Sample records for accuracy rates obtained

  1. Gains in accuracy from averaging ratings of abnormality

    NASA Astrophysics Data System (ADS)

    Swensson, Richard G.; King, Jill L.; Gur, David; Good, Walter F.

    1999-05-01

    Six radiologists used continuous scales to rate 529 chest-film cases for likelihood of five separate types of abnormalities (interstitial disease, nodules, pneumothorax, alveolar infiltrates and rib fractures) in each of six replicated readings, yielding 36 separate ratings of each case for the five abnormalities. Analyses for each type of abnormality estimated the relative gains in accuracy (area below the ROC curve) obtained by averaging the case-ratings across: (1) six independent replications by each reader (30% gain), (2) six different readers within each replication (39% gain) or (3) all 36 readings (58% gain). Although accuracy differed among both readers and abnormalities, ROC curves for the median ratings showed similar relative gains in accuracy. From a latent-variable model for these gains, we estimate that about 51% of a reader's total decision variance consisted of random (within-reader) errors that were uncorrelated between replications, another 14% came from that reader's consistent (but idiosyncratic) responses to different cases, and only about 35% could be attributed to systematic variations among the sampled cases that were consistent across different readers.

  2. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  3. Rate- and accuracy-disabled subtype profiles among adults with dyslexia in the Hebrew orthography.

    PubMed

    Shany, Michal; Breznitz, Zvia

    2011-01-01

    This study examined a subtyping scheme rooted in the dissociation between reading rate and accuracy in an exceptionally large sample of adult readers with dyslexia using a wide variety of behavioral and event-related potential (ERP) measures. Stage 1 was a behavioral study, in which basic reading skill, reading comprehension, linguistic and cognitive tasks were administered to 661 learning-disabled university students (n = 382) and their non-learning-disabled peers (n = 279). Based on a word reading measure, accuracy-disabled and rate-disabled subgroups were identified, as was a subgroup with deficits in both rate and accuracy. The results support the persistence of a rate versus accuracy dissociation into adulthood. Accuracy disability was related to a broad range of deficits affecting phonological, orthographic, and morphological processing, verbal memory, attention, and reading comprehension. Rate disability appeared to be associated with slower processing of printed material, alongside largely intact functioning resembling those of skilled readers. In stage 2, electroencephalogram (EEG)-ERP measurements were obtained from 140 participants recruited from the larger sample. Activation in visual association cortex, indicated by the N170 amplitude, was found to be lower for accuracy-disabled than skilled readers, and comparable between rate-disabled and skilled readers. The lowest amplitude was found in the double-deficit subgroup. The findings support the existence of distinctive reading disability profiles, based on selective deficits in reading rate versus accuracy and associated with different basic reading, linguistic, and cognitive skills as well as electrophysiological responses.

  4. Prediction Accuracy of Error Rates for MPTB Space Experiment

    NASA Technical Reports Server (NTRS)

    Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.

    1998-01-01

    This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.

  5. On the accuracy of instantaneous gas exchange rates, energy expenditure and respiratory quotient calculations obtained from indirect whole room calorimetry.

    PubMed

    Gribok, Andrei; Hoyt, Reed; Buller, Mark; Rumpler, William

    2013-06-01

    This paper analyzes the accuracy of metabolic rate calculations performed in the whole room indirect calorimeter using the molar balance equations. The equations are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes need to be inferred from a known, noisy effect-gaseous concentrations. Two methods of such inference are analyzed. The first method is based on the previously published regularized deconvolution of the molar balance equation and the second one, proposed in this paper, relies on regularized differentiation of gaseous concentrations. It is found that both methods produce similar results for the absolute values of metabolic variables and their accuracy. The uncertainty for O2 consumption rate is found to be 7% and for CO2 production--3.2%. The uncertainties in gaseous exchange rates do not depend on the absolute values of O2 consumption and CO2 production. In contrast, the absolute uncertainty in respiratory quotient is a function of the gaseous exchange rates and varies from 9.4% during the night to 2.3% during moderate exercise. The uncertainty in energy expenditure was found to be 5.9% and independent of the level of gaseous exchange. For both methods, closed form analytical formulas for confidence intervals are provided allowing quantification of uncertainty for four major metabolic variables in real world studies.

  6. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., measurement accuracy, and cut-off. 53.53 Section 53.53 Protection of Environment ENVIRONMENTAL PROTECTION..., measurement accuracy, and cut-off. (a) Overview. This test procedure is designed to evaluate a candidate... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The...

  7. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  8. Accuracy of smartphone apps for heart rate measurement.

    PubMed

    Coppetti, Thomas; Brauchlin, Andreas; Müggler, Simon; Attinger-Toller, Adrian; Templin, Christian; Schönrath, Felix; Hellermann, Jens; Lüscher, Thomas F; Biaggi, Patric; Wyss, Christophe A

    2017-08-01

    Background Smartphone manufacturers offer mobile health monitoring technology to their customers, including apps using the built-in camera for heart rate assessment. This study aimed to test the diagnostic accuracy of such heart rate measuring apps in clinical practice. Methods The feasibility and accuracy of measuring heart rate was tested on four commercially available apps using both iPhone 4 and iPhone 5. 'Instant Heart Rate' (IHR) and 'Heart Fitness' (HF) work with contact photoplethysmography (contact of fingertip to built-in camera), while 'Whats My Heart Rate' (WMH) and 'Cardiio Version' (CAR) work with non-contact photoplethysmography. The measurements were compared to electrocardiogram and pulse oximetry-derived heart rate. Results Heart rate measurement using app-based photoplethysmography was performed on 108 randomly selected patients. The electrocardiogram-derived heart rate correlated well with pulse oximetry ( r = 0.92), IHR ( r = 0.83) and HF ( r = 0.96), but somewhat less with WMH ( r = 0.62) and CAR ( r = 0.60). The accuracy of app-measured heart rate as compared to electrocardiogram, reported as mean absolute error (in bpm ± standard error) was 2 ± 0.35 (pulse oximetry), 4.5 ± 1.1 (IHR), 2 ± 0.5 (HF), 7.1 ± 1.4 (WMH) and 8.1 ± 1.4 (CAR). Conclusions We found substantial performance differences between the four studied heart rate measuring apps. The two contact photoplethysmography-based apps had higher feasibility and better accuracy for heart rate measurement than the two non-contact photoplethysmography-based apps.

  9. Acquisition of decision making criteria: reward rate ultimately beats accuracy.

    PubMed

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D

    2011-02-01

    Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.

  10. Accuracy Rates of Ancestry Estimation by Forensic Anthropologists Using Identified Forensic Cases.

    PubMed

    Thomas, Richard M; Parks, Connie L; Richard, Adam H

    2017-07-01

    A common task in forensic anthropology involves the estimation of the ancestry of a decedent by comparing their skeletal morphology and measurements to skeletons of individuals from known geographic groups. However, the accuracy rates of ancestry estimation methods in actual forensic casework have rarely been studied. This article uses 99 forensic cases with identified skeletal remains to develop accuracy rates for ancestry estimations conducted by forensic anthropologists. The overall rate of correct ancestry estimation from these cases is 90.9%, which is comparable to most research-derived rates and those reported by individual practitioners. Statistical tests showed no significant difference in accuracy rates depending on examiner education level or on the estimated or identified ancestry. More recent cases showed a significantly higher accuracy rate. The incorporation of metric analyses into the ancestry estimate in these cases led to a higher accuracy rate. © 2017 American Academy of Forensic Sciences.

  11. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  12. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  13. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  14. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  15. In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.

    PubMed

    Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine

    2011-01-01

      Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro.   The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals).   In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively.   The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.

  16. Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals

    NASA Astrophysics Data System (ADS)

    Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.

    2018-04-01

    We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.

  17. Precise attitude rate estimation using star images obtained by mission telescope for satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Hosonuma, Takayuki; Ikari, Satoshi; Saisutjarit, Phongsatorn; Sako, Nobutada; Nakasuka, Shinichi

    2015-02-01

    Recently, small satellites have been employed in various satellite missions such as astronomical observation and remote sensing. During these missions, the attitudes of small satellites should be stabilized to a higher accuracy to obtain accurate science data and images. To achieve precise attitude stabilization, these small satellites should estimate their attitude rate under the strict constraints of mass, space, and cost. This research presents a new method for small satellites to precisely estimate angular rate using star blurred images by employing a mission telescope to achieve precise attitude stabilization. In this method, the angular velocity is estimated by assessing the quality of a star image, based on how blurred it appears to be. Because the proposed method utilizes existing mission devices, a satellite does not require additional precise rate sensors, which makes it easier to achieve precise stabilization given the strict constraints possessed by small satellites. The research studied the relationship between estimation accuracy and parameters used to achieve an attitude rate estimation, which has a precision greater than 1 × 10-6 rad/s. The method can be applied to all attitude sensors, which use optics systems such as sun sensors and star trackers (STTs). Finally, the method is applied to the nano astrometry satellite Nano-JASMINE, and we investigate the problems that are expected to arise with real small satellites by performing numerical simulations.

  18. The Impact of Target, Wording, and Duration on Rating Accuracy for Direct Behavior Rating

    ERIC Educational Resources Information Center

    Chafouleas, Sandra M.; Jaffery, Rose; Riley-Tillman, T. Chris; Christ, Theodore J.; Sen, Rohini

    2013-01-01

    The purpose of this study was to extend evaluation of rater accuracy using "Direct Behavior Rating--Single-Item Scales" (DBR-SIS). Extension of prior research was accomplished through use of criterion ratings derived from both systematic direct observation and expert DBR-SIS scores, and also through control of the durations over which…

  19. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  20. The Effectiveness of a Rater Training Booklet in Increasing Accuracy of Performance Ratings

    DTIC Science & Technology

    1988-04-01

    subjects’ ratings were compared for accuracy. The dependent measure was the absolute deviation score of each individual’s rating from the "true score". The...subjects’ ratings were compared for accuracy. The dependent measure was the absolute deviation score of each individual’s rating from the "true score". The...r IS % _. Findings: The absolute deviation scores of each individual’s ratings from the "true score" provided by subject matter experts were analyzed

  1. The Data Evaluation for Obtaining Accuracy and Reliability

    NASA Astrophysics Data System (ADS)

    Kim, Chang Geun; Chae, Kyun Shik; Lee, Sang Tae; Bhang, Gun Woong

    2012-11-01

    Nemours scientific measurement results are flooded from the paper, data book, etc. as fast growing of internet. We meet many different measurement results on the same measurand. In this moment, we are face to choose most reliable one out of them. But it is not easy to choose and use the accurate and reliable data as we do at an ice cream parlor. Even expert users feel difficult to distinguish the accurate and reliable scientific data from huge amount of measurement results. For this reason, the data evaluation is getting more important as the fast growing of internet and globalization. Furthermore the expressions of measurement results are not in standardi-zation. As these need, the international movement has been enhanced. At the first step, the global harmonization of terminology used in metrology and the expression of uncertainty in measurement were published in ISO. These methods are wide spread to many area of science on their measurement to obtain the accuracy and reliability. In this paper, it is introduced that the GUM, SRD and data evaluation on atomic collisions.

  2. It Matters Whether Reading Comprehension Is Conceptualised as Rate or Accuracy

    ERIC Educational Resources Information Center

    Rønberg, Louise Flensted; Petersen, Dorthe Klint

    2016-01-01

    This study shows that it makes a difference whether accuracy measures or rate measures are used when assessing reading comprehension. When the outcome is reading comprehension accuracy (i.e., the number of correct responses), word reading skills (measured as access to orthographic representations) account for a modest amount of the variance in the…

  3. Cued Speech Transliteration: Effects of Speaking Rate and Lag Time on Production Accuracy

    PubMed Central

    Tessler, Morgan P.

    2016-01-01

    Many deaf and hard-of-hearing children rely on interpreters to access classroom communication. Although the exact level of access provided by interpreters in these settings is unknown, it is likely to depend heavily on interpreter accuracy (portion of message correctly produced by the interpreter) and the factors that govern interpreter accuracy. In this study, the accuracy of 12 Cued Speech (CS) transliterators with varying degrees of experience was examined at three different speaking rates (slow, normal, fast). Accuracy was measured with a high-resolution, objective metric in order to facilitate quantitative analyses of the effect of each factor on accuracy. Results showed that speaking rate had a large negative effect on accuracy, caused primarily by an increase in omitted cues, whereas the effect of lag time on accuracy, also negative, was quite small and explained just 3% of the variance. Increased experience level was generally associated with increased accuracy; however, high levels of experience did not guarantee high levels of accuracy. Finally, the overall accuracy of the 12 transliterators, 54% on average across all three factors, was low enough to raise serious concerns about the quality of CS transliteration services that (at least some) children receive in educational settings. PMID:27221370

  4. Differences in accuracy and underestimation rates for 14- versus 16-gauge core needle biopsies in ultrasound-detectable breast lesions.

    PubMed

    Lai, Hung-Wen; Wu, Hwa-Koon; Kuo, Shou-Jen; Chen, Shou-Tung; Tseng, Hsin-Shun; Tseng, Ling-Ming; Chen, Dar-Ren

    2013-04-01

    Core needle biopsy (CNB) was widely used in the diagnosis of ultrasound-detectable breast lesions. We aimed at assessing the diagnostic performance differences between 14- and 16-gauge ultrasound-guided core biopsies. This retrospective study enrolled patients receiving CNB from January 2001 to December 2007. The results of 14- and 16-gauge breast CNBs were compared with pathology reports of open surgical biopsy (OSB). A total of 1024 paired CNB and OSB results were obtained from 1732 CNB procedures in 1630 patients.Those CNB results reached 92.9% sensitivity, 99.7% specificity, 5.96% underestimation, and 94.8% accuracy rates. There was no difference in sensitivity (p=0.17) or specificity (p=0.38) between 14- and 16-gauge needles. However, better overall accuracy (p=0.02), less underestimation (p<0.001), and lower false-negative (p=0.02) rates were found for the 14-gauge CNB. Regarding accuracy and underestimation rates, a 14-gauge needle is preferred to a 16-gauge one in ultrasound-guided biopsies. Copyright © 2012. Published by Elsevier B.V.

  5. Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2015-04-01

    DInSAR (Differential Interferometric Synthetic Aperture Radar) is an effective tool to measure the flow rate of slow flowing ice streams on Antarctic ice sheet with high resolution. In the flow rate measurement by DInSAR method, we use Digital Elevation Model (DEM) at two times in the estimating process. At first, we use it to remove topographic fringes from InSAR images. And then, it is used to project obtained displacements along Line-Of-Sight (LOS) direction to the actual flow direction. ASTER-GDEM widely-used for InSAR prosessing of the data of polar region has a lot of errors especially in the inland ice sheet area. Thus the errors yield irregular flow rates and directions. Therefore, quality of DEM has a substantial influence on the ice flow rate measurement. In this study, we created a new DEM (resolution 10m; hereinafter referred to as PRISM-DEM) based on ALOS/PRISM images, and compared PRISM-DEM and ASTER-GDEM. The study area is around Skallen, 90km south from Syowa Station, in the southern part of Sôya Coast, East Antarctica. For making DInSAR images, we used ALOS/PALSAR data of 13 pairs (Path633, Row 571-572), observed during the period from November 23, 2007 through January 16, 2011. PRISM-DEM covering the PALSAR scene was created from nadir and backward view images of ALOS/PRISM (Observation date: 2009/1/18) by applying stereo processing with a digital mapping equipment, and then the automatically created a primary DEM was corrected manually to make a final DEM. The number of irregular values of actual ice flow rate was reduced by applying PRISM-DEM compared with that by applying ASTER-GDEM. Additionally, an averaged displacement of approximately 0.5cm was obtained by applying PRISM-DEM over outcrop area, where no crustal displacement considered to occur during the recurrence period of ALOS/PALSAR (46days), while an averaged displacement of approximately 1.65 cm was observed by applying ASTER-GDEM. Since displacements over outcrop area are considered

  6. The confidence-accuracy relationship in eyewitness identification: effects of lineup instructions, foil similarity, and target-absent base rates.

    PubMed

    Brewer, Neil; Wells, Gary L

    2006-03-01

    Discriminating accurate from mistaken eyewitness identifications is a major issue facing criminal justice systems. This study examined whether eyewitness confidence assists such decisions under a variety of conditions using a confidence-accuracy (CA) calibration approach. Participants (N = 1,200) viewed a simulated crime and attempted 2 separate identifications from 8-person target-present or target-absent lineups. Confidence and accuracy were calibrated for choosers (but not nonchoosers) for both targets under all conditions. Lower overconfidence was associated with higher diagnosticity, lower target-absent base rates, and shorter identification latencies. Although researchers agree that courtroom expressions of confidence are uninformative, our findings indicate that confidence assessments obtained immediately after a positive identification can provide a useful guide for investigators about the likely accuracy of an identification.

  7. Accuracy of Heart Rate Watches: Implications for Weight Management.

    PubMed

    Wallen, Matthew P; Gomersall, Sjaan R; Keating, Shelley E; Wisløff, Ulrik; Coombes, Jeff S

    2016-01-01

    Wrist-worn monitors claim to provide accurate measures of heart rate and energy expenditure. People wishing to lose weight use these devices to monitor energy balance, however the accuracy of these devices to measure such parameters has not been established. To determine the accuracy of four wrist-worn devices (Apple Watch, Fitbit Charge HR, Samsung Gear S and Mio Alpha) to measure heart rate and energy expenditure at rest and during exercise. Twenty-two healthy volunteers (50% female; aged 24 ± 5.6 years) completed ~1-hr protocols involving supine and seated rest, walking and running on a treadmill and cycling on an ergometer. Data from the devices collected during the protocol were compared with reference methods: electrocardiography (heart rate) and indirect calorimetry (energy expenditure). None of the devices performed significantly better overall, however heart rate was consistently more accurate than energy expenditure across all four devices. Correlations between the devices and reference methods were moderate to strong for heart rate (0.67-0.95 [0.35 to 0.98]) and weak to strong for energy expenditure (0.16-0.86 [-0.25 to 0.95]). All devices underestimated both outcomes compared to reference methods. The percentage error for heart rate was small across the devices (range: 1-9%) but greater for energy expenditure (9-43%). Similarly, limits of agreement were considerably narrower for heart rate (ranging from -27.3 to 13.1 bpm) than energy expenditure (ranging from -266.7 to 65.7 kcals) across devices. These devices accurately measure heart rate. However, estimates of energy expenditure are poor and would have implications for people using these devices for weight loss.

  8. Cued Speech Transliteration: Effects of Speaking Rate and Lag Time on Production Accuracy.

    PubMed

    Krause, Jean C; Tessler, Morgan P

    2016-10-01

    Many deaf and hard-of-hearing children rely on interpreters to access classroom communication. Although the exact level of access provided by interpreters in these settings is unknown, it is likely to depend heavily on interpreter accuracy (portion of message correctly produced by the interpreter) and the factors that govern interpreter accuracy. In this study, the accuracy of 12 Cued Speech (CS) transliterators with varying degrees of experience was examined at three different speaking rates (slow, normal, fast). Accuracy was measured with a high-resolution, objective metric in order to facilitate quantitative analyses of the effect of each factor on accuracy. Results showed that speaking rate had a large negative effect on accuracy, caused primarily by an increase in omitted cues, whereas the effect of lag time on accuracy, also negative, was quite small and explained just 3% of the variance. Increased experience level was generally associated with increased accuracy; however, high levels of experience did not guarantee high levels of accuracy. Finally, the overall accuracy of the 12 transliterators, 54% on average across all three factors, was low enough to raise serious concerns about the quality of CS transliteration services that (at least some) children receive in educational settings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  10. Accuracy of Heart Rate Watches: Implications for Weight Management

    PubMed Central

    2016-01-01

    Background Wrist-worn monitors claim to provide accurate measures of heart rate and energy expenditure. People wishing to lose weight use these devices to monitor energy balance, however the accuracy of these devices to measure such parameters has not been established. Aim To determine the accuracy of four wrist-worn devices (Apple Watch, Fitbit Charge HR, Samsung Gear S and Mio Alpha) to measure heart rate and energy expenditure at rest and during exercise. Methods Twenty-two healthy volunteers (50% female; aged 24 ± 5.6 years) completed ~1-hr protocols involving supine and seated rest, walking and running on a treadmill and cycling on an ergometer. Data from the devices collected during the protocol were compared with reference methods: electrocardiography (heart rate) and indirect calorimetry (energy expenditure). Results None of the devices performed significantly better overall, however heart rate was consistently more accurate than energy expenditure across all four devices. Correlations between the devices and reference methods were moderate to strong for heart rate (0.67–0.95 [0.35 to 0.98]) and weak to strong for energy expenditure (0.16–0.86 [-0.25 to 0.95]). All devices underestimated both outcomes compared to reference methods. The percentage error for heart rate was small across the devices (range: 1–9%) but greater for energy expenditure (9–43%). Similarly, limits of agreement were considerably narrower for heart rate (ranging from -27.3 to 13.1 bpm) than energy expenditure (ranging from -266.7 to 65.7 kcals) across devices. Conclusion These devices accurately measure heart rate. However, estimates of energy expenditure are poor and would have implications for people using these devices for weight loss. PMID:27232714

  11. Improving Accuracy of Influenza-Associated Hospitalization Rate Estimates

    PubMed Central

    Reed, Carrie; Kirley, Pam Daily; Aragon, Deborah; Meek, James; Farley, Monica M.; Ryan, Patricia; Collins, Jim; Lynfield, Ruth; Baumbach, Joan; Zansky, Shelley; Bennett, Nancy M.; Fowler, Brian; Thomas, Ann; Lindegren, Mary L.; Atkinson, Annette; Finelli, Lyn; Chaves, Sandra S.

    2015-01-01

    Diagnostic test sensitivity affects rate estimates for laboratory-confirmed influenza–associated hospitalizations. We used data from FluSurv-NET, a national population-based surveillance system for laboratory-confirmed influenza hospitalizations, to capture diagnostic test type by patient age and influenza season. We calculated observed rates by age group and adjusted rates by test sensitivity. Test sensitivity was lowest in adults >65 years of age. For all ages, reverse transcription PCR was the most sensitive test, and use increased from <10% during 2003–2008 to ≈70% during 2009–2013. Observed hospitalization rates per 100,000 persons varied by season: 7.3–50.5 for children <18 years of age, 3.0–30.3 for adults 18–64 years, and 13.6–181.8 for adults >65 years. After 2009, hospitalization rates adjusted by test sensitivity were ≈15% higher for children <18 years, ≈20% higher for adults 18–64 years, and ≈55% for adults >65 years of age. Test sensitivity adjustments improve the accuracy of hospitalization rate estimates. PMID:26292017

  12. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions.

    PubMed

    Ender, Andreas; Mehl, Albert

    2015-01-01

    To investigate the accuracy of conventional and digital impression methods used to obtain full-arch impressions by using an in-vitro reference model. Eight different conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; and irreversible hydrocolloid, ALG) and digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; and Lava COS, LAV) full-arch impressions were obtained from a reference model with a known morphology, using a highly accurate reference scanner. The impressions obtained were then compared with the original geometry of the reference model and within each test group. A point-to-point measurement of the surface of the model using the signed nearest neighbour method resulted in a mean (10%-90%)/2 percentile value for the difference between the impression and original model (trueness) as well as the difference between impressions within a test group (precision). Trueness values ranged from 11.5 μm (VSE) to 60.2 μm (POE), and precision ranged from 12.3 μm (VSE) to 66.7 μm (POE). Among the test groups, VSE, VSES, and CER showed the highest trueness and precision. The deviation pattern varied with the impression method. Conventional impressions showed high accuracy across the full dental arch in all groups, except POE and ALG. Conventional and digital impression methods show differences regarding full-arch accuracy. Digital impression systems reveal higher local deviations of the full-arch model. Digital intraoral impression systems do not show superior accuracy compared to highly accurate conventional impression techniques. However, they provide excellent clinical results within their indications applying the correct scanning technique.

  13. Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making.

    PubMed

    Drugowitsch, Jan; DeAngelis, Gregory C; Angelaki, Dora E; Pouget, Alexandre

    2015-06-19

    For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy trade-off to maximize reward rate. We extend this analysis to situations in which information is provided by multiple sensory modalities. Analyzing previously collected data (Drugowitsch et al., 2014), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal reward rates. This trade-off can change rapidly across trials according to the sensory modalities involved, suggesting that it is represented by neural population codes rather than implemented by slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete gradient-based learning of these trade-offs.

  14. Self-Rated Accuracy of Rating of Perceived Exertion-Based Load Prescription in Powerlifters.

    PubMed

    Helms, Eric R; Brown, Scott R; Cross, Matt R; Storey, Adam; Cronin, John; Zourdos, Michael C

    2017-10-01

    This study assessed male (n = 9) and female (n = 3) powerlifters' (18-49 years) ability to select loads using the repetitions in reserve-based rating of perceived exertion (RPE) scale for a single set for squat, bench press, and deadlift. Subjects trained 3× per week. For 3 weeks on nonconsecutive days in the weekly order of hypertrophy (8 repetitions at 8 RPE), power (2 repetitions at 8 RPE), and strength (3 repetitions at 9 RPE), using subject-selected loads intended to match the target RPE. Bench press and squat were performed every session and deadlift during strength and power only. Mean absolute RPE differences (|reported RPE-target RPE|) ranged from 0.22-0.44, with a mean of 0.33 ± 0.28 RPE. There were no significant RPE differences within lifts between sessions for squat or deadlift. However, bench press was closer to the target RPE for strength (0.15 ± 0.42 RPE) vs. power (-0.21 ± 0.35 RPE, p = 0.05). There were no significant differences within session between lifts for power and strength. However, bench press was closer (0.14 ± 0.44 RPE) to the target RPE than squat (-0.19 ± 0.21 RPE) during hypertrophy (p = 0.02). Squat power was closer to the target RPE in week 3 (0.08 ± 0.29 RPE) vs. 1 (-0.46 ± 0.69 RPE, p = 0.03). It seems that powerlifters can accurately select loads to reach a prescribed RPE. However, accuracy for 8-repetition sets at 8 RPE may be better for bench press compared with squat. Rating squat power-type training may take 3 weeks to reach peak accuracy. Finally, bench press RPE accuracy seems better closer rather than further from failure (i.e., 3-repetition 9 RPE sets vs. 2-repetition 8 RPE sets).

  15. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  16. On the accuracy of the rate coefficients used in plasma fluid models for breakdown in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Raja, Laxminarayan L., E-mail: lraja@mail.utexas.edu

    2016-07-15

    The electrical breakdown of air depends on the balance between creation and loss of charged particles. In fluid models, datasets of the rate coefficients used are obtained either from fits to experimental data or by solutions of the Boltzmann equation. Here, we study the accuracy of the commonly used models for ionization and attachment frequencies and their impact on the prediction of the breakdown threshold for air. We show that large errors can occur depending on the model and propose the most accurate dataset available for modeling of air breakdown phenomena.

  17. Accuracy of acoustic respiration rate monitoring in pediatric patients.

    PubMed

    Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter

    2013-12-01

    Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.

  18. Reliability and Accuracy of Static Parameters Obtained From Ink and Pressure Platform Footprints.

    PubMed

    Zuil-Escobar, Juan Carlos; Martínez-Cepa, Carmen Belén; Martín-Urrialde, Jose Antonio; Gómez-Conesa, Antonia

    2016-09-01

    The purpose of this study was to evaluate the accuracy and the intrarater reliability of arch angle (AA), Staheli Index (SI), and Chippaux-Smirak Index (CSI) obtained from ink and pressure platform footprints. We obtained AA, SI, and CSI measurements from ink pedigraph footprints and pressure platform footprints in 40 healthy participants (aged 25.65 ± 5.187 years). Intrarater reliability was calculated for all parameters obtained using the 2 methods. Standard error of measurement and minimal detectable change were also calculated. A repeated-measure analysis of variance was used to identify differences between ink and pressure platform footprints. Intraclass correlation coefficient and Bland and Altman plots were used to assess similar parameters obtained using different methods. Intrarater reliability was >0.9 for all parameters and was slightly higher for the ink footprints. No statistical difference was reported in repeated-measure analysis of variance for any of the parameters. Intraclass correlation coefficient values from AA, SI, and CSI that were obtained using ink footprints and pressure platform footprints were excellent, ranging from 0.797 to 0.829. However, pressure platform overestimated AA and underestimated SI and CSI. Our study revealed that AA, SI, and CSI were similar regardless of whether the ink or pressure platform method was used. In addition, the parameters indicated high intrarater reliability and were reproducible. Copyright © 2016. Published by Elsevier Inc.

  19. Current Mood Symptoms Do Not Affect the Accuracy of Retrospective Self-Ratings of Childhood ADHD Symptoms.

    PubMed

    Grogan, Katie; Bramham, Jessica

    2016-12-01

    Given that the diagnosis of adulthood ADHD depends on the retrospective self-report of childhood ADHD symptoms, this study aimed to establish whether current mood affects the accuracy of retrospective self-ratings of childhood ADHD. Barkley's Adult ADHD Rating Scale (BAARS) was used to assess the retrospective self- and parent-reports of childhood ADHD symptoms of 160 adults with ADHD and 92 adults without ADHD. Self-rated current mood was also measured using the Hospital Anxiety and Depression Scale (HADS). Higher BAARS self-ratings correlated with higher HADS self-ratings. Strongest correlations were evident between hyperactive/impulsive symptoms and anxiety symptoms. There was no relationship between current mood and accuracy of self-report. Current mood does not affect the accuracy of retrospective self-ratings of ADHD. Future research should aim to provide new measures of anxiety in ADHD to avoid the double counting of hyperactive/impulsive and anxiety symptoms. © The Author(s) 2014.

  20. Evaluating Rater Accuracy in Rater-Mediated Assessments Using an Unfolding Model

    ERIC Educational Resources Information Center

    Wang, Jue; Engelhard, George, Jr.; Wolfe, Edward W.

    2016-01-01

    The number of performance assessments continues to increase around the world, and it is important to explore new methods for evaluating the quality of ratings obtained from raters. This study describes an unfolding model for examining rater accuracy. Accuracy is defined as the difference between observed and expert ratings. Dichotomous accuracy…

  1. Accuracy Rates of Sex Estimation by Forensic Anthropologists through Comparison with DNA Typing Results in Forensic Casework.

    PubMed

    Thomas, Richard M; Parks, Connie L; Richard, Adam H

    2016-09-01

    A common task in forensic anthropology involves the estimation of the biological sex of a decedent by exploiting the sexual dimorphism between males and females. Estimation methods are often based on analysis of skeletal collections of known sex and most include a research-based accuracy rate. However, the accuracy rates of sex estimation methods in actual forensic casework have rarely been studied. This article uses sex determinations based on DNA results from 360 forensic cases to develop accuracy rates for sex estimations conducted by forensic anthropologists. The overall rate of correct sex estimation from these cases is 94.7% with increasing accuracy rates as more skeletal material is available for analysis and as the education level and certification of the examiner increases. Nine of 19 incorrect assessments resulted from cases in which one skeletal element was available, suggesting that the use of an "undetermined" result may be more appropriate for these cases. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. 29 CFR 1.3 - Obtaining and compiling wage rate information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The Administrator will encourage the voluntary submission of wage rate data by contractors... rates paid to laborers and mechanics on various types of construction in the area. The Administrator may also obtain data from agencies on wage rates paid on construction projects under their jurisdiction...

  3. 29 CFR 1.3 - Obtaining and compiling wage rate information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The Administrator will encourage the voluntary submission of wage rate data by contractors... rates paid to laborers and mechanics on various types of construction in the area. The Administrator may also obtain data from agencies on wage rates paid on construction projects under their jurisdiction...

  4. 29 CFR 1.3 - Obtaining and compiling wage rate information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The Administrator will encourage the voluntary submission of wage rate data by contractors... rates paid to laborers and mechanics on various types of construction in the area. The Administrator may also obtain data from agencies on wage rates paid on construction projects under their jurisdiction...

  5. Effects of magnetometer calibration and maneuvers on accuracies of magnetometer-only attitude-and-rate determination

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.

    1998-01-01

    Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.

  6. Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.

    PubMed

    Maldonado, G; Greenland, S

    1998-07-01

    A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.

  7. Accuracy of Person-Fit Statistics: A Monte Carlo Study of the Influence of Aberrance Rates

    ERIC Educational Resources Information Center

    St-Onge, Christina; Valois, Pierre; Abdous, Belkacem; Germain, Stephane

    2011-01-01

    Using a Monte Carlo experimental design, this research examined the relationship between answer patterns' aberrance rates and person-fit statistics (PFS) accuracy. It was observed that as the aberrance rate increased, the detection rates of PFS also increased until, in some situations, a peak was reached and then the detection rates of PFS…

  8. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit.

    PubMed

    Singh, Jasbir K S B; Kamlin, C Omar F; Morley, Colin J; O'Donnell, Colm P F; Donath, Susan M; Davis, Peter G

    2008-05-01

    To determine the accuracy of pulse oximetry measurement of heart rate in the neonatal intensive care unit. Stable preterm infants were monitored with a pulse oximeter and an ECG. The displays of both monitors were captured on video. Heart rate data from both monitors, including measures of signal quality, were extracted and analysed using Bland Altman plots. In 30 infants the mean (SD) difference between heart rate measured by pulse oximetry and electrocardiography was -0.4 (12) beats per minute. Accuracy was maintained when the signal quality or perfusion was low. Pulse oximetry may provide a useful measurement of heart rate in the neonatal intensive care unit. Studies of this technique in the delivery room are indicated.

  9. Accuracy Investigation of Creating Orthophotomaps Based on Images Obtained by Applying Trimble-UX5 UAV

    NASA Astrophysics Data System (ADS)

    Hlotov, Volodymyr; Hunina, Alla; Siejka, Zbigniew

    2017-06-01

    The main purpose of this work is to confirm the possibility of making largescale orthophotomaps applying unmanned aerial vehicle (UAV) Trimble- UX5. A planned altitude reference of the studying territory was carried out before to the aerial surveying. The studying territory has been marked with distinctive checkpoints in the form of triangles (0.5 × 0.5 × 0.2 m). The checkpoints used to precise the accuracy of orthophotomap have been marked with similar triangles. To determine marked reference point coordinates and check-points method of GNSS in real-time kinematics (RTK) measuring has been applied. Projecting of aerial surveying has been done with the help of installed Trimble Access Aerial Imaging, having been used to run out the UX5. Aerial survey out of the Trimble UX5 UAV has been done with the help of the digital camera SONY NEX-5R from 200m and 300 m altitude. These aerial surveying data have been calculated applying special photogrammetric software Pix 4D. The orthophotomap of the surveying objects has been made with its help. To determine the precise accuracy of the got results of aerial surveying the checkpoint coordinates according to the orthophotomap have been set. The average square error has been calculated according to the set coordinates applying GNSS measurements. A-priori accuracy estimation of spatial coordinates of the studying territory using the aerial surveying data have been calculated: mx=0.11 m, my=0.15 m, mz=0.23 m in the village of Remeniv and mx=0.26 m, my=0.38 m, mz=0.43 m in the town of Vynnyky. The accuracy of determining checkpoint coordinates has been investigated using images obtained out of UAV and the average square error of the reference points. Based on comparative analysis of the got results of the accuracy estimation of the made orthophotomap it can be concluded that the value the average square error does not exceed a-priori accuracy estimation. The possibility of applying Trimble UX5 UAV for making large

  10. Modeling Individual Differences in Response Time and Accuracy in Numeracy

    PubMed Central

    Ratcliff, Roger; Thompson, Clarissa A.; McKoon, Gail

    2015-01-01

    In the study of numeracy, some hypotheses have been based on response time (RT) as a dependent variable and some on accuracy, and considerable controversy has arisen about the presence or absence of correlations between RT and accuracy, between RT or accuracy and individual differences like IQ and math ability, and between various numeracy tasks. In this article, we show that an integration of the two dependent variables is required, which we accomplish with a theory-based model of decision making. We report data from four tasks: numerosity discrimination, number discrimination, memory for two-digit numbers, and memory for three-digit numbers. Accuracy correlated across tasks, as did RTs. However, the negative correlations that might be expected between RT and accuracy were not obtained; if a subject was accurate, it did not mean that they were fast (and vice versa). When the diffusion decision-making model was applied to the data (Ratcliff, 1978), we found significant correlations across the tasks between the quality of the numeracy information (drift rate) driving the decision process and between the speed/ accuracy criterion settings, suggesting that similar numeracy skills and similar speed-accuracy settings are involved in the four tasks. In the model, accuracy is related to drift rate and RT is related to speed-accuracy criteria, but drift rate and criteria are not related to each other across subjects. This provides a theoretical basis for understanding why negative correlations were not obtained between accuracy and RT. We also manipulated criteria by instructing subjects to maximize either speed or accuracy, but still found correlations between the criteria settings between and within tasks, suggesting that the settings may represent an individual trait that can be modulated but not equated across subjects. Our results demonstrate that a decision-making model may provide a way to reconcile inconsistent and sometimes contradictory results in numeracy

  11. The effect of a specialized dyslexia font, OpenDyslexic, on reading rate and accuracy.

    PubMed

    Wery, Jessica J; Diliberto, Jennifer A

    2017-07-01

    A single-subject alternating treatment design was used to investigate the extent to which a specialized dyslexia font, OpenDyslexic, impacted reading rate or accuracy compared to two commonly used fonts when used with elementary students identified as having dyslexia. OpenDyslexic was compared to Arial and Times New Roman in three reading tasks: (a) letter naming, (b) word reading, and (c) nonsense word reading. Data were analyzed through visual analysis and improvement rate difference, a nonparametric measure of nonoverlap for comparing treatments. Results from this alternating treatment experiment show no improvement in reading rate or accuracy for individual students with dyslexia, as well as the group as a whole. While some students commented that the font was "new" or "different", none of the participants reported preferring to read material presented in that font. These results indicate there may be no benefit for translating print materials to this font.

  12. The Development of Reading Accuracy and Reading Rate during Treatment of Dyslexia

    ERIC Educational Resources Information Center

    Tijms, Jurgen

    2007-01-01

    Two experiments were conducted to provide a window on the processes by which the accuracy and rate of reading develop during psycholinguistic treatment for dyslexia. In experiment 1,140 children with dyslexia followed a treatment method that presented them with a learning system that clarifies the basic elements and operations by which one's…

  13. Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2013-01-01

    Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…

  14. Obtaining Cue Rate Estimates for Some Mysticete Species using Existing Data

    DTIC Science & Technology

    2014-09-30

    primary focus is to obtain cue rates for humpback whales (Megaptera novaeangliae) off the California coast and on the PMRF range. To our knowledge, no... humpback whale cue rates have been calculated for these populations. Once a cue rate is estimated for the populations of humpback whales off the...rates for humpback whales on breeding grounds, in addition to average cue rates for other species of mysticete whales . Cue rates of several other

  15. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate

    USGS Publications Warehouse

    Mastin, Larry G.

    2014-01-01

    During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.

  16. Estimation of accuracy of time synchronization obtained by means of clock transportation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Ma, Dekang; Jin, Wenjing; Zhao, Gang; Huang, Peicheng

    A portable clock experiment was carried out in October 1985 between Shanghai Observatory and Beijing Observatory using a small quartz clock made in Switzerland. The accuracy of time synchronization in 5 days is 70.18 microsec and the accuracy of determining the transmission time of short wave is satisfactory for reduction of the astronomical observations to the same master clock.

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  18. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  19. Magnetic Resonance Imaging of Pulmonary Embolism: Diagnostic Accuracy of Unenhanced MR and Influence in Mortality Rates.

    PubMed

    Pasin, Lilian; Zanon, Matheus; Moreira, Jose; Moreira, Ana Luiza; Watte, Guilherme; Marchiori, Edson; Hochhegger, Bruno

    2017-04-01

    We evaluated the diagnostic value for pulmonary embolism (PE) of the True fast imaging with steady-state precession (TrueFISP) MRI, a method that allows the visualization of pulmonary vasculature without breath holding or intravenous contrast. This is a prospective investigation including 93 patients with suspected PE. All patients underwent TrueFISP MRI after undergoing CT pulmonary angiography (CTPA). Two independent readers evaluated each MR study, and consensus was obtained. CTPA results were analysed by a third independent reviewer and these results served as the reference standard. A fourth radiologist was responsible for evaluating if lesions found on MRI for both analysis were the same and if these were the correspondent lesions on the CTPA. Sensitivity, specificity, predictive values and accuracy were calculated. Evidence for death from PE within the 1-year follow-up was also assessed. Two patients could not undergo the real-time MRI and were excluded from the study. PE prevalence was 22%. During the 1-year follow-up period, eight patients died, whereas PE was responsible for 12.5% of cases. Between patients who developed PE, only 5% died due to this condition. There were no differences between MR and CT embolism detection in these subjects. MR sequences had a sensitivity of 85%, specificity was 98.6% and accuracy was 95.6%. Agreement between readers was high (κ= 0.87). Compared with contrast-enhanced CT, unenhanced MR sequences demonstrate good accuracy and no differences in the mortality rates in 1 year were detected.

  20. Effects of a rater training on rating accuracy in a physical examination skills assessment.

    PubMed

    Weitz, Gunther; Vinzentius, Christian; Twesten, Christoph; Lehnert, Hendrik; Bonnemeier, Hendrik; König, Inke R

    2014-01-01

    The accuracy and reproducibility of medical skills assessment is generally low. Rater training has little or no effect. Our knowledge in this field, however, relies on studies involving video ratings of overall clinical performances. We hypothesised that a rater training focussing on the frame of reference could improve accuracy in grading the curricular assessment of a highly standardised physical head-to-toe examination. Twenty-one raters assessed the performance of 242 third-year medical students. Eleven raters had been randomly assigned to undergo a brief frame-of-reference training a few days before the assessment. 218 encounters were successfully recorded on video and re-assessed independently by three additional observers. Accuracy was defined as the concordance between the raters' grade and the median of the observers' grade. After the assessment, both students and raters filled in a questionnaire about their views on the assessment. Rater training did not have a measurable influence on accuracy. However, trained raters rated significantly more stringently than untrained raters, and their overall stringency was closer to the stringency of the observers. The questionnaire indicated a higher awareness of the halo effect in the trained raters group. Although the self-assessment of the students mirrored the assessment of the raters in both groups, the students assessed by trained raters felt more discontent with their grade. While training had some marginal effects, it failed to have an impact on the individual accuracy. These results in real-life encounters are consistent with previous studies on rater training using video assessments of clinical performances. The high degree of standardisation in this study was not suitable to harmonize the trained raters' grading. The data support the notion that the process of appraising medical performance is highly individual. A frame-of-reference training as applied does not effectively adjust the physicians' judgement

  1. Can use of an administrative database improve accuracy of hospital-reported readmission rates?

    PubMed

    Edgerton, James R; Herbert, Morley A; Hamman, Baron L; Ring, W Steves

    2018-05-01

    Readmission rates after cardiac surgery are being used as a quality indicator; they are also being collected by Medicare and are tied to reimbursement. Accurate knowledge of readmission rates may be difficult to achieve because patients may be readmitted to different hospitals. In our area, 81 hospitals share administrative claims data; 28 of these hospitals (from 5 different hospital systems) do cardiac surgery and share Society of Thoracic Surgeons (STS) clinical data. We used these 2 sources to compare the readmissions data for accuracy. A total of 45,539 STS records from January 2008 to December 2016 were matched with the hospital billing data records. Using the index visit as the start date, the billing records were queried for any subsequent in-patient visits for that patient. The billing records included date of readmission and hospital of readmission data and were compared with the data captured in the STS record. We found 1153 (2.5%) patients who had STS records that were marked "No" or "missing," but there were billing records that showed a readmission. The reported STS readmission rate of 4796 (10.5%) underreported the readmission rate by 2.5 actual percentage points. The true rate should have been 13.0%. Actual readmission rate was 23.8% higher than reported by the clinical database. Approximately 36% of readmissions were to a hospital that was a part of a different hospital system. It is important to know accurate readmission rates for quality improvement processes and institutional financial planning. Matching patient records to an administrative database showed that the clinical database may fail to capture many readmissions. Combining data with an administrative database can enhance accuracy of reporting. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. The Effect of a Specialized Dyslexia Font, Opendyslexic, on Reading Rate and Accuracy

    ERIC Educational Resources Information Center

    Wery, Jessica J.; Diliberto, Jennifer A.

    2017-01-01

    A single-subject alternating treatment design was used to investigate the extent to which a specialized dyslexia font, OpenDyslexic, impacted reading rate or accuracy compared to two commonly used fonts when used with elementary students identified as having dyslexia. OpenDyslexic was compared to Arial and Times New Roman in three reading tasks:…

  3. Eyewitness accuracy rates in police showup and lineup presentations: a meta-analytic comparison.

    PubMed

    Steblay, Nancy; Dysart, Jennifer; Fulero, Solomon; Lindsay, R C

    2003-10-01

    Meta-analysis is used to compare identification accuracy rates in showups and lineups. Eight papers were located, providing 12 tests of the hypothesis and including 3013 participants. Results indicate that showups generate lower choosing rates than lineups. In target present conditions, showups and lineups yield approximately equal hit rates, and in target absent conditions, showups produce a significantly higher level of correct rejections. False identification rates are approximately equal in showups and lineups when lineup foil choices are excluded from analysis. Dangerous false identifications are more numerous for showups when an innocent suspect resembles the perpetrator. Function of lineup foils, assessment strategies for false identifications, and the potential impact of biases in lineup practice are suggested as additional considerations in evaluation of showup versus lineup efficacy.

  4. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.

    PubMed

    Lee, C Matthew; Gorelick, Mark; Mendoza, Albert

    2011-12-01

    The purpose of this study was to examine the accuracy of the ePulse Personal Fitness Assistant, a forearm-worn device that provides measures of heart rate and estimates energy expenditure. Forty-six participants engaged in 4-minute periods of standing, 2.0 mph walking, 3.5 mph walking, 4.5 mph jogging, and 6.0 mph running. Heart rate and energy expenditure were simultaneously recorded at 60-second intervals using the ePulse, an electrocardiogram (EKG), and indirect calorimetry. The heart rates obtained from the ePulse were highly correlated (intraclass correlation coefficients [ICCs] ≥0.85) with those from the EKG during all conditions. The typical errors progressively increased with increasing exercise intensity but were <5 bpm only during rest and 2.0 mph. Energy expenditure from the ePulse was poorly correlated with indirect calorimetry (ICCs: 0.01-0.36) and the typical errors for energy expenditure ranged from 0.69-2.97 kcal · min(-1), progressively increasing with exercise intensity. These data suggest that the ePulse Personal Fitness Assistant is a valid device for monitoring heart rate at rest and low-intensity exercise, but becomes less accurate as exercise intensity increases. However, it does not appear to be a valid device to estimate energy expenditure during exercise.

  5. Planialtimetric Accuracy Evaluation of Digital Surface Model (dsm) and Digital Terrain Model (dtm) Obtained from Aerial Survey with LIDAR

    NASA Astrophysics Data System (ADS)

    Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.

    2012-07-01

    It's noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. Consequently, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DSM and DTM generated from an aerial survey with LIDAR, using as reference for the planimetric analysis of the orthophotos obtained. The project was developed for an area of São Sebastião city, located in the basin of the North Coast of São Paulo state. The area's relief is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points have been established in the field, with the use of GNSS of one frequency (L1) through static relative positioning, acquiring a minimum of 1,500 epochs, for a distance less than 20 km to the base. In this work it's considered the Brazilian standard specifications for classification of cartographic bases (PEC). The Brazilian company responsible for the aerial survey (LACTEC) gave the following products for analysis: point clouds in raw format (x, y, z) using orthometric heights; point clouds (first and last pulse) for each range of flight to verify systematic errors; DTM uniformly spaced, filtering small natural obstacles, buildings and vegetation, in Geotiff format; DSM also uniformly spaced, in Geotiff format; and the mosaic of georeferenced digital images. The analysis realized on products from the LIDAR indicated their adoption to the scales 1:2,000 (Class A for the orthophotos and Class B for the DTM) and 1:5,000 (class C for the DSM). There were no indications of trends in the results. The average error was 0.01 m. It's important that new areas with different topographic

  6. Classification Accuracy and Acceptability of the Integrated Screening and Intervention System Teacher Rating Form

    ERIC Educational Resources Information Center

    Daniels, Brian; Volpe, Robert J.; Fabiano, Gregory A.; Briesch, Amy M.

    2017-01-01

    This study examines the classification accuracy and teacher acceptability of a problem-focused screener for academic and disruptive behavior problems, which is directly linked to evidence-based intervention. Participants included 39 classroom teachers from 2 public school districts in the Northeastern United States. Teacher ratings were obtained…

  7. Accuracy and utility of an epigenetic biomarker for smoking in populations with varying rates of false self-report.

    PubMed

    Andersen, Allan M; Philibert, Robert A; Gibbons, Fredrick X; Simons, Ronald L; Long, Jeffrey

    2017-09-01

    Better biomarkers to detect smoking are needed given the tremendous public health burden caused by smoking. Current biomarkers to detect smoking have significant limitations, notably a short half-life for detection and lack of sensitivity for light smokers. These limitations may be particularly problematic in populations with less accurate self-reporting. Prior epigenome-wide association studies indicate that methylation status at cg05575921, a CpG residue located in the aryl hydrocarbon receptor repressor (AHRR) gene, may be a robust indicator of smoking status in individuals with as little as half of a pack-year of smoking. In this study, we show that a novel droplet digital PCR assay for measuring methylation at cg05575921 can reliably detect smoking status, as confirmed by serum cotinine, in populations with different demographic characteristics, smoking histories, and rates of false-negative self-report of smoking behavior. Using logistic regression models, we show that obtaining maximum accuracy in predicting smoking status depends on appropriately weighting self-report and cg05575921 methylation according to the characteristics of the sample being tested. Furthermore, models using only cg05575921 methylation to predict smoking perform nearly as well as those also including self-report across populations. In conclusion, cg05575921 has significant potential as a clinical biomarker to detect smoking in populations with varying rates of accuracy in self-report of smoking behavior. This article is a U.S. Government work and is in the public domain in the USA.

  8. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  9. Effects of a rater training on rating accuracy in a physical examination skills assessment

    PubMed Central

    Weitz, Gunther; Vinzentius, Christian; Twesten, Christoph; Lehnert, Hendrik; Bonnemeier, Hendrik; König, Inke R.

    2014-01-01

    Background: The accuracy and reproducibility of medical skills assessment is generally low. Rater training has little or no effect. Our knowledge in this field, however, relies on studies involving video ratings of overall clinical performances. We hypothesised that a rater training focussing on the frame of reference could improve accuracy in grading the curricular assessment of a highly standardised physical head-to-toe examination. Methods: Twenty-one raters assessed the performance of 242 third-year medical students. Eleven raters had been randomly assigned to undergo a brief frame-of-reference training a few days before the assessment. 218 encounters were successfully recorded on video and re-assessed independently by three additional observers. Accuracy was defined as the concordance between the raters' grade and the median of the observers' grade. After the assessment, both students and raters filled in a questionnaire about their views on the assessment. Results: Rater training did not have a measurable influence on accuracy. However, trained raters rated significantly more stringently than untrained raters, and their overall stringency was closer to the stringency of the observers. The questionnaire indicated a higher awareness of the halo effect in the trained raters group. Although the self-assessment of the students mirrored the assessment of the raters in both groups, the students assessed by trained raters felt more discontent with their grade. Conclusions: While training had some marginal effects, it failed to have an impact on the individual accuracy. These results in real-life encounters are consistent with previous studies on rater training using video assessments of clinical performances. The high degree of standardisation in this study was not suitable to harmonize the trained raters’ grading. The data support the notion that the process of appraising medical performance is highly individual. A frame-of-reference training as applied does not

  10. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  11. Enhanced Photoacoustic Gas Analyser Response Time and Impact on Accuracy at Fast Ventilation Rates during Multiple Breath Washout

    PubMed Central

    Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas

    2014-01-01

    Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522

  12. Effect of Heart rate on Basketball Three-Point Shot Accuracy

    PubMed Central

    Ardigò, Luca P.; Kuvacic, Goran; Iacono, Antonio D.; Dascanio, Giacomo; Padulo, Johnny

    2018-01-01

    The three-point shot (3S) is a fundamental basketball skill used frequently during a game, and is often a main determinant of the final result. The aim of the study was to investigate the effect of different metabolic conditions, in terms of heart rates, on 3S accuracy (3S%) in 24 male (Under 17) basketball players (age 16.3 ± 0.6 yrs). 3S performance was specifically investigated at different heart rates. All sessions consisted of 10 consecutive 3Ss from five different significant field spots just beyond the FIBA three-point line, i.e., about 7 m from the basket (two counter-clockwise “laps”) at different heart rates: rest (0HR), after warm-up (50%HRMAX [50HR]), and heart rate corresponding to 80% of its maximum value (80%HRMAX [80HR]). We found that 50HR does not significantly decrease 3S% (−15%, P = 0.255), while 80HR significantly does when compared to 0HR (−28%, P = 0.007). Given that 50HR does not decrease 3S% compared to 0HR, we believe that no preliminary warm-up is needed before entering a game in order to specifically achieve a high 3S%. Furthermore, 3S training should be performed in conditions of moderate-to-high fatigued state so that a high 3S% can be maintained during game-play. PMID:29467676

  13. Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room.

    PubMed

    Kamlin, C Omar F; Dawson, Jennifer A; O'Donnell, Colm P F; Morley, Colin J; Donath, Susan M; Sekhon, Jasbir; Davis, Peter G

    2008-06-01

    To determine the accuracy of heart rate obtained by pulse oximetry (HR(PO)) relative to HR obtained by 3-lead electrocardiography (HR(ECG)) in newborn infants in the delivery room. Immediately after birth, a preductal PO sensor and ECG leads were applied. PO and ECG monitor displays were recorded by a video camera. Two investigators reviewed the videos. Every two seconds, 1 of the investigators recorded HR(PO) and indicators of signal quality from the oximeter while masked to ECG, whereas the other recorded HR(ECG) and ECG signal quality while masked to PO. HR(PO) and HR(ECG) measurements were compared using Bland-Altman analysis. We attended 92 deliveries; 37 infants were excluded due to equipment malfunction. The 55 infants studied had a mean (+/-standard deviation [SD]) gestational age of 35 (+/-3.7) weeks, and birth weight 2399 (+/-869) g. In total, we analyzed 5877 data pairs. The mean difference (+/-2 SD) between HR(ECG) and HR(PO) was -2 (+/-26) beats per minute (bpm) overall and -0.5 (+/-16) bpm in those infants who received positive-pressure ventilation and/or cardiac massage. The sensitivity and specificity of PO for detecting HR(ECG) <100 bpm was 89% and 99%, respectively. PO provided an accurate display of newborn infants' HR in the delivery room, including those infants receiving advanced resuscitation.

  14. Utilization of Pharmacy Technicians to Increase the Accuracy of Patient Medication Histories Obtained in the Emergency Department

    PubMed Central

    Pisupati, Radhika; Nerenberg, Steven F.

    2016-01-01

    Purpose: The purpose of this study is to determine the accuracy of a pharmacy technician–collected medication history pilot program in the emergency department. This was completed by reviewing all elements of the technician activity by direct observation and by verifying the technician-collected medication list through a second phone call by a pharmacist to the outpatient pharmacy. Methods: This was a retrospective, single-center study conducted from March to April 2015. Four certified pharmacy technicians were trained by a postgraduate year 1 (PGY1) pharmacy practice resident on how to collect, verify, and accurately enter medication histories into the electronic medical record. Accuracy of pharmacy technician–collected medication histories was verified by a pharmacist through observation of their patient interviews, review of technician-completed medication history forms, and by contacting the patient's outpatient pharmacy. Results: The pharmacy technician–completed medication histories resulted in an absolute risk reduction of errors of 50% and a relative risk reduction of errors of 77% (p < .001) in comparison to medication histories collected by non-pharmacy personnel. Conclusion: With high accuracy rates, pharmacy technicians proved to be a valuable asset to the medication history process and can enhance patient safety during care transitions. The results of this study further support the Pharmacy Practice Model Initiative vision to advance the pharmacy technician role to improve the process of medication history taking and reconciliation within the health care system. PMID:27303094

  15. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    PubMed

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes

  16. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopich, Irina V.

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less

  17. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    PubMed Central

    Gopich, Irina V.

    2015-01-01

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692

  18. The Push for More Challenging Texts: An Analysis of Early Readers' Rate, Accuracy, and Comprehension

    ERIC Educational Resources Information Center

    Amendum, Steven J.; Conradi, Kristin; Liebfreund, Meghan D.

    2016-01-01

    The purpose of the study was to examine the relationship between the challenge level of text and early readers' reading comprehension. This relationship was also examined with consideration to students' word recognition accuracy and reading rate. Participants included 636 students, in Grades 1-3, in a southeastern state. Results suggest that…

  19. Accuracy of single-abutment digital cast obtained using intraoral and cast scanners.

    PubMed

    Lee, Jae-Jun; Jeong, Ii-Do; Park, Jin-Young; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-02-01

    Scanners are frequently used in the fabrication of dental prostheses. However, the accuracy of these scanners is variable, and little information is available. The purpose of this in vitro study was to compare the accuracy of cast scanners with that of intraoral scanners by using different image impression techniques. A poly(methyl methacrylate) master model was fabricated to replicate a maxillary first molar single-abutment tooth model. The master model was scanned with an accurate engineering scanner to obtain a true value (n=1) and with 2 intraoral scanners (CEREC Bluecam and CEREC Omnicam; n=6 each). The cast scanner scanned the master model and duplicated the dental stone cast from the master model (n=6). The trueness and precision of the data were measured using a 3-dimensional analysis program. The Kruskal-Wallis test was used to compare the different sets of scanning data, followed by a post hoc Mann-Whitney U test with a significance level modified by Bonferroni correction (α/6=.0083). The type 1 error level (α) was set at .05. The trueness value (root mean square: mean ±standard deviation) was 17.5 ±1.8 μm for the Bluecam, 13.8 ±1.4 μm for the Omnicam, 17.4 ±1.7 μm for cast scanner 1, and 12.3 ±0.1 μm for cast scanner 2. The differences between the Bluecam and the cast scanner 1 and between the Omnicam and the cast scanner 2 were not statistically significant (P>.0083), but a statistically significant difference was found between all the other pairs (P<.0083). The precision of the scanners was 12.7 ±2.6 μm for the Bluecam, 12.5 ±3.7 μm for the Omnicam, 9.2 ±1.2 μm for cast scanner 1, and 6.9 ±2.6 μm for cast scanner 2. The differences between Bluecam and Omnicam and between Omnicam and cast scanner 1 were not statistically significant (P>.0083), but there was a statistically significant difference between all the other pairs (P<.0083). An Omnicam in video image impression had better trueness than a cast scanner but with a similar

  20. A developmental perspective on reading dysfunction: accuracy and rate criteria in the subtyping of dyslexic children.

    PubMed

    Lovett, M W

    1984-05-01

    Children referred with specific reading dysfunction were subtyped as accuracy disabled or rate disabled according to criteria developed from an information processing model of reading skill. Multiple measures of oral and written language development were compared for two subtyped samples matched on age, sex, and IQ. The two samples were comparable in reading fluency, reading comprehension, word knowledge, and word retrieval functions. Accuracy disabled readers demonstrated inferior decoding and spelling skills. The accuracy disabled sample proved deficient in their understanding of oral language structure and in their ability to associate unfamiliar pseudowords and novel symbols in a task designed to simulate some of the learning involved in initial reading acquisition. It was suggested that these two samples of disabled readers may be best described with respect to their relative standing along a theoretical continuum of normal reading development.

  1. Accuracy of pulse oximeters in estimating heart rate at rest and during exercise.

    PubMed Central

    Iyriboz, Y; Powers, S; Morrow, J; Ayers, D; Landry, G

    1991-01-01

    Pulse oximeters are being widely used for non-invasive, simultaneous assessment of haemoglobin oxygen saturation. They are reliable, accurate, relatively inexpensive and portable. Pulse oximeters are often used for estimating heart rate at rest and during exercise. However, at present the data available to validate their use as heart rate monitors are not sufficient. We evaluated the accuracy of two oximeters (Radiometer, ear and finger probe; Ohmeda 3700, ear probe) in monitoring heart rate during incremental exercise by comparing the pulse oximeters with simultaneous ECG readings. Data were collected on eight men (713 heart rate readings) during graded cycle ergometer and treadmill exercise to volitional fatigue. Analysis by linear regression revealed that general oximeter readings significantly correlated with those of ECG (r = 0.91, P less than 0.0001). However, comparison of heart rate at each level of work showed that oximeter readings significantly (P less than 0.05) under-estimated rates above 155 beats/min. These results indicate that the use of pulse oximeters as heart rate monitors during strenuous exercise is questionable. This inaccuracy may well originate from the instability of the probes, sweating, other artefacts during exercise, and measurement of different components in the cardiovascular cycle. PMID:1777787

  2. Screening Accuracy of Level 2 Autism Spectrum Disorder Rating Scales: A Review of Selected Instruments

    ERIC Educational Resources Information Center

    Norris, Megan; Lecavalier, Luc

    2010-01-01

    The goal of this review was to examine the state of Level 2, caregiver-completed rating scales for the screening of Autism Spectrum Disorders (ASDs) in individuals above the age of three years. We focused on screening accuracy and paid particular attention to comparison groups. Inclusion criteria required that scales be developed post ICD-10, be…

  3. Feasibility and accuracy of molecular testing in specimens obtained with small biopsy forceps: comparison with the results of surgical specimens.

    PubMed

    Oki, Masahide; Yatabe, Yasushi; Saka, Hideo; Kitagawa, Chiyoe; Kogure, Yoshihito; Ichihara, Shu; Moritani, Suzuko

    2015-01-01

    During bronchoscopy, small biopsy forceps are increasingly used for the diagnosis of peripheral pulmonary lesions. However, it is unclear whether the formalin-fixed paraffin-embedded specimens sampled with the small biopsy forceps are suitable for the determination of genotypes which become indispensable for the management decision regarding patients with non-small cell lung cancer. The aim of this study was to evaluate the feasibility and accuracy of molecular testing in the specimens obtained with 1.5-mm small biopsy forceps. We examined specimens in 91 patients, who were enrolled in our previous 3 studies on the usefulness of thin bronchoscopes and given a diagnosis of non-small cell lung cancer by bronchoscopy with the 1.5-mm biopsy forceps, and then underwent surgical resection. An experienced pathologist examined paraffin-embedded specimens obtained by bronchoscopic biopsy or surgical resection in a blind fashion on epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements and KRAS mutations. Twenty-five (27%), 2 (2%) and 5 (5%) patients had an EGFR mutation, ALK rearrangement and KRAS mutation, respectively, based on the results in surgical specimens. EGFR, ALK and KRAS testing with bronchoscopic specimens was feasible in 82 (90%), 86 (95%) and 83 (91%) patients, respectively. If molecular testing was feasible, the accuracy of EGFR, ALK and KRAS testing with bronchoscopic specimens for the results with surgical specimens was 98, 100 and 98%, respectively. The results of molecular testing in the formalin-fixed paraffin-embedded specimens obtained with the small forceps, in which the genotype could be evaluated, correlated well with those in surgically resected specimens.

  4. Propagation of measurement accuracy to biomass soft-sensor estimation and control quality.

    PubMed

    Steinwandter, Valentin; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased.

  5. Effectiveness of Prompts on Fourth-Grade Children's Dietary Recall Accuracy Depends on Retention Interval and Varies by Gender.

    PubMed

    Baxter, Suzanne D; Smith, Albert F; Hitchcock, David B; Guinn, Caroline H; Royer, Julie A; Collins, Kathleen L; Smith, Alyssa L; Puryear, Megan P; Vaadi, Kate K; Finney, Christopher J; Miller, Patricia H

    2015-09-01

    Dietary recall accuracy is related to retention interval (RI) (i.e., time between to-be-reported meals and the interview), and possibly to prompts. To the best of our knowledge, no study has evaluated their combined effect. The combined influence of RI and prompts on children's recall accuracy was investigated in this study. Two RIs [short (prior-24-h recall obtained in afternoon) and long (previous-day recall obtained in morning)] were crossed with 4 prompts [forward (distant-to-recent), meal-name (breakfast, lunch, etc.), open (no instructions), and reverse (recent-to-distant)], creating 8 conditions. Fourth-grade children (n = 480; 50% girls) were randomly selected from consenting children at 10 schools in 4 districts in a southern state during 3 school years (2011-2012, 2012-2013, and 2013-2014). Each child was observed eating school-provided breakfast and lunch, and interviewed one time under 1 of the 8 conditions. Condition assignment was constrained so that each had 60 children (30 girls). Accuracy measures were food-item omission and intrusion rates, and energy correspondence rate and inflation ratio. For each measure, linear models determined effects of RI, prompt, gender, and interactions (2-way, 3-way); race/ethnicity, school year, and district were control variables. RI (P values < 0.015) and prompt (P values < 0.005) were significant for all 4 accuracy measures. RI × prompt (P values < 0.001) was significant for 3 accuracy measures (not intrusion rate). Prompt × gender (P = 0.005) was significant for omission rate. RI × prompt × gender was significant for intrusion rate and inflation ratio (P values < 0.001). For the short vs. long RI across prompts and genders, accuracy was better by 33-50% for each accuracy measure. To obtain the most accurate recalls possible from children, studies should be designed to use a short rather than long RI. Prompts affect children's recall accuracy, although the effectiveness of different prompts depends on RI and

  6. Determination of the Ephemeris Accuracy for AJISAI, LAGEOS and ETALON Satellites, Obtained with A Simplified Numerical Motion Model Using the ILRS Coordinates

    NASA Astrophysics Data System (ADS)

    Kara, I. V.

    This paper describes a simplified numerical model of passive artificial Earth satellite (AES) motion. The model accuracy is determined using the International Laser Ranging Service (ILRS) highprecision coordinates. Those data are freely available on http://ilrs.gsfc.nasa.gov. The differential equations of the AES motion are solved by the Everhart numerical method of 17th and 19th orders with the integration step automatic correction. The comparison between the AES coordinates computed with the motion model and the ILRS coordinates enabled to determine the accuracy of the ephemerides obtained. As a result, the discrepancy of the computed Etalon-1 ephemerides from the ILRS data is about 10'' for a one-year ephemeris.

  7. Effects of Recovery Behavior and Strain-Rate Dependence of Stress-Strain Curve on Prediction Accuracy of Thermal Stress Analysis During Casting

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2017-06-01

    Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.

  8. Accuracy of a Wrist-Worn Wearable Device for Monitoring Heart Rates in Hospital Inpatients: A Prospective Observational Study.

    PubMed

    Kroll, Ryan R; Boyd, J Gordon; Maslove, David M

    2016-09-20

    As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine monitoring or as part of an early warning system to detect clinical deterioration. To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients. We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed 24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse oximetry (Spo2.R) was also measured as a positive control. On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring (average bias of -1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias -0.99 bpm vs -5.02 bpm, P=.02). Personal fitness tracker-derived heart rates were slightly lower than those derived from cECG monitoring in real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals. ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite at  http://www.webcitation.org/6kOFez3on).

  9. EFFECT OF CERVICAL RELINING OF ACRYLIC RESIN COPINGS ON THE ACCURACY OF STONE DIES OBTAINED USING A POLYETHER IMPRESSION MATERIAL

    PubMed Central

    de Sá, André Tomazini Gomes; de Freitas, César Antunes; de Sá, Fátima Cristina; Ursi, Wagner José Silva; Simões, Tânia Christina; de Freitas, Márcia Furtado Antunes

    2008-01-01

    The purpose of this study was to evaluate the accuracy of the respective dies after polyether elastomeric procedure in the presence or absence of cervical contact of the acrylic resin shell with the cervical region, establishing a comparison to dies obtained with stock trays. This study consisted of three groups with 10 specimens each: 1) acrylic copings without cervical contact, (cn); 2) acrylic copings with cervical contact (cc); 3) perforated stock tray, (st). The accuracy of the resulting dies was verified with the aid of a master crown, precisely fit to the master steel die. ANOVA test found statistically significant differences among groups (p<0.001). Tukey's test found that the smallest discrepancy occurred in group cn, followed by cc, while the st group presented the highest difference (cc x cn: p=0.007; st x cn: p<0.001; st x cc: p<0.001). PMID:19089282

  10. Predicting Intervention Effectiveness from Oral Reading Accuracy and Rate Measures through the Learning Hierarchy/Instructional Hierarchy

    ERIC Educational Resources Information Center

    Szadokierski, Isadora Elisabeth

    2012-01-01

    The current study used the Learning Hierarchy/Instructional Hierarchy (LH/IH) to predict intervention effectiveness based on the reading skills of students who are developing reading fluency. Pre-intervention reading accuracy and rate were assessed for 49 second and third grade participants who then participated in a brief experimental analysis…

  11. Low accuracy and low consistency of fourth-graders' school breakfast and school lunch recalls

    PubMed Central

    THOMPSON, WILLIAM 0.; LITAKER, MARK S.; FRYE, FRANCESCA H.A.; GUINN, CAROLINE H.

    2005-01-01

    Objective To determine the accuracy and consistency of fourth-graders' school breakfast and school lunch recalls obtained during 24-hour recalls and compared with observed intake. Design Children were interviewed using a multiple-pass protocol at school the morning after being observed eating school breakfast and school lunch. Subjects 104 children stratified by ethnicity (African-American, white) and gender were randomly selected and interviewed up to 3 times each with 4 to 14 weeks between each interview. Statistical analysis Match, omission, and intrusion rates to determine accuracy of reporting items; arithmetic and/or absolute differences to determine accuracy for reporting amounts; total inaccuracy to determine inaccuracy for reporting items and amounts combined; intraclass correlation coefficients (ICC) to determine consistency. Results Means were 51% for omission rate, 39% for intrusion rate, and 7.1 servings for total inaccuracy. Total inaccuracy decreased significantly from the first to the third recall (P=0.006). The ICC was 0.29 for total inaccuracy and 0.15 for omission rate. For all meal components except bread/grain and beverage, there were more omissions than intrusions. Mean arithmetic and absolute differences per serving in amount reported for matches were -0.08 and 0.24, respectively. Mean amounts per serving of omissions and intrusions were 0.86 and 0.80, respectively. Applications/conclusions The low accuracy and low consistency of children's recalls from this study raise concerns regarding the current uses of dietary recalls obtained from children. To improve the accuracy and consistency of children's dietary recalls, validation studies are needed to determine the best way(s) to interview children. PMID:11905461

  12. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-06-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.

  13. Eyewitness accuracy rates in sequential and simultaneous lineup presentations: a meta-analytic comparison.

    PubMed

    Steblay, N; Dysart, J; Fulero, S; Lindsay, R C

    2001-10-01

    Most police lineups use a simultaneous presentation technique in which eyewitnesses view all lineup members at the same time. Lindsay and Wells (R. C. L. Lindsay & G. L. Wells, 1985) devised an alternative procedure, the sequential lineup, in which witnesses view one lineup member at a time and decide whether or not that person is the perpetrator prior to viewing the next lineup member. The present work uses the technique of meta-analysis to compare the accuracy rates of these presentation styles. Twenty-three papers were located (9 published and 14 unpublished), providing 30 tests of the hypothesis and including 4,145 participants. Results showed that identification of perpetrators from target-present lineups occurs at a higher rate from simultaneous than from sequential lineups. However, this difference largely disappears when moderator variables approximating real world conditions are considered. Also, correct rejection rates were significantly higher for sequential than simultaneous lineups and this difference is maintained or increased by greater approximation to real world conditions. Implications of these findings are discussed.

  14. Interference with activities due to pain and fatigue: Accuracy of ratings across different reporting periods

    PubMed Central

    Broderick, Joan E.; Schneider, Stefan; Schwartz, Joseph E.; Stone, Arthur A.

    2010-01-01

    Purpose This study examined the impact of different reporting period lengths on the accuracy of items measuring interference due to pain and fatigue with work, walking, and relations with others. Methods Six items from well-established instruments (Brief Pain Inventory, Brief Fatigue Inventory, SF-36) were investigated in a prospective study of 117 patients with chronic rheumatological illness. Daily ratings were compared with recall ratings of 1, 3, 7, and 28-day reporting periods. Results The level of recall ratings (RRs) for reporting periods of 3 days or more were significantly higher than the level of aggregated end-of-day (EOD) ratings. Correspondence between aggregated EOD and RRs was good (r ≥ .80) regardless of the length of the reporting period. Ratings of interference for a single day were highly correlated with aggregated EOD for up to 14 days prior to the single rating (r ≥ .76). Conclusions Recall ratings with reporting periods of up to a month yield good correspondence with aggregated daily ratings, although the absolute level of the rating will be inflated for recall periods of 3 days or longer. PMID:20535565

  15. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    PubMed

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  17. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  18. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  19. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  20. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  1. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  2. Convergent Validity, Concurrent Validity, and Diagnostic Accuracy of the interRAI Depression Rating Scale.

    PubMed

    Penny, Katherine; Barron, Alex; Higgins, Ann-Marie; Gee, Susan; Croucher, Matthew; Cheung, Gary

    2016-09-19

    Depression Rating Scale (DRS) is one of the clinical outcome measures of the International Resident Assessment Instrument (interRAI) assessment. The primary aim of this study is to investigate the diagnostic accuracy and concurrent validity of the 3-day assessment window version of the DRS. The performance of DRS was compared with a gold standard clinical diagnosis of depression in 92 patients (age ≥65) who had interRAI version 9.1 Home Care assessment completed within 30 days of discharge from psychogeriatric inpatient care or memory clinic assessment. The DRS had poor diagnostic accuracy for depression diagnosis with an area under the curve of 0.68 (95% confidence interval [CI] = 0.57-0.77). The DRS score had a poor to moderate correlation with the Health of the Nation Outcome Scale 65+ depression item score (r s = 0.30, 95% CI = 0.09-0.48, P = .006). This study and the existing literature raise concerns that the DRS is not an adequate measure of depression. © The Author(s) 2016.

  3. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    PubMed

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  4. English Verb Accuracy of Bilingual Cantonese-English Preschoolers.

    PubMed

    Rezzonico, Stefano; Goldberg, Ahuva; Milburn, Trelani; Belletti, Adriana; Girolametto, Luigi

    2017-07-26

    Knowledge of verb development in typically developing bilingual preschoolers may inform clinicians about verb accuracy rates during the 1st 2 years of English instruction. This study aimed to investigate tensed verb accuracy in 2 assessment contexts in 4- and 5-year-old Cantonese-English bilingual preschoolers. The sample included 47 Cantonese-English bilinguals enrolled in English preschools. Half of the children were in their 1st 4 months of English language exposure, and half had completed 1 year and 4 months of exposure to English. Data were obtained from the Test of Early Grammatical Impairment (Rice & Wexler, 2001) and from a narrative generated in English. By the 2nd year of formal exposure to English, children in the present study approximated 33% accuracy of tensed verbs in a formal testing context versus 61% in a narrative context. The use of the English verb BE approximated mastery. Predictors of English third-person singular verb accuracy were task, grade, English expressive vocabulary, and lemma frequency. Verb tense accuracy was low across both groups, but a precocious mastery of BE was observed. The results of the present study suggest that speech-language pathologists may consider, in addition to an elicitation task, evaluating the use of verbs during narratives in bilingual Cantonese-English bilingual children.

  5. A Study of the dimensional accuracy obtained by low cost 3D printing for possible application in medicine

    NASA Astrophysics Data System (ADS)

    Kitsakis, K.; Alabey, P.; Kechagias, J.; Vaxevanidis, N.

    2016-11-01

    Low cost 3D printing' is a terminology that referred to the fused filament fabrication (FFF) technique, which constructs physical prototypes, by depositing material layer by layer using a thermal nozzle head. Nowadays, 3D printing is widely used in medical applications such as tissue engineering as well as supporting tool in diagnosis and treatment in Neurosurgery, Orthopedic and Dental-Cranio-Maxillo-Facial surgery. 3D CAD medical models are usually obtained by MRI or CT scans and then are sent to a 3D printer for physical model creation. The present paper is focused on a brief overview of benefits and limitations of 3D printing applications in the field of medicine as well as on a dimensional accuracy study of low-cost 3D printing technique.

  6. SoRS: Social recommendation using global rating reputation and local rating similarity

    NASA Astrophysics Data System (ADS)

    Qian, Fulan; Zhao, Shu; Tang, Jie; Zhang, Yanping

    2016-11-01

    Recommendation is an important and also challenging problem in online social networks. It needs to consider not only users' personalized interests, but also social relations between users. Indeed, in practice, users are often inclined to accept recommendations from friends or opinion leaders (users with high reputations). In this paper, we present a novel recommendation framework, social recommendation using global rating reputation and local rating similarity, which combine user reputation and social similarity based on ratings. User reputation can be obtained by iteratively calculating the correlation of historical ratings of user and intrinsic qualities of items. We view the user reputation as the user's global influence and the similarity based on rating of social relation as the user's local influence, introduce it in the basic social recommender model. Thus users with high reputation have a strong influence on the others, and on the other hand, the effect of a user with low reputation has been weakened. The recommendation accuracy of proposed framework can be improved by effectively removing nature noise because of less rigorous user ratings and strengthening the effect of user influence with high reputation. We also improve the similarity based on ratings by avoiding the high similarity with the less common ratings between friends. We evaluate our approach on three datasets including Movielens, Epinions and Douban. Empirical results demonstrate that proposed framework achieves significant improvements on recommendation accuracy. User reputation and local similarity which are both based on ratings have a lot of helpful in improvement of prediction accuracy. The reputation also can help to improve the recommendation precision with the small training sets.

  7. A comparison of two recorders for obtaining in-flight heart rate data.

    PubMed

    Dahlstrom, Nicklas; Nahlinder, Staffan

    2006-09-01

    : Measurement of mental workload has been widely used for evaluation of aircraft design, mission analysis and assessment of pilot performance during flight operations. Heart rate is the psychophysiological measure that has been most frequently used for this purpose. The risk of interference with flight safety and pilot performance, as well as the generally constrained access to flights, make it difficult for researchers to collect in-flight heart rate data. Thus, this study was carried out to investigate whether small, non-intrusive sports recorders can be used for in-flight data collection for research purposes. Data was collected from real and simulated flights with student pilots using the Polar Team System sports recorder and the Vitaport II, a clinical and research recording device. Comparison of the data shows that in-flight heart rate data from the smaller and less intrusive sports recorder have a correlation of.981 with that from the clinical recorder, thus indicating that the sports recorder is reliable and cost-effective for obtaining heart rate data for many research situations.

  8. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  9. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  10. Accuracy investigation of phthalate metabolite standards.

    PubMed

    Langlois, Éric; Leblanc, Alain; Simard, Yves; Thellen, Claude

    2012-05-01

    Phthalates are ubiquitous compounds whose metabolites are usually determined in urine for biomonitoring studies. Following suspect and unexplained results from our laboratory in an external quality-assessment scheme, we investigated the accuracy of all phthalate metabolite standards in our possession by comparing them with those of several suppliers. Our findings suggest that commercial phthalate metabolite certified solutions are not always accurate and that lot-to-lot discrepancies significantly affect the accuracy of the results obtained with several of these standards. These observations indicate that the reliability of the results obtained from different lots of standards is not equal, which reduces the possibility of intra-laboratory and inter-laboratory comparisons of results. However, agreements of accuracy have been observed for a majority of neat standards obtained from different suppliers, which indicates that a solution to this issue is available. Data accuracy of phthalate metabolites should be of concern for laboratories performing phthalate metabolite analysis because of the standards used. The results of our investigation are presented from the perspective that laboratories performing phthalate metabolite analysis can obtain accurate and comparable results in the future. Our findings will contribute to improving the quality of future phthalate metabolite analyses and will affect the interpretation of past results.

  11. 24 CFR 70.5 - Procedure for obtaining HUD waiver of prevailing wage rates for volunteers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of prevailing wage rates for volunteers. 70.5 Section 70.5 Housing and Urban Development Office of... DAVIS-BACON AND HUD-DETERMINED WAGE RATES § 70.5 Procedure for obtaining HUD waiver of prevailing wage... authorized to waive prevailing wage requirements for volunteers, as referenced in § 70.1(b). (b) Local or...

  12. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    NASA Astrophysics Data System (ADS)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  13. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimetry

    USDA-ARS?s Scientific Manuscript database

    The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...

  14. Improving coding accuracy in an academic practice.

    PubMed

    Nguyen, Dana; O'Mara, Heather; Powell, Robert

    2017-01-01

    Practice management has become an increasingly important component of graduate medical education. This applies to every practice environment; private, academic, and military. One of the most critical aspects of practice management is documentation and coding for physician services, as they directly affect the financial success of any practice. Our quality improvement project aimed to implement a new and innovative method for teaching billing and coding in a longitudinal fashion in a family medicine residency. We hypothesized that implementation of a new teaching strategy would increase coding accuracy rates among residents and faculty. Design: single group, pretest-posttest. military family medicine residency clinic. Study populations: 7 faculty physicians and 18 resident physicians participated as learners in the project. Educational intervention: monthly structured coding learning sessions in the academic curriculum that involved learner-presented cases, small group case review, and large group discussion. overall coding accuracy (compliance) percentage and coding accuracy per year group for the subjects that were able to participate longitudinally. Statistical tests used: average coding accuracy for population; paired t test to assess improvement between 2 intervention periods, both aggregate and by year group. Overall coding accuracy rates remained stable over the course of time regardless of the modality of the educational intervention. A paired t test was conducted to compare coding accuracy rates at baseline (mean (M)=26.4%, SD=10%) to accuracy rates after all educational interventions were complete (M=26.8%, SD=12%); t24=-0.127, P=.90. Didactic teaching and small group discussion sessions did not improve overall coding accuracy in a residency practice. Future interventions could focus on educating providers at the individual level.

  15. A new experimental procedure of outgassing rate measurement to obtain more precise deposition properties of materials

    NASA Astrophysics Data System (ADS)

    Miyazaki, Eiji; Shimazaki, Kazunori; Numata, Osamu; Waki, Miyuki; Yamanaka, Riyo; Kimoto, Yugo

    2016-09-01

    Outgassing rate measurement, or dynamic outgassing test, is used to obtain outgassing properties of materials, i.e., Total Mass Loss, "TML," and Collected Volatile Condensed Mass, "CVCM." The properties are used as input parameters for executing contamination analysis, e.g., calculating a prediction of deposition mass on a surface in a spacecraft caused by outgassed substances from contaminant sources onboard. It is likely that results obtained by such calculations are affected by the input parameters. Thus, it is important to get a sufficient experimental data set of outgassing rate measurements for extract good outgassing parameters of materials for calculation. As specified in the standard, ASTM E 1559, TML is measured by a QCM sensor kept at cryogenic temperature; CVCMs are measured at certain temperatures. In the present work, the authors propose a new experimental procedure to obtain more precise VCMs from one run of the current test time with the present equipment. That is, two of four CQCMs in the equipment control the temperature to cool step-by-step during the test run. It is expected that the deposition rate, that is sticking coefficient, with respect to temperature could be discovered. As a result, the sticking coefficient can be obtained directly between -50 and 50 degrees C with 5 degrees C step. It looks like the method could be used as an improved procedure for outgassing rate measurement. The present experiment also specified some issues of the new procedure. It will be considered in future work.

  16. High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range

    PubMed Central

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-01-01

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed. PMID:27137334

  17. Systematic review of discharge coding accuracy

    PubMed Central

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  18. Accuracy Of LTPP Traffic Loading Estimates

    DOT National Transportation Integrated Search

    1998-07-01

    The accuracy and reliability of traffic load estimates are key to determining a pavement's life expectancy. To better understand the variability of traffic loading rates and its effect on the accuracy of the Long Term Pavement Performance (LTPP) prog...

  19. Predicting Intervention Effectiveness from Reading Accuracy and Rate Measures through the Instructional Hierarchy: Evidence for a Skill-by-Treatment Interaction

    ERIC Educational Resources Information Center

    Szadokierski, Isadora; Burns, Matthew K.; McComas, Jennifer J.

    2017-01-01

    The current study used the learning hierarchy/instructional hierarchy phases of acquisition and fluency to predict intervention effectiveness based on preintervention reading skills. Preintervention reading accuracy (percentage of words read correctly) and rate (number of words read correctly per minute) were assessed for 49 second- and…

  20. Diagnostic Accuracy of Rating Scales for Attention-Deficit/Hyperactivity Disorder: A Meta-analysis.

    PubMed

    Chang, Ling-Yin; Wang, Mei-Yeh; Tsai, Pei-Shan

    2016-03-01

    The Child Behavior Checklist-Attention Problem (CBCL-AP) scale and Conners Rating Scale-Revised (CRS-R) are commonly used behavioral rating scales for diagnosing attention-deficit/hyperactivity disorder (ADHD) in children and adolescents. To evaluate and compare the diagnostic performance of CBCL-AP and CRS-R in diagnosing ADHD in children and adolescents. PubMed, Ovid Medline, and other relevant electronic databases were searched for articles published up to May 2015. We included studies evaluating the diagnostic performance of either CBCL-AP scale or CRS-R for diagnosing ADHD in pediatric populations in comparison with a defined reference standard. Bivariate random effects models were used for pooling and comparing diagnostic performance. We identified and evaluated 14 and 11 articles on CBCL-AP and CRS-R, respectively. The results revealed pooled sensitivities of 0.77, 0.75, 0.72, and 0.83 and pooled specificities of 0.73, 0.75, 0.84, and 0.84 for CBCL-AP, Conners Parent Rating Scale-Revised, Conners Teacher Rating Scale-Revised, and Conners Abbreviated Symptom Questionnaire (ASQ), respectively. No difference was observed in the diagnostic performance of the various scales. Study location, age of participants, and percentage of female participants explained the heterogeneity in the specificity of the CBCL-AP. CBCL-AP and CRS-R both yielded moderate sensitivity and specificity in diagnosing ADHD. According to the comparable diagnostic performance of all examined scales, ASQ may be the most effective diagnostic tool in assessing ADHD because of its brevity and high diagnostic accuracy. CBCL is recommended for more comprehensive assessments. Copyright © 2016 by the American Academy of Pediatrics.

  1. Empathic Embarrassment Accuracy in Autism Spectrum Disorder.

    PubMed

    Adler, Noga; Dvash, Jonathan; Shamay-Tsoory, Simone G

    2015-06-01

    Empathic accuracy refers to the ability of perceivers to accurately share the emotions of protagonists. Using a novel task assessing embarrassment, the current study sought to compare levels of empathic embarrassment accuracy among individuals with autism spectrum disorders (ASD) with those of matched controls. To assess empathic embarrassment accuracy, we compared the level of embarrassment experienced by protagonists to the embarrassment felt by participants while watching the protagonists. The results show that while the embarrassment ratings of participants and protagonists were highly matched among controls, individuals with ASD failed to exhibit this matching effect. Furthermore, individuals with ASD rated their embarrassment higher than controls when viewing themselves and protagonists on film, but not while performing the task itself. These findings suggest that individuals with ASD tend to have higher ratings of empathic embarrassment, perhaps due to difficulties in emotion regulation that may account for their impaired empathic accuracy and aberrant social behavior. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  2. Classification accuracy on the family planning participation status using kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Kurniawan, Dian; Suparti; Sugito

    2018-05-01

    Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.

  3. Assessment of the Accuracy and Cut-Failure Rates of Eye Bank-Cut Corneas for Use in Endothelial Keratoplasty: A Comparison of Outcomes Between 2010 and 2013.

    PubMed

    Katzman, Lee R; Hoover, Caroline K; Khalifa, Yousuf M; Jeng, Bennie H

    2015-11-01

    To evaluate the accuracy of eye bank-prepared precut donor corneas over time by comparing cut-failure rates and corneal thickness measurements in 2010 and 2013. A total of 2511 human corneas cut by a technician-operated mechanical microkeratome intended for endothelial keratoplasty were evaluated prospectively at one large eye bank facility in 2010 and in 2013. The endothelium was evaluated by slit lamp, and specular microscopy both before and after cutting was performed. Graft thickness as measured by pachymetry and/or optical coherence tomography was collected to assess the accuracy of the cut tissue. Cut-failure rates were compared between normal donor tissue and tissue with significant preexisting scarring. The combined cut-failure rate in 2010 and 2013 was 2.3% (23/1000) and 1.6% (24/1511), respectively (P = 0.23). The cut-failure rate among normal tissue in 2010 and 2013 was 2.0% (19/927) and 1.4% (19/1400), respectively (P = 0.24). The cut-failure rate among previously scarred tissue in 2010 and 2013 was 5.5% (4/73) and 4.5% (5/111), respectively (P = 0.74). The mean surgeon-requested graft thickness was 144.7 μm (range 100-150, SD 13.6) and 127.2 μm (range 75-150, SD 25.2) in 2010 and 2013, respectively (P < 0.0001). The mean deviation from target graft thickness was 21.3 μm (SD 16.3) and 13.6 μm (SD 12.5) in 2010 and 2013, respectively (P < 0.0001). From 2010 to 2013, the combined cut-failure rates trended toward improvement, while the accuracy of graft thickness improved. This study suggests that the accuracy and success rates of tissue preparation for endothelial keratoplasty improve with experience and volume.

  4. Accuracy of Fourth-Graders' Dietary Recalls of School Breakfast and School Lunch Validated with Observations: In-Person versus Telephone Interviews

    PubMed Central

    THOMPSON, WILLIAM O.; LITAKER, MARK S.; GUINN, CAROLINE H.; FRYE, FRANCESCA H. A.; BAGLIO, MICHELLE L.; SHAFFER, NICOLE M.

    2005-01-01

    Objective: To investigate the accuracy of children's dietary recalls of school breakfast and school lunch validated with observations and obtained during in-person versus telephone interviews. Design: Each child was observed eating school breakfast and school lunch and was interviewed that evening about that day's intake. Setting: Ten elementary schools. Participants: A sample of fourth-graders was randomly selected within race (black, white) and gender strata, observed, and interviewed in person (n = 33) or by telephone (n = 36). Main Outcomes Measured: Rates for omissions (items observed but not reported) and intrusions (items reported but not observed) were calculated to determine accuracy for reporting items. A measure of total inaccuracy was calculated to determine inaccuracy for reporting items and amounts combined. Analysis: Analysis of variance; chi-square. Results: Interview type (in person, telephone) did not significantly affect recall accuracy. For omission rate, intrusion rate, and total inaccuracy, means were 34%, 19%, and 4.6 servings for in person recalls and 32%, 16%, and 4.3 servings for telephone recalls of school breakfast and school lunch. Conclusions and Implications: The accuracy of children's recalls of school breakfast and school lunch is not significantly different whether obtained in person or by telephone. Whether interviewed in person or by telephone, children reported only 67% of items observed; furthermore, 17% of items reported were not observed. PMID:12773283

  5. Utility of an Algorithm to Increase the Accuracy of Medication History in an Obstetrical Setting.

    PubMed

    Corbel, Aline; Baud, David; Chaouch, Aziz; Beney, Johnny; Csajka, Chantal; Panchaud, Alice

    2016-01-01

    In an obstetrical setting, inaccurate medication histories at hospital admission may result in failure to identify potentially harmful treatments for patients and/or their fetus(es). This prospective study was conducted to assess average concordance rates between (1) a medication list obtained with a one-page structured medication history algorithm developed for the obstetrical setting and (2) the medication list reported in medical records and obtained by open-ended questions based on standard procedures. Both lists were converted into concordance rate using a best possible medication history approach as the reference (information obtained by patients, prescribers and community pharmacists' interviews). The algorithm-based method obtained a higher average concordance rate than the standard method, with respectively 90.2% [CI95% 85.8-94.3] versus 24.6% [CI95%15.3-34.4] concordance rates (p<0.01). Our algorithm-based method strongly enhanced the accuracy of the medication history in our obstetric population, without using substantial resources. Its implementation is an effective first step to the medication reconciliation process, which has been recognized as a very important component of patients' drug safety.

  6. Physiologically-based, predictive analytics using the heart-rate-to-Systolic-Ratio significantly improves the timeliness and accuracy of sepsis prediction compared to SIRS.

    PubMed

    Danner, Omar K; Hendren, Sandra; Santiago, Ethel; Nye, Brittany; Abraham, Prasad

    2017-04-01

    Enhancing the efficiency of diagnosis and treatment of severe sepsis by using physiologically-based, predictive analytical strategies has not been fully explored. We hypothesize assessment of heart-rate-to-systolic-ratio significantly increases the timeliness and accuracy of sepsis prediction after emergency department (ED) presentation. We evaluated the records of 53,313 ED patients from a large, urban teaching hospital between January and June 2015. The HR-to-systolic ratio was compared to SIRS criteria for sepsis prediction. There were 884 patients with discharge diagnoses of sepsis, severe sepsis, and/or septic shock. Variations in three presenting variables, heart rate, systolic BP and temperature were determined to be primary early predictors of sepsis with a 74% (654/884) accuracy compared to 34% (304/884) using SIRS criteria (p < 0.0001)in confirmed septic patients. Physiologically-based predictive analytics improved the accuracy and expediency of sepsis identification via detection of variations in HR-to-systolic ratio. This approach may lead to earlier sepsis workup and life-saving interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Accuracy of the Garmin 920 XT HRM to perform HRV analysis.

    PubMed

    Cassirame, Johan; Vanhaesebrouck, Romain; Chevrolat, Simon; Mourot, Laurent

    2017-12-01

    Heart rate variability (HRV) analysis is widely used to investigate autonomous cardiac drive. This method requires periodogram measurement, which can be obtained by an electrocardiogram (ECG) or from a heart rate monitor (HRM), e.g. the Garmin 920 XT device. The purpose of this investigation was to assess the accuracy of RR time series measurements from a Garmin 920 XT HRM as compared to a standard ECG, and to verify whether the measurements thus obtained are suitable for HRV analysis. RR time series were collected simultaneously with an ECG (Powerlab system, AD Instruments, Castell Hill, Australia) and a Garmin XT 920 in 11 healthy subjects during three conditions, namely in the supine position, the standing position and during moderate exercise. In a first step, we compared RR time series obtained with both tools using the Bland and Altman method to obtain the limits of agreement in all three conditions. In a second step, we compared the results of HRV analysis between the ECG RR time series and Garmin 920 XT series. Results show that the accuracy of this system is in accordance with the literature in terms of the limits of agreement. In the supine position, bias was 0.01, - 2.24, + 2.26 ms; in the standing position, - 0.01, - 3.12, + 3.11 ms respectively, and during exercise, - 0.01, - 4.43 and + 4.40 ms. Regarding HRV analysis, we did not find any difference for HRV analysis in the supine position, but the standing and exercise conditions both showed small modifications.

  8. Trait Perception Accuracy and Acquaintance Within Groups: Tracking Accuracy Development.

    PubMed

    Brown, Jill A; Bernieri, Frank

    2017-05-01

    Previous work on trait perception has evaluated accuracy at discrete stages of relationships (e.g., strangers, best friends). A relatively limited body of literature has investigated changes in accuracy as acquaintance within a dyad or group increases. Small groups of initially unacquainted individuals spent more than 30 hr participating in a wide range of activities designed to represent common interpersonal contexts (e.g., eating, traveling). We calculated how accurately each participant judged others in their group on the big five traits across three distinct points within the acquaintance process: zero acquaintance, after a getting-to-know-you conversation, and after 10 weeks of interaction and activity. Judgments of all five traits exhibited accuracy above chance levels after 10 weeks. An examination of the trait rating stability revealed that much of the revision in judgments occurred not over the course of the 10-week relationship as suspected, but between zero acquaintance and the getting-to-know-you conversation.

  9. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  10. Cued Speech Transliteration: Effects of Speaking Rate and Lag Time on Production Accuracy

    ERIC Educational Resources Information Center

    Krause, Jean C.; Tessler, Morgan P.

    2016-01-01

    Many deaf and hard-of-hearing children rely on interpreters to access classroom communication. Although the exact level of access provided by interpreters in these settings is unknown, it is likely to depend heavily on interpreter accuracy (portion of message correctly produced by the interpreter) and the factors that govern interpreter accuracy.…

  11. The Effect of All-Capital vs. Regular Mixed Print, as Presented on a Computer Screen, on Reading Rate and Accuracy.

    ERIC Educational Resources Information Center

    Henney, Maribeth

    Two related studies were conducted to determine whether students read all-capital text and mixed text displayed on a computer screen with the same speed and accuracy. Seventy-seven college students read M. A. Tinker's "Basic Reading Rate Test" displayed on a PLATO computer screen. One treatment consisted of paragraphs in all-capital type…

  12. Introducing radiology report checklists among residents: adherence rates when suggesting versus requiring their use and early experience in improving accuracy.

    PubMed

    Powell, Daniel K; Lin, Eaton; Silberzweig, James E; Kagetsu, Nolan J

    2014-03-01

    To retrospectively compare resident adherence to checklist-style structured reporting for maxillofacial computed tomography (CT) from the emergency department (when required vs. suggested between two programs). To compare radiology resident reporting accuracy before and after introduction of the structured report and assess its ability to decrease the rate of undetected pathology. We introduced a reporting checklist for maxillofacial CT into our dictation software without specific training, requiring it at one program and suggesting it at another. We quantified usage among residents and compared reporting accuracy, before and after counting and categorizing faculty addenda. There was no significant change in resident accuracy in the first few months, with residents acting as their own controls (directly comparing performance with and without the checklist). Adherence to the checklist at program A (where it originated and was required) was 85% of reports compared to 9% of reports at program B (where it was suggested). When using program B as a secondary control, there was no significant difference in resident accuracy with or without using the checklist (comparing different residents using the checklist to those not using the checklist). Our results suggest that there is no automatic value of checklists for improving radiology resident reporting accuracy. They also suggest the importance of focused training, checklist flexibility, and a period of adjustment to a new reporting style. Mandatory checklists were readily adopted by residents but not when simply suggested. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  13. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner

    PubMed Central

    San José, Verónica; Bellot-Arcís, Carlos; Tarazona, Beatriz; Zamora, Natalia; O Lagravère, Manuel

    2017-01-01

    Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patients’ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764

  14. Combining independent decisions increases diagnostic accuracy of reading lumbosacral radiographs and magnetic resonance imaging.

    PubMed

    Kurvers, Ralf H J M; de Zoete, Annemarie; Bachman, Shelby L; Algra, Paul R; Ostelo, Raymond

    2018-01-01

    Diagnosing the causes of low back pain is a challenging task, prone to errors. A novel approach to increase diagnostic accuracy in medical decision making is collective intelligence, which refers to the ability of groups to outperform individual decision makers in solving problems. We investigated whether combining the independent ratings of chiropractors, chiropractic radiologists and medical radiologists can improve diagnostic accuracy when interpreting diagnostic images of the lumbosacral spine. Evaluations were obtained from two previously published studies: study 1 consisted of 13 raters independently rating 300 lumbosacral radiographs; study 2 consisted of 14 raters independently rating 100 lumbosacral magnetic resonance images. In both studies, raters evaluated the presence of "abnormalities", which are indicators of a serious health risk and warrant immediate further examination. We combined independent decisions of raters using a majority rule which takes as final diagnosis the decision of the majority of the group. We compared the performance of the majority rule to the performance of single raters. Our results show that with increasing group size (i.e., increasing the number of independent decisions) both sensitivity and specificity increased in both data-sets, with groups consistently outperforming single raters. These results were found for radiographs and MR image reading alike. Our findings suggest that combining independent ratings can improve the accuracy of lumbosacral diagnostic image reading.

  15. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  16. Sound source localization identification accuracy: Envelope dependencies.

    PubMed

    Yost, William A

    2017-07-01

    Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.

  17. Diagnostic accuracy of heart-rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy.

    PubMed

    Sacre, J W; Jellis, C L; Coombes, J S; Marwick, T H

    2012-09-01

    Poor prognosis associated with blunted post-exercise heart-rate recovery may reflect autonomic dysfunction. This study sought the accuracy of post-exercise heart-rate recovery in the diagnosis of cardiac autonomic neuropathy, which represents a serious, but often unrecognized complication of Type 2 diabetes. Clinical assessment of cardiac autonomic neuropathy and maximal treadmill exercise testing for heart-rate recovery were performed in 135 patients with Type 2 diabetes and negative exercise echocardiograms. Cardiac autonomic neuropathy was defined by abnormalities in ≥ 2 of 7 autonomic function markers, including four cardiac reflex tests and three indices of short-term (5-min) heart-rate variability. Heart-rate recovery was defined at 1-, 2- and 3-min post-exercise. Patients with cardiac autonomic neuropathy (n = 27; 20%) had lower heart-rate recovery at 1-, 2- and 3-min post-exercise (P < 0.01). Heart-rate recovery demonstrated univariate associations with autonomic function markers (r-values 0.20-0.46, P < 0.05). Area under the receiver-operating characteristic curve revealed good diagnostic performance of all heart-rate recovery parameters (range 0.80-0.83, P < 0.001). Optimal cut-offs for heart-rate recovery at 1-, 2- and 3-min post-exercise were ≤ 28 beats/min (sensitivity 93%, specificity 69%), ≤ 50 beats/min (sensitivity 96%, specificity 63%) and ≤ 52 beats/min (sensitivity 70%, specificity 84%), respectively. These criteria predicted cardiac autonomic neuropathy independently of relevant clinical and exercise test information (adjusted odds ratios 7-28, P < 0.05). Post-exercise heart-rate recovery provides an accurate diagnostic test for cardiac autonomic neuropathy in Type 2 diabetes. The high sensitivity and modest specificity suggests heart-rate recovery may be useful to screen for patients requiring clinical autonomic evaluation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  18. Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise.

    PubMed

    Gillinov, Stephen; Etiwy, Muhammad; Wang, Robert; Blackburn, Gordon; Phelan, Dermot; Gillinov, A Marc; Houghtaling, Penny; Javadikasgari, Hoda; Desai, Milind Y

    2017-08-01

    Athletes and members of the public increasingly rely on wearable HR monitors to guide physical activity and training. The accuracy of newer, optically based monitors is unconfirmed. We sought to assess the accuracy of five optically based HR monitors during various types of aerobic exercise. Fifty healthy adult volunteers (mean ± SD age = 38 ± 12 yr, 54% female) completed exercise protocols on a treadmill, a stationary bicycle, and an elliptical trainer (±arm movement). Each participant underwent HR monitoring with an electrocardiogaphic chest strap monitor (Polar H7), forearm monitor (Scosche Rhythm+), and two randomly assigned wrist-worn HR monitors (Apple Watch, Fitbit Blaze, Garmin Forerunner 235, and TomTom Spark Cardio), one on each wrist. For each exercise type, HR was recorded at rest, light, moderate, and vigorous intensity. Agreement between HR measurements was assessed using Lin's concordance correlation coefficient (rc). Across all exercise conditions, the chest strap monitor (Polar H7) had the best agreement with ECG (rc = 0.996) followed by the Apple Watch (rc = 0.92), the TomTom Spark (rc = 0.83), and the Garmin Forerunner (rc = 0.81). Scosche Rhythm+ and Fitbit Blaze were less accurate (rc = 0.75 and rc = 0.67, respectively). On treadmill, all devices performed well (rc = 0.88-0.93) except the Fitbit Blaze (rc = 0.76). While bicycling, only the Garmin, Apple Watch, and Scosche Rhythm+ had acceptable agreement (rc > 0.80). On the elliptical trainer without arm levers, only the Apple Watch was accurate (rc = 0.94). None of the devices was accurate during elliptical trainer use with arm levers (all rc < 0.80). The accuracy of wearable, optically based HR monitors varies with exercise type and is greatest on the treadmill and lowest on elliptical trainer. Electrode-containing chest monitors should be used when accurate HR measurement is imperative.

  19. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  20. Does filler database size influence identification accuracy?

    PubMed

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Cognitive ability, social desirability, body mass index and socioeconomic status as correlates of fourth-grade children's dietary-reporting accuracy.

    PubMed

    Smith, A F; Baxter, S D; Hitchcock, D B; Finney, C J; Royer, J A; Guinn, C H

    2016-09-01

    To investigate the relationship of reporting accuracy in 24-h dietary recalls to child-respondent characteristics-cognitive ability, social desirability, body mass index (BMI) percentile and socioeconomic status (SES). Fourth-grade children (mean age 10.1 years) were observed eating two school meals and interviewed about dietary intake for 24 h that included those meals. (Eight multiple-pass interview protocols operationalized the conditions of an experiment that crossed two retention intervals-short and long-with four prompts (ways of eliciting reports in the first pass)). Academic achievement-test scores indexed cognitive ability; social desirability was assessed by questionnaire; height and weight were measured to calculate BMI; nutrition-assistance program eligibility information was obtained to index SES. Reported intake was compared to observed intake to calculate measures of reporting accuracy for school meals at the food-item (omission rate; intrusion rate) and energy (correspondence rate; inflation ratio) levels. Complete data were available for 425 of 480 validation-study participants. Controlling for manipulated variables and other measured respondent characteristics, for one or more of the outcome variables, reporting accuracy increased with cognitive ability (omission rate, intrusion rate, correspondence rate, P<0.001), decreased with social desirability (correspondence rate, P<0.0004), decreased with BMI percentile (correspondence rate, P=0.001) and was better by higher- than by lower-SES children (intrusion rate, P=0.001). Some of these effects were moderated by interactions with retention interval and sex. Children's dietary-reporting accuracy is systematically related to such respondent characteristics as cognitive ability, social desirability, BMI percentile and SES.

  2. Phenomenological reports diagnose accuracy of eyewitness identification decisions.

    PubMed

    Palmer, Matthew A; Brewer, Neil; McKinnon, Anna C; Weber, Nathan

    2010-02-01

    This study investigated whether measuring the phenomenology of eyewitness identification decisions aids evaluation of their accuracy. Witnesses (N=502) viewed a simulated crime and attempted to identify two targets from lineups. A divided attention manipulation during encoding reduced the rate of remember (R) correct identifications, but not the rates of R foil identifications or know (K) judgments in the absence of recollection (i.e., K/[1-R]). Both RK judgments and recollection ratings (a novel measure of graded recollection) distinguished correct from incorrect positive identifications. However, only recollection ratings improved accuracy evaluation after identification confidence was taken into account. These results provide evidence that RK judgments for identification decisions function in a similar way as for recognition decisions; are consistent with the notion of graded recollection; and indicate that measures of phenomenology can enhance the evaluation of identification accuracy. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis.

    PubMed

    Procházka, Aleš; Schätz, Martin; Vyšata, Oldřich; Vališ, Martin

    2016-06-28

    This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.

  4. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  5. Accuracy of pulse oximetry in children.

    PubMed

    Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G

    2014-01-01

    For children with cyanotic congenital heart disease or acute hypoxemic respiratory failure, providers frequently make decisions based on pulse oximetry, in the absence of an arterial blood gas. The study objective was to measure the accuracy of pulse oximetry in the saturations from pulse oximetry (SpO2) range of 65% to 97%. This institutional review board-approved prospective, multicenter observational study in 5 PICUs included 225 mechanically ventilated children with an arterial catheter. With each arterial blood gas sample, SpO2 from pulse oximetry and arterial oxygen saturations from CO-oximetry (SaO2) were simultaneously obtained if the SpO2 was ≤ 97%. The lowest SpO2 obtained in the study was 65%. In the range of SpO2 65% to 97%, 1980 simultaneous values for SpO2 and SaO2 were obtained. The bias (SpO2 - SaO2) varied through the range of SpO2 values. The bias was greatest in the SpO2 range 81% to 85% (336 samples, median 6%, mean 6.6%, accuracy root mean squared 9.1%). SpO2 measurements were close to SaO2 in the SpO2 range 91% to 97% (901 samples, median 1%, mean 1.5%, accuracy root mean squared 4.2%). Previous studies on pulse oximeter accuracy in children present a single number for bias. This study identified that the accuracy of pulse oximetry varies significantly as a function of the SpO2 range. Saturations measured by pulse oximetry on average overestimate SaO2 from CO-oximetry in the SpO2 range of 76% to 90%. Better pulse oximetry algorithms are needed for accurate assessment of children with saturations in the hypoxemic range.

  6. Children’s School-Breakfast Reports and School-Lunch Reports (in 24-hour Dietary Recalls): Conventional and Reporting-Error-Sensitive Measures Show Inconsistent Accuracy Results for Retention Interval and for Breakfast Location

    PubMed Central

    Baxter, Suzanne Domel; Guinn, Caroline H.; Smith, Albert F.; Hitchcock, David B.; Royer, Julie A.; Puryear, Megan P.; Collins, Kathleen L.; Smith, Alyssa L.

    2017-01-01

    Validation-study data were analyzed to investigate retention interval (RI) and prompt effects on accuracy of fourth-grade children’s reports of school-breakfast and school-lunch (in 24-hour recalls), and accuracy of school-breakfast reports by breakfast location (classroom; cafeteria). Randomly-selected fourth-grade children at 10 schools in four districts were observed eating school-provided breakfast and lunch, and interviewed under one of eight conditions (two RIs [short (prior-24-hour recall obtained in afternoon); long (previous-day recall obtained in morning)] crossed with four prompts [forward (distant-to-recent), meal-name (breakfast, etc.), open (no instructions), reverse (recent-to-distant)]). Each condition had 60 children (half girls). Of 480 children, 355 and 409 reported meals satisfying criteria for reports of school-breakfast and school-lunch, respectively. For breakfast and lunch separately, a conventional measure—report rate—and reporting-error-sensitive measures—correspondence rate and inflation ratio—were calculated for energy per meal-reporting child. Correspondence rate and inflation ratio—but not report rate—showed better accuracy for school-breakfast and school-lunch reports with the short than long RI; this pattern was not found for some prompts for each sex. Correspondence rate and inflation ratio showed better school-breakfast report accuracy for the classroom than cafeteria location for each prompt, but report rate showed the opposite. For each RI, correspondence rate and inflation ratio showed better accuracy for lunch than breakfast, but report rate showed the opposite. When choosing RI and prompts for recalls, researchers and practitioners should select short RIs to maximize accuracy. Recommendations for prompt selections are less clear. As report rates distort validation-study accuracy conclusions, reporting-error-sensitive measures are recommended. PMID:26865356

  7. Assessment and Optimization of the Accuracy of an Aircraft-Based Technique Used to Quantify Greenhouse Gas Emission Rates from Point Sources

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Lavoie, T. N.; Kerlo, A. E.; Stirm, B. H.

    2016-12-01

    Understanding the contribution of anthropogenic activities to atmospheric greenhouse gas concentrations requires an accurate characterization of emission sources. Previously, we have reported the use of a novel aircraft-based mass balance measurement technique to quantify greenhouse gas emission rates from point and area sources, however, the accuracy of this approach has not been evaluated to date. Here, an assessment of method accuracy and precision was performed by conducting a series of six aircraft-based mass balance experiments at a power plant in southern Indiana and comparing the calculated CO2 emission rates to the reported hourly emission measurements made by continuous emissions monitoring systems (CEMS) installed directly in the exhaust stacks at the facility. For all flights, CO2 emissions were quantified before CEMS data were released online to ensure unbiased analysis. Additionally, we assess the uncertainties introduced to the final emission rate caused by our analysis method, which employs a statistical kriging model to interpolate and extrapolate the CO2 fluxes across the flight transects from the ground to the top of the boundary layer. Subsequently, using the results from these flights combined with the known emissions reported by the CEMS, we perform an inter-model comparison of alternative kriging methods to evaluate the performance of the kriging approach.

  8. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study.

    PubMed

    Pongsachareonnont, Pear; Tangjanyatam, Sagol

    2018-01-01

    We compared the accuracy of axial length (AL) measurement obtained by optical biometry with that obtained by acoustic biometry in eyes with rhegmatogenous retinal detachment (RRD). This prospective descriptive analytic study measured the AL of eyes with RRD preoperatively and 3 months postoperatively using optical biometry (intraocular lens [IOL] master group) and acoustic biometry (immersion A-scan group). Preoperative and postoperative measurements were compared by paired t -test. The agreement between preoperative and postoperative measurements was analyzed using a Bland-Altman plot. Subgroup analysis of macular involvement status was performed. Twenty-seven eyes were analyzed in this study. The mean AL in the IOL master group was 23.58±0.97 mm preoperatively and 24.17±1.16 mm postoperatively; the mean difference was -0.59±0.90 mm ( P = 0.007). The mean AL in the immersion A-scan group was 24.29±1.59 mm preoperatively and 24.27±1.69 mm postoperatively; the mean difference was 0.02±0.48 mm ( P = 0.827). Bland-Altman analysis revealed disagreement between preoperative and postoperative AL measurements in both techniques. In subgroup analysis of macula with RRD, there were significant differences between preoperative and postoperative AL measurements in the IOL master group ( P = 0.014). Significant underestimation of AL measurement was observed when using the IOL master in eyes with RRD with macular involvement, which could affect IOL power selection.

  9. A Comparison of Medication Histories Obtained by a Pharmacy Technician Versus Nurses in the Emergency Department.

    PubMed

    Markovic, Marija; Mathis, A Scott; Ghin, Hoytin Lee; Gardiner, Michelle; Fahim, Germin

    2017-01-01

    To compare the medication history error rate of the emergency department (ED) pharmacy technician with that of nursing staff and to describe the workflow environment. Fifty medication histories performed by an ED nurse followed by the pharmacy technician were evaluated for discrepancies (RN-PT group). A separate 50 medication histories performed by the pharmacy technician and observed with necessary intervention by the ED pharmacist were evaluated for discrepancies (PT-RPh group). Discrepancies were totaled and categorized by type of error and therapeutic category of the medication. The workflow description was obtained by observation and staff interview. A total of 474 medications in the RN-PT group and 521 in the PT-RPh group were evaluated. Nurses made at least one error in all 50 medication histories (100%), compared to 18 medication histories for the pharmacy technician (36%). In the RN-PT group, 408 medications had at least one error, corresponding to an accuracy rate of 14% for nurses. In the PT-RPh group, 30 medications had an error, corresponding to an accuracy rate of 94.4% for the pharmacy technician ( P < 0.0001). The most common error made by nurses was a missing medication (n = 109), while the most common error for the pharmacy technician was a wrong medication frequency (n = 19). The most common drug class with documented errors for ED nurses was cardiovascular medications (n = 100), while the pharmacy technician made the most errors in gastrointestinal medications (n = 11). Medication histories obtained by the pharmacy technician were significantly more accurate than those obtained by nurses in the emergency department.

  10. COGNITIVE ABILITY, SOCIAL DESIRABILITY, BODY MASS INDEX, AND SOCIOECONOMIC STATUS AS CORRELATES OF FOURTH-GRADE CHILDREN’S DIETARY-REPORTING ACCURACY

    PubMed Central

    Smith, Albert F.; Baxter, Suzanne Domel; Hitchcock, David B.; Finney, Christopher J.; Royer, Julie A.; Guinn, Caroline H.

    2016-01-01

    Objectives To investigate the relationship of reporting accuracy in 24-h dietary recalls to child respondent characteristics—cognitive ability, social desirability, body mass index (BMI) percentile, and socioeconomic status (SES). Subjects/Methods Fourth-grade children (mean age 10.1 years) were observed eating two school meals and interviewed about dietary intake for 24-h that included those meals. (Eight multiple-pass interview protocols operationalized the conditions of an experiment that crossed two retention intervals—short and long—with four prompts [ways of eliciting reports in the first pass].) Academic achievement test scores indexed cognitive ability; social desirability was assessed by questionnaire; height and weight were measured to calculate BMI; nutrition-assistance program eligibility information was obtained to index SES. Reported intake was compared to observed intake to calculate measures of reporting accuracy for school meals at the food-item (omission rate; intrusion rate) and energy (correspondence rate; inflation ratio) levels. Complete data were available for 425 of 480 validation-study participants. Results Controlling for manipulated variables and other measured respondent characteristics, for one or more of the outcome variables, reporting accuracy increased with cognitive ability (omission rate, intrusion rate, correspondence rate, P < .001); decreased with social desirability (correspondence rate, P < .0004); decreased with BMI percentile (correspondence rate, P = .001), and was better by higher than by lower SES children (intrusion rate, P = .001). Some of these effects were moderated by interactions with retention interval and sex. Conclusions Children’s dietary-reporting accuracy is systematically related to such respondent characteristics as cognitive ability, social desirability, BMI percentile, and SES. PMID:27222153

  11. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise.

    PubMed

    Bouts, Alexa M; Brackman, Lauren; Martin, Elizabeth; Subasic, Adam M; Potkanowicz, Edward S

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50-60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps.

  12. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise

    PubMed Central

    BOUTS, ALEXA M.; BRACKMAN, LAUREN; MARTIN, ELIZABETH; SUBASIC, ADAM M.; POTKANOWICZ, EDWARD S.

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50–60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps. PMID:29541341

  13. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy.

    PubMed

    Zhao, Yi-Jiao; Xiong, Yu-Xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial "line-laser" scanner (Faro), as the reference model and two test models were obtained, via a "stereophotography" (3dMD) and a "structured light" facial scanner (FaceScan) separately. Registration based on the iterative closest point (ICP) algorithm was executed to overlap the test models to reference models, and "3D error" as a new measurement indicator calculated by reverse engineering software (Geomagic Studio) was used to evaluate the 3D global and partial (upper, middle, and lower parts of face) PA of each facial scanner. The respective 3D accuracy of stereophotography and structured light facial scanners obtained for facial deformities was 0.58±0.11 mm and 0.57±0.07 mm. The 3D accuracy of different facial partitions was inconsistent; the middle face had the best performance. Although the PA of two facial scanners was lower than their nominal accuracy (NA), they all met the requirement for oral clinic use.

  14. Improving the accuracy of S02 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account

    USGS Publications Warehouse

    Kern, Christoph; Deutschmann, Tim; Werner, Cynthia; Sutton, A. Jeff; Elias, Tamar; Kelly, Peter J.

    2012-01-01

    Sulfur dioxide (SO2) is monitored using ultraviolet (UV) absorption spectroscopy at numerous volcanoes around the world due to its importance as a measure of volcanic activity and a tracer for other gaseous species. Recent studies have shown that failure to take realistic radiative transfer into account during the spectral retrieval of the collected data often leads to large errors in the calculated emission rates. Here, the framework for a new evaluation method which couples a radiative transfer model to the spectral retrieval is described. In it, absorption spectra are simulated, and atmospheric parameters are iteratively updated in the model until a best match to the measurement data is achieved. The evaluation algorithm is applied to two example Differential Optical Absorption Spectroscopy (DOAS) measurements conducted at Kilauea volcano (Hawaii). The resulting emission rates were 20 and 90% higher than those obtained with a conventional DOAS retrieval performed between 305 and 315 nm, respectively, depending on the different SO2 and aerosol loads present in the volcanic plume. The internal consistency of the method was validated by measuring and modeling SO2 absorption features in a separate wavelength region around 375 nm and comparing the results. Although additional information about the measurement geometry and atmospheric conditions is needed in addition to the acquired spectral data, this method for the first time provides a means of taking realistic three-dimensional radiative transfer into account when analyzing UV-spectral absorption measurements of volcanic SO2 plumes.

  15. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space..., FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? To obtain a...

  16. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space..., FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? To obtain a...

  17. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space..., FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? To obtain a...

  18. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  19. [In vivo model to evaluate the accuracy of complete-tooth spectrophotometer for dental clinics].

    PubMed

    Liu, Feng; Yang, Jian; Xu, Tong-Kai; Xu, Ming-Ming; Ma, Yu

    2011-02-01

    To test ΔE between measured value and right value from the Crystaleye complete-tooth spectrophotometer, and to evaluate the accuracy rate of the spectrophotometer. Twenty prosthodontists participated in the study. Each of them used Vita 3D-Master shadeguide to do the shade matching, and used Crystaleye complete-tooth spectrophotometer (before and after the test training) tested the middle of eight fixed tabs from shadeguide in the dark box. The results of shade matching and spectrophotometer were recorded. The accuracy rate of shade matching and the spectrophotometer before and after training were calculated. The average accuracy rate of shade matching was 49%. The average accuracy rate of the spectrophotometer before and after training was 83% and 99%. The accuracy of the spectrophotometer was significant higher than that in shade matching, and training can improve the accuracy rate.

  20. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    PubMed Central

    Procházka, Aleš; Schätz, Martin; Vyšata, Oldřich; Vališ, Martin

    2016-01-01

    This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction. PMID:27367687

  1. Statistical evaluation of accelerated stability data obtained at a single temperature. I. Effect of experimental errors in evaluation of stability data obtained.

    PubMed

    Yoshioka, S; Aso, Y; Takeda, Y

    1990-06-01

    Accelerated stability data obtained at a single temperature is statistically evaluated, and the utility of such data for assessment of stability is discussed focussing on the chemical stability of solution-state dosage forms. The probability that the drug content of a product is observed to be within the lower specification limit in the accelerated test is interpreted graphically. This probability depends on experimental errors in the assay and temperature control, as well as the true degradation rate and activation energy. Therefore, the observation that the drug content meets the specification in the accelerated testing can provide only limited information on the shelf-life of the drug, without the knowledge of the activation energy and the accuracy and precision of the assay and temperature control.

  2. Accounting for speed-accuracy tradeoff in perceptual learning

    PubMed Central

    Liu, Charles C.; Watanabe, Takeo

    2011-01-01

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d’. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. PMID:21958757

  3. Accounting for speed-accuracy tradeoff in perceptual learning.

    PubMed

    Liu, Charles C; Watanabe, Takeo

    2012-05-15

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d'. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evaluating cost-efficiency and accuracy of hunter harvest survey designs

    USGS Publications Warehouse

    Lukacs, P.M.; Gude, J.A.; Russell, R.E.; Ackerman, B.B.

    2011-01-01

    Effective management of harvested wildlife often requires accurate estimates of the number of animals harvested annually by hunters. A variety of techniques exist to obtain harvest data, such as hunter surveys, check stations, mandatory reporting requirements, and voluntary reporting of harvest. Agencies responsible for managing harvested wildlife such as deer (Odocoileus spp.), elk (Cervus elaphus), and pronghorn (Antilocapra americana) are challenged with balancing the cost of data collection versus the value of the information obtained. We compared precision, bias, and relative cost of several common strategies, including hunter self-reporting and random sampling, for estimating hunter harvest using a realistic set of simulations. Self-reporting with a follow-up survey of hunters who did not report produces the best estimate of harvest in terms of precision and bias, but it is also, by far, the most expensive technique. Self-reporting with no followup survey risks very large bias in harvest estimates, and the cost increases with increased response rate. Probability-based sampling provides a substantial cost savings, though accuracy can be affected by nonresponse bias. We recommend stratified random sampling with a calibration estimator used to reweight the sample based on the proportions of hunters responding in each covariate category as the best option for balancing cost and accuracy. ?? 2011 The Wildlife Society.

  5. A Comparison of Medication Histories Obtained by a Pharmacy Technician Versus Nurses in the Emergency Department

    PubMed Central

    Markovic, Marija; Mathis, A. Scott; Ghin, Hoytin Lee; Gardiner, Michelle; Fahim, Germin

    2017-01-01

    Purpose: To compare the medication history error rate of the emergency department (ED) pharmacy technician with that of nursing staff and to describe the workflow environment. Methods: Fifty medication histories performed by an ED nurse followed by the pharmacy technician were evaluated for discrepancies (RN-PT group). A separate 50 medication histories performed by the pharmacy technician and observed with necessary intervention by the ED pharmacist were evaluated for discrepancies (PT-RPh group). Discrepancies were totaled and categorized by type of error and therapeutic category of the medication. The workflow description was obtained by observation and staff interview. Results: A total of 474 medications in the RN-PT group and 521 in the PT-RPh group were evaluated. Nurses made at least one error in all 50 medication histories (100%), compared to 18 medication histories for the pharmacy technician (36%). In the RN-PT group, 408 medications had at least one error, corresponding to an accuracy rate of 14% for nurses. In the PT-RPh group, 30 medications had an error, corresponding to an accuracy rate of 94.4% for the pharmacy technician (P < 0.0001). The most common error made by nurses was a missing medication (n = 109), while the most common error for the pharmacy technician was a wrong medication frequency (n = 19). The most common drug class with documented errors for ED nurses was cardiovascular medications (n = 100), while the pharmacy technician made the most errors in gastrointestinal medications (n = 11). Conclusion: Medication histories obtained by the pharmacy technician were significantly more accurate than those obtained by nurses in the emergency department. PMID:28090164

  6. Fourth-grade children's dietary recall accuracy is influenced by retention interval (target period and interview time).

    PubMed

    Baxter, Suzanne Domel; Hardin, James W; Guinn, Caroline H; Royer, Julie A; Mackelprang, Alyssa J; Smith, Albert F

    2009-05-01

    For a 24-hour dietary recall, two possible target periods are the prior 24 hours (24 hours immediately preceding the interview time) and previous day (midnight to midnight of the day before the interview), and three possible interview times are morning, afternoon, and evening. Target period and interview time determine the retention interval (elapsed time between to-be-reported meals and the interview), which, along with intervening meals, can influence reporting accuracy. The effects of target period and interview time on children's accuracy for reporting school meals during 24-hour dietary recalls were investigated. DESIGN AND SUBJECTS/SETTING: During the 2004-2005, 2005-2006, and 2006-2007 school years in Columbia, SC, each of 374 randomly selected fourth-grade children (96% African American) was observed eating two consecutive school meals (breakfast and lunch) and interviewed to obtain a 24-hour dietary recall using one of six conditions defined by crossing two target periods with three interview times. Each condition had 62 or 64 children (half boys). Accuracy for reporting school meals was quantified by calculating rates for omissions (food items observed eaten but unreported) and intrusions (food items reported eaten but unobserved); a measure of total inaccuracy combined errors for reporting food items and amounts. For each accuracy measure, analysis of variance was conducted with target period, interview time, their interaction, sex, interviewer, and school year in the model. There was a target-period effect and a target-period by interview-time interaction on omission rates, intrusion rates, and total inaccuracy (six P values <0.004). For prior-24-hour recalls compared to previous-day recalls, and for prior-24-hour recalls in the afternoon and evening compared to previous-day recalls in the afternoon and evening, omission rates were better by one third, intrusion rates were better by one half, and total inaccuracy was better by one third. To enhance

  7. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared

  8. Performance Ratings: Designs for Evaluating Their Validity and Accuracy.

    DTIC Science & Technology

    1986-07-01

    ratees with substantial validity and with little bias due to the ethod for rating. Convergent validity and discriminant validity account for approximately...The expanded research design suggests that purpose for the ratings has little influence on the multitrait-multimethod properties of the ratings...Convergent and discriminant validity again account for substantial differences in the ratings of performance. Little method bias is present; both methods of

  9. The accuracy of caries risk assessment in children attending South Australian School Dental Service: a longitudinal study

    PubMed Central

    Ha, Diep H; Spencer, A John; Slade, Gary D; Chartier, Andrew D

    2014-01-01

    Objectives To determine the accuracy of the caries risk assessment system and performance of clinicians in their attempts to predict caries for children during routine practice. Design Longitudinal study. Setting and participants Data on caries risk assessment conducted by clinicians during routine practice while providing care for children in the South Australian School Dental Service (SA SDS) were collected from electronic patient records. Baseline data on caries experience, clinicians’ ratings of caries risk status and child demographics were obtained for all SA SDS patients aged 5–15 years examined during 2002–2005. Outcome measure Children’s caries incidence rate, calculated using examination data after a follow-up period of 6–48 months from baseline, was used as the gold standard to compute the sensitivity (Se) and specificity (Sp) of clinicians’ baseline ratings of caries risk. Multivariate binomial regression models were used to evaluate effects of children's baseline characteristics on Se and Sp. Results A total of 133 clinicians rated caries risk status of 71 430 children during 2002–2005. The observed Se and Sp were 0.48 and 0.86, respectively (Se+Sp=1.34). Caries experience at baseline was the strongest factor influencing accuracy in multivariable regression model. Among children with no caries experience at baseline, overall accuracy (Se+Sp) was only 1.05, whereas it was 1.28 among children with at least one tooth surfaces with caries experience at baseline. Conclusions Clinicians’ accuracy in predicting caries risk during routine practice was similar to levels reported in research settings that simulated patient care. Accuracy was acceptable in children who had prior caries experience at the baseline examination, while it was poor among children with no caries experience. PMID:24477318

  10. Impact of the Number of Applied Current Meter Sensors on the Accuracy of Flow Rate Measurements across a Range of Hydroelectric Facilities Indicative of the Domestic Hydroelectric Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Mark H; Hadjerioua, Boualem; Lee, Kyutae

    2015-01-01

    The following paper represents the results of an investigation into the impact of the number and placement of Current Meter (CM) flow sensors on the accuracy to which they are capable of predicting the overall flow rate. Flow measurement accuracy is of particular importance in multiunit plants because it plays a pivotal role in determining the operational efficiency characteristics of each unit, allowing the operator to select the unit (or combination of units) which most efficiently meet demand. Several case studies have demonstrated that optimization of unit dispatch has the potential to increase plant efficiencies from between 1 to 4.4more » percent [2] [3]. Unfortunately current industry standards do not have an established methodology to measure the flow rate through hydropower units with short converging intakes (SCI); the only direction provided is that CM sensors should be used. The most common application of CM is horizontally, along a trolley which is incrementally lowered across a measurement cross section. As such, the measurement resolution is defined horizontally and vertically by the number of CM and the number of measurement increments respectively. There has not been any published research on the role of resolution in either direction on the accuracy of flow measurement. The work below investigates the effectiveness of flow measurement in a SCI by performing a case study in which point velocity measurements were extracted from a physical plant and then used to calculate a series of reference flow distributions. These distributions were then used to perform sensitivity studies on the relation between the number of CM and the accuracy to which the flow rate was predicted. The following research uncovered that a minimum of 795 plants contain SCI, a quantity which represents roughly 12% of total domestic hydropower capacity. In regards to measurement accuracy, it was determined that accuracy ceases to increase considerably due to strict increases in

  11. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  12. Improved accuracies for satellite tracking

    NASA Technical Reports Server (NTRS)

    Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K.

    1991-01-01

    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms.

  13. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

    NASA Astrophysics Data System (ADS)

    Mérida, Fernando; Chiu-Lam, Andreina; Bohórquez, Ana C.; Maldonado-Camargo, Lorena; Pérez, María-Eglée; Pericchi, Luis; Torres-Lugo, Madeline; Rinaldi, Carlos

    2015-11-01

    Magnetic Fluid Hyperthermia (MFH) uses heat generated by magnetic nanoparticles exposed to alternating magnetic fields to cause a temperature increase in tumors to the hyperthermia range (43-47 °C), inducing apoptotic cancer cell death. As with all cancer nanomedicines, one of the most significant challenges with MFH is achieving high nanoparticle accumulation at the tumor site. This motivates development of synthesis strategies that maximize the rate of energy dissipation of iron oxide magnetic nanoparticles, preferable due to their intrinsic biocompatibility. This has led to development of synthesis strategies that, although attractive from the point of view of chemical elegance, may not be suitable for scale-up to quantities necessary for clinical use. On the other hand, to date the aqueous co-precipitation synthesis, which readily yields gram quantities of nanoparticles, has only been reported to yield sufficiently high specific absorption rates after laborious size selective fractionation. This work focuses on improvements to the aqueous co-precipitation of iron oxide nanoparticles to increase the specific absorption rate (SAR), by optimizing synthesis conditions and the subsequent peptization step. Heating efficiencies up to 1048 W/gFe (36.5 kA/m, 341 kHz; ILP=2.3 nH m2 kg-1) were obtained, which represent one of the highest values reported for iron oxide particles synthesized by co-precipitation without size-selective fractionation. Furthermore, particles reached SAR values of up to 719 W/gFe (36.5 kA/m, 341 kHz; ILP=1.6 nH m2 kg-1) when in a solid matrix, demonstrating they were capable of significant rates of energy dissipation even when restricted from physical rotation. Reduction in energy dissipation rate due to immobilization has been identified as an obstacle to clinical translation of MFH. Hence, particles obtained with the conditions reported here have great potential for application in nanoscale thermal cancer therapy.

  14. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    NASA Astrophysics Data System (ADS)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  15. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  16. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C.; Hine, N. D. M.

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on amore » small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.« less

  17. Evaluating arguments during instigations of defence motivation and accuracy motivation.

    PubMed

    Liu, Cheng-Hong

    2017-05-01

    When people evaluate the strength of an argument, their motivations are likely to influence the evaluation. However, few studies have specifically investigated the influences of motivational factors on argument evaluation. This study examined the effects of defence and accuracy motivations on argument evaluation. According to the compatibility between the advocated positions of arguments and participants' prior beliefs and the objective strength of arguments, participants evaluated four types of arguments: compatible-strong, compatible-weak, incompatible-strong, and incompatible-weak arguments. Experiment 1 revealed that participants possessing a high defence motivation rated compatible-weak arguments as stronger and incompatible-strong ones as weaker than participants possessing a low defence motivation. However, the strength ratings between the high and low defence groups regarding both compatible-strong and incompatible-weak arguments were similar. Experiment 2 revealed that when participants possessed a high accuracy motivation, they rated compatible-weak arguments as weaker and incompatible-strong ones as stronger than when they possessed a low accuracy motivation. However, participants' ratings on both compatible-strong and incompatible-weak arguments were similar when comparing high and low accuracy conditions. The results suggest that defence and accuracy motivations are two major motives influencing argument evaluation. However, they primarily influence the evaluation results for compatible-weak and incompatible-strong arguments, but not for compatible-strong and incompatible-weak arguments. © 2016 The British Psychological Society.

  18. Including Both Time and Accuracy in Defining Text Search Efficiency.

    ERIC Educational Resources Information Center

    Symons, Sonya; Specht, Jacqueline A.

    1994-01-01

    Examines factors related to efficiency in a textbook search task. Finds that time and accuracy involved distinct processes and that accuracy was related to verbal competence. Finds further that measures of planning and extracting information accounted for 59% of the variance in search efficiency. Suggests that both accuracy and rate need to be…

  19. ST segment/heart rate hysteresis improves the diagnostic accuracy of ECG stress test for coronary artery disease in patients with left ventricular hypertrophy.

    PubMed

    Zimarino, Marco; Montebello, Elena; Radico, Francesco; Gallina, Sabina; Perfetti, Matteo; Iachini Bellisarii, Francesco; Severi, Silva; Limbruno, Ugo; Emdin, Michele; De Caterina, Raffaele

    2016-10-01

    The exercise electrocardiographic stress test (ExET) is the most widely used non-invasive diagnostic method to detect coronary artery disease. However, the sole ST depression criteria (ST-max) have poor specificity for coronary artery disease in patients with left ventricular hypertrophy. We hypothesised that ST-segment depression/heart rate hysteresis, depicting the relative behaviour of ST segment depression during the exercise and recovery phase of the test might increase the diagnostic accuracy of ExET for coronary artery disease detection in such patients. In three cardiology centres, we studied 113 consecutive patients (mean age 66 ± 2 years; 88% men) with hypertension-related left ventricular hypertrophy at echocardiography, referred to coronary angiography after an ExET. The following ExET criteria were analysed: ST-max, chronotropic index, heart rate recovery, Duke treadmill score, ST-segment depression/heart rate hysteresis. We detected significant coronary artery disease at coronary angiography in 61 patients (53%). At receiver-operating characteristic analysis, ST-segment depression/heart rate hysteresis had the highest area under the curve value (0.75, P < 0.001 when compared with the 'neutral' receiver-operating characteristic curve value of 0.5). Area under the curve values were 0.68 (P < 0.01) for the chronotropic index, 0.58 (P = NS) for heart rate recovery, 0.57 (P = NS) for ST-max and 0.52 (P = NS) for the Duke treadmill score. Among currently available ExET diagnostic variables, ST-segment depression/heart rate hysteresis offers a substantially better diagnostic accuracy for coronary artery disease than conventional criteria in patients with hypertension-related left ventricular hypertrophy. © The European Society of Cardiology 2016.

  20. English Verb Accuracy of Bilingual Cantonese-English Preschoolers

    ERIC Educational Resources Information Center

    Rezzonico, Stefano; Goldberg, Ahuva; Milburn, Trelani; Belletti, Adriana; Girolametto, Luigi

    2017-01-01

    Purpose: Knowledge of verb development in typically developing bilingual preschoolers may inform clinicians about verb accuracy rates during the 1st 2 years of English instruction. This study aimed to investigate tensed verb accuracy in 2 assessment contexts in 4- and 5-year-old Cantonese-English bilingual preschoolers. Method: The sample included…

  1. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  2. Factors affecting GEBV accuracy with single-step Bayesian models.

    PubMed

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  3. Variability of the human heart rate as a diagnostic instrument obtained by mean of a wireless monitor

    NASA Astrophysics Data System (ADS)

    Barajas Mauricio, Sánchez; Hernández González, Martha Alicia; Figueroa Vega, Nicte; Malacara Hernández, Juan Manuel; Fraga Teodoro, Córdova

    2014-11-01

    Introduction: Heart rate variability (HRV) is the cyclic measurement of RR intervals between normal beats. Aim: To determine the VFC via a wireless Polar monitor. Material and methods: 100 symptomatic menopausal women were studied for measurements of HRV were I post a Polar RS400 Watch four hrs. Results: Obtained through the fast Fourier transform, the frequency domain HRV low frequency (LF) 0.04-0.15 Hz, high frequency (HF) 0.15-0.4Hz and the ratio LF / HF. Conclusion: obtaining HRV is important for cardiovascular autonomic assessment in menopausal women.

  4. Crude and intrinsic birth rates for Asian countries.

    PubMed

    Rele, J R

    1978-01-01

    An attempt to estimate birth rates for Asian countries. The main sources of information in developing countries has been census age-sex distribution, although inaccuracies in the basic data have made it difficult to reach a high degree of accuracy. Different methods bring widely varying results. The methodology presented here is based on the use of the conventional child-woman ratio from the census age-sex distribution, with a rough estimate of the expectation of life at birth. From the established relationships between child-woman ratio and the intrinsic birth rate of the nature y = a + bx + cx(2) at each level of life expectation, the intrinsic birth rate is first computed using coefficients already computed. The crude birth rate is obtained using the adjustment based on the census age-sex distribution. An advantage to this methodology is that the intrinsic birth rate, normally an involved computation, can be obtained relatively easily as a biproduct of the crude birth rates and the bases for the calculations for each of 33 Asian countries, in some cases over several time periods.

  5. Multivariable nonlinear analysis of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  6. A fast RCS accuracy assessment method for passive radar calibrators

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  7. Discussion on accuracy degree evaluation of accident velocity reconstruction model

    NASA Astrophysics Data System (ADS)

    Zou, Tiefang; Dai, Yingbiao; Cai, Ming; Liu, Jike

    In order to investigate the applicability of accident velocity reconstruction model in different cases, a method used to evaluate accuracy degree of accident velocity reconstruction model is given. Based on pre-crash velocity in theory and calculation, an accuracy degree evaluation formula is obtained. With a numerical simulation case, Accuracy degrees and applicability of two accident velocity reconstruction models are analyzed; results show that this method is feasible in practice.

  8. A critical review of variables affecting the accuracy and false-negative rate of sentinel node biopsy procedures in early breast cancer.

    PubMed

    Vijayakumar, Vani; Boerner, Philip S; Jani, Ashesh B; Vijayakumar, Srinivasan

    2005-05-01

    Radionuclide sentinel lymph node localization and biopsy is a staging procedure that is being increasingly used to evaluate patients with invasive breast cancer who have clinically normal axillary nodes. The most important prognostic indicator in patients with invasive breast cancer is the axillary node status, which must also be known for correct staging, and influences the selection of adjuvant therapies. The accuracy of sentinel lymph node localization depends on a number of factors, including the injection method, the operating surgeon's experience and the hospital setting. The efficacy of sentinel lymph node mapping can be determined by two measures: the sentinel lymph node identification rate and the false-negative rate. Of these, the false-negative rate is the most important, based on a review of 92 studies. As sentinel lymph node procedures vary widely, nuclear medicine physicians and radiologists must be acquainted with the advantages and disadvantages of the various techniques. In this review, the factors that influence the success of different techniques are examined, and studies which have investigated false-negative rates and/or sentinel lymph node identification rates are summarized.

  9. A Comparison of Affect Ratings Obtained with Ecological Momentary Assessment and the Day Reconstruction Method

    PubMed Central

    Dockray, Samantha; Grant, Nina; Stone, Arthur A.; Kahneman, Daniel; Wardle, Jane

    2010-01-01

    Measurement of affective states in everyday life is of fundamental importance in many types of quality of life, health, and psychological research. Ecological momentary assessment (EMA) is the recognized method of choice, but the respondent burden can be high. The day reconstruction method (DRM) was developed by Kahneman and colleagues (Science, 2004, 306, 1776–1780) to assess affect, activities and time use in everyday life. We sought to validate DRM affect ratings by comparison with contemporaneous EMA ratings in a sample of 94 working women monitored over work and leisure days. Six EMA ratings of happiness, tiredness, stress, and anger/frustration were obtained over each 24 h period, and were compared with DRM ratings for the same hour, recorded retrospectively at the end of the day. Similar profiles of affect intensity were recorded with the two techniques. The between-person correlations adjusted for attenuation ranged from 0.58 (stress, working day) to 0.90 (happiness, leisure day). The strength of associations was not related to age, educational attainment, or depressed mood. We conclude that the DRM provides reasonably reliable estimates both of the intensity of affect and variations in affect over the day, so is a valuable instrument for the measurement of everyday experience in health and social research. PMID:21113328

  10. The hidden KPI registration accuracy.

    PubMed

    Shorrosh, Paul

    2011-09-01

    Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.

  11. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  12. The relation between children's accuracy estimates of their physical competence and achievement-related characteristics.

    PubMed

    Weiss, M R; Horn, T S

    1990-09-01

    The relationship between perceptions of competence and control, achievement, and motivated behavior in youth sport has been a topic of considerable interest. The purpose of this study was to examine whether children who are under-, accurate, or overestimators of their physical competence differ in their achievement characteristics. Children (N = 133), 8 to 13 years of age, who were attending a summer sport program, completed a series of questionnaires designed to assess perceptions of competence and control, motivational orientation, and competitive trait anxiety. Measures of physical competence were obtained by teachers' ratings that paralleled the children's measure of perceived competence. Perceived competence and teachers' ratings were standardized by grade level, and an accuracy score was computed from the difference between these scores. Children were then categorized as underestimators, accurate raters, or overestimators according to upper and lower quartiles of this distribution. A 2 x 2 x 3 (age level by gender by accuracy) MANCOVA revealed a significant gender by accuracy interaction. Underestimating girls were lower in challenge motivation, higher in trait anxiety, and more external in their control perceptions than accurate or overestimators. Underestimating boys were higher in perceived unknown control than accurate and overestimating boys. It was concluded that children who seriously underestimate their perceived competence may be likely candidates for discontinuation of sport activities or low levels of physical achievement.

  13. Estimation of uncertainty in tracer gas measurement of air change rates.

    PubMed

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of <33%. Using this method, overestimation of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.

  14. Determining the Accuracy of Self-Report Versus Informant-Report Using the Conners' Adult ADHD Rating Scale.

    PubMed

    Alexander, Lisa; Liljequist, Laura

    2016-04-01

    The present research examined the validity of self-report versus informant-report in relation to a performance-based indicator of adult ADHD. Archival data from 118 participants (52 males, 66 females) were used to compare Conners' Adult ADHD Rating Scale-Self-Report: Long Format (CAARS-S:L) and Conners' Adult ADHD Rating Scale-Observer Report: Long Format (CAARS-O:L) with discrepancy scores calculated between the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Verbal Comprehension Index - Working Memory Index (VCI - WMI) and Perceptual-Organizational Index - Processing Speed Index (POI - PSI) scaled scores. Neither the self- nor informant-report formats of the CAARS were better predictors of discrepancies between WAIS-III Index scores. Intercorrelations between the CAARS-S:L and CAARS-O:L revealed generally higher correlations between the same scales of different formats and among scales measuring externally visible symptoms. Furthermore, regression analysis indicated that both the CAARS-S:L and CAARS-O:L clinical scales contributed a significant proportion of variance in WAIS-III VCI - WMI discrepancy scores (14.7% and 16.4%, respectively). Results did not establish greater accuracy of self-report versus informant-report of ADHD symptomatology, rather demonstrate the need for multimodal assessment of ADHD in adults. © The Author(s) 2013.

  15. Predicting Atomic Decay Rates Using an Informational-Entropic Approach

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Jiang, Nan

    2018-06-01

    We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.

  16. Predicting Atomic Decay Rates Using an Informational-Entropic Approach

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Jiang, Nan

    2018-02-01

    We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.

  17. Optimum spectral resolution for computing atmospheric heating and photodissociation rates

    NASA Astrophysics Data System (ADS)

    Stamnes, K.; Tsay, S.-C.

    1990-06-01

    Rapid, reliable and accurate computations of atmospheric heating rates are needed in climate models aimed at predicting the impact of greenhouse gases on the surface temperature. Photolysis rates play a major role in photochemical models used to assess potential changes in atmospheric ozone abundance due to man's release of chlorofluorocarbons. Both rates depend directly on the amount of solar radiation available at any level in the atmosphere. We present a very efficient method of computing these rates in which integration over the solar spectrum is reduced to a minimum number of monochromatic (or pseudogray) problems by appealing to the continuum features of the ozone absorption cross-sections. To explore the resolutions needed to obtain adequate results we have divided the spectral range between 175 and 700 nm into four regions. Within each of these regions we may vary the resolution as we wish. Accurate results are obtained for very coarse spectral resolution provided all cross-sections are averaged by weighting them with the solar flux across any bin. By using this procedure we find that heating rate errors are less than 20% for all altitudes when only four spectral bands across the entire wavelength region from 175 to 700 nm are used to compute the heating rate profile. Similarly, we find that the error in the photodissociation of ozone is less than a few percent when 10 nm resolution is used in the Hartley and Huggins bands (below 330 nm), while an average over the entire wavelength region from 400 to 700 nm yields similar accuracy for the Chappuis band. For integrated u.v. dose estimates a resolution slightly better than 10 nm is required in the u.v.B region (290-315 nm) to yield an accuracy better than 10%, but we may treat the u.v.A region (315-400 nm) as a single band and yet have an accuracy better than 2%.

  18. High accuracy fuel flowmeter. Phase 2C and 3: The mass flowrate calibration of high accuracy fuel flowmeters

    NASA Technical Reports Server (NTRS)

    Craft, D. William

    1992-01-01

    A facility for the precise calibration of mass fuel flowmeters and turbine flowmeters located at AMETEK Aerospace Products Inc., Wilmington, Massachusetts is described. This facility is referred to as the Test and Calibration System (TACS). It is believed to be the most accurate test facility available for the calibration of jet engine fuel density measurement. The product of the volumetric flow rate measurement and the density measurement, results in a true mass flow rate determination. A dual-turbine flowmeter was designed during this program. The dual-turbine flowmeter was calibrated on the TACS to show the characteristics of this type of flowmeter. An angular momentum flowmeter was also calibrated on the TACS to demonstrate the accuracy of a true mass flowmeter having a 'state-of-the-art' design accuracy.

  19. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Lau, Doreen; Teo, Ju Teng; Ng, Soon Huat; Yang, Xiufeng; Kei, Pin Lin

    2014-05-01

    We propose and demonstrate the feasibility of using a highly sensitive microbend multimode fiber optic sensor for simultaneous measurement of breathing rate (BR) and heart rate (HR). The sensing system consists of a transceiver, microbend multimode fiber, and a computer. The transceiver is comprised of an optical transmitter, an optical receiver, and circuits for data communication with the computer via Bluetooth. Comparative experiments conducted between the sensor and predicate commercial physiologic devices showed an accuracy of ±2 bpm for both BR and HR measurement. Our preliminary study of simultaneous measurement of BR and HR in a clinical trial conducted on 11 healthy subjects during magnetic resonance imaging (MRI) also showed very good agreement with measurements obtained from conventional MR-compatible devices.

  20. LARC: computer codes for Lagrangian analysis of stress-gauge data to obtain decomposition rates through correlation to thermodynamic variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A.B.; Wackerle, J.

    1983-07-01

    This report describes a package of five computer codes for analyzing stress-gauge data from shock-wave experiments on reactive materials. The aim of the analysis is to obtain rate laws from experiment. A Lagrangian analysis of the stress records, performed by program LANAL, provides flow histories of particle velocity, density, and energy. Three postprocessing programs, LOOKIT, LOOK1, and LOOK2, are included in the package of codes for producing graphical output of the results of LANAL. Program RATE uses the flow histories in conjunction with an equation of state to calculate reaction-rate histories. RATE can be programmed to examine correlations between themore » rate histories and thermodynamic variables. Observed correlations can be incorporated into an appropriately parameterized rate law. Program RATE determines the values of these parameters that best reproduce the observed rate histories. The procedure is illustrated with a sample problem.« less

  1. Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: A systematic review.

    PubMed

    Rossini, Gabriele; Parrini, Simone; Castroflorio, Tommaso; Deregibus, Andrea; Debernardi, Cesare L

    2016-02-01

    Our objective was to assess the accuracy, validity, and reliability of measurements obtained from virtual dental study models compared with those obtained from plaster models. PubMed, PubMed Central, National Library of Medicine Medline, Embase, Cochrane Central Register of Controlled Clinical trials, Web of Knowledge, Scopus, Google Scholar, and LILACs were searched from January 2000 to November 2014. A grading system described by the Swedish Council on Technology Assessment in Health Care and the Cochrane tool for risk of bias assessment were used to rate the methodologic quality of the articles. Thirty-five relevant articles were selected. The methodologic quality was high. No significant differences were observed for most of the studies in all the measured parameters, with the exception of the American Board of Orthodontics Objective Grading System. Digital models are as reliable as traditional plaster models, with high accuracy, reliability, and reproducibility. Landmark identification, rather than the measuring device or the software, appears to be the greatest limitation. Furthermore, with their advantages in terms of cost, time, and space required, digital models could be considered the new gold standard in current practice. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  2. Effect of provider volume on the accuracy of hospital report cards: a Monte Carlo study.

    PubMed

    Austin, Peter C; Reeves, Mathew J

    2014-03-01

    Hospital report cards, in which outcomes after the provision of medical or surgical care are compared across healthcare providers, are being published with increasing frequency. However, the accuracy of such comparisons is controversial, especially when case volumes are small. The objective was to determine the relationship between hospital case volume and the accuracy of hospital report cards. Monte Carlo simulations were used to examine the influence of hospital case volume on the accuracy of hospital report cards in a setting in which true hospital performance was known with certainty, and perfect risk-adjustment was feasible. The parameters used to generate the simulated data sets were obtained from empirical analyses of data on patients hospitalized with acute myocardial infarction in Ontario, Canada, in which the overall 30-day mortality rate was 11.1%. We found that provider volume had a strong effect on the accuracy of hospital report cards. However, provider volume had to be >300 before ≥70% of hospitals were correctly classified. Furthermore, hospital volume had to be >1000 before ≥80% of hospitals were correctly classified. Producers and users of hospital report cards need to be aware that, even when perfect risk adjustment is possible, the accuracy of hospital report cards is, at best, modest for small to medium-sized case loads (i.e., 100-300). Hospital report cards displayed high degrees of accuracy only when provider volumes exceeded the typical annual hospital case load for many cardiovascular conditions and procedures.

  3. The availability of prior ECGs improves paramedic accuracy in recognizing ST-segment elevation myocardial infarction.

    PubMed

    O'Donnell, Daniel; Mancera, Mike; Savory, Eric; Christopher, Shawn; Schaffer, Jason; Roumpf, Steve

    2015-01-01

    Early and accurate identification of ST-elevation myocardial infarction (STEMI) by prehospital providers has been shown to significantly improve door to balloon times and improve patient outcomes. Previous studies have shown that paramedic accuracy in reading 12 lead ECGs can range from 86% to 94%. However, recent studies have demonstrated that accuracy diminishes for the more uncommon STEMI presentations (e.g. lateral). Unlike hospital physicians, paramedics rarely have the ability to review previous ECGs for comparison. Whether or not a prior ECG can improve paramedic accuracy is not known. The availability of prior ECGs improves paramedic accuracy in ECG interpretation. 130 paramedics were given a single clinical scenario. Then they were randomly assigned 12 computerized prehospital ECGs, 6 with and 6 without an accompanying prior ECG. All ECGs were obtained from a local STEMI registry. For each ECG paramedics were asked to determine whether or not there was a STEMI and to rate their confidence in their interpretation. To determine if the old ECGs improved accuracy we used a mixed effects logistic regression model to calculate p-values between the control and intervention. The addition of a previous ECG improved the accuracy of identifying STEMIs from 75.5% to 80.5% (p=0.015). A previous ECG also increased paramedic confidence in their interpretation (p=0.011). The availability of previous ECGs improves paramedic accuracy and enhances their confidence in interpreting STEMIs. Further studies are needed to evaluate this impact in a clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Assessing nonchoosers' eyewitness identification accuracy from photographic showups by using confidence and response times.

    PubMed

    Sauerland, Melanie; Sagana, Anna; Sporer, Siegfried L

    2012-10-01

    While recent research has shown that the accuracy of positive identification decisions can be assessed via confidence and decision times, gauging lineup rejections has been less successful. The current study focused on 2 different aspects which are inherent in lineup rejections. First, we hypothesized that decision times and confidence ratings should be postdictive of identification rejections if they refer to a single lineup member only. Second, we hypothesized that dividing nonchoosers according to the reasons they provided for their decisions can serve as a useful postdictor for nonchoosers' accuracy. To test these assumptions, we used (1) 1-person lineups (showups) in order to obtain confidence and response time measures referring to a single lineup member, and (2) asked nonchoosers about their reasons for making a rejection. Three hundred and eighty-four participants were asked to identify 2 different persons after watching 1 of 2 stimulus films. The results supported our hypotheses. Nonchoosers' postdecision confidence ratings were well-calibrated. Likewise, we successfully established optimum time and confidence boundaries for nonchoosers. Finally, combinations of postdictors increased the number of accurate classifications compared with individual postdictors. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  5. A Conversion Formula for Comparing Pulse Oximeter Desaturation Rates Obtained with Different Averaging Times

    PubMed Central

    Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F.; Dietz, Klaus

    2014-01-01

    Objective The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Methods Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2–4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥1, ≥5, ≥10, ≥15, ≥20, ≥25, ≥30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Results Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)c, where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. Conclusion This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations. PMID:24489887

  6. A conversion formula for comparing pulse oximeter desaturation rates obtained with different averaging times.

    PubMed

    Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F; Dietz, Klaus

    2014-01-01

    The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2-4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥ 1, ≥ 5, ≥ 10, ≥ 15, ≥ 20, ≥ 25, ≥ 30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)(c), where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations.

  7. Accuracy of clinical observations of push-off during gait after stroke.

    PubMed

    McGinley, Jennifer L; Morris, Meg E; Greenwood, Ken M; Goldie, Patricia A; Olney, Sandra J

    2006-06-01

    To determine the accuracy (criterion-related validity) of real-time clinical observations of push-off in gait after stroke. Criterion-related validity study of gait observations. Rehabilitation hospital in Australia. Eleven participants with stroke and 8 treating physical therapists. Not applicable. Pearson product-moment correlation between physical therapists' observations of push-off during gait and criterion measures of peak ankle power generation from a 3-dimensional motion analysis system. A high correlation was obtained between the observational ratings and the measurements of peak ankle power generation (Pearson r =.98). The standard error of estimation of ankle power generation was .32W/kg. Physical therapists can make accurate real-time clinical observations of push-off during gait following stroke.

  8. Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity.

    PubMed

    Yu, Nengkun; Guo, Cheng; Duan, Runyao

    2014-04-25

    We introduce a notion of the entanglement transformation rate to characterize the asymptotic comparability of two multipartite pure entangled states under stochastic local operations and classical communication (SLOCC). For two well known SLOCC inequivalent three-qubit states |GHZ⟩=(1/2)(|000⟩+|111⟩) and |W⟩=(1/3)(|100⟩+|010⟩+|001⟩), we show that the entanglement transformation rate from |GHZ⟩ to |W⟩ is exactly 1. That means that we can obtain one copy of the W state from one copy of the Greenberg-Horne-Zeilinger (GHZ) state by SLOCC, asymptotically. We then apply similar techniques to obtain a lower bound on the entanglement transformation rates from an N-partite GHZ state to a class of Dicke states, and prove the tightness of this bound for some special cases which naturally generalize the |W⟩ state. A new lower bound on the tensor rank of the matrix permanent is also obtained by evaluating the tensor rank of Dicke states.

  9. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort

    PubMed Central

    Shcherbina, Anna; Mattsson, C. Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W.; Hastie, Trevor; Wheeler, Matthew T.; Ashley, Euan A.

    2017-01-01

    The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/). PMID:28538708

  10. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.

    PubMed

    Shcherbina, Anna; Mattsson, C Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W; Hastie, Trevor; Wheeler, Matthew T; Ashley, Euan A

    2017-05-24

    The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).

  11. Accuracy of a new clean-catch technique for diagnosis of urinary tract infection in infants younger than 90 days of age

    PubMed Central

    Herreros, María Luisa; Tagarro, Alfredo; García-Pose, Araceli; Sánchez, Aida; Cañete, Alfonso; Gili, Pablo

    2015-01-01

    OBJECTIVE: To evaluate the accuracy of diagnosing urinary tract infections using a new, recently described, standardized clean-catch collection technique. METHODS: Cross-sectional study of infants <90 days old admitted due to fever without a source, with two matched samples of urine obtained using two different methods: clean-catch standardized stimulation technique and bladder catheterization. RESULTS: Sixty paired urine cultures were obtained. The median age was 44-days-old. Seventeen percent were male infants. Clean-catch technique sensitivity was 97% (95% CI 82% to 100%) and specificity was 89% (95% CI 65% to 98%). The contamination rate of clean-catch samples was lower (5%) than the contamination rate of catheter specimens (8%). CONCLUSIONS: The sensitivity and specificity of urine cultures obtained using the clean-catch method through the new technique were accurate and the contamination rate was low. These results suggest that this technique is a valuable, alternative method for urinary tract infection diagnosis. PMID:26435675

  12. Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion.

    PubMed

    Zhu, Yongwei; Fook, Victor Foo Siang; Jianzhong, Emily Hao; Maniyeri, Jayachandran; Guan, Cuntai; Zhang, Haihong; Jiliang, Eugene Phua; Biswas, Jit

    2014-01-01

    This paper presents a method of estimating heart rate from arrays of fiber Bragg grating (FBG) sensors embedded in a mat. A cepstral domain signal analysis technique is proposed to characterize Ballistocardiogram (BCG) signals. With this technique, the average heart beat intervals can be estimated by detecting the dominant peaks in the cepstrum, and the signals of multiple sensors can be fused together to obtain higher signal to noise ratio than each individual sensor. Experiments were conducted with 10 human subjects lying on 2 different postures on a bed. The estimated heart rate from BCG was compared with heart rate ground truth from ECG, and the mean error of estimation obtained is below 1 beat per minute (BPM). The results show that the proposed fusion method can achieve promising heart rate measurement accuracy and robustness against various sensor contact conditions.

  13. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  14. Validation of a Standalone Smartphone Application for Measuring Heart Rate Using Imaging Photoplethysmography.

    PubMed

    Poh, Ming-Zher; Poh, Yukkee C

    2017-08-01

    The aim of this study was to determine the accuracy of a freely available smartphone application, Cardiio app (Cardiio, Inc., Cambridge, MA), to measure heart rate from the finger or face using imaging photoplethysmography, by comparing against an FDA-cleared pulse oximeter at rest, and after moderate to vigorous exercise. A total of 40 healthy adults participated in this study. Participants engaged in a period of rest, followed by 3 min of moderate to vigorous intensity cycling on a stationary bicycle. Heart rate measurements were obtained from both the finger and face of participants using the Cardiio app at rest, immediately after exercise, 1-2 min after exercise, and 2-3 min after exercise. Concurrent heart rate readings using an FDA-cleared finger pulse oximeter served as the reference measurement. There was a very strong agreement between heart rate measurements obtained using the Cardiio app and the pulse oximeter, both at rest (r = 0.99 for finger, r = 0.97 for face) and after exercise (r = 0.99 for finger, r = 0.97 for face). At rest, the accuracy of the Cardiio app was ±1.58 beats per minute (bpm) (or ±2.27%) using the finger mode and ±2.28 bpm (or ±3.17%) for the face mode, compared to the pulse oximeter. After moderate to vigorous exercise, the accuracy of the Cardiio app was ±2.97 bpm (or ±2.79%) using the finger mode and ±5.31 bpm (or ±4.50%) for the face mode, compared to the pulse oximeter. The Cardiio app provided accurate heart rate measurements from the finger and face, both at rest and after exercise.

  15. Tapping Into Rate Flexibility: Musical Training Facilitates Synchronization Around Spontaneous Production Rates

    PubMed Central

    Scheurich, Rebecca; Zamm, Anna; Palmer, Caroline

    2018-01-01

    The ability to flexibly adapt one’s behavior is critical for social tasks such as speech and music performance, in which individuals must coordinate the timing of their actions with others. Natural movement frequencies, also called spontaneous rates, constrain synchronization accuracy between partners during duet music performance, whereas musical training enhances synchronization accuracy. We investigated the combined influences of these factors on the flexibility with which individuals can synchronize their actions with sequences at different rates. First, we developed a novel musical task capable of measuring spontaneous rates in both musicians and non-musicians in which participants tapped the rhythm of a familiar melody while hearing the corresponding melody tones. The novel task was validated by similar measures of spontaneous rates generated by piano performance and by the tapping task from the same pianists. We then implemented the novel task with musicians and non-musicians as they synchronized tapping of a familiar melody with a metronome at their spontaneous rates, and at rates proportionally slower and faster than their spontaneous rates. Musicians synchronized more flexibly across rates than non-musicians, indicated by greater synchronization accuracy. Additionally, musicians showed greater engagement of error correction mechanisms than non-musicians. Finally, differences in flexibility were characterized by more recurrent (repetitive) and patterned synchronization in non-musicians, indicative of greater temporal rigidity. PMID:29681872

  16. A new method to obtain ground control points based on SRTM data

    NASA Astrophysics Data System (ADS)

    Wang, Pu; An, Wei; Deng, Xin-pu; Zhang, Xi

    2013-09-01

    The GCPs are widely used in remote sense image registration and geometric correction. Normally, the DRG and DOM are the major data source from which GCPs are extracted. But the high accuracy products of DRG and DOM are usually costly to obtain. Some of the production are free, yet without any guarantee. In order to balance the cost and the accuracy, the paper proposes a method of extracting the GCPs from SRTM data. The method consist of artificial assistance, binarization, data resample and reshape. With artificial assistance to find out which part of SRTM data could be used as GCPs, such as the islands or sharp coast line. By utilizing binarization algorithm , the shape information of the region is obtained while other information is excluded. Then the binary data is resampled to a suitable resolution required by specific application. At last, the data would be reshaped according to satellite imaging type to obtain the GCPs which could be used. There are three advantages of the method proposed in the paper. Firstly, the method is easy for implementation. Unlike the DRG data or DOM data that charges a lot, the SRTM data is totally free to access without any constricts. Secondly, the SRTM has a high accuracy about 90m that is promised by its producer, so the GCPs got from it can also obtain a high quality. Finally, given the SRTM data covers nearly all the land surface of earth between latitude -60° and latitude +60°, the GCPs which are produced by the method can cover most important regions of the world. The method which obtain GCPs from SRTM data can be used in meteorological satellite image or some situation alike, which have a relative low requirement about the accuracy. Through plenty of simulation test, the method is proved convenient and effective.

  17. Modifying Speech to Children based on their Perceived Phonetic Accuracy

    PubMed Central

    Julien, Hannah M.; Munson, Benjamin

    2014-01-01

    Purpose We examined the relationship between adults' perception of the accuracy of children's speech, and acoustic detail in their subsequent productions to children. Methods Twenty-two adults participated in a task in which they rated the accuracy of 2- and 3-year-old children's word-initial /s/and /∫/ using a visual analog scale (VAS), then produced a token of the same word as if they were responding to the child whose speech they had just rated. Result The duration of adults' fricatives varied as a function of their perception of the accuracy of children's speech: longer fricatives were produced following productions that they rated as inaccurate. This tendency to modify duration in response to perceived inaccurate tokens was mediated by measures of self-reported experience interacting with children. However, speakers did not increase the spectral distinctiveness of their fricatives following the perception of inaccurate tokens. Conclusion These results suggest that adults modify temporal features of their speech in response to perceiving children's inaccurate productions. These longer fricatives are potentially both enhanced input to children, and an error-corrective signal. PMID:22744140

  18. Dimensional accuracy and surface property of titanium casting using gypsum-bonded alumina investment.

    PubMed

    Yan, Min; Takahashi, Hidekazu; Nishimura, Fumio

    2004-12-01

    The aim of the present study was to evaluate the dimensional accuracy and surface property of titanium casting obtained using a gypsum-bonded alumina investment. The experimental gypsum-bonded alumina investment with 20 mass% gypsum content mixed with 2 mass% potassium sulfate was used for five cp titanium castings and three Cu-Zn alloy castings. The accuracy, surface roughness (Ra), and reaction layer thickness of these castings were investigated. The accuracy of the castings obtained from the experimental investment ranged from -0.04 to 0.23%, while surface roughness (Ra) ranged from 7.6 to 10.3microm. A reaction layer of about 150 microm thickness under the titanium casting surface was observed. These results suggested that the titanium casting obtained using the experimental investment was acceptable. Although the reaction layer was thin, surface roughness should be improved.

  19. Accuracy and safety of ultrasound-guided percutaneous needle core biopsy of renal masses

    PubMed Central

    Wang, Xianding; Lv, Yuanhang; Xu, Zilin; Aniu, Muguo; Qiu, Yang; Wei, Bing; Li, Xiaohong; Wei, Qiang; Dong, Qiang; Lin, Tao

    2018-01-01

    Abstract Our aim is to determine the sufficiency, accuracy, and safety of ultrasound-guided percutaneous needle core biopsy of renal masses in Chinese patients. Patients who had undergone ultrasound-guided needle core renal mass biopsy from June 2012 to June 2016 at West China Hospital, China were retrospectively reviewed. The information obtained included demographics, mass-related parameters, biopsy indications, technique, complications, pathologic results, and follow-up. Concordance of surgical resection pathology and follow-up data were assessed. Renal mass biopsies were performed in 106 patients. Thirty-nine (36.8%) were asymptomatic. The male/female ratio was 60/46, with a median age of 49.5 years. Median mass size was 8.1 cm (range 1.8–20). Biopsy was performed through a 16-gauge needle, with median cores of 2 taken (range 1–5). Only one significant biopsy-related complication (hemorrhage requiring transfusion) was encountered. An adequate tissue sample was obtained in 97.2% (103/106) of biopsies. Eighty-seven biopsies (82.1%) showed malignant neoplasms, 16 (15.1%) yielded benignity, and 3 (2.8%) were nondiagnostic. After biopsy, 46 patients (43.4%) underwent surgery. Compared with the subsequent mass resection pathology, the biopsy diagnoses were identical in 43 cases. The accuracy rate of biopsy distinguishing malignant from benign lesions was 99.1%, and the rate for determining tumor histological type (excluding the nondiagnostic biopsies) was 95.1%. The sensitivity and specificity in detecting malignancy were 98.9% and 100%, respectively. In several situations, there is still a role for biopsy before intervention. Percutaneous needle core biopsy under ultrasonography guidance is highly accurate and safe, and can determine the proper management of undefinable masses. PMID:29595650

  20. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    PubMed

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  1. Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps

    DOE PAGES

    Isotalo, Aarno; Pusa, Maria

    2016-05-01

    The Chebyshev Rational Approximation Method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant sub-steps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the LU decompositions for the linear solves required in CRAM only need to be formed on the first substep. Themore » improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. Lastly, with substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.« less

  2. Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect

    NASA Astrophysics Data System (ADS)

    Chao, Chia-Chun George

    2009-03-01

    The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.

  3. Assessing the accuracy of TDR-based water leak detection system

    NASA Astrophysics Data System (ADS)

    Fatemi Aghda, S. M.; GanjaliPour, K.; Nabiollahi, K.

    2018-03-01

    The use of TDR system to detect leakage locations in underground pipes has been developed in recent years. In this system, a bi-wire is installed in parallel with the underground pipes and is considered as a TDR sensor. This approach greatly covers the limitations arisen with using the traditional method of acoustic leak positioning. TDR based leak detection method is relatively accurate when the TDR sensor is in contact with water in just one point. Researchers have been working to improve the accuracy of this method in recent years. In this study, the ability of TDR method was evaluated in terms of the appearance of multi leakage points simultaneously. For this purpose, several laboratory tests were conducted. In these tests in order to simulate leakage points, the TDR sensor was put in contact with water at some points, then the number and the dimension of the simulated leakage points were gradually increased. The results showed that with the increase in the number and dimension of the leakage points, the error rate of the TDR-based water leak detection system increases. The authors tried, according to the results obtained from the laboratory tests, to develop a method to improve the accuracy of the TDR-based leak detection systems. To do that, they defined a few reference points on the TDR sensor. These points were created via increasing the distance between two conductors of TDR sensor and were easily identifiable in the TDR waveform. The tests were repeated again using the TDR sensor having reference points. In order to calculate the exact distance of the leakage point, the authors developed an equation in accordance to the reference points. A comparison between the results obtained from both tests (with and without reference points) showed that using the method and equation developed by the authors can significantly improve the accuracy of positioning the leakage points.

  4. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    PubMed

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  5. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review.

    PubMed

    Holm, Anne; Aabenhus, Rune

    2016-06-08

    Choice of urine sampling technique in urinary tract infection may impact diagnostic accuracy and thus lead to possible over- or undertreatment. Currently no evidencebased consensus exists regarding correct sampling technique of urine from women with symptoms of urinary tract infection in primary care. The aim of this study was to determine the accuracy of urine culture from different sampling-techniques in symptomatic non-pregnant women in primary care. A systematic review was conducted by searching Medline and Embase for clinical studies conducted in primary care using a randomized or paired design to compare the result of urine culture obtained with two or more collection techniques in adult, female, non-pregnant patients with symptoms of urinary tract infection. We evaluated quality of the studies and compared accuracy based on dichotomized outcomes. We included seven studies investigating urine sampling technique in 1062 symptomatic patients in primary care. Mid-stream-clean-catch had a positive predictive value of 0.79 to 0.95 and a negative predictive value close to 1 compared to sterile techniques. Two randomized controlled trials found no difference in infection rate between mid-stream-clean-catch, mid-stream-urine and random samples. At present, no evidence suggests that sampling technique affects the accuracy of the microbiological diagnosis in non-pregnant women with symptoms of urinary tract infection in primary care. However, the evidence presented is in-direct and the difference between mid-stream-clean-catch, mid-stream-urine and random samples remains to be investigated in a paired design to verify the present findings.

  6. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study

    PubMed Central

    Tosteson, Anna NA; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-01-01

    Objective To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology. Design Simulation study. Setting 12 different strategies for acquiring independent second opinions. Participants Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus. Main outcome measures Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists’ clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice. Results Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for

  7. The Impact of Dose Rate on the Accuracy of Step-and-Shoot Intensity-modulated Radiation Therapy Quality Assurance Using Varian 2300CD.

    PubMed

    Njeh, Christopher F; Salmon, Howard W; Schiller, Claire

    2017-01-01

    Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.

  8. A noncontact laser technique for circular contouring accuracy measurement

    NASA Astrophysics Data System (ADS)

    Wang, Charles; Griffin, Bob

    2001-02-01

    The worldwide competition in manufacturing frequently requires the high-speed machine tools to deliver contouring accuracy in the order of a few micrometers, while moving at relatively high feed rates. Traditional test equipment is rather limited in its capability to measure contours of small radius at high speed. Described here is a new noncontact laser measurement technique for the test of circular contouring accuracy. This technique is based on a single-aperture laser Doppler displacement meter with a flat mirror as the target. It is of a noncontact type with the ability to vary the circular path radius continuously at data rates of up to 1000 Hz. Using this instrument, the actual radius, feed rate, velocity, and acceleration profiles can also be determined. The basic theory of operation, the hardware setup, the data collection, the data processing, and the error budget are discussed.

  9. Accuracy requirements. [for monitoring of climate changes

    NASA Technical Reports Server (NTRS)

    Delgenio, Anthony

    1993-01-01

    Satellite and surface measurements, if they are to serve as a climate monitoring system, must be accurate enough to permit detection of changes of climate parameters on decadal time scales. The accuracy requirements are difficult to define a priori since they depend on unknown future changes of climate forcings and feedbacks. As a framework for evaluation of candidate Climsat instruments and orbits, we estimate the accuracies that would be needed to measure changes expected over two decades based on theoretical considerations including GCM simulations and on observational evidence in cases where data are available for rates of change. One major climate forcing known with reasonable accuracy is that caused by the anthropogenic homogeneously mixed greenhouse gases (CO2, CFC's, CH4 and N2O). Their net forcing since the industrial revolution began is about 2 W/sq m and it is presently increasing at a rate of about 1 W/sq m per 20 years. Thus for a competing forcing or feedback to be important, it needs to be of the order of 0.25 W/sq m or larger on this time scale. The significance of most climate feedbacks depends on their sensitivity to temperature change. Therefore we begin with an estimate of decadal temperature change. Presented are the transient temperature trends simulated by the GISS GCM when subjected to various scenarios of trace gas concentration increases. Scenario B, which represents the most plausible near-term emission rates and includes intermittent forcing by volcanic aerosols, yields a global mean surface air temperature increase Delta Ts = 0.7 degrees C over the time period 1995-2015. This is consistent with the IPCC projection of about 0.3 degrees C/decade global warming (IPCC, 1990). Several of our estimates below are based on this assumed rate of warming.

  10. Estimated Accuracy of Three Common Trajectory Statistical Methods

    NASA Technical Reports Server (NTRS)

    Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.

    2011-01-01

    Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h

  11. Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions

    PubMed Central

    Pascual-Moscardó, Agustín; Camps, Isabel

    2018-01-01

    Background The scanner does not measure the dental surface continually. Instead, it generates a point cloud, and these points are then joined to form the scanned object. This approximation will depend on the number of points generated (resolution), which can lead to low accuracy (trueness and precision) when fewer points are obtained. The purpose of this study is to determine the resolution of four intraoral digital imaging systems and to demonstrate the relationship between accuracy and resolution of the intraoral scanner in impressions of a complete dental arch. Material and Methods A master cast of the complete maxillary arch was prepared with different dental preparations. Using four digital impression systems, the cast was scanned inside of a black methacrylate box, obtaining a total of 40 digital impressions from each scanner. The resolution was obtained by dividing the number of points of each digital impression by the total surface area of the cast. Accuracy was evaluated using a three-dimensional measurement software, using the “best alignment” method of the casts with a highly faithful reference model obtained from an industrial scanner. Pearson correlation was used for statistical analysis of the data. Results Of the intraoral scanners, Omnicam is the system with the best resolution, with 79.82 points per mm2, followed by True Definition with 54.68 points per mm2, Trios with 41.21 points per mm2, and iTero with 34.20 points per mm2. However, the study found no relationship between resolution and accuracy of the study digital impression systems (P >0.05), except for Omnicam and its precision. Conclusions The resolution of the digital impression systems has no relationship with the accuracy they achieve in the impression of a complete dental arch. The study found that the Omnicam scanner is the system that obtains the best resolution, and that as the resolution increases, its precision increases. Key words:Trueness, precision, accuracy, resolution

  12. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  13. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  14. Evaluating the accuracy of technicians and pharmacists in checking unit dose medication cassettes.

    PubMed

    Ambrose, Peter J; Saya, Frank G; Lovett, Larry T; Tan, Sandy; Adams, Dale W; Shane, Rita

    2002-06-15

    The accuracy rates of board-registered pharmacy technicians and pharmacists in checking unit dose medication cassettes in the inpatient setting at two separate institutions were examined. Cedars-Sinai Medical Center and Long Beach Memorial Medical Center, both in Los Angeles county, petitioned the California State Board of Pharmacy to approve a waiver of the California Code of Regulations to conduct an experimental program to compare the accuracy of unit dose medication cassettes checked by pharmacists with that of cassettes checked by trained, certified pharmacy technicians. The study consisted of three parts: assessing pharmacist baseline checking accuracy (Phase I), developing a technician-training program and certifying technicians who completed the didactic and practical training (Phase II), and evaluating the accuracy of certified technicians checking unit dose medication cassettes as a daily function (Phase III). Twenty-nine pharmacists and 41 technicians (3 of whom were pharmacy interns) participated in the study. Of the technicians, all 41 successfully completed the didactic and practical training, 39 successfully completed the audits and became certified checkers, and 2 (including 1 of the interns) did not complete the certification audits because they were reassigned to another work area or had resigned. In Phase II, the observed accuracy rate and its lower confidence limit exceeded the predetermined minimum requirement of 99.8% for a certified checker. The mean accuracy rates for technicians were identical at the two institutions (p = 1.0). The difference in mean accuracy rates between pharmacists (99.52%; 95% confidence interval [CI] 99.44-99.58%) and technicians, (99.89%; 95% CI 99.87-99.90%) was significant (p < 0.0001). Inpatient technicians who had been trained and certified in a closely supervised program that incorporated quality assurance mechanisms could safely and accurately check unit dose medication cassettes filled by other technicians.

  15. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  16. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  17. [Design and accuracy analysis of upper slicing system of MSCT].

    PubMed

    Jiang, Rongjian

    2013-05-01

    The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.

  18. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas

  19. Accuracy versus convergence rates for a three dimensional multistage Euler code

    NASA Technical Reports Server (NTRS)

    Turkel, Eli

    1988-01-01

    Using a central difference scheme, it is necessary to add an artificial viscosity in order to reach a steady state. This viscosity usually consists of a linear fourth difference to eliminate odd-even oscillations and a nonlinear second difference to suppress oscillations in the neighborhood of steep gradients. There are free constants in these differences. As one increases the artificial viscosity, the high modes are dissipated more and the scheme converges more rapidly. However, this higher level of viscosity smooths the shocks and eliminates other features of the flow. Thus, there is a conflict between the requirements of accuracy and efficiency. Examples are presented for a variety of three-dimensional inviscid solutions over isolated wings.

  20. Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample.

    PubMed

    Adams, Allison; Santi, Angelo

    2011-03-01

    Following training to match 2- and 8-sec durations of feederlight to red and green comparisons with a 0-sec baseline delay, pigeons were allowed to choose to take a memory test or to escape the memory test. The effects of sample omission, increases in retention interval, and variation in trial spacing on selection of the escape option and accuracy were studied. During initial testing, escaping the test did not increase as the task became more difficult, and there was no difference in accuracy between chosen and forced memory tests. However, with extended training, accuracy for chosen tests was significantly greater than for forced tests. In addition, two pigeons exhibited higher accuracy on chosen tests than on forced tests at the short retention interval and greater escape rates at the long retention interval. These results have not been obtained in previous studies with pigeons when the choice to take the test or to escape the test is given before test stimuli are presented. It appears that task-specific methodological factors may determine whether a particular species will exhibit the two behavioral effects that were initially proposed as potentially indicative of metacognition.

  1. Evaluation of the accuracy of GPS as a method of locating traffic collisions.

    DOT National Transportation Integrated Search

    2004-06-01

    The objective of this study were to determine the accuracy of GPS units as a traffic crash location tool, evaluate the accuracy of the location data obtained using the GPS units, and determine the largest sources of any errors found. : The analysis s...

  2. Information quantity and quality affect the realistic accuracy of personality judgment.

    PubMed

    Letzring, Tera D; Wells, Shannon M; Funder, David C

    2006-07-01

    Triads of unacquainted college students interacted in 1 of 5 experimental conditions that manipulated information quantity (amount of information) and information quality (relevance of information to personality), and they then made judgments of each others' personalities. To determine accuracy, the authors compared the ratings of each judge to a broad-based accuracy criterion composed of personality ratings from 3 types of knowledgeable informants (the self, real-life acquaintances, and clinician-interviewers). Results supported the hypothesis that information quantity and quality would be positively related to objective knowledge about the targets and realistic accuracy. Interjudge consensus and self-other agreement followed a similar pattern. These findings are consistent with expectations based on models of the process of accurate judgment (D. C. Funder, 1995, 1999) and consensus (D. A. Kenny, 1994). Copyright 2006 APA, all rights reserved.

  3. Accuracy Evaluation of 19 Blood Glucose Monitoring Systems Manufactured in the Asia-Pacific Region: A Multicenter Study.

    PubMed

    Yu-Fei, Wang; Wei-Ping, Jia; Ming-Hsun, Wu; Miao-O, Chien; Ming-Chang, Hsieh; Chi-Pin, Wang; Ming-Shih, Lee

    2017-09-01

    System accuracy of current blood glucose monitors (BGMs) in the market has already been evaluated extensively, yet mostly focused on European and North American manufacturers. Data on BGMs manufactured in the Asia-Pacific region remain to be established. In this study, we sought to assess the accuracy performance of 19 BGMs manufactured in the Asia-pacific region. A total of 19 BGMs were obtained from local pharmacies in China. The study was conducted at three hospitals located in the Asia-Pacific region. Measurement results of each system were compared with results of the reference instrument (YSI 2300 PLUS Glucose Analyzer), and accuracy evaluation was performed in accordance to the ISO 15197:2003 and updated 2015 guidelines. Radar plots, which is a new method, are described herein to visualize the analytical performance of the 19 BGMs evaluated. Consensus error grid is a tool for evaluating the clinical significance of the results. The 19 BGMs resulted in a satisfaction rate between 83.5% and 100.0% within ISO 15197:2003 error limits, and between 71.3% and 100.0% within EN ISO 15197:2015 (ISO 15197:2013) error limits. Of the 19 BGMs evaluated, 12 met the minimal accuracy requirement of the ISO 15197:2003 standard, whereas only 4 met the tighter EN ISO 15197:2015 (ISO 15197:2013) requirements. Accuracy evaluation of BGMs should be performed regularly to maximize patient safety.

  4. Genomic selection accuracies within and between environments and small breeding groups in white spruce.

    PubMed

    Beaulieu, Jean; Doerksen, Trevor K; MacKay, John; Rainville, André; Bousquet, Jean

    2014-12-02

    Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested. Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies. Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that

  5. The effects of stress on singing voice accuracy.

    PubMed

    Larrouy-Maestri, Pauline; Morsomme, Dominique

    2014-01-01

    The quality of a music performance can be lessened or enhanced if the performer experiences stressful conditions. In addition, the quality of a sung performance requires control of the fundamental frequency of the voice, which is particularly sensitive to stress. The present study aimed to clarify the effects of stress on singing voice accuracy. Thirty-one music students were recorded in a stressful condition (ie, a music examination) and a nonstressful condition. Two groups were defined according to the challenge level of the music examination (first and second music levels). Measurements were made by self-reported state anxiety (CSAI-2R questionnaire) and by observing heart rate activity (electrocardiogram) during each performance. In addition, the vocal accuracy of the sung performances was objectively analyzed. As expected, state anxiety and heart rate were significantly higher on the day of the music examination than in the nonstressful condition for all the music students. However, the effect of stress was positive for the first-year students but negative for the second-year students, for whom the music examination was particularly challenging. In addition, highly significant correlations were found between the intensity of cognitive symptoms and the vocal accuracy criteria. This study highlights the contrasting effects of stress on singing voice accuracy but also the need to consider the challenge level and perception of the symptoms in experimental and pedagogical settings. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  7. Relationship between accuracy and complexity when learning underarm precision throwing.

    PubMed

    Valle, Maria Stella; Lombardo, Luciano; Cioni, Matteo; Casabona, Antonino

    2018-06-12

    Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy. Participants performed underarm throws of a tennis ball to hit a target on the floor, 3.42 m away. Two training sessions (S1, S2) and one retention test were executed. Performance accuracy increased over the S1 and stabilized during the S2, with a rate of changes along the throwing axis slower than along the orthogonal axis. However, both the axes contributed to the performance changes over the learning and consolidation time. A stable relationship between the accuracy and the release parameters was observed only during S2, with a good fraction of the performance variance explained by the combination of speed and height. All the variations were maintained during the retention test. Overall, accuracy improvements and reduction in throwing complexity at the ball release followed separate timing over the course of learning and consolidation.

  8. Additional Evidence for the Accuracy of Biographical Data: Long-Term Retest and Observer Ratings.

    ERIC Educational Resources Information Center

    Shaffer, Garnett Stokes; And Others

    1986-01-01

    Investigated accuracy of responses to biodata questionnaire using a test-retest design and informed external observers for verification. Responses from 237 subjects and 200 observers provided evidence that many responses to biodata questionnaire were accurate. Assessed sources of inaccuracy, including social desirability effects, and noted…

  9. Accuracy of vaginal symptom self-diagnosis algorithms for deployed military women.

    PubMed

    Ryan-Wenger, Nancy A; Neal, Jeremy L; Jones, Ashley S; Lowe, Nancy K

    2010-01-01

    Deployed military women have an increased risk for development of vaginitis due to extreme temperatures, primitive sanitation, hygiene and laundry facilities, and unavailable or unacceptable healthcare resources. The Women in the Military Self-Diagnosis (WMSD) and treatment kit was developed as a field-expedient solution to this problem. The primary study aims were to evaluate the accuracy of women's self-diagnosis of vaginal symptoms and eight diagnostic algorithms and to predict potential self-medication omission and commission error rates. Participants included 546 active duty, deployable Army (43.3%) and Navy (53.6%) women with vaginal symptoms who sought healthcare at troop medical clinics on base.In the clinic lavatory, women conducted a self-diagnosis using a sterile cotton swab to obtain vaginal fluid, a FemExam card to measure positive or negative pH and amines, and the investigator-developed WMSD Decision-Making Guide. Potential self-diagnoses were "bacterial infection" (bacterial vaginosis [BV] and/or trichomonas vaginitis [TV]), "yeast infection" (candida vaginitis [CV]), "no infection/normal," or "unclear." The Affirm VPIII laboratory reference standard was used to detect clinically significant amounts of vaginal fluid DNA for organisms associated with BV, TV, and CV. Women's self-diagnostic accuracy was 56% for BV/TV and 69.2% for CV. False-positives would have led to a self-medication commission error rate of 20.3% for BV/TV and 8% for CV. Potential self-medication omission error rates due to false-negatives were 23.7% for BV/TV and 24.8% for CV. The positive predictive value of diagnostic algorithms ranged from 0% to 78.1% for BV/TV and 41.7% for CV. The algorithms were based on clinical diagnostic standards. The nonspecific nature of vaginal symptoms, mixed infections, and a faulty device intended to measure vaginal pH and amines explain why none of the algorithms reached the goal of 95% accuracy. The next prototype of the WMSD kit will not include

  10. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  11. Smartphone-based photoplethysmographic imaging for heart rate monitoring.

    PubMed

    Alafeef, Maha

    2017-07-01

    The purpose of this study is to make use of visible light reflected mode photoplethysmographic (PPG) imaging for heart rate (HR) monitoring via smartphones. The system uses the built-in camera feature in mobile phones to capture video from the subject's index fingertip. The video is processed, and then the PPG signal resulting from the video stream processing is used to calculate the subject's heart rate. Records from 19 subjects were used to evaluate the system's performance. The HR values obtained by the proposed method were compared with the actual HR. The obtained results show an accuracy of 99.7% and a maximum absolute error of 0.4 beats/min where most of the absolute errors lay in the range of 0.04-0.3 beats/min. Given the encouraging results, this type of HR measurement can be adopted with great benefit, especially in the conditions of personal use or home-based care. The proposed method represents an efficient portable solution for HR accurate detection and recording.

  12. Accuracy of references and quotations in veterinary journals.

    PubMed

    Hinchcliff, K W; Bruce, N J; Powers, J D; Kipp, M L

    1993-02-01

    The accuracy of references and quotations used to substantiate statements of fact in articles published in 6 frequently cited veterinary journals was examined. Three hundred references were randomly selected, and the accuracy of each citation was examined. A subset of 100 references was examined for quotational accuracy; ie, the accuracy with which authors represented the work or assertions of the author being cited. Of the 300 references selected, 295 were located, and 125 major errors were found in 88 (29.8%) of them. Sixty-seven (53.6%) major errors were found involving authors, 12 (9.6%) involved the article title, 14 (11.2%) involved the book or journal title, and 32 (25.6%) involved the volume number, date, or page numbers. Sixty-eight minor errors were detected. The accuracy of 111 quotations from 95 citations in 65 articles was examined. Nine quotations were technical and not classified, 86 (84.3%) were classified as correct, 2 (1.9%) contained minor misquotations, and 14 (13.7%) contained major misquotations. We concluded that misquotations and errors in citations occur frequently in veterinary journals, but at a rate similar to that reported for other biomedical journals.

  13. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space... flight instructor certificate with a sport pilot rating you must pass the following tests: (a) Knowledge...

  14. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space... flight instructor certificate with a sport pilot rating you must pass the following tests: (a) Knowledge...

  15. A novel modality for intrapartum fetal heart rate monitoring.

    PubMed

    Ashwal, Eran; Shinar, Shiri; Aviram, Amir; Orbach, Sharon; Yogev, Yariv; Hiersch, Liran

    2017-11-02

    Intrapartum fetal heart rate (FHR) monitoring is well recommended during labor to assess fetal wellbeing. Though commonly used, the external Doppler and fetal scalp electrode monitor have significant shortcomings. Lately, non-invasive technologies were developed as possible alternatives. The objective of this study is to compare the accuracy of FHR trace using novel Electronic Uterine Monitoring (EUM) to that of external Doppler and fetal scalp electrode monitor. A comparative study conducted in a single tertiary medical center. Intrapartum FHR trace was recorded simultaneously using three different methods: internal fetal scalp electrode, external Doppler, and EUM. The latter, a multichannel electromyogram (EMG) device acquires a uterine signal and maternal and fetal electrocardiograms. FHR traces obtained from all devices during the first and second stages of labor were analyzed. Positive percent of agreement (PPA) and accuracy (by measuring root means square error between observed and predicted values) of EUM and external Doppler were both compared to internal scalp electrode monitoring. A Bland-Altman agreement plot was used to compare the differences in FHR trace between all modalities. For momentary recordings of fetal heart rate <110 bpm or >160 bpm level of agreement, sensitivity, and specificity were also evaluated. Overall, 712,800 FHR momentary recordings were obtained from 33 parturients. Although both EUM and external Doppler highly correlated with internal scalp electrode monitoring (r 2  = 0.98, p < .001 for both methods), the accuracy of EUM was significantly higher than external Doppler (99.0% versus 96.6%, p < .001). In addition, for fetal heart rate <110 bpm or >160 bpm, the PPA, sensitivity, and specificity of EUM as compared with internal fetal scalp electrode, were significantly greater than those of external Doppler (p < .001). Intrapartum FHR using EUM is both valid and accurate, yielding higher correlations with internal

  16. Effect of marital status on death rates. Part 1: High accuracy exploration of the Farr-Bertillon effect

    NASA Astrophysics Data System (ADS)

    Richmond, Peter; Roehner, Bertrand M.

    2016-05-01

    The Farr-Bertillon law says that for all age-groups the death rate of married people is lower than the death rate of people who are not married (i.e. single, widowed or divorced). Although this law has been known for over 150 years, it has never been established with well-controlled accuracy (e.g. error bars). This even let some authors argue that it was a statistical artifact. It is true that the data must be selected with great care, especially for age groups of small size (e.g. widowers under 25). The observations reported in this paper were selected in the way experiments are designed in physics, that is to say with the objective of minimizing error bars. Data appropriate for mid-age groups may be unsuitable for young age groups and vice versa. The investigation led to the following results. (1) The FB effect is very similar for men and women, except that (at least in western countries) its amplitude is 20% higher for men. (2) There is a marked difference between single/divorced persons on the one hand, for whom the effect is largest around the age of 40, and widowed persons on the other hand, for whom the effect is largest around the age of 25. (3) When different causes of death are distinguished, the effect is largest for suicide and smallest for cancer. For heart disease and cerebrovascular accidents, the fact of being married divides the death rate by 2.2 compared to non-married persons. (4) For young widowers the death rates are up to 10 times higher than for married persons of same age. This extreme form of the FB effect will be referred to as the ;young widower effect;. Chinese data are used to explore this effect more closely. A possible connection between the FB effect and Martin Raff's ;Stay alive; effect for the cells in an organism is discussed in the last section.

  17. Older and Younger Adults’ Accuracy in Discerning Health and Competence in Older and Younger Faces

    PubMed Central

    Zebrowitz, Leslie A.; Franklin, Robert G.; Boshyan, Jasmine; Luevano, Victor; Agrigoroaei, Stefan; Milosavljevic, Bosiljka; Lachman, Margie E.

    2015-01-01

    We examined older and younger adults’ accuracy judging the health and competence of faces. Accuracy differed significantly from chance and varied with face age but not rater age. Health ratings were more accurate for older than younger faces, with the reverse for competence ratings. Accuracy was greater for low attractive younger faces, but not for low attractive older faces. Greater accuracy judging older faces’ health was paralleled by greater validity of attractiveness and looking older as predictors of their health. Greater accuracy judging younger faces’ competence was paralleled by greater validity of attractiveness and a positive expression as predictors of their competence. Although the ability to recognize variations in health and cognitive ability is preserved in older adulthood, the effects of face age on accuracy and the different effects of attractiveness across face age may alter social interactions across the life span. PMID:25244467

  18. Accuracy and coverage of the modernized Polish Maritime differential GPS system

    NASA Astrophysics Data System (ADS)

    Specht, Cezary

    2011-01-01

    The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works

  19. Evaluation of Pictorial Dietary Assessment Tool for Hospitalized Patients with Diabetes: Cost, Accuracy, and User Satisfaction Analysis

    PubMed Central

    Shahar, Suzana; Abdul Manaf, Zahara; Mohd Nordin, Nor Azlin; Susetyowati, Susetyowati

    2017-01-01

    Although nutritional screening and dietary monitoring in clinical settings are important, studies on related user satisfaction and cost benefit are still lacking. This study aimed to: (1) elucidate the cost of implementing a newly developed dietary monitoring tool, the Pictorial Dietary Assessment Tool (PDAT); and (2) investigate the accuracy of estimation and satisfaction of healthcare staff after the use of the PDAT. A cross-over intervention study was conducted among 132 hospitalized patients with diabetes. Cost and time for the implementation of PDAT in comparison to modified Comstock was estimated using the activity-based costing approach. Accuracy was expressed as the percentages of energy and protein obtained by both methods, which were within 15% and 30%, respectively, of those obtained by the food weighing. Satisfaction of healthcare staff was measured using a standardized questionnaire. Time to complete the food intake recording of patients using PDAT (2.31 ± 0.70 min) was shorter than when modified Comstock (3.53 ± 1.27 min) was used (p < 0.001). Overall cost per patient was slightly higher for PDAT (United States Dollar 0.27 ± 0.02) than for modified Comstock (USD 0.26 ± 0.04 (p < 0.05)). The accuracy of energy intake estimated by modified Comstock was 10% lower than that of PDAT. There was poorer accuracy of protein intake estimated by modified Comstock (<40%) compared to that estimated by the PDAT (>71%) (p < 0.05). Mean user satisfaction of healthcare staff was significantly higher for PDAT than that for modified Comstock (p < 0.05). PDAT requires a shorter time to be completed and was rated better than modified Comstock. PMID:29283401

  20. Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Torney, Colin J.; Levin, Simon A.; Couzin, Iain D.

    2013-04-01

    The opinions and actions of individuals within interacting groups are frequently determined by both social and personal information. When sociality (or the pressure to conform) is strong and individual preferences are weak, groups will remain cohesive until a consensus decision is reached. When group decisions are subject to a bias, representing for example private information known by some members of the population or imperfect information known by all, then the accuracy achieved for a fixed level of bias will increase with population size. In this work we determine how the scaling between accuracy and group size can be related to the microscopic properties of the decision-making process. By simulating a spatial model of opinion dynamics we show that the relationship between the instantaneous fraction of leaders in the population ( L), system size ( N), and accuracy depends on the frequency of individual opinion switches and the level of population viscosity. When social mixing is slow, and individual opinion changes are frequent, accuracy is determined by the absolute number of informed individuals. As mixing rates increase, or the rate of opinion updates decrease, a transition occurs to a regime where accuracy is determined by the value of L√{ N}. We investigate the transition between different scaling regimes analytically by examining a well-mixed limit.

  1. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Larson, Sandra C.

    2011-04-15

    Purpose: This study was performed to investigate the accuracies of the synthesized monochromatic images and effective atomic number maps obtained with the new GE Discovery CT750 HD CT scanner. Methods: A Gammex-RMI model 467 tissue characterization phantom and the CT number linearity section of a Phantom Laboratory Catphan 600 phantom were scanned using the dual energy (DE) feature on the GE CT750 HD scanner. Synthesized monochromatic images at various energies between 40 and 120 keV and effective atomic number (Z{sub eff}) maps were generated. Regions of interest were placed within these images/maps to measure the average monochromatic CT numbers andmore » average Z{sub eff} of the materials within these phantoms. The true Z{sub eff} values were either supplied by the phantom manufacturer or computed using Mayneord's equation. The linear attenuation coefficients for the true CT numbers were computed using the NIST XCOM program with the input of manufacturer supplied elemental compositions and densities. The effects of small variations in the assumed true densities of the materials were also investigated. Finally, the effect of body size on the accuracies of the synthesized monochromatic CT numbers was investigated using a custom lumbar section phantom with and without an external fat-mimicking ring. Results: Other than the Z{sub eff} of the simulated lung inserts in the tissue characterization phantom, which could not be measured by DECT, the Z{sub eff} values of all of the other materials in the tissue characterization and Catphan phantoms were accurate to 15%. The accuracies of the synthesized monochromatic CT numbers of the materials in both phantoms varied with energy and material. For the 40-120 keV range, RMS errors between the measured and true CT numbers in the Catphan are 8-25 HU when the true CT numbers were computed using the nominal plastic densities. These RMS errors improve to 3-12 HU for assumed true densities within the nominal density {+-}0.02 g

  2. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  3. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  4. Validation of geometric accuracy of Global Land Survey (GLS) 2000 data

    USGS Publications Warehouse

    Rengarajan, Rajagopalan; Sampath, Aparajithan; Storey, James C.; Choate, Michael J.

    2015-01-01

    The Global Land Survey (GLS) 2000 data were generated from Geocover™ 2000 data with the aim of producing a global data set of accuracy better than 25 m Root Mean Square Error (RMSE). An assessment and validation of accuracy of GLS 2000 data set, and its co-registration with Geocover™ 2000 data set is presented here. Since the availability of global data sets that have higher nominal accuracy than the GLS 2000 is a concern, the data sets were assessed in three tiers. In the first tier, the data were compared with the Geocover™ 2000 data. This comparison provided a means of localizing regions of higher differences. In the second tier, the GLS 2000 data were compared with systematically corrected Landsat-7 scenes that were obtained in a time period when the spacecraft pointing information was extremely accurate. These comparisons localize regions where the data are consistently off, which may indicate regions of higher errors. The third tier consisted of comparing the GLS 2000 data against higher accuracy reference data. The reference data were the Digital Ortho Quads over the United States, orthorectified SPOT data over Australia, and high accuracy check points obtained using triangulation bundle adjustment of Landsat-7 images over selected sites around the world. The study reveals that the geometric errors in Geocover™ 2000 data have been rectified in GLS 2000 data, and that the accuracy of GLS 2000 data can be expected to be better than 25 m RMSE for most of its constituent scenes.

  5. Accuracy, Sensitivity and Specificity of Fine Needle Aspiration Biopsy for Salivary Gland Tumors: A Retrospective Study from 2006 to 2011

    PubMed

    Silva, William P P; Stramandinoli-Zanicotti, Roberta T; Schussel, Juliana L; Ramos, Gyl H A; Ioshi, Sergio O; Sassi, Laurindo M

    2016-11-01

    Objective: This article concerns evaluation of the sensitivity, specificity and accuracy of FNAB for pre-surgical diagnosis of benign and malignant lesions of major and minor salivary glands of patients treated in the Department of Head and Neck Surgery of Erasto Gartner Hospital. Methods: This retrospective study analyzed medical records from January 2006 to December 2011 from patients with salivary gland lesions who underwent preoperative FNAB and, after surgical excision of the lesion, histopathological examination. Results: The study had a cohort of 130 cases, but 34 cases (26.2%) were considered unsatisfactory regarding cytology analyses. Based on the data, sensitivity was 66.7% (6/9), specificity was 81.6% (71/87), accuracy was 80.2% (77/96), the positive predictive value was 66,7% (6/9) and the negative predictive value was 81.6% (71/87). Conclusion: Despite the high rate of inadequate samples obtained in the FNAB in this study the technique offers high specificity, accuracy and acceptable sensitivity. Creative Commons Attribution License

  6. Illusory expectations can affect retrieval-monitoring accuracy.

    PubMed

    McDonough, Ian M; Gallo, David A

    2012-03-01

    The present study investigated how expectations, even when illusory, can affect the accuracy of memory decisions. Participants studied words presented in large or small font for subsequent memory tests. Replicating prior work, judgments of learning indicated that participants expected to remember large words better than small words, even though memory for these words was equivalent on a standard test of recognition memory and subjective judgments. Critically, we also included tests that instructed participants to selectively search memory for either large or small words, thereby allowing different memorial expectations to contribute to performance. On these tests we found reduced false recognition when searching memory for large words relative to small words, such that the size illusion paradoxically affected accuracy measures (d' scores) in the absence of actual memory differences. Additional evidence for the role of illusory expectations was that (a) the accuracy effect was obtained only when participants searched memory for the aspect of the stimuli corresponding to illusory expectations (size instead of color) and (b) the accuracy effect was eliminated on a forced-choice test that prevented the influence of memorial expectations. These findings demonstrate the critical role of memorial expectations in the retrieval-monitoring process. 2012 APA, all rights reserved

  7. 2D.02: ACCURACY OF ISOVOLUMETRIC CONTRACTION TIME OBTAINED BY CAROTID ARTERIAL TONOMETRY IN PATIENTS WITH CHRONIC LEFT VENTRICULAR FAILURE.

    PubMed

    Salvi, L; Grillo, A; Marelli, S; Gao, L; Giuliano, A; Trifirò, G; Santini, F; Pini, A; Salvi, P; Viecca, F; Carretta, R; Parati, G

    2015-06-01

    The Buckberg index (SEVR: subendocardial viability ratio) is considered a useful parameter for a non-invasive assessment of the relationship between subendocardial oxygen supply and demand. However, his classic calculation does not include the pre-ejection isovolumic contraction time in stroke work evaluation. The aim of our study was to evaluate the accuracy of the isovolumic contraction time obtained through the carotid pulse wave analysis, to be included in SEVR assessment. In 35 patients (mean age ± SD = 66 ± 13 yrs) followed-up for chronic left ventricular systolic failure (EF = 32 ± 8%) with no significant valvular disease, the pressure curve in the common carotid artery by tonometer (PulsePen) and the aortic transvalvular flow by EchocardioDoppler (Philips-EnVisor C-HD) were acquired simultaneously. The synchronization of data acquisition was verified by comparison of the RR intervals in the ECG signals recorded simultaneously to the two methods. The isovolumic contraction time was separately calculated by considering both the delay between the beginning of the aortic flow wave obtained by EchocardioDoppler and the R wave of the corresponding ECG, and the delay between the foot of the pressure wave recorded in the carotid artery by tonometry compared with the R wave of the corresponding ECG. The latter was corrected by considering the delay between ascending aorta and carotid pulses, computed as a function of the carotid-femoral pulse wave speed and of the distance between the point of carotid pulse acquisition and the sternal notch. The isovolumic contraction time computed by tonometry (68.8 ± 20.2 ms) was closely related to that measured with the EchocardioDoppler approach (68.8 ± 20.5 ms): y = 0.93x + 4.94; r = 0.93; p < 0.0001, with homogeneous distribution in Bland-Altman analysis (mean difference -0.1 ± 7.57 ms). The ratios between isovolumic contraction time and systolic ejection time

  8. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  9. Accuracy and Resolution in Micro-earthquake Tomographic Inversion Studies

    NASA Astrophysics Data System (ADS)

    Hutchings, L. J.; Ryan, J.

    2010-12-01

    Accuracy and resolution are complimentary properties necessary to interpret the results of earthquake location and tomography studies. Accuracy is the how close an answer is to the “real world”, and resolution is who small of node spacing or earthquake error ellipse one can achieve. We have modified SimulPS (Thurber, 1986) in several ways to provide a tool for evaluating accuracy and resolution of potential micro-earthquake networks. First, we provide synthetic travel times from synthetic three-dimensional geologic models and earthquake locations. We use this to calculate errors in earthquake location and velocity inversion results when we perturb these models and try to invert to obtain these models. We create as many stations as desired and can create a synthetic velocity model with any desired node spacing. We apply this study to SimulPS and TomoDD inversion studies. “Real” travel times are perturbed with noise and hypocenters are perturbed to replicate a starting location away from the “true” location, and inversion is performed by each program. We establish travel times with the pseudo-bending ray tracer and use the same ray tracer in the inversion codes. This, of course, limits our ability to test the accuracy of the ray tracer. We developed relationships for the accuracy and resolution expected as a function of the number of earthquakes and recording stations for typical tomographic inversion studies. Velocity grid spacing started at 1km, then was decreased to 500m, 100m, 50m and finally 10m to see if resolution with decent accuracy at that scale was possible. We considered accuracy to be good when we could invert a velocity model perturbed by 50% back to within 5% of the original model, and resolution to be the size of the grid spacing. We found that 100 m resolution could obtained by using 120 stations with 500 events, bu this is our current limit. The limiting factors are the size of computers needed for the large arrays in the inversion and a

  10. Regulation of memory accuracy with multiple answers: the plurality option.

    PubMed

    Luna, Karlos; Higham, Philip A; Martín-Luengo, Beatriz

    2011-06-01

    We report two experiments that investigated the regulation of memory accuracy with a new regulatory mechanism: the plurality option. This mechanism is closely related to the grain-size option but involves control over the number of alternatives contained in an answer rather than the quantitative boundaries of a single answer. Participants were presented with a slideshow depicting a robbery (Experiment 1) or a murder (Experiment 2), and their memory was tested with five-alternative multiple-choice questions. For each question, participants were asked to generate two answers: a single answer consisting of one alternative and a plural answer consisting of the single answer and two other alternatives. Each answer was rated for confidence (Experiment 1) or for the likelihood of being correct (Experiment 2), and one of the answers was selected for reporting. Results showed that participants used the plurality option to regulate accuracy, selecting single answers when their accuracy and confidence were high, but opting for plural answers when they were low. Although accuracy was higher for selected plural than for selected single answers, the opposite pattern was evident for confidence or likelihood ratings. This dissociation between confidence and accuracy for selected answers was the result of marked overconfidence in single answers coupled with underconfidence in plural answers. We hypothesize that these results can be attributed to overly dichotomous metacognitive beliefs about personal knowledge states that cause subjective confidence to be extreme.

  11. Tighter accuracy standards within point-of-care blood glucose monitoring: how six commonly used systems compare.

    PubMed

    Robinson, Charlotte S; Sharp, Patrick

    2012-05-01

    Blood glucose monitoring systems (BGMS) are used in the hospital environment to manage blood glucose levels in patients at the bedside. The International Organization for Standardization (ISO) 15197:2003 standard is currently used by regulatory bodies as a minimum requirement for the performance of BGMS, specific to self-testing. There are calls for the tightening of accuracy requirements and implementation of a standard specifically for point-of-care (POC) BGMS. The accuracy of six commonly used BGMS was assessed in a clinical setting, with 108 patients' finger stick capillary samples. Using the accuracy criteria from the existing standard and a range of tightened accuracy criteria, system performance was compared. Other contributors to system performance have been measured, including hematocrit sensitivity and meter error rates encountered in the clinical setting. Five of the six BGMS evaluated met current accuracy criteria within the ISO 15197 standard. Only the Optium Xceed system had >95% of all readings within a tightened criteria of ±12.5% from the reference at glucose levels ≥72 mg/dl (4 mmol/liter) and ±9 mg/dl (0.5 mmol/liter) at glucose levels <72 mg/dl (4 mmol/liter). The Nova StatStrip Xpress had the greatest number of error messages observed; Optium Xceed the least. OneTouch Ultra2, Nova StatStrip Xpress, Accu-Chek Performa, and Contour TS products were all significantly influenced by blood hematocrit levels. From evidence obtained during this clinical evaluation, the Optium Xceed system is most likely to meet future anticipated accuracy standards for POC BGMS. In this clinical study, the results demonstrated the Optium Xceed product to have the highest level of accuracy, to have the lowest occurrence of error messages, and to be least influenced by blood hematocrit levels. © 2012 Diabetes Technology Society.

  12. Accuracy assessment in the Large Area Crop Inventory Experiment

    NASA Technical Reports Server (NTRS)

    Houston, A. G.; Pitts, D. E.; Feiveson, A. H.; Badhwar, G.; Ferguson, M.; Hsu, E.; Potter, J.; Chhikara, R.; Rader, M.; Ahlers, C.

    1979-01-01

    The Accuracy Assessment System (AAS) of the Large Area Crop Inventory Experiment (LACIE) was responsible for determining the accuracy and reliability of LACIE estimates of wheat production, area, and yield, made at regular intervals throughout the crop season, and for investigating the various LACIE error sources, quantifying these errors, and relating them to their causes. Some results of using the AAS during the three years of LACIE are reviewed. As the program culminated, AAS was able not only to meet the goal of obtaining accurate statistical estimates of sampling and classification accuracy, but also the goal of evaluating component labeling errors. Furthermore, the ground-truth data processing matured from collecting data for one crop (small grains) to collecting, quality-checking, and archiving data for all crops in a LACIE small segment.

  13. Respiratory rate extraction from pulse oximeter and electrocardiographic recordings.

    PubMed

    Lee, Jinseok; Florian, John P; Chon, Ki H

    2011-11-01

    We present an algorithm of respiratory rate extraction using particle filter (PF), which is applicable to both photoplethysmogram (PPG) and electrocardiogram (ECG) signals. For the respiratory rate estimation, 1 min data are analyzed with combination of a PF method and an autoregressive model where among the resultant coefficients, the corresponding pole angle with the highest magnitude is searched since this reflects the closest approximation of the true breathing rate. The PPG data were collected from 15 subjects with the metronome breathing rate ranging from 24 to 36 breaths per minute in the supine and upright positions. The ECG data were collected from 11 subjects with spontaneous breathing ranging from 36 to 60 breaths per minute during treadmill exercises. Our method was able to accurately extract respiratory rates for both metronome and spontaneous breathing even during strenuous exercises. More importantly, despite slow increases in breathing rates concomitant with greater exercise vigor with time, our method was able to accurately track these progressive increases in respiratory rates. We quantified the accuracy of our method by using the mean, standard deviation and interquartile range of the error rates which all reflected high accuracy in estimating the true breathing rates. We are not aware of any other algorithms that are able to provide accurate respiratory rates directly from either ECG signals or PPG signals with spontaneous breathing during strenuous exercises. Our method is near real-time realizable because the computational time on 1 min data segment takes only 10 ms on a 2.66 GHz Intel Core2 microprocessor; the data are subsequently shifted every 10 s to obtain near-continuous breathing rates. This is an attractive feature since most other techniques require offline data analyses to estimate breathing rates.

  14. Rate in template-directed polymer synthesis.

    PubMed

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  15. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate

    NASA Astrophysics Data System (ADS)

    Polprasert, Chantri; Kukieattikool, Pratana; Demeechai, Tanee; Ritcey, James A.; Siwamogsatham, Siwaruk

    2013-06-01

    Objective. We propose a new stimulation pattern design for the P300-based matrix speller aimed at increasing the minimum target-to-target interval (TTI). Approach. Inspired by the simplicity and strong performance of the conventional row-column (RC) stimulation, the proposed stimulation is obtained by modifying the RC stimulation through alternating row and column flashes which are selected based on the proposed design rules. The second flash of the double-flash components is then delayed for a number of flashing instants to increase the minimum TTI. The trade-off inherited in this approach is the reduced randomness within the stimulation pattern. Main results. We test the proposed stimulation pattern and compare its performance in terms of selection accuracy, raw and practical bit rates with the conventional RC flashing paradigm over several flash rates. By increasing the minimum TTI within the stimulation sequence, the proposed stimulation has more event-related potentials that can be identified compared to that of the conventional RC stimulations, as the flash rate increases. This leads to significant performance improvement in terms of the letter selection accuracy, the raw and practical bit rates over the conventional RC stimulation. Significance. These studies demonstrate that significant performance improvement over the RC stimulation is obtained without additional testing or training samples to compensate for low P300 amplitude at high flash rate. We show that our proposed stimulation is more robust to reduced signal strength due to the increased flash rate than the RC stimulation.

  16. Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy

    PubMed Central

    Wong, Yau; Chao, Jerry; Lin, Zhiping; Ober, Raimund J.

    2014-01-01

    In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. PMID:25321248

  17. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  18. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study.

    PubMed

    Elmore, Joann G; Tosteson, Anna Na; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-06-22

     To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology.  Simulation study.  12 different strategies for acquiring independent second opinions.  Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus.  Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists' clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice.  Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for cases with initial interpretations of atypia, DCIS, or invasive

  19. No special K! A signal detection framework for the strategic regulation of memory accuracy.

    PubMed

    Higham, Philip A

    2007-02-01

    Two experiments investigated criterion setting and metacognitive processes underlying the strategic regulation of accuracy on the Scholastic Aptitude Test (SAT) using Type-2 signal detection theory (SDT). In Experiment 1, report bias was manipulated by penalizing participants either 0.25 (low incentive) or 4 (high incentive) points for each error. Best guesses to unanswered items were obtained so that Type-2 signal detection indices of discrimination and bias could be calculated. The same incentive manipulation was used in Experiment 2, only the test was computerized, confidence ratings were taken so that receiver operating characteristic (ROC) curves could be generated, and feedback was manipulated. The results of both experiments demonstrated that SDT provides a viable alternative to A. Koriat and M. Goldsmith's (1996c) framework of monitoring and control and reveals information about the regulation of accuracy that their framework does not. For example, ROC analysis indicated that the threshold model implied by formula scoring is inadequate. Instead, performance on the SAT should be modeled with an equal-variance Gaussian, Type-2 signal detection model. ((c) 2007 APA, all rights reserved).

  20. Accuracy of References in Five Entomology Journals.

    ERIC Educational Resources Information Center

    Kristof, Cynthia

    ln this paper, the bibliographical references in five core entomology journals are examined for citation accuracy in order to determine if the error rates are similar. Every reference printed in each journal's first issue of 1992 was examined, and these were compared to the original (cited) publications, if possible, in order to determine the…

  1. Measurement accuracy and perceived quality of imaging systems for the evaluation of periodontal structures.

    PubMed

    Baksi, B Güniz

    2008-07-01

    The aim of this study was to compare the subjective diagnostic quality of F-speed film images and original and enhanced storage phosphor plate (SPP) digital images for the visualization of periodontal ligament space (PLS) and periapical (PB) and alveolar crestal bone (CB) and to assess the accuracy of these image modalities for the measurement of alveolar bone levels. Standardized images of six dried mandibles were obtained with film and Digora SPPs. Six evaluators rated the visibility of anatomical structures using a three-point scale. Alveolar bone levels were measured from the coronal-most tip of the marginal bone to a reference point. Results were compared by using Friedman and Wilcoxon signed-ranks tests. The kappa (kappa) statistic was used to measure agreement among observers. The measurements were compared using repeated measures analysis of variance and Bonferroni tests (P = 0.05). A paired t test was used for comparison with true bone levels (P = 0.05). Enhanced SPP images were rated superior, followed by film and then the original SPP images, for the evaluation of anatomical structures. The value of kappa rose from fair to substantial after the enhancement of the SPP images. Film and enhanced SPP images provided alveolar bone lengths close to the true bone lengths. Enhancement of digital images provided better visibility and resulted in comparable accuracy to film images for the evaluation of periodontal structures.

  2. Modulating speed-accuracy strategies in major depression.

    PubMed

    Vallesi, Antonino; Canalaz, Francesca; Balestrieri, Matteo; Brambilla, Paolo

    2015-01-01

    Depression is associated with deficits in cognitive flexibility. The role of general slowing in modulating more specific cognitive deficits is however unclear. We assessed how depression affects the capacity to strategically adapt behavior between harsh and prudent response modalities and how general and specific processes may contribute to performance deficits. Patients suffering from major depression and age- and education-matched healthy controls were asked to randomly stress either speed or accuracy during perceptual decision-making. Diffusion models showed that patients with depression kept using a less conservative strategy after a trial with speed vs. accuracy instructions. Additionally, the depression group showed a slower rate of evidence accumulation as indicated by a generally lower drift rate. These data demonstrate that less efficient strategic regulation of behavior in depression is due not only to general slowing, but also to more specific deficits, such as a rigid dependence on past contextual instructions. Future studies should investigate the neuro-anatomical basis of this deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessment of neuropsychiatric symptoms in dementia: toward improving accuracy

    PubMed Central

    Stella, Florindo

    2013-01-01

    The issue of this article concerned the discussion about tools frequently used tools for assessing neuropsychiatric symptoms of patients with dementia, particularly Alzheimer's disease. The aims were to discuss the main tools for evaluating behavioral disturbances, and particularly the accuracy of the Neuropsychiatric Inventory – Clinician Rating Scale (NPI-C). The clinical approach to and diagnosis of neuropsychiatric syndromes in dementia require suitable accuracy. Advances in the recognition and early accurate diagnosis of psychopathological symptoms help guide appropriate pharmacological and non-pharmacological interventions. In addition, recommended standardized and validated measurements contribute to both scientific research and clinical practice. Emotional distress, caregiver burden, and cognitive impairment often experienced by elderly caregivers, may affect the quality of caregiver reports. The clinician rating approach helps attenuate these misinterpretations. In this scenario, the NPI-C is a promising and versatile tool for assessing neuropsychiatric syndromes in dementia, offering good accuracy and high reliability, mainly based on the diagnostic impression of the clinician. This tool can provide both strategies: a comprehensive assessment of neuropsychiatric symptoms in dementia or the investigation of specific psychopathological syndromes such as agitation, depression, anxiety, apathy, sleep disorders, and aberrant motor disorders, among others. PMID:29213846

  4. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  5. High-density marker imputation accuracy in sixteen French cattle breeds.

    PubMed

    Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal

    2013-09-03

    Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No

  6. The accuracy of pain and fatigue items across different reporting periods

    PubMed Central

    Broderick, Joan E.; Schwartz, Joseph E.; Vikingstad, Gregory; Pribbernow, Michelle; Grossman, Steven; Stone, Arthur A.

    2008-01-01

    The length of the reporting period specified for items assessing pain and fatigue varies among instruments. How the length of recall impacts the accuracy of symptom reporting is largely unknown. This study investigated the accuracy of ratings for reporting periods ranging from 1 day to 28 days for several items from widely used pain and fatigue measures (SF36v2, Brief Pain Inventory, McGill Pain Questionnaire, Brief Fatigue Inventory). Patients from a community rheumatology practice (N=83) completed momentary pain and fatigue items on average 5.4 times per day for a month using an electronic diary. Averaged momentary ratings formed the basis for comparison with recall ratings interspersed throughout the month referencing 1-day, 3-day, 7-day, and 28-day periods. As found in previous research, recall ratings were consistently inflated relative to averaged momentary ratings. Across most items, 1-day recall corresponded well to the averaged momentary assessments for the day. Several, but not all, items demonstrated substantial correlations across the different reporting periods. An additional 7 day-by-day recall task suggested that patients have increasing difficulty actually remembering symptom levels beyond the past several days. These data were collected while patients were receiving usual care and may not generalize to conditions where new interventions are being introduced and outcomes evaluated. Reporting periods can influence the accuracy of retrospective symptom reports and should be a consideration in study design. PMID:18455312

  7. Neural correlates of empathic accuracy in adolescence

    PubMed Central

    Kral, Tammi R A; Solis, Enrique; Mumford, Jeanette A; Schuyler, Brianna S; Flook, Lisa; Rifken, Katharine; Patsenko, Elena G

    2017-01-01

    Abstract Empathy, the ability to understand others’ emotions, can occur through perspective taking and experience sharing. Neural systems active when adults empathize include regions underlying perspective taking (e.g. medial prefrontal cortex; MPFC) and experience sharing (e.g. inferior parietal lobule; IPL). It is unknown whether adolescents utilize networks implicated in both experience sharing and perspective taking when accurately empathizing. This question is critical given the importance of accurately understanding others’ emotions for developing and maintaining adaptive peer relationships during adolescence. We extend the literature on empathy in adolescence by determining the neural basis of empathic accuracy, a behavioral assay of empathy that does not bias participants toward the exclusive use of perspective taking or experience sharing. Participants (N = 155, aged 11.1–15.5 years) watched videos of ‘targets’ describing emotional events and continuously rated the targets’ emotions during functional magnetic resonance imaging scanning. Empathic accuracy related to activation in regions underlying perspective taking (MPFC, temporoparietal junction and superior temporal sulcus), while activation in regions underlying experience sharing (IPL, anterior cingulate cortex and anterior insula) related to lower empathic accuracy. These results provide novel insight into the neural basis of empathic accuracy in adolescence and suggest that perspective taking processes may be effective for increasing empathy. PMID:28981837

  8. The effect of stimulus strength on the speed and accuracy of a perceptual decision.

    PubMed

    Palmer, John; Huk, Alexander C; Shadlen, Michael N

    2005-05-02

    Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.

  9. Content in Context Improves Deception Detection Accuracy

    ERIC Educational Resources Information Center

    Blair, J. Pete; Levine, Timothy R.; Shaw, Allison S.

    2010-01-01

    Past research has shown that people are only slightly better than chance at distinguishing truths from lies. Higher accuracy rates, however, are possible when contextual knowledge is used to judge the veracity of situated message content. The utility of content in context was shown in a series of experiments with students (N = 26, 45, 51, 25, 127)…

  10. [Comparison of the activity and yield rate of osteoblast obtained by different digestion methods].

    PubMed

    Li, Ling-hui; Ding, Dao-Fang; Du, Guo-Qing; Wang, Hui-Hao; Zhan, Hong-Sheng

    2013-04-01

    To compared the activity and yield rate of osteoblast obtained by different collagenase digestion methods, to find a better way to extract osteoblast for the experimental researches of osteoporosis. Ten 24-hour-old SD rats were were euthanized. The cranium of rats were removed and cuted into blocks of 1 mm x 1 mm size. After digested by trypsin for 15 min, all the cranium were divided into two equal parts, and randomly divided into two groups which would be digested by type I collagenase and type II collagenase separately for two times. The rat cells of the two groups were cultured in thermostat incubator with 5% CO2 under the condition of 37 degrees C. The primary culture osteoblasts were counted by using a haemacytometer after digestion and 72 hours later. The second generation osteoblasts cultured 48 h were dyed by NBT/BCIP staining solution, and were detected by quantitative measurement with PNPP. The cells had irregular shapes. The results of cell counting showed that the cell number of type I group was larger than type 11 group. Alkaline phosphatase dyeing were positive. Detecting of alkaline phosphatase using the method of PNPP showed that the absorbance value in type I group were higher than type II group (P<0.05). Two types of collagenase are both suitable for the in vitro culture of rat osteoblasts. The activity and yield rate of osteoblasts in type I group are higher which could provide more stable seed cells for the treatment of osteoporosis.

  11. The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1981-01-01

    Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.

  12. Measurement of the magnetotail reconnection rate

    NASA Astrophysics Data System (ADS)

    Blanchard, G. T.; Lyons, L. R.; de la Beaujardière, O.; Doe, R. A.; Mendillo, M.

    1996-07-01

    A technique to measure the magnetotail reconnection rate from the ground is described and applied to 71 hours of measurements from 20 nights. The reconnection rate is obtained from the ionospheric flow across the polar cap boundary in the frame of reference of the boundary, measured by the Sondrestrom incoherent scatter radar. For our measurements, the polar cap boundary is located using 6300 Å auroral emissions and E region electron density. The average experimental uncertainty of the reconnection rate measurement is 11.6 mVm-1 in the ionospheric electric field. By using a large data set, we obtain the dependence of the reconnection rate on magnetic local time, the interplanetary magnetic field, and substorm activity, with much higher accuracy. We find that two thirds of the average polar cap potential drop occurs over the 4-hour segment of the separatrix centered on 2330 MLT, that the linear correlation between the reconnection electric field and the half-wave rectified dawn-dusk solar wind electric field VBs peaks between 1.0 and 1.5 hours, with a maximum linear correlation coefficient of 0.46 at 70 min; and that following substorm expansion phase onset, the reconnection electric field becomes larger than the experimental uncertainty, with an average delay of 23 min. The 70-min delay of the reconnection rate with respect to VBs is a typical convection time for a flux tube across the polar cap. This result indicates that reconnection in the magnetotail is influenced by the solar wind electric field VBs on the field line being reconnected.

  13. Examining the accuracy of foodservice in a hospital setting.

    PubMed

    Glover, N S; Keane, T M

    1984-09-01

    Although a great deal of research has been conducted to determine the appropriate diets for the prevention and treatment of various illnesses, there is very little in the literature about research that directly assesses the accuracy of the prescribed diets served to patients in a hospital setting. The present study was designed to evaluate the accuracy of meals served to patients by identifying critical errors and more general errors on trays about to be served. The results indicated that the error rate was greater on weekends and holidays than during the week. Significantly, a correlational analysis revealed that error rate was inversely related to the total number of foodservice supervisors and more specifically to the number of food production supervisors and registered dietitians present. The implications of the results for possible interventions and training are discussed.

  14. Accuracy of cited "facts" in medical research articles: A review of study methodology and recalculation of quotation error rate.

    PubMed

    Mogull, Scott A

    2017-01-01

    Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).

  15. The assessment of accuracy of inner shapes manufactured by FDM

    NASA Astrophysics Data System (ADS)

    Gapiński, Bartosz; Wieczorowski, Michał; Båk, Agata; Domínguez, Alejandro Pereira; Mathia, Thomas

    2018-05-01

    3D printing created a totally new manufacturing possibilities. It is possible e.g. to produce closed inner shapes with different geometrical features. Unfortunately traditional methods are not suitable to verify the manufacturing accuracy, because it would be necessary to cut workpieces. In the paper the possibilities of computed tomography (x-ray micro-CT) application for accuracy assessment of inner shapes are presented. This was already reported in some papers. For research works hollow cylindrical samples with 20mm diameter and 300mm length were manufactured by means of FDM. A sphere, cone and cube were put inside these elements. All measurements were made with the application of CT. The measurement results enable us to obtain a full geometrical image of both inner and outer surfaces of a cylinder as well as shapes of inner elements. Additionally, it is possible to inspect the structure of a printed element - size and location of supporting net and all the other supporting elements necessary to hold up the walls created over empty spaces. The results obtained with this method were compared with CAD models which were a source of data for 3D printing. This in turn made it possible to assess the manufacturing accuracy of particular figures inserted into the cylinders. The influence of location of the inner supporting walls on a shape deformation was also investigated. The results obtained with this way show us how important CT can be during the assessment of 3D printing of objects.

  16. Accuracy Study of a 2-Component Point Doppler Velocimeter (PDV)

    NASA Technical Reports Server (NTRS)

    Kuhlman, John; Naylor, Steve; James, Kelly; Ramanath, Senthil

    1997-01-01

    A two-component Point Doppler Velocimeter (PDV) which has recently been developed is described, and a series of velocity measurements which have been obtained to quantify the accuracy of the PDV system are summarized. This PDV system uses molecular iodine vapor cells as frequency discriminating filters to determine the Doppler shift of laser light which is scattered off of seed particles in a flow. The majority of results which have been obtained to date are for the mean velocity of a rotating wheel, although preliminary data are described for fully-developed turbulent pipe flow. Accuracy of the present wheel velocity data is approximately +/- 1 % of full scale, while linearity of a single channel is on the order of +/- 0.5 % (i.e., +/- 0.6 m/sec and +/- 0.3 m/sec, out of 57 m/sec, respectively). The observed linearity of these results is on the order of the accuracy to which the speed of the rotating wheel has been set for individual data readings. The absolute accuracy of the rotating wheel data is shown to be consistent with the level of repeatability of the cell calibrations. The preliminary turbulent pipe flow data show consistent turbulence intensity values, and mean axial velocity profiles generally agree with pitot probe data. However, there is at present an offset error in the radial velocity which is on the order of 5-10 % of the mean axial velocity.

  17. Martial arts striking hand peak acceleration, accuracy and consistency.

    PubMed

    Neto, Osmar Pinto; Marzullo, Ana Carolina De Miranda; Bolander, Richard P; Bir, Cynthia A

    2013-01-01

    The goal of this paper was to investigate the possible trade-off between peak hand acceleration and accuracy and consistency of hand strikes performed by martial artists of different training experiences. Ten male martial artists with training experience ranging from one to nine years volunteered to participate in the experiment. Each participant performed 12 maximum effort goal-directed strikes. Hand acceleration during the strikes was obtained using a tri-axial accelerometer block. A pressure sensor matrix was used to determine the accuracy and consistency of the strikes. Accuracy was estimated by the radial distance between the centroid of each subject's 12 strikes and the target, whereas consistency was estimated by the square root of the 12 strikes mean squared distance from their centroid. We found that training experience was significantly correlated to hand peak acceleration prior to impact (r(2)=0.456, p =0.032) and accuracy (r(2)=0. 621, p=0.012). These correlations suggest that more experienced participants exhibited higher hand peak accelerations and at the same time were more accurate. Training experience, however, was not correlated to consistency (r(2)=0.085, p=0.413). Overall, our results suggest that martial arts training may lead practitioners to achieve higher striking hand accelerations with better accuracy and no change in striking consistency.

  18. A novel technique for fetal heart rate estimation from Doppler ultrasound signal

    PubMed Central

    2011-01-01

    Background The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography. Methods We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation. Results The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid. Conclusions The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements. PMID:21999764

  19. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept

    NASA Astrophysics Data System (ADS)

    Hao, Tian; Xu, Yuanze; Hao, Ting

    2018-04-01

    The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.

  20. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  1. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients.

    PubMed

    Duan, Jun; Han, Xiaoli; Bai, Linfu; Zhou, Lintong; Huang, Shicong

    2017-02-01

    To develop and validate a scale using variables easily obtained at the bedside for prediction of failure of noninvasive ventilation (NIV) in hypoxemic patients. The test cohort comprised 449 patients with hypoxemia who were receiving NIV. This cohort was used to develop a scale that considers heart rate, acidosis, consciousness, oxygenation, and respiratory rate (referred to as the HACOR scale) to predict NIV failure, defined as need for intubation after NIV intervention. The highest possible score was 25 points. To validate the scale, a separate group of 358 hypoxemic patients were enrolled in the validation cohort. The failure rate of NIV was 47.8 and 39.4% in the test and validation cohorts, respectively. In the test cohort, patients with NIV failure had higher HACOR scores at initiation and after 1, 12, 24, and 48 h of NIV than those with successful NIV. At 1 h of NIV the area under the receiver operating characteristic curve was 0.88, showing good predictive power for NIV failure. Using 5 points as the cutoff value, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for NIV failure were 72.6, 90.2, 87.2, 78.1, and 81.8%, respectively. These results were confirmed in the validation cohort. Moreover, the diagnostic accuracy for NIV failure exceeded 80% in subgroups classified by diagnosis, age, or disease severity and also at 1, 12, 24, and 48 h of NIV. Among patients with NIV failure with a HACOR score of >5 at 1 h of NIV, hospital mortality was lower in those who received intubation at ≤12 h of NIV than in those intubated later [58/88 (66%) vs. 138/175 (79%); p = 0.03). The HACOR scale variables are easily obtained at the bedside. The scale appears to be an effective way of predicting NIV failure in hypoxemic patients. Early intubation in high-risk patients may reduce hospital mortality.

  2. Comparison of the accuracy of steroid placement with clinical outcome in patients with shoulder symptoms

    PubMed Central

    Eustace, J; Brophy, D; Gibney, R; Bresnihan, B; FitzGerald, O

    1997-01-01

    OBJECTIVE—To study the effect of accuracy on the clinical outcome of local steroid injections to the shoulder.
METHODS—37 patients with shoulder symptoms of at least two months' duration received local injections of a mixture of triamcinolone and radiographic contrast material using a standardised technique. Radiographs of the joint were taken immediately afterwards. Details of the patients' symptoms (assessed by visual analogue scales) and range of movement at the joint were obtained before and two weeks after the injection. At follow up the patients were also assessed by means of a five point global rating scale of maximum and current benefit.
RESULTS—14 of the 38 procedures (37%) were judged to be accurately placed: four of the 14 attempted subacromial injections (29%) and 10 of the 24 attempted glenohumeral injections (42%). There were significant differences in relation to outcome between the accurately placed and the inaccurately placed groups.
CONCLUSIONS—Accuracy of steroid placement by injection in patients with shoulder symptoms may significantly affect the clinical outcome.

 PMID:9059143

  3. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions.

    PubMed

    Markowitz, Daniel; Lin, Dishen; Salas, Sussan; Kohn, Nina; Schulder, Michael

    2017-01-01

    Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy. © 2017 S. Karger AG, Basel.

  4. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    PubMed

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  5. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  6. Precision and accuracy of age estimates obtained from anal fin spines, dorsal fin spines, and sagittal otoliths for known-age largemouth bass

    USGS Publications Warehouse

    Klein, Zachary B.; Bonvechio, Timothy F.; Bowen, Bryant R.; Quist, Michael C.

    2017-01-01

    Sagittal otoliths are the preferred aging structure for Micropterus spp. (black basses) in North America because of the accurate and precise results produced. Typically, fisheries managers are hesitant to use lethal aging techniques (e.g., otoliths) to age rare species, trophy-size fish, or when sampling in small impoundments where populations are small. Therefore, we sought to evaluate the precision and accuracy of 2 non-lethal aging structures (i.e., anal fin spines, dorsal fin spines) in comparison to that of sagittal otoliths from known-age Micropterus salmoides (Largemouth Bass; n = 87) collected from the Ocmulgee Public Fishing Area, GA. Sagittal otoliths exhibited the highest concordance with true ages of all structures evaluated (coefficient of variation = 1.2; percent agreement = 91.9). Similarly, the low coefficient of variation (0.0) and high between-reader agreement (100%) indicate that age estimates obtained from sagittal otoliths were the most precise. Relatively high agreement between readers for anal fin spines (84%) and dorsal fin spines (81%) suggested the structures were relatively precise. However, age estimates from anal fin spines and dorsal fin spines exhibited low concordance with true ages. Although use of sagittal otoliths is a lethal technique, this method will likely remain the standard for aging Largemouth Bass and other similar black bass species.

  7. Impacts of land use/cover classification accuracy on regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.

    2007-03-01

    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  8. Predictive Accuracy of Exercise Stress Testing the Healthy Adult.

    ERIC Educational Resources Information Center

    Lamont, Linda S.

    1981-01-01

    Exercise stress testing provides information on the aerobic capacity, heart rate, and blood pressure responses to graded exercises of a healthy adult. The reliability of exercise tests as a diagnostic procedure is discussed in relation to sensitivity and specificity and predictive accuracy. (JN)

  9. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  10. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  11. An accuracy assessment of positions obtained using survey- and recreational-grade Global Positioning System receivers across a range of forest conditions within the Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Tobey Clarkin; Ken Winterberger; Jacob Strunk

    2009-01-01

    The accuracy of recreational- and survey-grade global positioning system (GPS) receivers was evaluated across a range of forest conditions in the Tanana Valley of interior Alaska. High-accuracy check points, established using high-order instruments and closed-traverse surveying methods, were then used to evaluate the accuracy of positions acquired in different forest...

  12. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  13. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  14. High dose rates obtained outside ISS in June 2015 during SEP event

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7 MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000 μGy h-1, while the inner radiation belt maximum dose was at the level of 2200 μGy h-1. If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84 mGy after 6.5 h, which is similar to the average absorbed dose inside ISS for 15 days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.

  15. Establishment of quality assurance for respiratory-gated radiotherapy using a respiration-simulating phantom and gamma index: Evaluation of accuracy taking into account tumor motion and respiratory cycle

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The purpose of this study is to present a new method of quality assurance (QA) in order to ensure effective evaluation of the accuracy of respiratory-gated radiotherapy (RGR). This would help in quantitatively analyzing the patient's respiratory cycle and respiration-induced tumor motion and in performing a subsequent comparative analysis of dose distributions, using the gamma-index method, as reproduced in our in-house developed respiration-simulating phantom. Therefore, we designed a respiration-simulating phantom capable of reproducing the patient's respiratory cycle and respiration-induced tumor motion and evaluated the accuracy of RGR by estimating its pass rates. We applied the gamma index passing criteria of accepted error ranges of 3% and 3 mm for the dose distribution calculated by using the treatment planning system (TPS) and the actual dose distribution of RGR. The pass rate clearly increased inversely to the gating width chosen. When respiration-induced tumor motion was 12 mm or less, pass rates of 85% and above were achieved for the 30-70% respiratory phase, and pass rates of 90% and above were achieved for the 40-60% respiratory phase. However, a respiratory cycle with a very small fluctuation range of pass rates failed to prove reliable in evaluating the accuracy of RGR. Therefore, accurate and reliable outcomes of radiotherapy will be obtainable only by establishing a novel QA system using the respiration-simulating phantom, the gamma-index analysis, and a quantitative analysis of diaphragmatic motion, enabling an indirect measurement of tumor motion.

  16. A randomized trial to determine the diagnostic accuracy of conventional vs. jumbo forceps biopsy of gastric epithelial neoplasias before endoscopic submucosal dissection; open-label study.

    PubMed

    Jeon, Hyo Keun; Ryu, Ho Yoel; Cho, Mee Yon; Kim, Hyun-Soo; Kim, Jae Woo; Park, Hong Jun; Kim, Moon Young; Baik, Soon Koo; Kwon, Sang Ok; Park, Su Yeon; Won, Sung Ho

    2014-10-01

    Larger biopsy specimens or increasing the number of biopsies may improve the diagnostic accuracy of gastric epithelial neoplasia (GEN). The aims of this study was to compare the diagnostic accuracies between conventional and jumbo forceps biopsy of GEN before endoscopic submucosal dissection (ESD) and to confirm that increasing the number of biopsies is useful for the diagnosis of GEN. The concordance rate between EFB and ESD specimens was not significantly different between the two groups [83.1 % (54/65) in JG vs. 79.1 % (53/67) in CG]. On multivariate analyses, two or four EFBs significantly increased the cumulating concordance rate [coefficients; twice: 5.1 (P = 0.01), four times: 5.9 (P = 0.02)]. But, the concordance rate was decreased in high grade dysplasia (coefficient -40.32, P = 0.006). One hundred and sixty GENs from 148 patients were randomized into two groups and finally 67 GENs in 61 patients and 65 GENs in 63 patients were allocated to the conventional group (CG) or jumbo group (JG), respectively. Four endoscopic forceps biopsy (EFB) specimens were obtained from each lesion with conventional (6.8 mm) forceps or jumbo (8 mm) forceps. The histological concordance rate between 4 EFB specimens and ESD specimens was investigated in the two groups. Before ESD, the diagnostic accuracy of GENs was significantly increased not by the use of jumbo forceps biopsy but by increasing the number of biopsies.

  17. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  18. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  19. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  20. The reliability and accuracy of estimating heart-rates from RGB video recorded on a consumer grade camera

    NASA Astrophysics Data System (ADS)

    Eaton, Adam; Vincely, Vinoin; Lloyd, Paige; Hugenberg, Kurt; Vishwanath, Karthik

    2017-03-01

    Video Photoplethysmography (VPPG) is a numerical technique to process standard RGB video data of exposed human skin and extracting the heart-rate (HR) from the skin areas. Being a non-contact technique, VPPG has the potential to provide estimates of subject's heart-rate, respiratory rate, and even the heart rate variability of human subjects with potential applications ranging from infant monitors, remote healthcare and psychological experiments, particularly given the non-contact and sensor-free nature of the technique. Though several previous studies have reported successful correlations in HR obtained using VPPG algorithms to HR measured using the gold-standard electrocardiograph, others have reported that these correlations are dependent on controlling for duration of the video-data analyzed, subject motion, and ambient lighting. Here, we investigate the ability of two commonly used VPPG-algorithms in extraction of human heart-rates under three different laboratory conditions. We compare the VPPG HR values extracted across these three sets of experiments to the gold-standard values acquired by using an electrocardiogram or a commercially available pulseoximeter. The two VPPG-algorithms were applied with and without KLT-facial feature tracking and detection algorithms from the Computer Vision MATLAB® toolbox. Results indicate that VPPG based numerical approaches have the ability to provide robust estimates of subject HR values and are relatively insensitive to the devices used to record the video data. However, they are highly sensitive to conditions of video acquisition including subject motion, the location, size and averaging techniques applied to regions-of-interest as well as to the number of video frames used for data processing.

  1. Estimation of accuracy of earth-rotation parameters in different frequency bands

    NASA Astrophysics Data System (ADS)

    Vondrak, J.

    1986-11-01

    The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.

  2. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  3. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  4. High-density marker imputation accuracy in sixteen French cattle breeds

    PubMed Central

    2013-01-01

    Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at

  5. River rating complexity

    USGS Publications Warehouse

    Holmes, Robert R.

    2016-01-01

    Accuracy of streamflow data depends on the veracity of the rating model used to derive a continuous time series of discharge from the surrogate variables that can readily be collected autonomously at a streamgage. Ratings are typically represented as a simple monotonic increasing function (simple rating), meaning the discharge is a function of stage alone, however this is never truly the case unless the flow is completely uniform at all stages and in transitions from one stage to the next. For example, at some streamflow-monitoring sites the discharge on the rising limb of the hydrograph is discernably larger than the discharge at the same stage on the falling limb of the hydrograph. This is the so-called “loop rating curve” (loop rating). In many cases, these loops are quite small and variation between rising- and falling-limb discharge measurements made at the same stage are well within the accuracy of the measurements. However, certain hydraulic conditions can produce a loop that is large enough to preclude use of a monotonic rating. A detailed data campaign for the Mississippi River at St. Louis, Missouri during a multi-peaked flood over a 56-day period in 2015 demonstrates the rating complexity at this location. The shifting-control method used to deal with complexity at this site matched all measurements within 8%.

  6. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  7. How variations in distance affect eyewitness reports and identification accuracy.

    PubMed

    Lindsay, R C L; Semmler, Carolyn; Weber, Nathan; Brewer, Neil; Lindsay, Marilyn R

    2008-12-01

    Witnesses observe crimes at various distances and the courts have to interpret their testimony given the likely quality of witnesses' views of events. We examined how accurately witnesses judged the distance between themselves and a target person, and how distance affected description accuracy, choosing behavior, and identification test accuracy. Over 1,300 participants were approached during normal daily activities, and asked to observe a target person at one of a number of possible distances. Under a Perception, Immediate Memory, or Delayed Memory condition, witnesses provided a brief description of the target, estimated the distance to the target, and then examined a 6-person target-present or target-absent lineup to see if they could identify the target. Errors in distance judgments were often substantial. Description accuracy was mediocre and did not vary systematically with distance. Identification choosing rates were not affected by distance, but decision accuracy declined with distance. Contrary to previous research, a 15-m viewing distance was not critical for discriminating accurate from inaccurate decisions.

  8. Feedback on the Rate and Depth of Chest Compressions during Cardiopulmonary Resuscitation Using Only Accelerometers

    PubMed Central

    Ruiz de Gauna, Sofía; González-Otero, Digna M.; Ruiz, Jesus; Russell, James K.

    2016-01-01

    Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest

  9. Prediction of Mechanical Behaviour of Low Carbon Steel at High Strain Rate Using Thermal Activation Theory and Static Data

    NASA Astrophysics Data System (ADS)

    Ogawa, Kinya; Kobayashi, Hidetoshi; Sugiyama, Fumiko; Horikawa, Keitaro

    Thermal activation theory is well-known to be a useful theory to explain the mechanical behaviour of various metals in the wide range of temperature and strain-rate. In this study, a number of trials to obtain the lower yield stress or flow stress at high strain rates from quasi-static data were carried out using the data shown in the report titled “The final report of research group on high-speed deformation of steels for automotive use”. A relation between the thermal component of stress and the strain rate obtained from experiments for αFe and the temperature-strain rate parameter were used with thermal activation theory. The predictions were successfully performed and they showed that the stress-strain behaviour at high strain rates can be evaluated from quasi-static data with good accuracy.

  10. Accuracy of CNV Detection from GWAS Data.

    PubMed

    Zhang, Dandan; Qian, Yudong; Akula, Nirmala; Alliey-Rodriguez, Ney; Tang, Jinsong; Gershon, Elliot S; Liu, Chunyu

    2011-01-13

    Several computer programs are available for detecting copy number variants (CNVs) using genome-wide SNP arrays. We evaluated the performance of four CNV detection software suites--Birdsuite, Partek, HelixTree, and PennCNV-Affy--in the identification of both rare and common CNVs. Each program's performance was assessed in two ways. The first was its recovery rate, i.e., its ability to call 893 CNVs previously identified in eight HapMap samples by paired-end sequencing of whole-genome fosmid clones, and 51,440 CNVs identified by array Comparative Genome Hybridization (aCGH) followed by validation procedures, in 90 HapMap CEU samples. The second evaluation was program performance calling rare and common CNVs in the Bipolar Genome Study (BiGS) data set (1001 bipolar cases and 1033 controls, all of European ancestry) as measured by the Affymetrix SNP 6.0 array. Accuracy in calling rare CNVs was assessed by positive predictive value, based on the proportion of rare CNVs validated by quantitative real-time PCR (qPCR), while accuracy in calling common CNVs was assessed by false positive/false negative rates based on qPCR validation results from a subset of common CNVs. Birdsuite recovered the highest percentages of known HapMap CNVs containing >20 markers in two reference CNV datasets. The recovery rate increased with decreased CNV frequency. In the tested rare CNV data, Birdsuite and Partek had higher positive predictive values than the other software suites. In a test of three common CNVs in the BiGS dataset, Birdsuite's call was 98.8% consistent with qPCR quantification in one CNV region, but the other two regions showed an unacceptable degree of accuracy. We found relatively poor consistency between the two "gold standards," the sequence data of Kidd et al., and aCGH data of Conrad et al. Algorithms for calling CNVs especially common ones need substantial improvement, and a "gold standard" for detection of CNVs remains to be established.

  11. Monitoring nocturnal heart rate with bed sensor.

    PubMed

    Migliorini, M; Kortelainen, J M; Pärkkä, J; Tenhunen, M; Himanen, S L; Bianchi, A M

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". The aim of this study is to assess the reliability of the estimated Nocturnal Heart Rate (HR), recorded through a bed sensor, compared with the one obtained from standard electrocardiography (ECG). Twenty-eight sleep deprived patients were recorded for one night each through matrix of piezoelectric sensors, integrated into the mattress, through polysomnography (PSG) simultaneously. The two recording methods have been compared in terms of signal quality and differences in heart beat detection. On average, coverage of 92.7% of the total sleep time was obtained for the bed sensor, testifying the good quality of the recordings. The average beat-to-beat error of the inter-beat intervals was 1.06%. These results suggest a good overall signal quality, however, considering fast heart rates (HR > 100 bpm), performances were worse: in fact, the sensitivity in the heart beat detection was 28.4% while the false positive rate was 3.8% which means that a large amount of fast beats were not detected. The accuracy of the measurements made using the bed sensor has less than 10% of failure rate especially in periods with HR lower than 70 bpm. For fast heart beats the uncertainty increases. This can be explained by the change in morphology of the bed sensor signal in correspondence of a higher HR.

  12. The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.

    PubMed

    Koob, Mériam; Girard, Nadine; Ghattas, Badih; Fellah, Slim; Confort-Gouny, Sylviane; Figarella-Branger, Dominique; Scavarda, Didier

    2016-04-01

    Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24%) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76%). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.

  13. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  14. High-accuracy contouring using projection moiré

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  15. Impact of Glucose Measurement Processing Delays on Clinical Accuracy and Relevance

    PubMed Central

    Jangam, Sujit R.; Hayter, Gary; Dunn, Timothy C.

    2013-01-01

    Background In a hospital setting, glucose is often measured from venous blood in the clinical laboratory. However, laboratory glucose measurements are typically not available in real time. In practice, turn-around times for laboratory measurements can be minutes to hours. This analysis assesses the impact of turn-around time on the effective clinical accuracy of laboratory measurements. Methods Data obtained from an earlier study with 58 subjects with type 1 diabetes mellitus (T1DM) were used for this analysis. In the study, glucose measurements using a YSI glucose analyzer were obtained from venous blood samples every 15 min while the subjects were at the health care facility. To simulate delayed laboratory results, each YSI glucose value from a subject was paired with one from a later time point (from the same subject) separated by 15, 30, 45, and 60 min. To assess the clinical accuracy of a delayed YSI result relative to a real-time result, the percentage of YSI pairs that meet the International Organization for Standardization (ISO) 15197:2003(E) standard for glucose measurement accuracy (±15 mg/dl for blood glucose < 75 mg/dl, ±20% for blood glucose ≥ 75 mg/dl) was calculated. Results It was observed that delays of 15 min or more reduce clinical accuracy below the ISO 15197:2003(E) recommendation of 95%. The accuracy was less than 65% for delays of 60 min. Conclusion This analysis suggests that processing delays in glucose measurements reduce the clinical relevance of results in patients with T1DM and may similarly degrade the clinical value of measurements in other patient populations. PMID:23759399

  16. Impact of glucose measurement processing delays on clinical accuracy and relevance.

    PubMed

    Jangam, Sujit R; Hayter, Gary; Dunn, Timothy C

    2013-05-01

    In a hospital setting, glucose is often measured from venous blood in the clinical laboratory. However, laboratory glucose measurements are typically not available in real time. In practice, turn-around times for laboratory measurements can be minutes to hours. This analysis assesses the impact of turn-around time on the effective clinical accuracy of laboratory measurements. Data obtained from an earlier study with 58 subjects with type 1 diabetes mellitus (T1DM) were used for this analysis. In the study, glucose measurements using a YSI glucose analyzer were obtained from venous blood samples every 15 min while the subjects were at the health care facility. To simulate delayed laboratory results, each YSI glucose value from a subject was paired with one from a later time point (from the same subject) separated by 15, 30, 45, and 60 min. To assess the clinical accuracy of a delayed YSI result relative to a real-time result, the percentage of YSI pairs that meet the International Organization for Standardization (ISO) 15197:2003(E) standard for glucose measurement accuracy (±15 mg/dl for blood glucose < 75 mg/dl, ±20% for blood glucose ≥ 75 mg/dl) was calculated. It was observed that delays of 15 min or more reduce clinical accuracy below the ISO 15197:2003(E) recommendation of 95%. The accuracy was less than 65% for delays of 60 min. This analysis suggests that processing delays in glucose measurements reduce the clinical relevance of results in patients with T1DM and may similarly degrade the clinical value of measurements in other patient populations. © 2013 Diabetes Technology Society.

  17. Survey methods for assessing land cover map accuracy

    USGS Publications Warehouse

    Nusser, S.M.; Klaas, E.E.

    2003-01-01

    The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of GAP land cover maps. We focused not only on appropriate sample designs and estimation approaches, but on aspects of the data collection process, such as gaining cooperation of land owners and using pixel clusters as an observation unit. The approach was tested in a pilot study to assess the accuracy of Iowa GAP land cover maps. A stratified two-stage cluster sampling design addressed sample size requirements for land covers and the need for geographic spread while minimizing operational effort. Recruitment methods used for private land owners yielded high response rates, minimizing a source of nonresponse error. Collecting data for a 9-pixel cluster centered on the sampled pixel was simple to implement, and provided better information on rarer vegetation classes as well as substantial gains in precision relative to observing data at a single-pixel.

  18. Interpersonal Accuracy of Interventions and the Outcome of Cognitive and Interpersonal Therapies for Depression

    ERIC Educational Resources Information Center

    Crits-Christoph, Paul; Gibbons, Mary Beth Connolly; Temes, Christina M.; Elkin, Irene; Gallop, Robert

    2010-01-01

    Objective: The purpose of the current investigation was to examine the interpersonal accuracy of interventions in cognitive therapy and interpersonal therapy as a predictor of the outcome of treatment for patients with major depressive disorder. Method: The interpersonal accuracy of interventions was rated using transcripts of treatment sessions…

  19. Development of a portable photosynthesis rate measurement device

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Xing, Da; Xu, Wenhai

    2006-09-01

    Photosynthesis is a very important chemical reaction in the plant, and its measurement plays critical role in the agriculture production and science research of plant. Delayed fluorescence (DF) in plants is an intrinsic label of efficiency of charge separation at P680 in photosystem II (PS II). In this paper, a portable photosynthesis rate measurement device by means of DF is proposed. It can achieve DF of plant with high sensitivity and signal-to-noise ratio basing on ultra-weak luminescence detection technique, and get photosynthesis rate by the corresponding relation between DF and photosynthesis rate. The device has its illumination power and can obtain all-weather measurement with less interference of the environment. Locale live survey can be realized by hermetic darkroom design and battery power supply. The system carries out data acquisition and processing by single-chip microcomputer control. The results show that this instrument has a lot of values such as low cost, high accuracy and good reliability and convenience.

  20. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less

  1. SeqRate: sequence-based protein folding type classification and rates prediction

    PubMed Central

    2010-01-01

    Background Protein folding rate is an important property of a protein. Predicting protein folding rate is useful for understanding protein folding process and guiding protein design. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. And most methods do not distinguish the different kinetic nature (two-state folding or multi-state folding) of the proteins. Here we developed a method, SeqRate, to predict both protein folding kinetic type (two-state versus multi-state) and real-value folding rate using sequence length, amino acid composition, contact order, contact number, and secondary structure information predicted from only protein sequence with support vector machines. Results We systematically studied the contributions of individual features to folding rate prediction. On a standard benchmark dataset, the accuracy of folding kinetic type classification is 80%. The Pearson correlation coefficient and the mean absolute difference between predicted and experimental folding rates (sec-1) in the base-10 logarithmic scale are 0.81 and 0.79 for two-state protein folders, and 0.80 and 0.68 for three-state protein folders. SeqRate is the first sequence-based method for protein folding type classification and its accuracy of fold rate prediction is improved over previous sequence-based methods. Its performance can be further enhanced with additional information, such as structure-based geometric contacts, as inputs. Conclusions Both the web server and software of predicting folding rate are publicly available at http://casp.rnet.missouri.edu/fold_rate/index.html. PMID:20438647

  2. Curation accuracy of model organism databases

    PubMed Central

    Keseler, Ingrid M.; Skrzypek, Marek; Weerasinghe, Deepika; Chen, Albert Y.; Fulcher, Carol; Li, Gene-Wei; Lemmer, Kimberly C.; Mladinich, Katherine M.; Chow, Edmond D.; Sherlock, Gavin; Karp, Peter D.

    2014-01-01

    Manual extraction of information from the biomedical literature—or biocuration—is the central methodology used to construct many biological databases. For example, the UniProt protein database, the EcoCyc Escherichia coli database and the Candida Genome Database (CGD) are all based on biocuration. Biological databases are used extensively by life science researchers, as online encyclopedias, as aids in the interpretation of new experimental data and as golden standards for the development of new bioinformatics algorithms. Although manual curation has been assumed to be highly accurate, we are aware of only one previous study of biocuration accuracy. We assessed the accuracy of EcoCyc and CGD by manually selecting curated assertions within randomly chosen EcoCyc and CGD gene pages and by then validating that the data found in the referenced publications supported those assertions. A database assertion is considered to be in error if that assertion could not be found in the publication cited for that assertion. We identified 10 errors in the 633 facts that we validated across the two databases, for an overall error rate of 1.58%, and individual error rates of 1.82% for CGD and 1.40% for EcoCyc. These data suggest that manual curation of the experimental literature by Ph.D-level scientists is highly accurate. Database URL: http://ecocyc.org/, http://www.candidagenome.org// PMID:24923819

  3. Knowledge discovery by accuracy maximization

    PubMed Central

    Cacciatore, Stefano; Luchinat, Claudio; Tenori, Leonardo

    2014-01-01

    Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold’s topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution. This robustness is demonstrated on experimental datasets of gene expression and metabolomics, where KODAMA compares favorably with other existing feature extraction methods. KODAMA is then applied to an astronomical dataset, revealing unexpected features. Interesting and not easily predictable features are also found in the analysis of the State of the Union speeches by American presidents: KODAMA reveals an abrupt linguistic transition sharply separating all post-Reagan from all pre-Reagan speeches. The transition occurs during Reagan’s presidency and not from its beginning. PMID:24706821

  4. Chilean version of the INECO Frontal Screening (IFS-Ch): psychometric properties and diagnostic accuracy

    PubMed Central

    Jory, Josefina Ihnen; Bruna, Andrés Antivilo; Muñoz-Neira, Carlos; Chonchol, Andrea Slachevsky

    2013-01-01

    OBJECTIVE This study sought to analyze the psychometric properties and diagnostic accuracy of the Chilean version of the INECO Frontal Screening (IFS-Ch) in a sample of dementia patients and control subjects. METHODS After adapting the instrument to the Chilean context and obtaining content validity evidence through expert consultation, the IFS-Ch was administered to 31 dementia patients and 30 control subjects together with other executive assessments (Frontal Assessment Battery [FAB], Modified version of the Wisconsin Card Sorting Test [MCST], phonemic verbal fluencies [letters A and P] and semantic verbal fluency [animals]) and global cognitive efficiency tests (Mini mental State Examination [MMSE] and Addenbrooke's Cognitive Examination-Revised [ACE-R]). Caregivers of dementia patients and proxies of control subjects were interviewed with instruments measuring dysexecutive symptoms (Dysexecutive Questionnaire [DEX]), dementia severity (Clinical Dementia Rating Scale [CDR]) and functional status in activities of daily living (Activities of Daily Living Scale [IADL] and Technology-Activities of Daily Living Questionnaire [T-ADLQ]). Convergent and discriminant validity, internal consistency reliability, cut-off points, sensitivity and specificity for the IFS-Ch were estimated. RESULTS Evidence of content validity was obtained. Evidence of convergent validity was also found showing significant correlations (p<0.05) between the IFS-Ch and the other instruments measuring: executive functions (FAB, r=0.935; categories achieved in the MCST, r=0.791; perseverative errors in the MCST, r= -0.617; animal verbal fluency, r=0.728; "A" verbal fluency, r=0.681; and "P" verbal fluency, r=0.783), dysexecutive symptoms in daily living (DEX, r= -0.494), dementia severity (CDR, r= -0.75) and functional status in activities of daily living (T-ADLQ, r= -0.745; IADL, r=0.717). Regarding reliability, a Cronbach's alpha coefficient of 0.905 was obtained. For diagnostic accuracy, a cut

  5. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    NASA Astrophysics Data System (ADS)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  6. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Vautherin, Jonas; Rutishauser, Simon; Schneider-Zapp, Klaus; Choi, Hon Fai; Chovancova, Venera; Glass, Alexis; Strecha, Christoph

    2016-06-01

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular in professional mapping for stockpile analysis, construction site monitoring, and many other applications. Due to their robustness and competitive pricing, consumer UAVs are used more and more for these applications, but they are usually equipped with rolling shutter cameras. This is a significant obstacle when it comes to extracting high accuracy measurements using available photogrammetry software packages. In this paper, we evaluate the impact of the rolling shutter cameras of typical consumer UAVs on the accuracy of a 3D reconstruction. Hereto, we use a beta-version of the Pix4Dmapper 2.1 software to compare traditional (non rolling shutter) camera models against a newly implemented rolling shutter model with respect to both the accuracy of geo-referenced validation points and to the quality of the motion estimation. Multiple datasets have been acquired using popular quadrocopters (DJI Phantom 2 Vision+, DJI Inspire 1 and 3DR Solo) following a grid flight plan. For comparison, we acquired a dataset using a professional mapping drone (senseFly eBee) equipped with a global shutter camera. The bundle block adjustment of each dataset shows a significant accuracy improvement on validation ground control points when applying the new rolling shutter camera model for flights at higher speed (8m=s). Competitive accuracies can be obtained by using the rolling shutter model, although global shutter cameras are still superior. Furthermore, we are able to show that the speed of the drone (and its direction) can be solely estimated from the rolling shutter effect of the camera.

  7. An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions

    NASA Astrophysics Data System (ADS)

    Cai, Changsheng; Gao, Yang; Pan, Lin; Dai, Wujiao

    2014-09-01

    With the rapid development of the COMPASS system, it is currently capable of providing regional navigation services. In order to test its data quality and performance for single point positioning (SPP), experiments have been conducted under different observing conditions including open sky, under trees, nearby a glass wall, nearby a large area of water, under high-voltage lines and under a signal transmitting tower. To assess the COMPASS data quality, the code multipath, cycle slip occurrence rate and data availability were analyzed and compared to GPS data. The datasets obtained from the experiments have also been utilized to perform combined GPS/COMPASS SPP on an epoch-by-epoch basis using unsmoothed single-frequency code observations. The investigation on the regional navigation performance aims at low-accuracy applications and all tests are made in Changsha, China, using the “SOUTH S82-C” GPS/COMPASS receivers. The results show that adding COMPASS observations can significantly improve the positioning accuracy of single-frequency GPS-only SPP in environments with limited satellite visibility. Since the COMPASS system is still in an initial operational stage, all results are obtained based on a fairly limited amount of data.

  8. High dose rates obtained outside ISS in June 2015 during SEP event.

    PubMed

    Dachev, T P; Tomov, B T; Matviichuk, Yu N; Dimitrov, Pl G; Bankov, N G

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000µGyh(-1), while the inner radiation belt maximum dose was at the level of 2200µGyh(-1). If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84mGy after 6.5h, which is similar to the average absorbed dose inside ISS for 15days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. Investigation on the Accuracy of Superposition Predictions of Film Cooling Effectiveness

    NASA Astrophysics Data System (ADS)

    Meng, Tong; Zhu, Hui-ren; Liu, Cun-liang; Wei, Jian-sheng

    2018-05-01

    Film cooling effectiveness on flat plates with double rows of holes has been studied experimentally and numerically in this paper. This configuration is widely used to simulate the multi-row film cooling on turbine vane. Film cooling effectiveness of double rows of holes and each single row was used to study the accuracy of superposition predictions. Method of stable infrared measurement technique was used to measure the surface temperature on the flat plate. This paper analyzed the factors that affect the film cooling effectiveness including hole shape, hole arrangement, row-to-row spacing and blowing ratio. Numerical simulations were performed to analyze the flow structure and film cooling mechanisms between each film cooling row. Results show that the blowing ratio within the range of 0.5 to 2 has a significant influence on the accuracy of superposition predictions. At low blowing ratios, results obtained by superposition method agree well with the experimental data. While at high blowing ratios, the accuracy of superposition prediction decreases. Another significant factor is hole arrangement. Results obtained by superposition prediction are nearly the same as experimental values of staggered arrangement structures. For in-line configurations, the superposition values of film cooling effectiveness are much higher than experimental data. For different hole shapes, the accuracy of superposition predictions on converging-expanding holes is better than cylinder holes and compound angle holes. For two different hole spacing structures in this paper, predictions show good agreement with the experiment results.

  10. Accuracy of cited “facts” in medical research articles: A review of study methodology and recalculation of quotation error rate

    PubMed Central

    2017-01-01

    Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404

  11. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.

    PubMed

    Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip

    2005-06-01

    A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.

  12. Accuracy and speed feedback: Global and local effects on strategy use

    PubMed Central

    Touron, Dayna R.; Hertzog, Christopher

    2013-01-01

    Background Skill acquisition often involves a shift from an effortful algorithm-based strategy to more fluent memory-based performance. Older adults’ slower strategy transitions can be ascribed to both slowed learning and metacognitive factors. Experimenters often provide feedback on response accuracy; this emphasis may either inadvertently reinforce older adults’ conservatism or might highlight that retrieval is generally quite accurate. RT feedback can lead to more rapid shift to retrieval (Hertzog, Touron, & Hines, 2007). Methods This study parametrically varied trial-by-trial feedback to examine whether strategy shifts in the noun-pair task in younger (M = 19) and older adults (M = 67) were influenced by type of performance feedback: none, trial accuracy, trial RT, or both accuracy and RT. Results Older adults who received accuracy feedback retrieved more often, particularly on difficult rearranged trials, and participants who receive speed feedback performed the scanning strategy more quickly. Age differences were also obtained in local (trial-level) reactivity to task performance, but these were not affected by feedback. Conclusions Accuracy and speed feedback had distinct global (general) influences on task strategies and performance. In particular, it appears that the standard practice of providing trial-by-trial accuracy feedback might facilitate older adults’ use of retrieval strategies in skill acquisition tasks. PMID:24785594

  13. Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Bao, Lifeng; Wang, Yong

    2017-01-01

    An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1′ × 1′ marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N(u,σ2) with varying mean u and noise variance σ2. Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1–2 mGal accuracy) and the reference map (resolution 1′ × 1′; accuracy 3–8 mGal), location accuracy of IGNS was up to reach ~1.0–3.0 n miles in the South China Sea. PMID:29261136

  14. Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation.

    PubMed

    Wang, Hubiao; Wu, Lin; Chai, Hua; Bao, Lifeng; Wang, Yong

    2017-12-20

    An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1-2 mGal accuracy) and the reference map (resolution 1' × 1'; accuracy 3-8 mGal), location accuracy of IGNS was up to reach ~1.0-3.0 n miles in the South China Sea.

  15. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  16. Resident accuracy of joint line palpation using ultrasound verification.

    PubMed

    Rho, Monica E; Chu, Samuel K; Yang, Aaron; Hameed, Farah; Lin, Cindy Yuchin; Hurh, Peter J

    2014-10-01

    To determine the accuracy of knee and acromioclavicular (AC) joint line palpation in Physical Medicine and Rehabilitation (PM&R) residents using ultrasound (US) verification. Cohort study. PM&R residency program at an academic institution. Twenty-four PM&R residents participating in a musculoskeletal US course (7 PGY-2, 8 PGY-3, and 9 PGY4 residents). Twenty-four PM&R residents participating in an US course were asked to palpate the AC joint and lateral joint line of the knee in a female and male model before the start of the course. Once the presumed joint line was localized, the residents were asked to tape an 18-gauge, 1.5-inch, blunt-tip needle parallel to the joint line on the overlying skin. The accuracy of needle placement over the joint line was verified using US. US verification of correct needle placement over the joint line. Overall AC joint palpation accuracy was 16.7%, and knee lateral joint line palpation accuracy was 58.3%. Based on the resident level of education, using a value of P < .05, there were no statistically significant differences in the accuracy of joint line palpation. Residents in this study demonstrate poor accuracy of AC joint and lateral knee joint line identification by palpation, using US as the criterion standard for verification. There were no statistically significant differences in the accuracy rates of joint line palpation based on resident level of education. US may be a useful tool to use to advance the current methods of teaching the physical examination in medical education. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. The Accuracy of Adult Narrative Reports of Developmental Trajectories

    ERIC Educational Resources Information Center

    Cohen, Patricia; Kasen, Stephanie; Bifulco, Antonia; Andrews, Howard; Gordon, Kathy

    2005-01-01

    This methodological investigation examines the accuracy of narrative-based scaled ratings covering several post high school years. Guided narratives by young adults described developmentally relevant behaviour and context for each month between ages 17 and the mid-20s. "Prospective" narratives covered shorter time periods in three interviews…

  18. Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2017-12-01

    A digital elevation model (DEM) is used to estimate ice-flow velocities for an ice sheet and glaciers via Differential Interferometric Synthetic Aperture Radar (DInSAR) processing. The accuracy of DInSAR-derived displacement estimates depends upon the accuracy of the DEM. Therefore, we used stereo optical images, obtained with a panchromatic remote-sensing instrument for stereo mapping (PRISM) sensor mounted onboard the Advanced Land Observing Satellite (ALOS), to produce a new DEM ("PRISM-DEM") of part of the coastal region of Lützow-Holm Bay in Dronning Maud Land, East Antarctica. We verified the accuracy of the PRISM-DEM by comparing ellipsoidal heights with those of existing DEMs and values obtained by satellite laser altimetry (ICESat/GLAS) and Global Navigation Satellite System surveying. The accuracy of the PRISM-DEM is estimated to be 2.80 m over ice sheet, 4.86 m over individual glaciers, and 6.63 m over rock outcrops. By comparison, the estimated accuracy of the ASTER-GDEM, widely used in polar regions, is 33.45 m over ice sheet, 14.61 m over glaciers, and 19.95 m over rock outcrops. For displacement measurements made along the radar line-of-sight by DInSAR, in conjunction with ALOS/PALSAR data, the accuracy of the PRISM-DEM and ASTER-GDEM correspond to estimation errors of <6.3 mm and <31.8 mm, respectively.

  19. Theoferometer for High Accuracy Optical Alignment and Metrology

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Leviton, Doug; Koterba, Seth

    2004-01-01

    The accurate measurement of the orientation of optical parts and systems is a pressing problem for upcoming space missions, such as stellar interferometers, requiring the knowledge and maintenance of positions to the sub-arcsecond level. Theodolites, the devices commonly used to make these measurements, cannot provide the needed level of accuracy. This paper describes the design, construction, and testing of an interferometer system to fill the widening gap between future requirements and current capabilities. A Twyman-Green interferometer mounted on a 2 degree of freedom rotation stage is able to obtain sub-arcsecond, gravity-referenced tilt measurements of a sample alignment cube. Dubbed a 'theoferometer,' this device offers greater ease-of-use, accuracy, and repeatability than conventional methods, making it a suitable 21st-century replacement for the theodolite.

  20. Parameter estimation accuracies of Galactic binaries with eLISA

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz

    2018-09-01

    We study parameter estimation accuracy of nearly monochromatic sources of gravitational waves with the future eLISA-like detectors. eLISA will be capable of observing millions of such signals generated by orbiting pairs of compact binaries consisting of white dwarf, neutron star or black hole and to resolve and estimate parameters of several thousands of them providing crucial information regarding their orbital dynamics, formation rates and evolutionary paths. Using the Fisher matrix analysis we compare accuracies of the estimated parameters for different mission designs defined by the GOAT advisory team established to asses the scientific capabilities and the technological issues of the eLISA-like missions.

  1. Recognition memory and awareness: A high-frequency advantage in the accuracy of knowing.

    PubMed

    Gregg, Vernon H; Gardiner, John M; Karayianni, Irene; Konstantinou, Ira

    2006-04-01

    The well-established advantage of low-frequency words over high-frequency words in recognition memory has been found to occur in remembering and not knowing. Two experiments employed remember and know judgements, and divided attention to investigate the possibility of an effect of word frequency on know responses given appropriate study conditions. With undivided attention at study, the usual low-frequency advantage in the accuracy of remember responses, but no effect on know responses, was obtained. Under a demanding divided attention task at encoding, a high-frequency advantage in the accuracy of know responses was obtained. The results are discussed in relation to theories of knowing, particularly those incorporating perceptual and conceptual fluency.

  2. Rigid Body Rate Inference from Attitude Variation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  3. Performance and Accuracy of LAPACK's Symmetric TridiagonalEigensolvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, Jim W.; Marques, Osni A.; Parlett, Beresford N.

    2007-04-19

    We compare four algorithms from the latest LAPACK 3.1 release for computing eigenpairs of a symmetric tridiagonal matrix. These include QR iteration, bisection and inverse iteration (BI), the Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust Representations (MR). Our evaluation considers speed and accuracy when computing all eigenpairs, and additionally subset computations. Using a variety of carefully selected test problems, our study includes a variety of today's computer architectures. Our conclusions can be summarized as follows. (1) DC and MR are generally much faster than QR and BI on large matrices. (2) MR almost always does the fewestmore » floating point operations, but at a lower MFlop rate than all the other algorithms. (3) The exact performance of MR and DC strongly depends on the matrix at hand. (4) DC and QR are the most accurate algorithms with observed accuracy O({radical}ne). The accuracy of BI and MR is generally O(ne). (5) MR is preferable to BI for subset computations.« less

  4. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station.

    PubMed

    Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-12-01

    The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in

  5. Bias in estimating accuracy of a binary screening test with differential disease verification

    PubMed Central

    Brinton, John T.; Ringham, Brandy M.; Glueck, Deborah H.

    2011-01-01

    SUMMARY Sensitivity, specificity, positive and negative predictive value are typically used to quantify the accuracy of a binary screening test. In some studies it may not be ethical or feasible to obtain definitive disease ascertainment for all subjects using a gold standard test. When a gold standard test cannot be used an imperfect reference test that is less than 100% sensitive and specific may be used instead. In breast cancer screening, for example, follow-up for cancer diagnosis is used as an imperfect reference test for women where it is not possible to obtain gold standard results. This incomplete ascertainment of true disease, or differential disease verification, can result in biased estimates of accuracy. In this paper, we derive the apparent accuracy values for studies subject to differential verification. We determine how the bias is affected by the accuracy of the imperfect reference test, the percent who receive the imperfect reference standard test not receiving the gold standard, the prevalence of the disease, and the correlation between the results for the screening test and the imperfect reference test. It is shown that designs with differential disease verification can yield biased estimates of accuracy. Estimates of sensitivity in cancer screening trials may be substantially biased. However, careful design decisions, including selection of the imperfect reference test, can help to minimize bias. A hypothetical breast cancer screening study is used to illustrate the problem. PMID:21495059

  6. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation.

    PubMed

    Badke, Yvonne M; Bates, Ronald O; Ernst, Catherine W; Fix, Justin; Steibel, Juan P

    2014-04-16

    Genomic selection has the potential to increase genetic progress. Genotype imputation of high-density single-nucleotide polymorphism (SNP) genotypes can improve the cost efficiency of genomic breeding value (GEBV) prediction for pig breeding. Consequently, the objectives of this work were to: (1) estimate accuracy of genomic evaluation and GEBV for three traits in a Yorkshire population and (2) quantify the loss of accuracy of genomic evaluation and GEBV when genotypes were imputed under two scenarios: a high-cost, high-accuracy scenario in which only selection candidates were imputed from a low-density platform and a low-cost, low-accuracy scenario in which all animals were imputed using a small reference panel of haplotypes. Phenotypes and genotypes obtained with the PorcineSNP60 BeadChip were available for 983 Yorkshire boars. Genotypes of selection candidates were masked and imputed using tagSNP in the GeneSeek Genomic Profiler (10K). Imputation was performed with BEAGLE using 128 or 1800 haplotypes as reference panels. GEBV were obtained through an animal-centric ridge regression model using de-regressed breeding values as response variables. Accuracy of genomic evaluation was estimated as the correlation between estimated breeding values and GEBV in a 10-fold cross validation design. Accuracy of genomic evaluation using observed genotypes was high for all traits (0.65-0.68). Using genotypes imputed from a large reference panel (accuracy: R(2) = 0.95) for genomic evaluation did not significantly decrease accuracy, whereas a scenario with genotypes imputed from a small reference panel (R(2) = 0.88) did show a significant decrease in accuracy. Genomic evaluation based on imputed genotypes in selection candidates can be implemented at a fraction of the cost of a genomic evaluation using observed genotypes and still yield virtually the same accuracy. On the other side, using a very small reference panel of haplotypes to impute training animals and candidates for

  7. Subtypes of Reading Disability in a Shallow Orthography: A Double Dissociation between Accuracy-Disabled and Rate-Disabled Readers of Hebrew

    ERIC Educational Resources Information Center

    Shany, Michal; Share, David L.

    2011-01-01

    Whereas most English language sub-typing schemes for dyslexia (e.g., Castles & Coltheart, "1993") have focused on reading accuracy for words varying in regularity, such an approach may have limited utility for reading disability sub-typing beyond English in which fluency rather than accuracy is the key discriminator of developmental and individual…

  8. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  9. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  10. Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas

    PubMed Central

    Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet

    2015-01-01

    Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by

  11. Accuracy of 3 different impression techniques for internal connection angulated implants.

    PubMed

    Tsagkalidis, George; Tortopidis, Dimitrios; Mpikos, Pavlos; Kaisarlis, George; Koidis, Petros

    2015-10-01

    Making implant impressions with different angulations requires a more precise and time-consuming impression technique. The purpose of this in vitro study was to compare the accuracy of nonsplinted, splinted, and snap-fit impression techniques of internal connection implants with different angulations. An experimental device was used to allow a clinical simulation of impression making by means of open and closed tray techniques. Three different impression techniques (nonsplinted, acrylic-resin splinted, and indirect snap-fit) for 6 internal-connected implants at different angulations (0, 15, 25 degrees) were examined using polyether. Impression accuracy was evaluated by measuring the differences in 3-dimensional (3D) position deviations between the implant body/impression coping before the impression procedure and the coping/laboratory analog positioned within the impression, using a coordinate measuring machine. Data were analyzed by 2-way ANOVA. Means were compared with the least significant difference criterion at P<.05. Results showed that at 25 degrees of implant angulation, the highest accuracy was obtained with the splinted technique (mean ±SE: 0.39 ±0.05 mm) and the lowest with the snap-fit technique (0.85 ±0.09 mm); at 15 degrees of angulation, there were no significant differences among splinted (0.22 ±0.04 mm) and nonsplinted technique (0.15 ±0.02 mm) and the lowest accuracy obtained with the snap-fit technique (0.95 ±0.15 mm); and no significant differences were found between nonsplinted and splinted technique at 0 degrees of implant placement. Splinted impression technique exhibited a higher accuracy than the other techniques studied when increased implant angulations at 25 degrees were involved. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. The Accuracy of GBM GRB Localizations

    NASA Astrophysics Data System (ADS)

    Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.

    2010-03-01

    We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.

  13. Analysis of short pulse laser altimetry data obtained over horizontal path

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Tsai, B. M.; Gardner, C. S.

    1983-01-01

    Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter.

  14. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  15. Accuracy Analysis of a Dam Model from Drone Surveys

    PubMed Central

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  16. Accuracy Analysis of a Dam Model from Drone Surveys.

    PubMed

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  17. Improve accuracy for automatic acetabulum segmentation in CT images.

    PubMed

    Liu, Hao; Zhao, Jianning; Dai, Ning; Qian, Hongbo; Tang, Yuehong

    2014-01-01

    Separation of the femur head and acetabulum is one of main difficulties in the diseased hip joint due to deformed shapes and extreme narrowness of the joint space. To improve the segmentation accuracy is the key point of existing automatic or semi-automatic segmentation methods. In this paper, we propose a new method to improve the accuracy of the segmented acetabulum using surface fitting techniques, which essentially consists of three parts: (1) design a surface iterative process to obtain an optimization surface; (2) change the ellipsoid fitting to two-phase quadric surface fitting; (3) bring in a normal matching method and an optimization region method to capture edge points for the fitting quadric surface. Furthermore, this paper cited vivo CT data sets of 40 actual patients (with 79 hip joints). Test results for these clinical cases show that: (1) the average error of the quadric surface fitting method is 2.3 (mm); (2) the accuracy ratio of automatically recognized contours is larger than 89.4%; (3) the error ratio of section contours is less than 10% for acetabulums without severe malformation and less than 30% for acetabulums with severe malformation. Compared with similar methods, the accuracy of our method, which is applied in a software system, is significantly enhanced.

  18. An evaluation of information retrieval accuracy with simulated OCR output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, W.B.; Harding, S.M.; Taghva, K.

    Optical Character Recognition (OCR) is a critical part of many text-based applications. Although some commercial systems use the output from OCR devices to index documents without editing, there is very little quantitative data on the impact of OCR errors on the accuracy of a text retrieval system. Because of the difficulty of constructing test collections to obtain this data, we have carried out evaluation using simulated OCR output on a variety of databases. The results show that high quality OCR devices have little effect on the accuracy of retrieval, but low quality devices used with databases of short documents canmore » result in significant degradation.« less

  19. Variability of Diabetes Alert Dog Accuracy in a Real-World Setting

    PubMed Central

    Gonder-Frederick, Linda A.; Grabman, Jesse H.; Shepard, Jaclyn A.; Tripathi, Anand V.; Ducar, Dallas M.; McElgunn, Zachary R.

    2017-01-01

    Background: Diabetes alert dogs (DADs) are growing in popularity as an alternative method of glucose monitoring for individuals with type 1 diabetes (T1D). Only a few empirical studies have assessed DAD accuracy, with inconsistent results. The present study examined DAD accuracy and variability in performance in real-world conditions using a convenience sample of owner-report diaries. Method: Eighteen DAD owners (44.4% female; 77.8% youth) with T1D completed diaries of DAD alerts during the first year after placement. Diary entries included daily BG readings and DAD alerts. For each DAD, percentage hits (alert with BG ≤ 5.0 or ≥ 11.1 mmol/L; ≤90 or ≥200 mg/dl), percentage misses (no alert with BG out of range), and percentage false alarms (alert with BG in range) were computed. Sensitivity, specificity, positive likelihood ratio (PLR), and true positive rates were also calculated. Results: Overall comparison of DAD Hits to Misses yielded significantly more Hits for both low and high BG. Total sensitivity was 57.0%, with increased sensitivity to low BG (59.2%) compared to high BG (56.1%). Total specificity was 49.3% and PLR = 1.12. However, high variability in accuracy was observed across DADs, with low BG sensitivity ranging from 33% to 100%. Number of DADs achieving ≥ 60%, 65% and 70% true positive rates was 71%, 50% and 44%, respectively. Conclusions: DADs may be able to detect out-of-range BG, but variability across DADs is evident. Larger trials are needed to further assess DAD accuracy and to identify factors influencing the complexity of DAD accuracy in BG detection. PMID:28627305

  20. High-accuracy direct aerial platform orientation with tightly coupled GPS/INS system.

    DOT National Transportation Integrated Search

    2004-09-01

    Obtaining sensor orientation by direct measurements is a rapidly emerging mapping technology. Modern GPS and INS systems allow for the direct determination of platform position and orientation at an unprecedented accuracy. In airborne surveying, airc...

  1. Obtaining Acoustic Cue Rate Estimates for Some Mysticete Species Using Existing Data

    DTIC Science & Technology

    2015-09-30

    several species of endangered mysticete whales on and near U.S. Navy ranges, using existing recordings from both the SCORE and PMRF hydrophone...Mysticete Species using Existing Data Tyler A. Helble Marine Mammals and Autonomous Underwater Vehicles, Code 56440 Space and Naval Warfare Systems...acoustics, one must know the species -specific average cue rate, which is the average number of calls produced per animal per time. The cue rate can

  2. Accuracy improvement of multimodal measurement of speed of sound based on image processing

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu

    2017-07-01

    Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.

  3. Accuracies of breeding values for dry matter intake using nongenotyped animals and predictor traits in different lactations.

    PubMed

    Manzanilla-Pech, C I V; Veerkamp, R F; de Haas, Y; Calus, M P L; Ten Napel, J

    2017-11-01

    Given the interest of including dry matter intake (DMI) in the breeding goal, accurate estimated breeding values (EBV) for DMI are needed, preferably for separate lactations. Due to the limited amount of records available on DMI, 2 main approaches have been suggested to compute those EBV: (1) the inclusion of predictor traits, such as fat- and protein-corrected milk (FPCM) and live weight (LW), and (2) the addition of genomic information of animals using what is called genomic prediction. Recently, several methodologies to estimate EBV utilizing genomic information (EBV) have become available. In this study, a new method known as single-step ridge-regression BLUP (SSRR-BLUP) is suggested. The SSRR-BLUP method does not have an imposed limit on the number of genotyped animals, as the commonly used methods do. The objective of this study was to estimate genetic parameters using a relatively large data set with DMI records, as well as compare the accuracies of the EBV for DMI. These accuracies were obtained using 4 different methods: BLUP (using pedigree for all animals with phenotypes), genomic BLUP (GBLUP; only for genotyped animals), single-step GBLUP (SS-GBLUP), and SSRR-BLUP (for genotyped and nongenotyped animals). Records from different lactations, with or without predictor traits (FPCM and LW), were used in the model. Accuracies of EBV for DMI (defined as the correlation between the EBV and pre-adjusted DMI phenotypes divided by the average accuracy of those phenotypes) ranged between 0.21 and 0.38 across methods and scenarios. Accuracies of EBV for DMI using BLUP were the lowest accuracies obtained across methods. Meanwhile, accuracies of EBV for DMI were similar in SS-GBLUP and SSRR-BLUP, and lower for the GBLUP method. Hence, SSRR-BLUP could be used when the number of genotyped animals is large, avoiding the construction of the inverse genomic relationship matrix. Adding information on DMI from different lactations in the reference population gave higher

  4. Positional Accuracy Assessment of Googleearth in Riyadh

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf; Algarni, Dafer

    2014-06-01

    Google Earth is a virtual globe, map and geographical information program that is controlled by Google corporation. It maps the Earth by the superimposition of images obtained from satellite imagery, aerial photography and GIS 3D globe. With millions of users all around the globe, GoogleEarth® has become the ultimate source of spatial data and information for private and public decision-support systems besides many types and forms of social interactions. Many users mostly in developing countries are also using it for surveying applications, the matter that raises questions about the positional accuracy of the Google Earth program. This research presents a small-scale assessment study of the positional accuracy of GoogleEarth® Imagery in Riyadh; capital of Kingdom of Saudi Arabia (KSA). The results show that the RMSE of the GoogleEarth imagery is 2.18 m and 1.51 m for the horizontal and height coordinates respectively.

  5. Influence of pansharpening techniques in obtaining accurate vegetation thematic maps

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier

    2016-10-01

    In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.

  6. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  7. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  8. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  9. Accuracy and consistency of radiographic interpretation among clinical instructors using two viewing systems.

    PubMed

    Lanning, Sharon K; Best, Al M; Temple, Henry J; Richards, Philip S; Carey, Allison; McCauley, Laurie K

    2006-02-01

    Accurate and consistent radiographic interpretation among clinical instructors is needed for assessment of teaching, student performance, and patient care. The purpose of this investigation was to determine if the method of radiographic viewing affects accuracy and consistency of instructors' determinations of bone loss. Forty-one clinicians who provide instruction in a dental school clinical teaching program (including periodontists, general dentists, periodontal graduate students, and dental hygienists) quantified bone loss for up to twenty-five teeth into four descriptive categories using a view box for plain film viewing or a projection system for digitized image viewing. Ratings were compared to the correct category as determined by direct measurement using the Schei ruler. Agreement with the correct choice for the view box and projection system was 70.2 percent and 64.5 percent, respectively. The mean difference was better for a projection system due to small rater error by graduate students. Projection system ratings were slightly less consistent than view box ratings. Dental hygiene faculty ratings were the most consistent but least accurate. Although the projection system resulted in slightly reduced accuracy and consistency among instructors, training sessions utilizing a single method for projecting digitized radiographic images have their advantages and may positively influence dental education and patient care by enhancing accuracy and consistency of radiographic interpretation among instructors.

  10. Neural substrates of empathic accuracy in people with schizophrenia.

    PubMed

    Harvey, Philippe-Olivier; Zaki, Jamil; Lee, Junghee; Ochsner, Kevin; Green, Michael F

    2013-05-01

    Empathic deficits in schizophrenia may lead to social dysfunction, but previous studies of schizophrenia have not modeled empathy through paradigms that (1) present participants with naturalistic social stimuli and (2) link brain activity to "accuracy" about inferring other's emotional states. This study addressed this gap by investigating the neural correlates of empathic accuracy (EA) in schizophrenia. Fifteen schizophrenia patients and 15 controls were scanned while continuously rating the affective state of another person shown in a series of videos (ie, targets). These ratings were compared with targets' own self-rated affect, and EA was defined as the correlation between participants' ratings and targets' self-ratings. Targets' self-reported emotional expressivity also was measured. We searched for brain regions whose activity tracked parametrically with (1) perceivers' EA and (2) targets' expressivity. Patients showed reduced EA compared with controls. The left precuneus, left middle frontal gyrus, and bilateral thalamus were significantly more correlated with EA in controls compared with patients. High expressivity in targets was associated with better EA in controls but not in patients. High expressivity was associated with increased brain activity in a large set of regions in controls (eg, fusiform gyrus, medial prefrontal cortex) but not in patients. These results use a naturalistic performance measure to confirm that schizophrenic patients demonstrate impaired ability to understand others' internal states. They provide novel evidence about a potential mechanism for this impairment: schizophrenic patients failed to capitalize on targets' emotional expressivity and also demonstrate reduced neural sensitivity to targets' affective cues.

  11. Accuracy, resolution, and cost comparisons between small format and mapping cameras for environmental mapping

    NASA Technical Reports Server (NTRS)

    Clegg, R. H.; Scherz, J. P.

    1975-01-01

    Successful aerial photography depends on aerial cameras providing acceptable photographs within cost restrictions of the job. For topographic mapping where ultimate accuracy is required only large format mapping cameras will suffice. For mapping environmental patterns of vegetation, soils, or water pollution, 9-inch cameras often exceed accuracy and cost requirements, and small formats may be better. In choosing the best camera for environmental mapping, relative capabilities and costs must be understood. This study compares resolution, photo interpretation potential, metric accuracy, and cost of 9-inch, 70mm, and 35mm cameras for obtaining simultaneous color and color infrared photography for environmental mapping purposes.

  12. Accuracy of user-friendly blood typing kits tested under simulated military field conditions.

    PubMed

    Bienek, Diane R; Charlton, David G

    2011-04-01

    Rapid user-friendly ABO-Rh blood typing kits (Eldon Home Kit 2511, ABO-Rh Combination Blood Typing Experiment Kit) were evaluated to determine their accuracy when used under simulated military field conditions and after long-term storage at various temperatures and humidities. Rates of positive tests between control groups, experimental groups, and industry standards were measured and analyzed using the Fisher's exact chi-square method to identify significant differences (p < or = 0.05). When Eldon Home Kits 2511 were used in various operational conditions, the results were comparable to those obtained with the control group and with the industry standard. The performance of the ABO-Rh Combination Blood Typing Experiment Kit was adversely affected by prolonged storage in temperatures above 37 degrees C. The diagnostic performance of commercial blood typing kits varies according to product and environmental storage conditions.

  13. Steep Gravel Bedload Rating Curves Obtained From Bedload Traps Shift Effective Discharge to Flows Much Higher Than "Bankfull"

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Abt, S. R.; Cenderelli, D.

    2012-12-01

    Effective discharge (Qeff) is defined as the flow at which the product of flow frequency and bedload transport rates obtains its maximum. Qeff is often reported to correspond with bankfull flow (Qbf), where Qeff approximates the 1.5 year recurrence interval flow (Q1.5). Because it transports the majority of all bedload, Qeff is considered a design flow for stream restoration and flow management. This study investigates the relationship between Qeff and Q1.5 for gravel bedload in high elevation Rocky Mountain streams. Both the flow frequency distribution (FQ = a × Qbin-b) where Qbin is the flow class, and the bedload transport rating curve (QB = c × Qd) can be described by power functions. The product FQ × QB = (a × c × Q(-b + d)) is positive if d + -b >0, and negative if d + -b <0. FQ × QB can only attain a maximum (=Qeff) if either FQ or QB exhibit an inflection point. In snowmelt regimes, low flows prevail for much of the year, while high flows are limited to a few days, and extreme floods are rare. In log-log plotting scale, this distribution causes the longterm flow frequency function FQ to steepen in the vicinity of Q1.5. If the bedload rating curve exponent is small, e.g., = 3 as is typical of Helley-Smith bedload samples, d + -b shifts from >0 to <0, causing FQ × QB to peak, and Qeff to be around Q1.5. For measurements thought to be more representative of actual gravel transport obtained using bedload traps and similar devices, large rating curve exponents d of 6 - 16 are typical. In this case, d + -b remains >0, and FQ × QB reaches its maximum near the largest flow on record (Qeff,BT = Qmax). Expression of FQ by negative exponential functions FQ = k × e(Qbin×-m) smooths the product function FQ × QB that displays its maximum as a gentle hump rather than a sharp peak, but without drastically altering Qeff. However, a smooth function FQ × QB allows Qeff to react to small changes in rating curve exponents d. As d increases from <1 to >10, Qeff

  14. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  15. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  16. Conclusions about children's reporting accuracy for energy and macronutrients over multiple interviews depend on the analytic approach for comparing reported information to reference information.

    PubMed

    Baxter, Suzanne Domel; Smith, Albert F; Hardin, James W; Nichols, Michele D

    2007-04-01

    Validation study data are used to illustrate that conclusions about children's reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information-conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Children were observed eating school meals on 1 day (n=12), or 2 (n=13) or 3 (n=79) nonconsecutive days separated by >or=25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (ie, protein, carbohydrate, and fat), and compared. For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), and inflation ratios (error measures). Mixed-model analyses. Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (all four P values >0.61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (all four P values <0.04), indicating that reporting accuracy improved over time; inflation ratios decreased, although not significantly, over interviews, also suggesting that reporting accuracy improved over time. Correspondence rates were lower than report rates, indicating that reporting accuracy was worse than implied by conventional measures. When analyzed using the reporting-error-sensitive approach, children's dietary reporting accuracy for energy and macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. The reporting-error-sensitive approach is recommended when analyzing data from validation studies of dietary reporting

  17. Error and Uncertainty in the Accuracy Assessment of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Sarmento, Pedro Alexandre Reis

    Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None

  18. Experimental analysis of multi-attribute decision-making based on Atanassov intuitionistic fuzzy sets: a discussion of anchor dependency and accuracy functions

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu

    2012-06-01

    This article presents a useful method for relating anchor dependency and accuracy functions to multiple attribute decision-making (MADM) problems in the context of Atanassov intuitionistic fuzzy sets (A-IFSs). Considering anchored judgement with displaced ideals and solution precision with minimal hesitation, several auxiliary optimisation models have proposed to obtain the optimal weights of the attributes and to acquire the corresponding TOPSIS (the technique for order preference by similarity to the ideal solution) index for alternative rankings. Aside from the TOPSIS index, as a decision-maker's personal characteristics and own perception of self may also influence the direction in the axiom of choice, the evaluation of alternatives is conducted based on distances of each alternative from the positive and negative ideal alternatives, respectively. This article originates from Li's [Li, D.-F. (2005), 'Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets', Journal of Computer and System Sciences, 70, 73-85] work, which is a seminal study of intuitionistic fuzzy decision analysis using deduced auxiliary programming models, and deems it a benchmark method for comparative studies on anchor dependency and accuracy functions. The feasibility and effectiveness of the proposed methods are illustrated by a numerical example. Finally, a comparative analysis is illustrated with computational experiments on averaging accuracy functions, TOPSIS indices, separation measures from positive and negative ideal alternatives, consistency rates of ranking orders, contradiction rates of the top alternative and average Spearman correlation coefficients.

  19. Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.

    USGS Publications Warehouse

    Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.

    1985-01-01

    The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors

  20. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  1. Modelling Accuracy of a Car Steering Mechanism with Rack and Pinion and McPherson Suspension

    NASA Astrophysics Data System (ADS)

    Knapczyk, J.; Kucybała, P.

    2016-08-01

    Modelling accuracy of a car steering mechanism with a rack and pinion and McPherson suspension is analyzed. Geometrical parameters of the model are described by using the coordinates of centers of spherical joints, directional unit vectors and axis points of revolute, cylindrical and prismatic joints. Modelling accuracy is assumed as the differences between the values of the wheel knuckle position and orientation coordinates obtained using a simulation model and the corresponding measured values. The sensitivity analysis of the parameters on the model accuracy is illustrated by two numerical examples.

  2. Sampling factors influencing accuracy of sperm kinematic analysis.

    PubMed

    Owen, D H; Katz, D F

    1993-01-01

    Sampling conditions that influence the accuracy of experimental measurement of sperm head kinematics were studied by computer simulation methods. Several archetypal sperm trajectories were studied. First, mathematical models of typical flagellar beats were input to hydrodynamic equations of sperm motion. The instantaneous swimming velocities of such sperm were computed over sequences of flagellar beat cycles, from which the resulting trajectories were determined. In a second, idealized approach, direct mathematical models of trajectories were utilized, based upon similarities to the previous hydrodynamic constructs. In general, it was found that analyses of sampling factors produced similar results for the hydrodynamic and idealized trajectories. A number of experimental sampling factors were studied, including the number of sperm head positions measured per flagellar beat, and the time interval over which these measurements are taken. It was found that when one flagellar beat is sampled, values of amplitude of lateral head displacement (ALH) and linearity (LIN) approached their actual values when five or more sample points per beat were taken. Mean angular displacement (MAD) values, however, remained sensitive to sampling rate even when large sampling rates were used. Values of MAD were also much more sensitive to the initial starting point of the sampling procedure than were ALH or LIN. On the basis of these analyses of measurement accuracy for individual sperm, simulations were then performed of cumulative effects when studying entire populations of motile cells. It was found that substantial (double digit) errors occurred in the mean values of curvilinear velocity (VCL), LIN, and MAD under the conditions of 30 video frames per second and 0.5 seconds of analysis time. Increasing the analysis interval to 1 second did not appreciably improve the results. However, increasing the analysis rate to 60 frames per second significantly reduced the errors. These findings

  3. The Challenges of Data Rate and Data Accuracy in the Analysis of Volcanic Systems: An Assessment Using Multi-Parameter Data from the 2012-2013 Eruption Sequence at White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Christenson, B. W.; Neuberg, J. W.; Fournier, N.; Mazot, A.; Kilgour, G.; Jolly, G. E.

    2014-12-01

    Volcano monitoring is usually undertaken with the collection of both automated and manual data that form a multi-parameter time-series having a wide range of sampling rates and measurement accuracies. Assessments of hazards and risks ultimately rely on incorporating this information into usable form, first for the scientists to interpret, and then for the public and relevant stakeholders. One important challenge is in building appropriate and efficient strategies to compare and interpret data from these exceptionally different datasets. The White Island volcanic system entered a new eruptive state beginning in mid-2012 and continuing through the present time. Eruptive activity during this period comprised small phreatic and phreato-magmatic events in August 2012, August 2013 and October 2013 and the intrusion of a small dome that was first observed in November 2012. We examine the chemical and geophysical dataset to assess the effects of small magma batches on the shallow hydrothermal system. The analysis incorporates high data rate (100 Hz) seismic, and infrasound data, lower data rate (1 Hz to 5 min sampling interval) GPS, tilt-meter, and gravity data and very low data rate geochemical time series (sampling intervals from days to months). The analysis is further informed by visual observations of lake level changes, geysering activity through crater lake vents, and changes in fumarolic discharges. We first focus on the problems of incorporating the range of observables into coherent time frame dependant conceptual models. We then show examples where high data rate information may be improved through new processing methods and where low data rate information may be collected more frequently without loss of fidelity. By this approach we hope to improve the accuracy and efficiency of interpretations of volcano unrest and thereby improve hazard assessments.

  4. 40 CFR 35.6315 - Alternative methods for obtaining property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Alternative methods for obtaining... Alternative methods for obtaining property. (a) Purchase equipment with recipient funds. The recipient may...-funded project. The fee must be based on a usage rate, subject to the usage rate requirements in § 35...

  5. Diagnostic accuracy of EEG changes during carotid endarterectomy in predicting perioperative strokes.

    PubMed

    Thirumala, Parthasarathy D; Thiagarajan, Karthy; Gedela, Satyanarayana; Crammond, Donald J; Balzer, Jeffrey R

    2016-03-01

    The 30 day stroke rate following carotid endarterectomy (CEA) ranges between 2-6%. Such periprocedural strokes are associated with a three-fold increased risk of mortality. Our primary aim was to determine the diagnostic accuracy of electroencephalogram (EEG) in predicting perioperative strokes through meta-analysis of existing literature. An extensive search for relevant literature was undertaken using PubMed and Web of Science databases. Studies were included after screening using predetermined criteria. Data was extracted and analyzed. Summary sensitivity, specificity and diagnostic odds ratio were obtained. Subgroup analysis of studies using eight or more EEG channels was done. Perioperative stroke rate for the cohort of 8765 patients was 1.75%. Pooled sensitivity and specificity of EEG changes in predicting these strokes were 52% (95% confidence interval [CI], 43-61%) and 84% (95% CI, 81-86%) respectively. Summary estimates of the subgroup were similar. The diagnostic odds ratio was 5.85 (95% CI, 3.71-9.22). For the observed stroke rate, the positive likelihood ratio was 3.25 while the negative predictive value was 98.99%. According to these results, patients with perioperative strokes have six times greater odds of experiencing an intraoperative change in EEG during CEA. EEG monitoring was found to be highly specific in predicting perioperative strokes after CEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A preliminary look at techniques used to obtain airdata from flight at high angles of attack

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.

    1990-01-01

    Flight research at high angles of attack has posed new problems for airdata measurements. New sensors and techniques for measuring the standard airdata quantities of static pressure, dynamic pressure, angle of attack, and angle of sideslip were subsequently developed. The ongoing airdata research supporting NASA's F-18 high alpha research program is updated. Included are the techniques used and the preliminary results. The F-18 aircraft was flown with three research airdata systems: a standard airdata probe on the right wingtip, a self-aligning airdata probe on the left wingtip, and a flush airdata system on the nose cone. The primary research goal was to obtain steady-state calibrations for each airdata system up to an angle of attack of 50 deg. This goal was accomplished and preliminary accuracies of the three airdata systems were assessed and are presented. An effort to improve the fidelity of the airdata measurements during dynamic maneuvering is also discussed. This involved enhancement of the aerodynamic data with data obtained from linear accelerometers, rate gyros, and attitude gyros. Preliminary results of this technique are presented.

  7. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    PubMed

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible

  8. Consumer health information on the Internet about carpal tunnel syndrome: indicators of accuracy.

    PubMed

    Frické, Martin; Fallis, Don; Jones, Marci; Luszko, Gianna M

    2005-02-01

    To identify indicators of accuracy for consumer health information on the Internet. Several popular search engines were used to find websites on carpal tunnel syndrome. The accuracy and completeness of these sites were determined by orthopedic surgeons. It also was noted whether proposed indicators of accuracy were present. The correlation between proposed indicators of accuracy and the actual accuracy of the sites was calculated. A total of 116 websites and 29 candidate indicators were examined. A high Google toolbar rating of the main page of a site, many inlinks to the main page of a site, and an unbiased presentation of information on carpal tunnel syndrome were considered genuine indicators of accuracy. Many proposed indicators taken from published guidelines did not indicate accuracy (e.g., the author or sponsor having medical credentials). There are genuine indicators of the accuracy of health information on the Internet. Determining these indicators, and informing providers and consumers of health information about them, would be useful for public health care. Published guidelines have proposed many indicators that are obvious to unaided observation by the consumer. However, indicators that make use of the invisible link structure of the Internet are more reliable guides to accurate information on carpal tunnel syndrome.

  9. The accuracy of mother's reports about their children's vaccination status.

    PubMed

    Gareaballah, E T; Loevinsohn, B P

    1989-01-01

    Estimates of measles vaccination coverage in the Sudan vary on average by 23 percentage points, depending on whether or not information supplied by mothers who have lost their children's vaccination cards is included. To determine the accuracy of mother's reports, we collected data during four large coverage surveys in which illiterate mothers with vaccination cards were asked about their children's vaccination status and their answers were compared with the information given on the cards. Mothers' replies were very accurate. For example, for measles vaccination, the data supplied were both sensitive (87%) and specific (79%) compared with those on the vaccination cards. For both DPT and measles vaccination, accurate estimates of the true coverage rates could therefore be obtained by relying solely on mothers' reports. Within +/- 1 month, 78% of the women knew the age at which their children had received their first dose of poliovaccine. Ignoring mothers' reports of their children's vaccination status could therefore result in serious underestimates of the true vaccination coverage. A simple method of dealing with the problem posed by lost vaccination cards during coverage surveys is also suggested.

  10. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  11. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions.

    PubMed

    Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao

    2015-09-01

    The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

  12. The effect of signal to noise ratio on accuracy of temperature measurements for Brillouin lidar in water

    NASA Astrophysics Data System (ADS)

    Liang, Kun; Niu, Qunjie; Wu, Xiangkui; Xu, Jiaqi; Peng, Li; Zhou, Bo

    2017-09-01

    A lidar system with Fabry-Pérot etalon and an intensified charge coupled device can be used to obtain the scattering spectrum of the ocean and retrieve oceanic temperature profiles. However, the spectrum would be polluted by noise and result in a measurement error. To analyze the effect of signal to noise ratio (SNR) on the accuracy of measurements for Brillouin lidar in water, the theory model and characteristics of SNR are researched. The noise spectrums with different SNR are repetitiously measured based on simulation and experiment. The results show that accuracy is related to SNR, and considering the balance of time consumption and quality, the average of five measurements is adapted for real remote sensing under the pulse laser conditions of wavelength 532 nm, pulse energy 650 mJ, repetition rate 10 Hz, pulse width 8 ns and linewidth 0.003 cm-1 (90 MHz). Measuring with the Brillouin linewidth has a better accuracy at a lower temperature (<15 °C), while measuring with the Brillouin shift is a more appropriate method at a higher temperature (>15 °C), based on the classical retrieval model we adopt. The experimental results show that the temperature error is 0.71 °C and 0.06 °C based on shift and linewidth respectively when the image SNR is at the range of 3.2 dB-3.9 dB.

  13. An Analysis of the Selected Materials Used in Step Measurements During Pre-Fits of Thermal Protection System Tiles and the Accuracy of Measurements Made Using These Selected Materials

    NASA Technical Reports Server (NTRS)

    Kranz, David William

    2010-01-01

    The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.

  14. Diagnostic Accuracy of MRI-guided Percutaneous Transthoracic Needle Biopsy of Solitary Pulmonary Nodules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shangang, E-mail: 1198685580@qq.com; Li, Chengli, E-mail: chenglilichina@yeah.net; Yu, Xuejuan, E-mail: yuxuejuan2011@126.com

    2015-04-15

    ObjectiveThe purpose of our study was to evaluate the diagnostic accuracy of MRI-guided percutaneous transthoracic needle biopsy (PTNB) of solitary pulmonary nodules (SPNs).MethodsRetrospective review of 69 patients who underwent MR-guided PTNB of SPNs was performed. Each case was reviewed for complications. The final diagnosis was established by surgical pathology of the nodule or clinical and imaging follow-up. Pneumothorax rate and diagnostic accuracy were compared between two groups according to nodule diameter (≤2 vs. >2 cm) using χ{sup 2} chest and Fisher’s exact test, respectively.ResultsThe success rate of single puncture was 95.6 %. Twelve (17.4 %) patients had pneumothorax, with 1 (1.4 %) requiring chestmore » tube insertion. Mild hemoptysis occurred in 7 (7.2 %) patients. All of the sample material was sufficient for histological diagnostic evaluation. Pathological analysis of biopsy specimens showed 46 malignant, 22 benign, and 1 nondiagnostic nodule. The final diagnoses were 49 malignant nodules and 20 benign nodules basing on postoperative histopathology and clinical follow-up data. One nondiagnostic sample was excluded from calculating diagnostic performance. A sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in diagnosing SPNs were 95.8, 100, 97.0, 100, and 90.9 %, respectively. Pneumothorax rate, diagnostic sensitivity, and accuracy were not significantly different between the two groups (P > 0.05).ConclusionsMRI-guided PTNB is safe, feasible, and high accurate diagnostic technique for pathologic diagnosis of pulmonary nodules.« less

  15. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.

    PubMed

    Obuchowski, Nancy A

    2006-02-15

    ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.

  16. Accuracy criteria voltage electrocardiography left ventricular hypertrophy to distinguish types of left ventricular hypertrophy geometry

    NASA Astrophysics Data System (ADS)

    Tumbur, O.; Safri, Z.; Hassan, R.

    2018-03-01

    Different types of left ventricular hypertrophy geometry are associated with different risk of cardiovascular disease. The purpose of this study was to determine the role of various ECG voltages of LVH to distinguish the type of LVH geometry. A cross-sectional study from June to November 2015, 100 patients in Adam Malik Hospital Medan. The result of LVH ECG criteria of Sokolow-Lyon was not met then obtained normal left ventricular geometry with 60% sensitivity, 72.22% specificity, and 71% accuracy. The eccentric type of LVH is obtained when the Cornel Voltage is not met; the sensitivity is 25%, specificity 71.88%, and 55% accuracy. Concentric geometric hypertrophy when the RV6/V5> 1 ratio is satisfied, the sensitivity is 55.56%, specificity 56.36%, and 56% accuracy. The RV6/V5>1 ratio was not met, the concentric geometry type of hypertrophy remodeling was determined with a sensitivity of 55.56%, specificity 49.45%, and 50% accuracy. Conclusions, various LVHECG criteria distinguish the type of LVH geometry. Sokolow-Lyon and Cornel Voltage sensitivity and specificity are better than the RV6/V5 ratio.

  17. Accuracy, calibration and clinical performance of the EuroSCORE: can we reduce the number of variables?

    PubMed

    Ranucci, Marco; Castelvecchio, Serenella; Menicanti, Lorenzo; Frigiola, Alessandro; Pelissero, Gabriele

    2010-03-01

    The European system for cardiac operative risk evaluation (EuroSCORE) is currently used in many institutions and is considered a reference tool in many countries. We hypothesised that too many variables were included in the EuroSCORE using limited patient series. We tested different models using a limited number of variables. A total of 11150 adult patients undergoing cardiac operations at our institution (2001-2007) were retrospectively analysed. The 17 risk factors composing the EuroSCORE were separately analysed and ranked for accuracy of prediction of hospital mortality. Seventeen models were created by progressively including one factor at a time. The models were compared for accuracy with a receiver operating characteristics (ROC) analysis and area under the curve (AUC) evaluation. Calibration was tested with Hosmer-Lemeshow statistics. Clinical performance was assessed by comparing the predicted with the observed mortality rates. The best accuracy (AUC 0.76) was obtained using a model including only age, left ventricular ejection fraction, serum creatinine, emergency operation and non-isolated coronary operation. The EuroSCORE AUC (0.75) was not significantly different. Calibration and clinical performance were better in the five-factor model than in the EuroSCORE. Only in high-risk patients were 12 factors needed to achieve a good performance. Including many factors in multivariable logistic models increases the risk for overfitting, multicollinearity and human error. A five-factor model offers the same level of accuracy but demonstrated better calibration and clinical performance. Models with a limited number of factors may work better than complex models when applied to a limited number of patients. Copyright (c) 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  18. Accuracy and Reproducibility of Adipose Tissue Measurements in Young Infants by Whole Body Magnetic Resonance Imaging

    PubMed Central

    Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans

    2015-01-01

    Purpose MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. Material and Methods MR images of ten phantoms simulating subcutaneous fat of an infant’s torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. Results In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. Conclusion With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy. PMID:25706876

  19. Accuracy and reproducibility of adipose tissue measurements in young infants by whole body magnetic resonance imaging.

    PubMed

    Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans

    2015-01-01

    MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. MR images of ten phantoms simulating subcutaneous fat of an infant's torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy.

  20. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Hanfeng, Lv; Dingjie, Wang; Yanqing, Hou; Jie, Wu

    2015-07-01

    Low-latency high-rate (1 Hz) precise real-time kinematic (RTK) can be applied in high-speed scenarios such as aircraft automatic landing, precise agriculture and intelligent vehicle. The classic synchronous RTK (SRTK) precise differential GNSS (DGNSS) positioning technology, however, is not able to obtain a low-latency high-rate output for the rover receiver because of long data link transmission time delays (DLTTD) from the reference receiver. To overcome the long DLTTD, this paper proposes an asynchronous real-time kinematic (ARTK) method using asynchronous observations from two receivers. The asynchronous observation model (AOM) is developed based on undifferenced carrier phase observation equations of the two receivers at different epochs with short baseline. The ephemeris error and atmosphere delay are the possible main error sources on positioning accuracy in this model, and they are analyzed theoretically. In a short DLTTD and during a period of quiet ionosphere activity, the main error sources decreasing positioning accuracy are satellite orbital errors: the "inverted ephemeris error" and the integration of satellite velocity error which increase linearly along with DLTTD. The cycle slip of asynchronous double-differencing carrier phase is detected by TurboEdit method and repaired by the additional ambiguity parameter method. The AOM can deal with synchronous observation model (SOM) and achieve precise positioning solution with synchronous observations as well, since the SOM is only a specific case of AOM. The proposed method not only can reduce the cost of data collection and transmission, but can also support the mobile phone network data link transfer mode for the data of the reference receiver. This method can avoid data synchronizing process besides ambiguity initialization step, which is very convenient for real-time navigation of vehicles. The static and kinematic experiment results show that this method achieves 20 Hz or even higher rate output in

  1. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    PubMed

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  2. Occupational exposure decisions: can limited data interpretation training help improve accuracy?

    PubMed

    Logan, Perry; Ramachandran, Gurumurthy; Mulhausen, John; Hewett, Paul

    2009-06-01

    Accurate exposure assessments are critical for ensuring that potentially hazardous exposures are properly identified and controlled. The availability and accuracy of exposure assessments can determine whether resources are appropriately allocated to engineering and administrative controls, medical surveillance, personal protective equipment and other programs designed to protect workers. A desktop study was performed using videos, task information and sampling data to evaluate the accuracy and potential bias of participants' exposure judgments. Desktop exposure judgments were obtained from occupational hygienists for material handling jobs with small air sampling data sets (0-8 samples) and without the aid of computers. In addition, data interpretation tests (DITs) were administered to participants where they were asked to estimate the 95th percentile of an underlying log-normal exposure distribution from small data sets. Participants were presented with an exposure data interpretation or rule of thumb training which included a simple set of rules for estimating 95th percentiles for small data sets from a log-normal population. DIT was given to each participant before and after the rule of thumb training. Results of each DIT and qualitative and quantitative exposure judgments were compared with a reference judgment obtained through a Bayesian probabilistic analysis of the sampling data to investigate overall judgment accuracy and bias. There were a total of 4386 participant-task-chemical judgments for all data collections: 552 qualitative judgments made without sampling data and 3834 quantitative judgments with sampling data. The DITs and quantitative judgments were significantly better than random chance and much improved by the rule of thumb training. In addition, the rule of thumb training reduced the amount of bias in the DITs and quantitative judgments. The mean DIT % correct scores increased from 47 to 64% after the rule of thumb training (P < 0.001). The

  3. Probability of criminal acts of violence: a test of jury predictive accuracy.

    PubMed

    Reidy, Thomas J; Sorensen, Jon R; Cunningham, Mark D

    2013-01-01

    The ability of capital juries to accurately predict future prison violence at the sentencing phase of aggravated murder trials was examined through retrospective review of the disciplinary records of 115 male inmates sentenced to either life (n = 65) or death (n = 50) in Oregon from 1985 through 2008, with a mean post-conviction time at risk of 15.3 years. Violent prison behavior was completely unrelated to predictions made by capital jurors, with bidirectional accuracy simply reflecting the base rate of assaultive misconduct in the group. Rejection of the special issue predicting future violence enjoyed 90% accuracy. Conversely, predictions that future violence was probable had 90% error rates. More than 90% of the assaultive rule violations committed by these offenders resulted in no harm or only minor injuries. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Constructing a sequence of palaeoDEMs to obtain erosion rates in a drainage basin.N

    NASA Astrophysics Data System (ADS)

    Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran

    2017-04-01

    DEMs made in a present-day drainage basin, considering it as a geomorphic unit, represent the end result of a landscape evolution. This process has had to follow a model of erosion. Trying to establish a conceptual erosion model in landscape evolution represents the first difficulty in constructing a sequence of palaeoDEMs. But if one is able to do it, the result will be easier and believable. The next step to do is to make a catalogue of base level types present in the drainage basin. The list has to include elements with determinate position and elevation (x, y, z) from the centre of the basin until hillslopes. A list of base level types may contain fluvial terrace remnants, erosive surfaces, palaeosols, alluvial covers of glacis, alluvial fans, rockfalls, landslides and scree zones. It is very important to know the spatial and temporal relations between the elements of the list, even if they are disconnected by erosion processes. Relative chronologies have to be set for all elements of the catalogue, and as far as possible absolute chronologies. To do it,it is essential to have established first the spatial relations between them, including those elements that are gone. Moreover, it is also essential to have adapted all the elements to the conceptual erosion model proposed. In this step, it has to be kept in mind that erosion rates can be very different in determinate areas within the same geomorphic unit. Erosion processes are focused in specific zones while other areas are maintained in stability. A good technique to construct a palaeoDEM is to start making, by hand, a map of contour lines. At this point, it is valuable to use the elements' catalogue. The use of those elements belonging to the same palaeosurface will result in a map. Several maps can be obtained from a catalogue. Contour maps can be gridded into a 3D surface by means of a specific application and a set of surfaces will be obtained. Algebraic operations can be done with palaeoDEMs obtaining

  5. MEDEX 2015: Heart Rate Variability Predicts Development of Acute Mountain Sickness.

    PubMed

    Sutherland, Angus; Freer, Joseph; Evans, Laura; Dolci, Alberto; Crotti, Matteo; Macdonald, Jamie Hugo

    2017-09-01

    Sutherland, Angus, Joseph Freer, Laura Evans, Alberto Dolci, Matteo Crotti, and Jamie Hugo Macdonald. MEDEX 2015: Heart rate variability predicts development of acute mountain sickness. High Alt Med Biol. 18: 199-208, 2017. Acute mountain sickness (AMS) develops when the body fails to acclimatize to atmospheric changes at altitude. Preascent prediction of susceptibility to AMS would be a useful tool to prevent subsequent harm. Changes to peripheral oxygen saturation (SpO 2 ) on hypoxic exposure have previously been shown to be of poor predictive value. Heart rate variability (HRV) has shown promise in the early prediction of AMS, but its use pre-expedition has not previously been investigated. We aimed to determine whether pre- and intraexpedition HRV assessment could predict susceptibility to AMS at high altitude with better diagnostic accuracy than SpO 2 . Forty-four healthy volunteers undertook an expedition in the Nepali Himalaya to >5000 m. SpO 2 and HRV parameters were recorded at rest in normoxia and in a normobaric hypoxic chamber before the expedition. On the expedition HRV parameters and SpO 2 were collected again at 3841 m. A daily Lake Louise Score was obtained to assess AMS symptomology. Low frequency/high frequency (LF/HF) ratio in normoxia (cutpoint ≤2.28 a.u.) and LF following 15 minutes of exposure to normobaric hypoxia had moderate (area under the curve ≥0.8) diagnostic accuracy. LF/HF ratio in normoxia had the highest sensitivity (85%) and specificity (88%) for predicting AMS on subsequent ascent to altitude. In contrast, pre-expedition SpO 2 measurements had poor (area under the curve <0.7) diagnostic accuracy and inferior sensitivity and specificity. Pre-ascent measurement of HRV in normoxia was found to be of better diagnostic accuracy for AMS prediction than all measures of HRV in hypoxia, and better than peripheral oxygen saturation monitoring.

  6. TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Yuan, L; Sheng, Y

    Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra

  7. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  8. Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.

    PubMed

    Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku

    2017-01-01

    The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.

  9. Assessment of follow-up, and the completeness and accuracy of cancer case ascertainment in three areas of India

    PubMed Central

    Mathew, Aleyamma; Daniel, Carrie R.; Ferrucci, Leah M.; Seth, Tulika; Devesa, Susan S.; George, Preethi S.; Shetty, Hemali; Devasenapathy, Niveditha; Yurgalevitch, Susan; Rastogi, Tanuja; Prabhakaran, Dorairaj; Gupta, Prakash C.; Chatterjee, Nilanjan; Sinha, Rashmi

    2012-01-01

    Background A prospective study of diet and cancer has not been conducted in India; consequently, little is known regarding follow-up rates or the completeness and accuracy of cancer case ascertainment. Methods We assessed follow-up in the India Health Study (IHS; 4,671 participants aged 35–69 residing in New Delhi, Mumbai, or Trivandrum). We evaluated the impact of medical care access and relocation, re-contacted the IHS participants to estimate follow-up rates, and conducted separate studies of cancer cases to evaluate registry coverage (604 cases in Trivandrum) and the accuracy of self- and proxy-reporting (1600 cases in New Delhi and Trivandrum). Results Over 97% of people reported seeing a doctor and 85% had lived in their current residence for over six years. The 2-year follow-up rate was 91% for Trivandrum and 53% for New Delhi. No cancer cases were missed among public institutions participating in the surveillance program in Trivandrum during 2003–04; but there are likely to be unmatched cases (ranging from 5 to13% of total cases) from private hospitals in the Trivandrum registry, as there are no mandatory reporting requirements. Vital status was obtained for 36% of cancer cases in New Delhi as compared to 78% in Trivandrum after a period of 4 years. Conclusions A prospective cohort study of cancer may be feasible in some centers in India with active follow-up to supplement registry data. Inclusion of cancers diagnosed at private institutions, unique identifiers for individuals, and computerized medical information would likely improve cancer registries. PMID:21621499

  10. Accuracy of Self-Esteem Judgments at Zero Acquaintance.

    PubMed

    Hirschmüller, Sarah; Schmukle, Stefan C; Krause, Sascha; Back, Mitja D; Egloff, Boris

    2018-04-01

    Perceptions of strangers' self-esteem can have wide-ranging interpersonal consequences. Aiming to reconcile inconsistent results from previous research that had predominantly suggested that self-esteem is a trait that can hardly be accurately judged at zero acquaintance, we examined unaquainted others' accuracy in inferring individuals' actual self-esteem. Ninety-nine target participants (77 female; M age  = 23.5 years) were videotaped in a self-introductory situation, and self-esteem self-reports and reports by well-known informants were obtained as separate accuracy criteria. Forty unacquainted observers judged targets' self-esteem on the basis of these short video sequences (M = 23s, SD = 7.7). Results showed that both self-reported (r = .31, p = .002) and informant-reported self-esteem (r = .21, p = .040) of targets could be inferred by strangers. The degree of accuracy in self-esteem judgments could be explained with lens model analyses: Self- and informant-reported self-esteem predicted nonverbal and vocal friendliness, both of which predicted self-esteem judgments by observers. In addition, observers' accuracy in inferring informant-reported self-esteem was mediated by the utilization of targets' physical attractiveness. Besides using valid behavioral information to infer strangers' self-esteem, observers inappropriately relied on invalid behavioral information reflecting nonverbal, vocal, and verbal self-assuredness. Our findings show that strangers can quite accurately detect individuals' self-reported and informant-reported self-esteem when targets are observed in a public self-presentational situation. © 2017 Wiley Periodicals, Inc.

  11. CALCULATIONS WITH SPECTROSCOPIC ACCURACY: ENERGIES AND TRANSITION RATES IN THE NITROGEN ISOELECTRONIC SEQUENCE FROM Ar XII TO Zn XXIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Dang, W.; Si, R.

    2016-03-15

    Combined relativistic configuration interaction and many-body perturbation calculations are performed for the 359 fine-structure levels of the 2s{sup 2} 2p{sup 3}, 2 s2p{sup 4}, 2p{sup 5}, 2s{sup 2} 2p{sup 2} 3l, 2 s2p{sup 3} 3l, 2p{sup 4} 3l, and 2s{sup 2} 2p{sup 2} 4l configurations in N-like ions from Ar xii to Zn xxiv. Complete and consistent data sets of energies, wavelengths, radiative rates, oscillator strengths, and line strengths for all possible electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among the 359 levels are given for each ion. The present work significantly increases the amount of accuratemore » data for ions in the nitrogen-like sequence, and the accuracy of the energy levels is high enough to enable the identification and interpretation of observed spectra involving the n = 3, 4 levels, for which experimental values are largely scarce. Meanwhile, the results should be of great help for modeling and diagnosing astrophysical and fusion plasmas.« less

  12. Base rate of Hiscock Digit Memory Test failure in HIV-associated neurocognitive disorders.

    PubMed

    Woods, Steven Paul; Conover, Emily; Weinborn, Michael; Rippeth, Julie D; Brill, R Michelle; Heaton, Robert K; Grant, Igor

    2003-08-01

    There is an emergent need for base rate data on symptom validity tests (SVTs) in clinical populations that are likely to seek disability benefits. The inclusion of HIV under the Americans with Disabilities Act has prompted many persons with HIV-1 infection to apply for disability, which raises the concern that a subset of these individuals might feign cognitive deficits to obtain benefits. This brief report provides base rate data on one SVT, the Hiscock Digit Memory Test (HDMT), in a sample of 82 non-compensation-seeking, neuropsychologically impaired participants who met diagnostic criteria for an HIV-associated neurocognitive disorder. Approximately 98% of individuals with HIV-associated neurocognitive disorders performed above an established HDMT cutoff for suboptimal effort (i.e., HDMT> or =90% accuracy), whilst 95% of the sample obtained perfect scores. Clinicians can therefore be confident that, in the absence of severe dementia or amnesia, HDMT scores below standard cutoffs are unlikely to be solely attributable to HIV-associated cognitive impairment.

  13. [Accuracy of judgment about others' cooperative behavior: effects of attractiveness and facial expressiveness].

    PubMed

    Shinada, Mizuho; Yamagishi, Toshio; Tanida, Shigehito; Takahashi, Chisato; Inukai, Keigo; Koizumi, Michiko; Yokota, Kunihiro; Mifune, Nobuhiro; Takagishi, Haruto; Horita, Yutaka; Hashimoto, Hirofumi

    2010-06-01

    Cooperation in interdependent relationships is based on reciprocity in repeated interactions. However, cooperation in one-shot relationships cannot be explained by reciprocity. Frank, Gilovich, & Regan (1993) argued that cooperative behavior in one-shot interactions can be adaptive if cooperators displayed particular signals and people were able to distinguish cooperators from non-cooperators by decoding these signals. We argue that attractiveness and facial expressiveness are signals of cooperators. We conducted an experiment to examine if these signals influence the detection accuracy of cooperative behavior. Our participants (blind to the target's behavior in a Trust Game) viewed 30-seconds video-clips. Each video-clip was comprised of a cooperator and a non-cooperator in a Trust Game. The participants judged which one of the pair gave more money to the other participant. We found that participants were able to detect cooperators with a higher accuracy than chance. Furthermore, participants rated male non-cooperators as more attractive than male cooperators, and rated cooperators more expressive than non-cooperators. Further analyses showed that attractiveness inhibited detection accuracy while facial expressiveness fostered it.

  14. Reference air kerma rate calibration system for high dose rate Ir-192 brachytherapy sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun

    2017-11-01

    Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.

  15. Accuracy of electromyography needle placement in cadavers: non-guided vs. ultrasound guided.

    PubMed

    Boon, Andrea J; Oney-Marlow, Theresa M; Murthy, Naveen S; Harper, Charles M; McNamara, Terrence R; Smith, Jay

    2011-07-01

    Accuracy of needle electromyography is typically ensured by use of anatomical landmarks and auditory feedback related to voluntary activation of the targeted muscle; however, in certain clinical situations, landmarks may not be palpable, auditory feedback may be limited or not present, and targeting a specific muscle may be more critical. In such settings, image guidance might significantly enhance accuracy. Two electromyographers with different levels of experience examined 14 muscles in each of 4 fresh-frozen cadaver lower limbs. Each muscle was tested a total of eight times; four fine wires were inserted without ultrasound (US) guidance and four were inserted under US guidance. Overall accuracy as well as accuracy rates for the individual electromyographers were calculated. Non-guided needle placement was significantly less accurate than US-guided needle placement, particularly in the hands of less experienced electromyographers, supporting the use of real-time US guidance in certain challenging situations in the electromyography laboratory. Copyright © 2011 Wiley Periodicals, Inc.

  16. Measurement of diffusion coefficients from solution rates of bubbles

    NASA Technical Reports Server (NTRS)

    Krieger, I. M.

    1979-01-01

    The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.

  17. Requirements for Coregistration Accuracy in On-Scalp MEG.

    PubMed

    Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri

    2018-06-22

    Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.

  18. Preliminary GAOFEN-3 Insar dem Accuracy Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Li, T.; Tang, X.; Gao, X.; Zhang, X.

    2018-04-01

    GF-3 satellite, the first C band and full-polarization SAR satellite of China with spatial resolution of 1 m, was successfully launched in August 2016. We analyze the error sources of GF-3 satellite in this paper, and provide the interferometric calibration model based on range function, Doppler shift equation and interferometric phase function, and interferometric parameters calibrated using the three-dimensional coordinates of ground control points. Then, we conduct the experimental two pairs of images in fine stripmap I mode covering Songshan of Henan Province and Tangshan of Hebei Province, respectively. The DEM data are assessed using SRTM DEM, ICESat-GLAS points, and ground control points database obtained using ZY-3 satellite to validate the accuracy of DEM elevation. The experimental results show that the accuracy of DEM extracted from GF-3 satellite SAR data can meet the requirements of topographic mapping in mountain and alpine regions at the scale of 1 : 50000 in China. Besides, it proves that GF-3 satellite has the potential of interferometry.

  19. Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.

    PubMed

    Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland

    2009-06-09

    The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.

  20. Accuracy and Measurement Error of the Medial Clear Space of the Ankle.

    PubMed

    Metitiri, Ogheneochuko; Ghorbanhoseini, Mohammad; Zurakowski, David; Hochman, Mary G; Nazarian, Ara; Kwon, John Y

    2017-04-01

    Measurement of the medial clear space (MCS) is commonly used to assess deltoid ligament competency and mortise stability when managing ankle fractures. Lacking knowledge of the true anatomic width measured, previous studies have been unable to measure accuracy of measurement. The purpose of this study was to determine MCS measurement error and accuracy and any influencing factors. Using 3 normal transtibial ankle cadaver specimens, deltoid and syndesmotic ligaments were transected and the mortise widened and affixed at a width of 6 mm (specimen 1) and 4 mm (specimen 2). The mortise was left intact in specimen 3. Radiographs were obtained of each cadaver at varying degrees of rotation. Radiographs were randomized, and providers measured the MCS using a standardized technique. Lack of accuracy as well as lack of precision in measurement of the medial clear space compared to a known anatomic value was present for all 3 specimens tested. There were no significant differences in mean delta with regard to level of training for specimens 1 and 2; however, with specimen 3, staff physicians showed increased measurement accuracy compared with trainees. Accuracy and precision of MCS measurements are poor. Provider experience did not appear to influence accuracy and precision of measurements for the displaced mortise. This high degree of measurement error and lack of precision should be considered when deciding treatment options based on MCS measurements.

  1. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.

    PubMed

    Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal

    2007-01-01

    Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.

  2. Two high accuracy digital integrators for Rogowski current transducers.

    PubMed

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  3. Two high accuracy digital integrators for Rogowski current transducers

    NASA Astrophysics Data System (ADS)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  4. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  5. Conclusions about children’s reporting accuracy for energy and macronutrients over multiple interviews depend on the analytic approach for comparing reported information to reference information

    PubMed Central

    Baxter, Suzanne Domel; Smith, Albert F.; Hardin, James W.; Nichols, Michele D.

    2008-01-01

    Objective Validation-study data are used to illustrate that conclusions about children’s reporting accuracy for energy and macronutrients over multiple interviews (ie, time) depend on the analytic approach for comparing reported and reference information—conventional, which disregards accuracy of reported items and amounts, or reporting-error-sensitive, which classifies reported items as matches (eaten) or intrusions (not eaten), and amounts as corresponding or overreported. Subjects and design Children were observed eating school meals on one day (n = 12), or two (n = 13) or three (n = 79) nonconsecutive days separated by ≥25 days, and interviewed in the morning after each observation day about intake the previous day. Reference (observed) and reported information were transformed to energy and macronutrients (protein, carbohydrate, fat), and compared. Main outcome measures For energy and each macronutrient: report rates (reported/reference), correspondence rates (genuine accuracy measures), inflation ratios (error measures). Statistical analyses Mixed-model analyses. Results Using the conventional approach for analyzing energy and macronutrients, report rates did not vary systematically over interviews (Ps > .61). Using the reporting-error-sensitive approach for analyzing energy and macronutrients, correspondence rates increased over interviews (Ps < .04), indicating that reporting accuracy improved over time; inflation ratios decreased, although not significantly, over interviews, also suggesting that reporting accuracy improved over time. Correspondence rates were lower than report rates, indicating that reporting accuracy was worse than implied by conventional measures. Conclusions When analyzed using the reporting-error-sensitive approach, children’s dietary reporting accuracy for energy and macronutrients improved over time, but the conventional approach masked improvements and overestimated accuracy. Applications The reporting

  6. Synthesized speech rate and pitch effects on intelligibility of warning messages for pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.; Marchionda-Frost, K.

    1984-01-01

    In civilian and military operations, a future threat-warning system with a voice display could warn pilots of other traffic, obstacles in the flight path, and/or terrain during low-altitude helicopter flights. The present study was conducted to learn whether speech rate and voice pitch of phoneme-synthesized speech affects pilot accuracy and response time to typical threat-warning messages. Helicopter pilots engaged in an attention-demanding flying task and listened for voice threat warnings presented in a background of simulated helicopter cockpit noise. Performance was measured by flying-task performance, threat-warning intelligibility, and response time. Pilot ratings were elicited for the different voice pitches and speech rates. Significant effects were obtained only for response time and for pilot ratings, both as a function of speech rate. For the few cases when pilots forgot to respond to a voice message, they remembered 90 percent of the messages accurately when queried for their response 8 to 10 sec later.

  7. Current Limitations on VLBI Accuracy

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gipson, John; MacMillan, Daniel

    1998-01-01

    The contribution of VLBI to geophysics and geodesy arises from its ability to measure distances between stations in a network and to determine the orientation of stations in the network as well as the orientation of the network with respect to the external reference frame of extragalactic radio objects. Integrating nearly two decades of observations provides useful information about station positions and velocities and the orientation of the Earth, but the complications of the real world and the limitations of observing, modeling and analysis prevent recovery of all effects. Of the factors that limit the accuracy of seemingly straightforward geodetic parameters, the neutral propagation medium has been subject to the greatest scrutiny, but the treatment of the mapping function, the wet component and spatial/temporal inhomogeneities is still improving. These affect both the terrestrial scale and consistency over time. The modeling of non-secular site motions (tides and loading) has increased in sophistication, but there are some differences between the models and the observations. VLBI antennas are massive objects, so their behavior is quite unlike GPS monuments, but antenna deformations add some (generally) unmodeled signal. Radio sources used in geodetic VLBI observations are selected for strength and (relative) absence of structure, but apparent changes in position can leak into geodetic parameters. A linear rate of change of baseline or site parameters is the simplest model and its error improves with time span. However, in most cases the VLBI data distribution is insufficient to look for real non-linear behavior that might affect the average rate. A few sites have multiple VLBI antennas, and some show small differences in rate. VLBI intrinsically measures relative positions and velocities, but individual site positions and velocities are generally more useful. The creation of the VLBI terrestrial reference frame, which transforms relative information into

  8. Accuracy assessment of percent canopy cover, cover type, and size class

    Treesearch

    H. T. Schreuder; S. Bain; R. C. Czaplewski

    2003-01-01

    Truth for vegetation cover percent and type is obtained from very large-scale photography (VLSP), stand structure as measured by size classes, and vegetation types from a combination of VLSP and ground sampling. We recommend using the Kappa statistic with bootstrap confidence intervals for overall accuracy, and similarly bootstrap confidence intervals for percent...

  9. Diagnostic accuracy for major depression in multiple sclerosis using self-report questionnaires.

    PubMed

    Fischer, Anja; Fischer, Marcus; Nicholls, Robert A; Lau, Stephanie; Poettgen, Jana; Patas, Kostas; Heesen, Christoph; Gold, Stefan M

    2015-09-01

    Multiple sclerosis and major depressive disorder frequently co-occur but depression often remains undiagnosed in this population. Self-rated depression questionnaires are a good option where clinician-based standardized diagnostics are not feasible. However, there is a paucity of data on diagnostic accuracy of self-report measures for depression in multiple sclerosis (MS). Moreover, head-to-head comparisons of common questionnaires are largely lacking. This could be particularly relevant for high-risk patients with depressive symptoms. Here, we compare the diagnostic accuracy of the Beck Depression Inventory (BDI) and 30-item version of the Inventory of Depressive Symptomatology Self-Rated (IDS-SR30) for major depressive disorder (MSS) against diagnosis by a structured clinical interview. Patients reporting depressive symptoms completed the BDI, the IDS-SR30 and underwent diagnostic assessment (Mini International Neuropsychiatric Interview, M.I.N.I.). Receiver-Operating Characteristic analyses were performed, providing error estimates and false-positive/negative rates of suggested thresholds. Data from n = 31 MS patients were available. BDI and IDS-SR30 total score were significantly correlated (r = 0.82). The IDS-SR30total score, cognitive subscore, and BDI showed excellent to good accuracy (area under the curve (AUC) 0.86, 0.91, and 0.85, respectively). Both the IDS-SR30 and the BDI are useful to quantify depressive symptoms showing good sensitivity and specificity. The IDS-SR30 cognitive subscale may be useful as a screening tool and to quantify affective/cognitive depressive symptomatology.

  10. [Analysis on accuracy and influencing factors of oral fluid-based rapid HIV self-testing among men who have sex with men].

    PubMed

    Li, Youfang; Wang, Yumiao; Zhang, Renzhong; Wang, Jue; Li, Zhiqing; Wang, Ling; Pan, Songfeng; Yang, Yanling; Ma, Yanling; Jia, Manhong

    2016-01-01

    To understood the accuracy of oral fluid-based rapid HIV self-testing among men who have sex with men (MSM) and related factors. Survey was conducted among MSM selected through non-probability sampling to evaluate the quality of their rapid HIV self-testing, and related information was analyzed. The most MSM were aged 21-30 years (57.0%). Among them, 45.7% had educational level of college or above, 78.5% were unmarried, 59.3% were casual laborers. The overall accuracy rate of oral fluid based self-testing was 95.0%, the handling of"inserting test paper into tube as indicated by arrow on it"had the highest accuracy rate (98.0%), and the handling of"gently upsetting tube for 3 times"had lowest accuracy rate (65.0%); Chi-square analysis showed that educational level, no touch with middle part of test paper, whether reading the instruction carefully, whether understanding the instruction and inserting test paper into tube as indicated by the arrow on it were associated with the accuracy of oral fluid-based rapid HIV self-testing, (P<0.05). Multivariate logistic regression analysis indicated that educational level, no touch with middle part of test paper and understanding instructions were associated with the accuracy of oral fluid-based rapid HIV self-testing. The accuracy of oral fluid-based rapid HIV self-testing was high among MSM, the accuracy varied with the educational level of the MSM. Touch with the middle part of test paper or not and understanding the instructions or not might influence the accuracy of the self-testing.

  11. Evaluation of registration accuracy between Sentinel-2 and Landsat 8

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia

    2016-08-01

    Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).

  12. Variation in false-positive rates of mammography reading among 1067 radiologists: a population-based assessment.

    PubMed

    Tan, Alai; Freeman, Daniel H; Goodwin, James S; Freeman, Jean L

    2006-12-01

    The accuracy of mammography reading varies among radiologists. We conducted a population-based assessment on radiologist variation in false- positive rates of screening mammography and its associated radiologist characteristics. About 27,394 screening mammograms interpreted by 1067 radiologists were identified from a 5% non-cancer sample of Medicare claims during 1998-1999. The data were linked to the American Medical Association Masterfile to obtain radiologist characteristics. Multilevel logistic regression models were used to examine the radiologist variation in false-positive rates of screening mammography and the associated radiologist characteristics. Radiologists varied substantially in the false-positive rates of screening mammography (ranging from 1.5 to 24.1%, adjusting for patient characteristics). A longer time period since graduation is associated with lower false-positive rates (odds ratio [OR] for every 10 years increase: 0.87, 95% Confidence Interval [CI], 0.81-0.94) and female radiologists had higher false-positive rates than male radiologists (OR = 1.25, 95% CI, 1.05-1.49), adjusting for patient and other radiologist characteristics. The unmeasured factors contributed to about 90% of the between-radiologist variance. Radiologists varied greatly in accuracy of mammography reading. Female and more recently trained radiologists had higher false-positive rates. The variation among radiologists was largely due to unmeasured factors, especially unmeasured radiologist factors. If our results are confirmed in further studies, they suggest that system-level interventions would be required to reduce variation in mammography interpretation.

  13. Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Kanning, G.; Cicolani, L. S.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.

  14. Predictive accuracy of combined genetic and environmental risk scores.

    PubMed

    Dudbridge, Frank; Pashayan, Nora; Yang, Jian

    2018-02-01

    The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. © 2017 WILEY PERIODICALS, INC.

  15. Predictive accuracy of combined genetic and environmental risk scores

    PubMed Central

    Pashayan, Nora; Yang, Jian

    2017-01-01

    ABSTRACT The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. PMID:29178508

  16. Identification accuracy of children versus adults: a meta-analysis.

    PubMed

    Pozzulo, J D; Lindsay, R C

    1998-10-01

    Identification accuracy of children and adults was examined in a meta-analysis. Preschoolers (M = 4 years) were less likely than adults to make correct identifications. Children over the age of 5 did not differ significantly from adults with regard to correct identification rate. Children of all ages examined were less likely than adults to correctly reject a target-absent lineup. Even adolescents (M = 12-13 years) did not reach an adult rate of correct rejection. Compared to simultaneous lineup presentation, sequential lineups increased the child-adult gap for correct rejections. Providing child witnesses with identification practice or training did not increase their correct rejection rates. Suggestions for children's inability to correctly reject target-absent lineups are discussed. Future directions for identification research are presented.

  17. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques.

    PubMed

    Cohen, Wayne R; Hayes-Gill, Barrie

    2014-06-01

    To evaluate the performance of external electronic fetal heart rate and uterine contraction monitoring according to maternal body mass index. Secondary analysis of prospective equivalence study. Three US urban teaching hospitals. Seventy-four parturients with a normal term pregnancy. The parent study assessed performance of two methods of external fetal heart rate monitoring (abdominal fetal electrocardiogram and Doppler ultrasound) and of uterine contraction monitoring (electrohystero-graphy and tocodynamometry) compared with internal monitoring with fetal scalp electrode and intrauterine pressure transducer. Reliability of external techniques was assessed by the success rate and positive percent agreement with internal methods. Bland-Altman analysis determined accuracy. We analyzed data from that study according to maternal body mass index. We assessed the relationship between body mass index and monitor performance with linear regression, using body mass index as the independent variable and measures of reliability and accuracy as dependent variables. There was no significant association between maternal body mass index and any measure of reliability or accuracy for abdominal fetal electrocardiogram. By contrast, the overall positive percent agreement for Doppler ultrasound declined (p = 0.042), and the root mean square error from the Bland-Altman analysis increased in the first stage (p = 0.029) with increasing body mass index. Uterine contraction recordings from electrohysterography and tocodynamometry showed no significant deterioration related to maternal body mass index. Accuracy and reliability of fetal heart rate monitoring using abdominal fetal electrocardiogram was unaffected by maternal obesity, whereas performance of ultrasound degraded directly with maternal size. Both electrohysterography and tocodynamometry were unperturbed by obesity. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Office hysteroscopic-guided selective tubal chromopertubation: acceptability, feasibility and diagnostic accuracy of this new diagnostic non-invasive technique in infertile women.

    PubMed

    Carta, Gaspare; Palermo, Patrizia; Pasquale, Chiara; Conte, Valeria; Pulcinella, Ruggero; Necozione, Stefano; Cofini, Vincenza; Patacchiola, Felice

    2018-06-01

    The aim of this study was to evaluate accuracy, tolerability and side effects of office hysteroscopic-guided chromoperturbations in infertile women without anaesthesia. Forty-nine infertile women underwent the procedure to evaluate tubal patency and the uterine cavity. Women with unilateral or bilateral tubal stenosis at hysteroscopy with chromoperturbation, and women with bilateral tubal patency who did not conceive during the period of six months, underwent laparoscopy with chromoperturbation. The results obtained from hysteroscopy and laparoscopy in the assessment of tubal patency were compared. Sensitivity, specificity, accuracy, positive-predictive value and negative-predictive value were used to describe diagnostic performance. Pain and tolerance were assessed during procedure using a visual analogue scale (VAS). Side effects or late complications and pregnancy rate were also recorded three and six months after the procedure. The specificity was 87.8% (95% CI: 73.80-95.90), sensitivity was 85.7% (95% CI 57.20-98.20), positive and negative predictive values were 70.6% (95% CI: 44.00-89) and 94.7% (95% CI: 82.30-99.40), respectively. Pregnancy rate (PR) within six months after performance of hysteroscopy with chromoperturbation was 27%. Office hysteroscopy-guided selective chromoperturbation in infertile patients is a valid technique to evaluate tubal patency and uterine cavity.

  19. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  20. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  1. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  2. Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Tang, Yong; Chen, Jiemin

    2017-10-01

    Recommender systems (RSs) have been a widely exploited approach to solving the information overload problem. However, the performance is still limited due to the extreme sparsity of the rating data. With the popularity of Web 2.0, the social tagging system provides more external information to improve recommendation accuracy. Although some existing approaches combine the matrix factorization models with the tag co-occurrence and context of tags, they neglect the issue of tag sparsity that would also result in inaccurate recommendations. Consequently, in this paper, we propose a novel hybrid collaborative filtering model named WUDiff_RMF, which improves regularized matrix factorization (RMF) model by integrating Weighted User-Diffusion-based CF algorithm(WUDiff) that obtains the information of similar users from the weighted tripartite user-item-tag graph. This model aims to capture the degree correlation of the user-item-tag tripartite network to enhance the performance of recommendation. Experiments conducted on four real-world datasets demonstrate that our approach significantly performs better than already widely used methods in the accuracy of recommendation. Moreover, results show that WUDiff_RMF can alleviate the data sparsity, especially in the circumstance that users have made few ratings and few tags.

  3. High-accuracy direct aerial platform orientation with tightly coupled GPS/INS system : executive summary.

    DOT National Transportation Integrated Search

    2004-09-01

    Obtaining sensor orientation by direct measurements is : a rapidly emerging mapping technology. Modern GPS : and INS systems allow for the direct determination of : platform position and orientation at an unprecedented : accuracy. In airborne surveyi...

  4. Accuracy of aging ducks in the U.S. Fish and Wildlife Service Waterfowl Parts Collection Survey

    USGS Publications Warehouse

    Pearse, Aaron T.; Johnson, Douglas H.; Richkus, Kenneth D.; Rohwer, Frank C.; Cox, Robert R.; Padding, Paul I.

    2014-01-01

    The U.S. Fish and Wildlife Service conducts an annual Waterfowl Parts Collection Survey to estimate composition of harvested waterfowl by species, sex, and age (i.e., juv or ad). The survey relies on interpretation of duck wings by a group of experienced biologists at annual meetings (hereafter, flyway wingbees). Our objectives were to estimate accuracy of age assignment at flyway wingbees and to explore how accuracy rates may influence bias of age composition estimates. We used banded mallards (Anas platyrhynchos; n = 791), wood ducks (Aix sponsa; n = 242), and blue-winged teal (Anas discors; n = 39) harvested and donated by hunters as our source of birds used in accuracy assessments. We sent wings of donated birds to wingbees after the 2002–2003 and 2003–2004 hunting seasons and compared species, sex, and age determinations made at wingbees with our assessments based on internal and external examination of birds and corresponding banding records. Determinations of species and sex of mallards, wood ducks, and blue-winged teal were accurate (>99%). Accuracy of aging adult mallards increased with harvest date, whereas accuracy of aging juvenile male wood ducks and juvenile blue-winged teal decreased with harvest date. Accuracy rates were highest (96% and 95%) for adult and juvenile mallards, moderate for adult and juvenile wood ducks (92% and 92%), and lowest for adult and juvenile blue-winged teal (84% and 82%). We used these estimates to calculate bias for all possible age compositions (0–100% proportion juv) and determined the range of age compositions estimated with acceptable levels of bias. Comparing these ranges with age compositions estimated from Parts Collection Surveys conducted from 1961 to 2008 revealed that mallard and wood duck age compositions were estimated with insignificant levels of bias in all national surveys. However, 69% of age compositions for blue-winged teal were estimated with an unacceptable level of bias. The low

  5. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  6. [Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].

    PubMed

    Krimmel, M; Kluba, S; Dietz, K; Reinert, S

    2005-03-01

    The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.

  7. Evaluation of TDRSS-user orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.

    1991-01-01

    The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.

  8. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  9. An alternative method for the estimation of sedimentation rates using radiometric measurements in an intertidal region (sw of spain)

    NASA Astrophysics Data System (ADS)

    Ligero, Rufino; Casas-Ruiz, Melquiades; Barrera, Manuel; Barbero, Luis

    2010-05-01

    The techniques for the direct measurement of the sedimentation rate are reliable but slow and imprecise, given that the time intervals of measurement cannot be very long. Consequently it is an extremely laborious task to obtain a representative map of the sedimentation rates and such maps are available for very few zones. However, for most environmental studies, it is very important to know the sedimentation rates. The high degree of accuracy of the gamma spectrometric techniques together with the application of the model describes in this work, has allowed the determination of the sedimentation rates in a wide spatial area such of the Bay of Cadiz to be obtained with precision and consuming considerably less time in comparison to the traditional techniques. Even so, the experimental conditions required for the sample cores are fairly restrictive, and although the radiological method provides a quantitative advance in measurement, the experimental difficulty in the execution of the study is not greatly diminished. For this reason, a second model has been derived based on the measurement of the inventory, which offers economies in time and financial cost, and which allows the sedimentation rate in a region to be determined with satisfactory accuracy. Furthermore, it has been shown that the application of this model requires a precise determination of 137Cs inventories. The sedimentation rates estimated by the 137Cs inventory method ranged from 0.26 cm/year to 1.72 cm/year. The average value of the sedimentation rate obtained is 0.59 cm/year, and this rate has been compared with those resulting from the application of the 210Pb dating technique. A good agreement between the two procedures has been found. From the study carried out, it has been possible for the first time, to draw a map of sedimentation rates for this zone where numerous physical-chemical, oceanographic and ecological studies converge, since it is situated in a region of great environmental interest

  10. Continuous Glucose Monitoring and Trend Accuracy

    PubMed Central

    Gottlieb, Rebecca; Le Compte, Aaron; Chase, J. Geoffrey

    2014-01-01

    Continuous glucose monitoring (CGM) devices are being increasingly used to monitor glycemia in people with diabetes. One advantage with CGM is the ability to monitor the trend of sensor glucose (SG) over time. However, there are few metrics available for assessing the trend accuracy of CGM devices. The aim of this study was to develop an easy to interpret tool for assessing trend accuracy of CGM data. SG data from CGM were compared to hourly blood glucose (BG) measurements and trend accuracy was quantified using the dot product. Trend accuracy results are displayed on the Trend Compass, which depicts trend accuracy as a function of BG. A trend performance table and Trend Index (TI) metric are also proposed. The Trend Compass was tested using simulated CGM data with varying levels of error and variability, as well as real clinical CGM data. The results show that the Trend Compass is an effective tool for differentiating good trend accuracy from poor trend accuracy, independent of glycemic variability. Furthermore, the real clinical data show that the Trend Compass assesses trend accuracy independent of point bias error. Finally, the importance of assessing trend accuracy as a function of BG level is highlighted in a case example of low and falling BG data, with corresponding rising SG data. This study developed a simple to use tool for quantifying trend accuracy. The resulting trend accuracy is easily interpreted on the Trend Compass plot, and if required, performance table and TI metric. PMID:24876437

  11. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance.

    PubMed

    Atieh, Mohammad A; Ritter, André V; Ko, Ching-Chang; Duqum, Ibrahim

    2017-09-01

    Trueness and precision are used to evaluate the accuracy of intraoral optical impressions. Although the in vivo precision of intraoral optical impressions has been reported, in vivo trueness has not been evaluated because of limitations in the available protocols. The purpose of this clinical study was to compare the accuracy (trueness and precision) of optical and conventional impressions by using a novel study design. Five study participants consented and were enrolled. For each participant, optical and conventional (vinylsiloxanether) impressions of a custom-made intraoral Co-Cr alloy reference appliance fitted to the mandibular arch were obtained by 1 operator. Three-dimensional (3D) digital models were created for stone casts obtained from the conventional impression group and for the reference appliances by using a validated high-accuracy reference scanner. For the optical impression group, 3D digital models were obtained directly from the intraoral scans. The total mean trueness of each impression system was calculated by averaging the mean absolute deviations of the impression replicates from their 3D reference model for each participant, followed by averaging the obtained values across all participants. The total mean precision for each impression system was calculated by averaging the mean absolute deviations between all the impression replicas for each participant (10 pairs), followed by averaging the obtained values across all participants. Data were analyzed using repeated measures ANOVA (α=.05), first to assess whether a systematic difference in trueness or precision of replicate impressions could be found among participants and second to assess whether the mean trueness and precision values differed between the 2 impression systems. Statistically significant differences were found between the 2 impression systems for both mean trueness (P=.010) and mean precision (P=.007). Conventional impressions had higher accuracy with a mean trueness of 17.0

  12. Evaluations of the conformational search accuracy of CAMDAS using experimental three-dimensional structures of protein-ligand complexes

    NASA Astrophysics Data System (ADS)

    Oda, A.; Yamaotsu, N.; Hirono, S.; Takano, Y.; Fukuyoshi, S.; Nakagaki, R.; Takahashi, O.

    2013-08-01

    CAMDAS is a conformational search program, through which high temperature molecular dynamics (MD) calculations are carried out. In this study, the conformational search ability of CAMDAS was evaluated using structurally known 281 protein-ligand complexes as a test set. For the test, the influences of initial settings and initial conformations on search results were validated. By using the CAMDAS program, reasonable conformations whose root mean square deviations (RMSDs) in comparison with crystal structures were less than 2.0 Å could be obtained from 96% of the test set even though the worst initial settings were used. The success rate was comparable to those of OMEGA, and the errors of CAMDAS were less than those of OMEGA. Based on the results obtained using CAMDAS, the worst RMSD was around 2.5 Å, although the worst value obtained was around 4.0 Å using OMEGA. The results indicated that CAMDAS is a robust and versatile conformational search method and that it can be used for a wide variety of small molecules. In addition, the accuracy of a conformational search in relation to this study was improved by longer MD calculations and multiple MD simulations.

  13. Does imprint cytology improve the accuracy of transrectal prostate needle biopsy?

    PubMed

    Sayar, Hamide; Bulut, Burak Besir; Bahar, Abdulkadir Yasir; Bahar, Mustafa Remzi; Seringec, Nurten; Resim, Sefa; Çıralık, Harun

    2015-02-01

    To evaluate the accuracy of imprint cytology of core needle biopsy specimens in the diagnosis of prostate cancer. Between December 24, 2011 and May 9, 2013, patients with an abnormal DRE and/or serum PSA level of >2.5 ng/mL underwent transrectal prostate needle biopsy. Samples with positive imprint cytology but negative initial histologic exam underwent repeat sectioning and histological examination. 1,262 transrectal prostate needle biopsy specimens were evaluated from 100 patients. Malignant imprint cytology was found in 236 specimens (18.7%), 197 (15.6%) of which were confirmed by histologic examination, giving an initial 3.1% (n = 39) rate of discrepant results by imprint cytology. Upon repeat sectioning and histologic examination of these 39 biopsy samples, 14 (1.1% of the original specimens) were then diagnosed as malignant, 3 (0.2%) as atypical small acinar proliferation (ASAP), and 5 (0.4%) as high-grade prostatic intraepithelial neoplasia (HGPIN). Overall, 964 (76.4%) specimens were negative for malignancy by imprint cytology. Seven (0.6%) specimens were benign by cytology but malignant cells were found on histological evaluation. On imprint cytology examination, nonmalignant but abnormal findings were seen in 62 specimens (4.9%). These were all due to benign processes. After reexamination, the accuracy, sensitivity, specificity, positive predictive value, negative predictive value, false-positive rate, false-negative rate of imprint preparations were 98.1, 96.9, 98.4, 92.8, 99.3, 1.6, 3.1%, respectively. Imprint cytology is valuable tool for evaluating TRUS-guided core needle biopsy specimens from the prostate. Use of imprint cytology in combination with histopathology increases diagnostic accuracy when compared with histopathologic assessment alone. © 2014 Wiley Periodicals, Inc.

  14. Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis.

    PubMed

    Fallon, Monica; Valero, Oliver; Pazos, Marta; Antón, Alfonso

    Imaging devices such as the Heidelberg retinal tomograph-3 (HRT3), scanning laser polarimetry (GDx), and optical coherence tomography (OCT) play an important role in glaucoma diagnosis. A systematic search for evidence-based data was performed for prospective studies evaluating the diagnostic accuracy of HRT3, GDx, and OCT. The diagnostic odds ratio (DOR) was calculated. To compare the accuracy among instruments and parameters, a meta-analysis considering the hierarchical summary receiver-operating characteristic model was performed. The risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Studies in the context of screening programs were used for qualitative analysis. Eighty-six articles were included. The DOR values were 29.5 for OCT, 18.6 for GDx, and 13.9 for HRT. The heterogeneity analysis demonstrated statistically a significant influence of degree of damage and ethnicity. Studies analyzing patients with earlier glaucoma showed poorer results. The risk of bias was high for patient selection. Screening studies showed lower sensitivity values and similar specificity values when compared with those included in the meta-analysis. The classification capabilities of GDx, HRT, and OCT were high and similar across the 3 instruments. The highest estimated DOR was obtained with OCT. Diagnostic accuracy could be overestimated in studies including prediagnosed groups of subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The accuracy of HIV rapid testing in integrated bio-behavioral surveys of men who have sex with men across 5 Provinces in South Africa

    PubMed Central

    Kufa, Tendesayi; Lane, Tim; Manyuchi, Albert; Singh, Beverley; Isdahl, Zachary; Osmand, Thomas; Grasso, Mike; Struthers, Helen; McIntyre, James; Chipeta, Zawadi; Puren, Adrian

    2017-01-01

    Abstract We describe the accuracy of serial rapid HIV testing among men who have sex with men (MSM) in South Africa and discuss the implications for HIV testing and prevention. This was a cross-sectional survey conducted at five stand-alone facilities from five provinces. Demographic, behavioral, and clinical data were collected. Dried blood spots were obtained for HIV-related testing. Participants were offered rapid HIV testing using 2 rapid diagnostic tests (RDTs) in series. In the laboratory, reference HIV testing was conducted using a third-generation enzyme immunoassay (EIA) and a fourth-generation EIA as confirmatory. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, false-positive, and false-negative rates were determined. Between August 2015 and July 2016, 2503 participants were enrolled. Of these, 2343 were tested by RDT on site with a further 2137 (91.2%) having definitive results on both RDT and EIA. Sensitivity, specificity, positive predictive value, negative predictive value, false-positive rates, and false-negative rates were 92.6% [95% confidence interval (95% CI) 89.6–94.8], 99.4% (95% CI 98.9–99.7), 97.4% (95% CI 95.2–98.6), 98.3% (95% CI 97.6–98.8), 0.6% (95% CI 0.3–1.1), and 7.4% (95% CI 5.2–10.4), respectively. False negatives were similar to true positives with respect to virological profiles. Overall accuracy of the RDT algorithm was high, but sensitivity was lower than expected. Post-HIV test counseling should include discussions of possible false-negative results and the need for retesting among HIV negatives. PMID:28700474

  16. Errors of car wheels rotation rate measurement using roller follower on test benches

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.

    2018-03-01

    The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.

  17. Improving the Accuracy of Diagnosing Placenta Previa on Transvaginal Ultrasound by Distinguishing between the Uterine Isthmus and Cervix: A Prospective Multicenter Observational Study.

    PubMed

    Hasegawa, Junichi; Kawabata, Ikuno; Takeda, Yoshiharu; Aoki, Hiroaki; Fukami, Takehiko; Tajima, Atsushi; Miyakoshi, Kei; Otsuki, Katsufumi; Shinozuka, Norio; Matsuda, Yoshio; Iwashita, Mitsutoshi; Okai, Takashi; Nakai, Akihito

    2017-01-01

    To clarify whether distinguishing between the uterine isthmus and cervix can improve the accuracy of diagnosing placenta previa at term. A multicenter prospective observational study was conducted among pregnant women with suspected placenta previa at 20-24 weeks' gestation. Subjects were divided into the open isthmus group and closed isthmus group. The accuracy of diagnosing placenta previa at term was compared between the 2 groups. We screened 9,341 patients, and 53 (0.6%) met the inclusion criteria. Nineteen cases with an open isthmus and 34 with a closed isthmus were followed. The accuracy for diagnosing placenta previa or a low-lying placenta at term was 94.7% in the open isthmus group and 26.5% in the closed isthmus group (p < 0.001). Elective or emergency Cesarean section was required in 100% of cases in the open isthmus group and 20.6% in the closed isthmus group (p < 0.001). A high prediction rate of placenta previa was obtained by using transvaginal ultrasound at 20-24 weeks' gestation after the isthmus opened by carefully distinguishing between the cervix and isthmus. © 2016 S. Karger AG, Basel.

  18. Accuracy of pedicle screw placement in patients with Marfan syndrome.

    PubMed

    Qiao, Jun; Zhu, Feng; Xu, Leilei; Liu, Zhen; Sun, Xu; Qian, Bangping; Jiang, Qing; Zhu, Zezhang; Qiu, Yong

    2017-03-21

    There is no study concerning safety and accuracy of pedicle screw placement in Marfan syndrome. The objective of this study is to investigate accuracy and safety of pedicle screw placement in scoliosis associated with Marfan syndrome. CT scanning was performed to analyze accuracy of pedicle screw placement. Pedicle perforations were classified as medial, lateral or anterior and categorized to four grades: ≤ 2 mm as Grade 1, 2.1-4.0 mm as Grade 2, 4.1-6.0 mm as Grade 3, ≥6.1 mm as Grade 4. Fully contained screws or with medial wall perforation ≤ 2 mm or with lateral wall perforation ≤ 6 mm and without injury of visceral organs were considered acceptable, otherwise were unacceptable. 976 pedicle screws were placed, 713 screws (73.1%) were fully contained within the cortical boundaries of the pedicle. 924 (94.7%) screws were considered as acceptable, and 52 (5.3%) as unacceptable. The perforation rate was higher using free-hand technique than O-arm navigation technique (30.8% VS. 11.4%, P < 0.05), higher in lumbar region than in thoracic region (34.1% VS. 22.3%, P < 0.05) and higher in concave side than in convex side (33.5% VS. 21.9%, P < 0.05). No injury of visceral organs especially aorta erosion was noted in the series. 7 cases of dural tear caused by misplaced screws occurred, and 4 cases developed cerebro-spinal fluid leak. Drainage and pressure dressings were applied for these patients, and no infection was observed. Leg pain was observed in 7 cases, and 2 cases simultaneously complained of leg weakness. Revision surgery was conducted to remove the misplaced screws for these 2 patients. Conservative treatment was applied for the 5 patients without leg weakness. Symptoms of leg weakness and pain resolved in all patients. Placement of pedicle screw in Marfan syndrome is accuracy and safe. O-arm navigation was an effective modality to ensure the safety and accuracy of screw placement. Special attention should be paid when screws

  19. Accuracy in Blood Glucose Measurement: What Will a Tightening of Requirements Yield?

    PubMed Central

    Heinemann, Lutz; Lodwig, Volker; Freckmann, Guido

    2012-01-01

    Nowadays, almost all persons with diabetes—at least those using antidiabetic drug therapy—use one of a plethora of meters commercially available for self-monitoring of blood glucose. The accuracy of blood glucose (BG) measurement using these meters has been presumed to be adequate; that is, the accuracy of these devices was not usually questioned until recently. Health authorities in the United States (Food and Drug Administration) and in other countries are currently endeavoring to tighten the requirements for the accuracy of these meters above the level that is currently stated in the standard ISO 15197. At first glance, this does not appear to be a problem and is hardly worth further consideration, but a closer look reveals a considerable range of critical aspects that will be discussed in this commentary. In summary, one could say that as a result of modern production methods and ongoing technical advances, the demands placed on the quality of measurement results obtained with BG meters can be increased to a certain degree. One should also take into consideration that the system accuracy (which covers many more aspects as the analytical accuracy) required to make correct therapeutical decisions certainly varies for different types of therapy. At the end, in addition to analytical accuracy, thorough and systematic training of patients and regular refresher training is important to minimize errors. Only under such circumstances will patients make appropriate therapeutic interventions to optimize and maintain metabolic control. PMID:22538158

  20. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).

    PubMed

    Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean

    2017-04-28

    Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were

  1. The Social Accuracy Model of Interpersonal Perception: Assessing Individual Differences in Perceptive and Expressive Accuracy

    ERIC Educational Resources Information Center

    Biesanz, Jeremy C.

    2010-01-01

    The social accuracy model of interpersonal perception (SAM) is a componential model that estimates perceiver and target effects of different components of accuracy across traits simultaneously. For instance, Jane may be generally accurate in her perceptions of others and thus high in "perceptive accuracy"--the extent to which a particular…

  2. Speed-Accuracy Response Models: Scoring Rules Based on Response Time and Accuracy

    ERIC Educational Resources Information Center

    Maris, Gunter; van der Maas, Han

    2012-01-01

    Starting from an explicit scoring rule for time limit tasks incorporating both response time and accuracy, and a definite trade-off between speed and accuracy, a response model is derived. Since the scoring rule is interpreted as a sufficient statistic, the model belongs to the exponential family. The various marginal and conditional distributions…

  3. Development of an algorithm for automatic detection and rating of squeak and rattle events

    NASA Astrophysics Data System (ADS)

    Chandrika, Unnikrishnan Kuttan; Kim, Jay H.

    2010-10-01

    A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.

  4. Accuracy Evaluation of the Unified P-Value from Combining Correlated P-Values

    PubMed Central

    Alves, Gelio; Yu, Yi-Kuo

    2014-01-01

    Meta-analysis methods that combine -values into a single unified -value are frequently employed to improve confidence in hypothesis testing. An assumption made by most meta-analysis methods is that the -values to be combined are independent, which may not always be true. To investigate the accuracy of the unified -value from combining correlated -values, we have evaluated a family of statistical methods that combine: independent, weighted independent, correlated, and weighted correlated -values. Statistical accuracy evaluation by combining simulated correlated -values showed that correlation among -values can have a significant effect on the accuracy of the combined -value obtained. Among the statistical methods evaluated those that weight -values compute more accurate combined -values than those that do not. Also, statistical methods that utilize the correlation information have the best performance, producing significantly more accurate combined -values. In our study we have demonstrated that statistical methods that combine -values based on the assumption of independence can produce inaccurate -values when combining correlated -values, even when the -values are only weakly correlated. Therefore, to prevent from drawing false conclusions during hypothesis testing, our study advises caution be used when interpreting the -value obtained from combining -values of unknown correlation. However, when the correlation information is available, the weighting-capable statistical method, first introduced by Brown and recently modified by Hou, seems to perform the best amongst the methods investigated. PMID:24663491

  5. Computer simulation and discussion of high-accuracy laser direction finding in real time

    NASA Astrophysics Data System (ADS)

    Chen, Wenyi; Chen, Yongzhi

    1997-12-01

    On condition that CCD is used as the sensor, there are at least five methods that can be used to realize laser's direction finding with high accuracy. They are: image matching method, radiation center method, geometric center method, center of rectangle envelope method and center of maximum run length method. The first three can get the highest accuracy but working in real-time it is too complicated to realize and the cost is very expansive. The other two can also get high accuracy, and it is not difficult to realize working in real time. By using a single-chip microcomputer and an ordinary CCD camera a very simple system can get the position information of a laser beam. The data rate is 50 times per second.

  6. Accuracy of non-invasive hemoglobin monitoring by pulse CO-oximeter during liver transplantation.

    PubMed

    Erdogan Kayhan, Gulay; Colak, Yusuf Z; Sanli, Mukadder; Ucar, Muharrem; Toprak, Huseyin I

    2017-05-01

    Hemoglobin level monitoring is essential during liver transplantation (LT) due to substantial blood loss. We evaluated the accuracy of non-invasive and continuous hemoglobin monitoring (SpHb) obtained by a transcutaneous spectrophotometry-based technology (Masimo Corporation, Irvine, CA) compared with conventional laboratory Hb measurement (HbL) during LT. Additionally, we made subgroup analyses for distinct surgical phases that have special features and hemodynamic problems and thus may affect the accuracy of SpHb. During LT, blood samples were obtained twice for each of the three phases of LT (pre-anhepatic, anhepatic, and neohepatic) and were analyzed by the central laboratory. The HbL measurements were compared with SpHb obtained at the time of the blood draws. A total of 282 data pairs obtained from 53 patients were analyzed. The SpHb values ranged from 6.9 to 17.7 g/dL, and the HbL values ranged from 5.4 to 17.1 g/dL. The correlation coefficient between SpHb and HbL was 0.73 (P<0.001), and change in SpHb versus change in HbL was 0.76 (P<0.001). The sensitivity value determined using a 4-quadrant plot was 79%. The bias and precision of SpHb to HbL were 0.86±1.58 g/dL; the limits of agreement were -2.25 to 3.96 g/dL. The overall correlation between SpHb and HbL remained stable in different phases of surgical procedure. SpHb was demonstrated to have a clinically acceptable accuracy of hemoglobin measurement in comparison with a standard laboratory device when used during LT. This technology can be useful as a trend monitor during all surgical phases of LT and can supplement HbL to optimize transfusion decisions or to detect occult bleeding.

  7. On the temporal development of erythrocyte sedimentation rate using sealed vacuum tubes.

    PubMed

    Kallner, A

    1991-07-01

    The temporal development of the erythrocyte sedimentation rate (ESR) was studied in wide, short vacuum tubes. It was found that in about 3% of the specimens arriving in the laboratory the ESR developed in three different phases during 60 min, whereas the other showed only two. The specimens with three phases behaved similarly in the Westergren method. It was shown that the Westergren ESR can be estimated with an acceptable accuracy already from measurements obtained after 30 min. Reproducibility and precision were improved by using a special instrument. Several advantages by this procedure were recognized, e.g., quicker results, identification of several otherwise missed rapid ESR. Accurate timing of the readings further improves accuracy and precision, and permits estimation of ESR (Westergren) up to 100 mm. In view of the obvious phases in the development of the ESR, it is proposed that this abbreviation is interpreted as erythrocyte sedimentation reaction and that the kind of quantity that is length is expressed in mm.

  8. KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces.

    PubMed

    Garrido, Margarida V; Prada, Marília

    2017-01-01

    The Karolinska Directed Emotional Faces (KDEF) is one of the most widely used human facial expressions database. Almost a decade after the original validation study (Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures which depict 70 models (half female) each displaying an angry, happy and neutral facial expressions. Our main goals were to provide an additional and updated validation to this database, using a sample from a different nationality ( N = 155 Portuguese students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective dimensions used to evaluate each image. Specifically, participants reported emotional labeling (forced-choice task) and evaluated the emotional intensity and valence of the expression, as well as the attractiveness and familiarity of the model (7-points rating scales). Overall, results show that happy faces obtained the highest ratings across evaluative dimensions and emotion labeling accuracy. Female (vs. male) models were perceived as more attractive, familiar and positive. The sex of the model also moderated the accuracy of emotional labeling and ratings of different facial expressions. Each picture of the set was categorized as low, moderate, or high for each dimension. Normative data for each stimulus (hits proportion, means, standard deviations, and confidence intervals per evaluative dimension) is available as supplementary material (available at https://osf.io/fvc4m/).

  9. Fundamental Importance of Reference Glucose Analyzer Accuracy for Evaluating the Performance of Blood Glucose Monitoring Systems (BGMSs).

    PubMed

    Bailey, Timothy S; Klaff, Leslie J; Wallace, Jane F; Greene, Carmine; Pardo, Scott; Harrison, Bern; Simmons, David A

    2016-07-01

    As blood glucose monitoring system (BGMS) accuracy is based on comparison of BGMS and laboratory reference glucose analyzer results, reference instrument accuracy is important to discriminate small differences between BGMS and reference glucose analyzer results. Here, we demonstrate the important role of reference glucose analyzer accuracy in BGMS accuracy evaluations. Two clinical studies assessed the performance of a new BGMS, using different reference instrument procedures. BGMS and YSI analyzer results were compared for fingertip blood that was obtained by untrained subjects' self-testing and study staff testing, respectively. YSI analyzer accuracy was monitored using traceable serum controls. In study 1 (N = 136), 94.1% of BGMS results were within International Organization for Standardization (ISO) 15197:2013 accuracy criteria; YSI analyzer serum control results showed a negative bias (-0.64% to -2.48%) at the first site and a positive bias (3.36% to 6.91%) at the other site. In study 2 (N = 329), 97.8% of BGMS results were within accuracy criteria; serum controls showed minimal bias (<0.92%) at both sites. These findings suggest that the ability to demonstrate that a BGMS meets accuracy guidelines is influenced by reference instrument accuracy. © 2016 Diabetes Technology Society.

  10. The Accuracy Of Fuzzy Sugeno Method With Antropometry On Determination Natural Patient Status

    NASA Astrophysics Data System (ADS)

    Syahputra, Dinur; Tulus; Sawaluddin

    2017-12-01

    Anthropometry is one of the processes that can be used to assess nutritional status. In general anthropometry is defined as body size in terms of nutrition, then anthropometry is reviewed from various age levels and nutritional levels. Nutritional status is a description of the balance between nutritional intake with the needs of the body individually. Fuzzy logic is a logic that has a vagueness between right and wrong or between 0 and 1. Sugeno method is used because in the process of calculating nutritional status so far is still done by anthropometry. Currently information technology is growing in any aspect, one of them in the aspect of calculation with data taken from anthropometry. In this case the calculation can use the Fuzzy Sugeno Method, in order to know the great accuracy obtained. Then the results obtained using fuzzy sugeno integrated with anthropometry has an accuracy of 81.48%.

  11. Addressing the bias problem in the assessment of the quality of life of patients with dementia: determinants of the accuracy and precision of the proxy ratings.

    PubMed

    Gomez-Gallego, M; Gomez-Garcia, J; Ato-Lozano, E

    2015-03-01

    We aimed to examine the discrepancy between patients and caregivers' ratings of quality of life in terms of accuracy and precision, and identify factors associated with it, in order to facilitate the use of this scale as dementia progresses. Cross-sectional analytic study. Day care centres. Community-living patients with Alzheimer's disease in early or moderate stage and their principal caregivers. PARTICIPANTS rated patients' quality of life using DEMQOL. The discrepancy was assessed using the individual difference score and the residuals for each domain of DEMQOL. The scores on Mini-Mental State Examination, Geriatric Depression Scale, Neuropsychiatric Inventory, Clinical Insight Rating Scale, Cumulative Illness Rating Scale, Health Utilities Index Mark 3 and Zarit Burden Interview were considered as possible predictors of the discrepancy. A total of 276 subjects participated in the study (138 patients with Alzheimer's disease and their caregivers). Discrepancy measured by individual difference score was lower than that measured by the residuals. Burden and mood-related symptoms explained the positive differences and residuals, while pain, self-perceived depression and cognition determined the negative ones. Differences exist between patients and caregivers' perceptions about subjective states. The evaluations of each informant seem to be influenced by their own emotional state and the inner experience of the effects of the disease. Caregivers' ratings on DEMQOL could be useful to monitor the efficacy of any treatment whenever burden is low and patients have no great physical or emotional suffering.

  12. Evidence for a confidence-accuracy relationship in memory for same- and cross-race faces.

    PubMed

    Nguyen, Thao B; Pezdek, Kathy; Wixted, John T

    2017-12-01

    Discrimination accuracy is usually higher for same- than for cross-race faces, a phenomenon known as the cross-race effect (CRE). According to prior research, the CRE occurs because memories for same- and cross-race faces rely on qualitatively different processes. However, according to a continuous dual-process model of recognition memory, memories that rely on qualitatively different processes do not differ in recognition accuracy when confidence is equated. Thus, although there are differences in overall same- and cross-race discrimination accuracy, confidence-specific accuracy (i.e., recognition accuracy at a particular level of confidence) may not differ. We analysed datasets from four recognition memory studies on same- and cross-race faces to test this hypothesis. Confidence ratings reliably predicted recognition accuracy when performance was above chance levels (Experiments 1, 2, and 3) but not when performance was at chance levels (Experiment 4). Furthermore, at each level of confidence, confidence-specific accuracy for same- and cross-race faces did not significantly differ when overall performance was above chance levels (Experiments 1, 2, and 3) but significantly differed when overall performance was at chance levels (Experiment 4). Thus, under certain conditions, high-confidence same-race and cross-race identifications may be equally reliable.

  13. Variance estimates and confidence intervals for the Kappa measure of classification accuracy

    Treesearch

    M. A. Kalkhan; R. M. Reich; R. L. Czaplewski

    1997-01-01

    The Kappa statistic is frequently used to characterize the results of an accuracy assessment used to evaluate land use and land cover classifications obtained by remotely sensed data. This statistic allows comparisons of alternative sampling designs, classification algorithms, photo-interpreters, and so forth. In order to make these comparisons, it is...

  14. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms.

    PubMed

    Phillips, P Jonathon; Yates, Amy N; Hu, Ying; Hahn, Carina A; Noyes, Eilidh; Jackson, Kelsey; Cavazos, Jacqueline G; Jeckeln, Géraldine; Ranjan, Rajeev; Sankaranarayanan, Swami; Chen, Jun-Cheng; Castillo, Carlos D; Chellappa, Rama; White, David; O'Toole, Alice J

    2018-06-12

    Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible. Copyright © 2018 the Author(s). Published by PNAS.

  15. Diagnostic accuracy for major depression in multiple sclerosis using self-report questionnaires

    PubMed Central

    Fischer, Anja; Fischer, Marcus; Nicholls, Robert A; Lau, Stephanie; Poettgen, Jana; Patas, Kostas; Heesen, Christoph; Gold, Stefan M

    2015-01-01

    Objective Multiple sclerosis and major depressive disorder frequently co-occur but depression often remains undiagnosed in this population. Self-rated depression questionnaires are a good option where clinician-based standardized diagnostics are not feasible. However, there is a paucity of data on diagnostic accuracy of self-report measures for depression in multiple sclerosis (MS). Moreover, head-to-head comparisons of common questionnaires are largely lacking. This could be particularly relevant for high-risk patients with depressive symptoms. Here, we compare the diagnostic accuracy of the Beck Depression Inventory (BDI) and 30-item version of the Inventory of Depressive Symptomatology Self-Rated (IDS-SR30) for major depressive disorder (MSS) against diagnosis by a structured clinical interview. Methods Patients reporting depressive symptoms completed the BDI, the IDS-SR30 and underwent diagnostic assessment (Mini International Neuropsychiatric Interview, M.I.N.I.). Receiver-Operating Characteristic analyses were performed, providing error estimates and false-positive/negative rates of suggested thresholds. Results Data from n = 31 MS patients were available. BDI and IDS-SR30 total score were significantly correlated (r = 0.82). The IDS-SR30total score, cognitive subscore, and BDI showed excellent to good accuracy (area under the curve (AUC) 0.86, 0.91, and 0.85, respectively). Conclusion Both the IDS-SR30 and the BDI are useful to quantify depressive symptoms showing good sensitivity and specificity. The IDS-SR30 cognitive subscale may be useful as a screening tool and to quantify affective/cognitive depressive symptomatology. PMID:26445703

  16. Efficient field testing for load rating railroad bridges

    NASA Astrophysics Data System (ADS)

    Schulz, Jeffrey L.; Brett C., Commander

    1995-06-01

    As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.

  17. Is Gaydar Affected by Attitudes Toward Homosexuality? Confidence, Labeling Bias, and Accuracy.

    PubMed

    Brewer, Gayle; Lyons, Minna

    2017-01-01

    Previous research has largely ignored the relationship between sexual orientation judgement accuracy, confidence, and attitudes toward homosexuality. In an online study, participants (N = 269) judged the sexual orientation of homosexual and heterosexual targets presented via a series of facial photographs. Participants also indicated their confidence in each judgment and completed the Modern Homonegativity Scale (Morrison & Morrison, 2002). We found that (1) homosexual men and heterosexual women were more accurate when judging photographs of women as opposed to photographs of men, and (2) in heterosexual men, negative attitudes toward homosexual men predicted confidence and bias when rating men's photographs. Findings indicate that homosexual men and heterosexual women are similar in terms of accuracy in judging women's sexuality. Further, especially in men, homophobia is associated with cognitive biases in labeling other men but does not have a relationship with increased accuracy.

  18. Rain Rate Statistics in Southern New Mexico

    NASA Technical Reports Server (NTRS)

    Paulic, Frank J., Jr.; Horan, Stephen

    1997-01-01

    The methodology used in determining empirical rain-rate distributions for Southern New Mexico in the vicinity of White Sands APT site is discussed. The hardware and the software developed to extract rain rate from the rain accumulation data collected at White Sands APT site are described. The accuracy of Crane's Global Model for rain rate predictions is analyzed.

  19. ArcticDEM Validation and Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  20. VOC emission rates over London and South East England obtained by airborne eddy covariance.

    PubMed

    Vaughan, Adam R; Lee, James D; Shaw, Marvin D; Misztal, Pawel K; Metzger, Stefan; Vieno, Massimo; Davison, Brian; Karl, Thomas G; Carpenter, Lucy J; Lewis, Alastair C; Purvis, Ruth M; Goldstein, Allen H; Hewitt, C Nicholas

    2017-08-24

    Volatile organic compounds (VOCs) originate from a variety of sources, and play an intrinsic role in influencing air quality. Some VOCs, including benzene, are carcinogens and so directly affect human health, while others, such as isoprene, are very reactive in the atmosphere and play an important role in the formation of secondary pollutants such as ozone and particles. Here we report spatially-resolved measurements of the surface-to-atmosphere fluxes of VOCs across London and SE England made in 2013 and 2014. High-frequency 3-D wind velocities and VOC volume mixing ratios (made by proton transfer reaction - mass spectrometry) were obtained from a low-flying aircraft and used to calculate fluxes using the technique of eddy covariance. A footprint model was then used to quantify the flux contribution from the ground surface at spatial resolution of 100 m, averaged to 1 km. Measured fluxes of benzene over Greater London showed positive agreement with the UK's National Atmospheric Emissions Inventory, with the highest fluxes originating from central London. Comparison of MTBE and toluene fluxes suggest that petroleum evaporation is an important emission source of toluene in central London. Outside London, increased isoprene emissions were observed over wooded areas, at rates greater than those predicted by a UK regional application of the European Monitoring and Evaluation Programme model (EMEP4UK). This work demonstrates the applicability of the airborne eddy covariance method to the determination of anthropogenic and biogenic VOC fluxes and the possibility of validating emission inventories through measurements.