01-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933
Motion estimation of objects in KC-135 microgravity
NASA Technical Reports Server (NTRS)
Hewgill, Lisa
1994-01-01
The simulated microgravity environment aboard a KC-135 aircraft flying along a parabolic trajectory was used to study the ability of an autonomous space robot to grasp a freely translating and rotating object. Since the KC-135 cabin environment and the instrumentation for the Extravehicular Activity Helper/Retriever (EVAHR) do not provide a practical intertial reference frame, estimators based on the extended Kalman filter algorithm were used to model the relative translational dynamics of the KC-135 and the EVAHR. The estimator algorithms require intensive mathematical computation and therefore, i860 real-time. Estimator design, implementation concerns, and issues specific to the KC-135 environment are discussed and the architecture of the KC-135 translational state estimator is depicted.
Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W.
1974-01-01
An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.
NASA Astrophysics Data System (ADS)
Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.
2011-12-01
In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.
NASA Astrophysics Data System (ADS)
Mukherjee, Joyeeta Mitra; Pretorius, P. H.; Johnson, K. L.; Hutton, Brian F.; King, Michael A.
2011-03-01
In myocardial perfusion SPECT imaging patient motion during acquisition causes severe artifacts in about 5% of studies. Motion estimation strategies commonly used are a) data-driven, where the motion may be determined by registration and checking consistency with the SPECT acquisition data, and b) external surrogate-based, where the motion is obtained from a dedicated motion-tracking system. In this paper a data-driven strategy similar to a 2D-3D registration scheme with multiple views is investigated, using a partially reconstructed heart for the 3D model. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The goal of this paper is to compare the performance of different cost-functions in quantifying consistency with the SPECT projection data in a registration-based scheme for motion estimation as the image-quality of the 3D model degrades. Six intensity-based metrics- Mean-squared difference (MSD), Mutual information (MI), Normalized Mutual information NMI), Pattern intensity (PI), normalized cross-correlation (NCC) and Entropy of the difference (EDI) were studied. Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and collimator blurring. Further the image quality of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in acquisitions of anthropomorphic phantoms and patient studies in a real clinical setting. Pattern intensity and Normalized Mutual Information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations and anthropomorphic phantom acquisitions. In patient studies
Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry
NASA Technical Reports Server (NTRS)
Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Chang, Hong (Inventor); Morris, Daniel Dale (Inventor); Graf, Jodi Seaborn (Inventor)
2016-01-01
A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.
Verochana, Karune; Prapayasatok, Sangsom; Mahasantipiya, Phattaranant May; Korwanich, Narumanas
2016-01-01
Purpose This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. Materials and Methods The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Results Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. Conclusion The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age. PMID:27051633