NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Ghittorelli, Matteo; Torricelli, Fabrizio; Kovács-Vajna, Zsolt Miklos
2015-12-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of Thin-Film Transistors (TFTs) and, in turn, of Organic Thin-Film Transistors (OTFTs), available today. However, the need for iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not enough accurate to model OTFTs and, in particular, transconductances and transcapacitances. In this paper we present an accurate and computationally efficient closed-form approximation of the surface potential, based on the Lagrange Reversion Theorem, that can be exploited in advanced surface-potential-based OTFTs and TFTs device models.
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1989-01-01
An accurate analytic expression for the nonlinear change of the volume of a solid as a function of applied pressure is of great interest in high-pressure experimentation. It is found that a two-parameter analytic expression, fits the experimental volume-change data to within a few percent over the entire experimentally attainable pressure range. Results are presented for 24 different materials including metals, ceramic semiconductors, polymers, and ionic and rare-gas solids.
Simple analytic approximations for the Blasius problem
NASA Astrophysics Data System (ADS)
Iacono, R.; Boyd, John P.
2015-08-01
The classical boundary layer problem formulated by Heinrich Blasius more than a century ago is revisited, with the purpose of deriving simple and accurate analytical approximations to its solution. This is achieved through the combined use of a generalized Padé approach and of an integral iteration scheme devised by Hermann Weyl. The iteration scheme is also used to derive very accurate bounds for the value of the second derivative of the Blasius function at the origin, which plays a crucial role in this problem.
Approximate analytic solutions to the NPDD: Short exposure approximations
NASA Astrophysics Data System (ADS)
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Comparing numerical and analytic approximate gravitational waveforms
NASA Astrophysics Data System (ADS)
Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.
Analytic Approximate Solution for Falkner-Skan Equation
Marinca, Bogdan
2014-01-01
This paper deals with the Falkner-Skan nonlinear differential equation. An analytic approximate technique, namely, optimal homotopy asymptotic method (OHAM), is employed to propose a procedure to solve a boundary-layer problem. Our method does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. The obtained results reveal that this procedure is very effective, simple, and accurate. A very good agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration. PMID:24883417
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.
Shock Emergence in Supernovae: Limiting Cases and Accurate Approximations
NASA Astrophysics Data System (ADS)
Ro, Stephen; Matzner, Christopher D.
2013-08-01
We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.
SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS
Ro, Stephen; Matzner, Christopher D.
2013-08-10
We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.
Analytic approximate radiation effects due to Bremsstrahlung
Ben-Zvi I.
2012-02-01
The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.
On constructing accurate approximations of first integrals for difference equations
NASA Astrophysics Data System (ADS)
Rafei, M.; Van Horssen, W. T.
2013-04-01
In this paper, a perturbation method based on invariance factors and multiple scales will be presented for weakly nonlinear, regularly perturbed systems of ordinary difference equations. Asymptotic approximations of first integrals will be constructed on long iteration-scales, that is, on iteration-scales of order ɛ-1, where ɛ is a small parameter. It will be shown that all invariance factors have to satisfy a functional equation. To show how this perturbation method works, the method is applied to a Van der Pol equation, and a Rayleigh equation. It will be explicitly shown for the first time in the literature how these multiple scales should be introduced for systems of difference equations to obtain very accurate approximations of first integrals on long iteration-scales.
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
Exponentially accurate approximations to piece-wise smooth periodic functions
NASA Technical Reports Server (NTRS)
Greer, James; Banerjee, Saheb
1995-01-01
A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.
Analytical Approximation of Spectrum for Pulse X-ray Tubes
NASA Astrophysics Data System (ADS)
Vavilov, S.; Koshkin, G.; Udod, V.; Fofanof, O.
2016-01-01
Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses.
Analytic Approximations for the Extrapolation of Lattice Data
Masjuan, Pere
2010-12-22
We present analytic approximations of chiral SU(3) amplitudes for the extrapolation of lattice data to the physical masses and the determination of Next-to-Next-to-Leading-Order low-energy constants. Lattice data for the ratio F{sub K}/F{sub {pi}} is used to test the method.
A simple analytic approximation for dusty stromgren spheres.
NASA Technical Reports Server (NTRS)
Petrosian, V.; Silk, J.; Field, G. B.
1972-01-01
We interpret recent far-infrared observations of H II regions in terms of true absorption by internal dust of a significant fraction of the Lyman-continuum photons. We present approximate analytic expressions describing the effects of internal dust on the ionization structure of H II regions, and outline a procedure for deducing the properties of this dust from optical and infrared observations.
A simple analytic approximation for dusty Stroemgren spheres
NASA Technical Reports Server (NTRS)
Petrosian, V.; Silk, J.; Field, G. B.
1972-01-01
An analytic approximation is illustrated to Stromgren's solution for H II regions which permits explicit exhibition of the effects of internal dust on the ionization structure. Far infrared observations of H II regions are accounted for in terms of true absorption by internal dust of a significant fraction of the Lyman continuum photons.
Analytic approximations to the modon dispersion relation. [in oceanography
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.
Approximate analytical description of the nonaffine response of amorphous solids
Zaccone, Alessio; Scossa-Romano, Enzo
2011-05-01
An approximation scheme for model disordered solids is proposed that leads to the fully analytical evaluation of the elastic constants under explicit account of the inhomogeneity (nonaffinity) of the atomic displacements. The theory is in quantitative agreement with simulations for central-force systems and predicts the vanishing of the shear modulus at the isostatic point with the linear law {mu}{approx}(z-2d), where z is the coordination number. The vanishing of rigidity at the isostatic point is shown to be a consequence of the canceling out of positive affine and negative nonaffine terms.
Linaro, Daniele; Storace, Marco; Giugliano, Michele
2011-01-01
Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here. PMID:21423712
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
NASA Astrophysics Data System (ADS)
Zhang, Gang; Zhou, Di; Mortari, Daniele
2012-12-01
A new approximate analytical method for the two-body impulsive orbit rendezvous problem with short range is presented. The classical analytical approach derives the initial relative velocity from the state transition matrix of linear relative motion equations. This paper proposes a different analytical approach based on the relative Lambert solutions. An approximate expression for the transfer time is obtained as a function of chaser's and target's semi-major axes difference. This results in first and second order estimates of the chaser's semi-major axis. Singularity points of rendezvous time for the classical and proposed new methods are both analyzed. As compared with the classical method, the new solution is simpler, more accurate, and has fewer singularity points. Moreover, the proposed method can be easily expanded to higher order solutions. A numerical example quantifies the accuracy gain for multiple-revolution cases.
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Approximate explicit analytic solution of the Elenbaas-Heller equation
NASA Astrophysics Data System (ADS)
Liao, Meng-Ran; Li, Hui; Xia, Wei-Dong
2016-08-01
The Elenbaas-Heller equation describing the temperature field of a cylindrically symmetrical non-radiative electric arc has been solved, and approximate explicit analytic solutions are obtained. The radial distributions of the heat-flux potential and the electrical conductivity have been figured out briefly by using some special simplification techniques. The relations between both the core heat-flux potential and the electric field with the total arc current have also been given in several easy explicit formulas. Besides, the special voltage-ampere characteristic of electric arcs is explained intuitionally by a simple expression involving the Lambert W-function. The analyses also provide a preliminary estimation of the Joule heating per unit length, which has been verified in previous investigations. Helium arc is used to examine the theories, and the results agree well with the numerical computations.
Analytic continuation by averaging Padé approximants
NASA Astrophysics Data System (ADS)
Schött, Johan; Locht, Inka L. M.; Lundin, Elin; Grânäs, Oscar; Eriksson, Olle; Di Marco, Igor
2016-02-01
The ill-posed analytic continuation problem for Green's functions and self-energies is investigated by revisiting the Padé approximants technique. We propose to remedy the well-known problems of the Padé approximants by performing an average of several continuations, obtained by varying the number of fitted input points and Padé coefficients independently. The suggested approach is then applied to several test cases, including Sm and Pr atomic self-energies, the Green's functions of the Hubbard model for a Bethe lattice and of the Haldane model for a nanoribbon, as well as two special test functions. The sensitivity to numerical noise and the dependence on the precision of the numerical libraries are analyzed in detail. The present approach is compared to a number of other techniques, i.e., the nonnegative least-squares method, the nonnegative Tikhonov method, and the maximum entropy method, and is shown to perform well for the chosen test cases. This conclusion holds even when the noise on the input data is increased to reach values typical for quantum Monte Carlo simulations. The ability of the algorithm to resolve fine structures is finally illustrated for two relevant test functions.
ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE
Clayton, Donald D.
2013-01-01
I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.
Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H
2000-01-01
The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435
An accurate analytic representation of the water pair potential.
Cencek, Wojciech; Szalewicz, Krzysztof; Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad
2008-08-28
The ab initio water dimer interaction energies obtained from coupled cluster calculations and used in the CC-pol water pair potential (Bukowski et al., Science, 2007, 315, 1249) have been refitted to a site-site form containing eight symmetry-independent sites in each monomer and denoted as CC-pol-8s. Initially, the site-site functions were assumed in a B-spline form, which allowed a precise optimization of the positions of the sites. Next, these functions were assumed in the standard exponential plus inverse powers form. The root mean square error of the CC-pol-8s fit with respect to the 2510 ab initio points is 0.10 kcal mol(-1), compared to 0.42 kcal mol(-1) of the CC-pol fit (0.010 kcal mol(-1) compared to 0.089 kcal mol(-1) for points with negative interaction energies). The energies of the stationary points in the CC-pol-8s potential are considerably more accurate than in the case of CC-pol. The water dimer vibration-rotation-tunneling spectrum predicted by the CC-pol-8s potential agrees substantially and systematically better with experiment than the already very accurate spectrum predicted by CC-pol, while specific features that could not be accurately predicted previously now agree very well with experiment. This shows that the uncertainties of the fit were the largest source of error in the previous predictions and that the present potential sets a new standard of accuracy in investigations of the water dimer. PMID:18688514
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2009-11-01
In a previous work, O'Connell (Phys. Teach. 40, 24 (2002)) investigated the time dependence of the tension in the string of a simple pendulum oscillating within the small-angle regime. In spite of the approximation sin θ ≈ θ being accurate only for amplitudes below 7°, his experimental results are for a pendulum oscillating with an amplitude of about 18°, therefore beyond the small-angle regime. This lapse may also be found in some textbooks, laboratory manuals and internet. By noting that the exact analytical solution for this problem involves the so-called Jacobi elliptic functions, which are unknown to most students (even instructors), I take into account a sinusoidal approximate solution for the pendulum equation I introduced in a recent work (Eur. J. Phys. 29 1091 (2008)) for deriving a simple trigonometric approximation for the tension valid for all possible amplitudes. This approximation is compared to both the O'Connell and the exact results, revealing that it is accurate enough for analysing large-angle pendulum experiments.
Highly accurate analytic formulae for projectile motion subjected to quadratic drag
NASA Astrophysics Data System (ADS)
Turkyilmazoglu, Mustafa
2016-05-01
The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.
An accurate two-phase approximate solution to the acute viral infection model
Perelson, Alan S
2009-01-01
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.
Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.
Schebarchov, Dmitri; Auguié, Baptiste; Le Ru, Eric C
2013-03-28
This work aims to provide simple and accurate closed-form approximations to predict the scattering and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon resonances. Particular attention is given to the validity and accuracy of these expressions in the range of nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-wavelength polarizability approximations for both nanospheres and nanoshells. The improvement offered by these expressions is demonstrated with direct comparisons to other approximations previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory. PMID:23358525
Zonal Flows Below the Sun's Convection: Analytic Approximation
NASA Technical Reports Server (NTRS)
Wolff, Charles L.; Mayr, Hans G.
2004-01-01
We have derived a simple analytic solution showing how the Sun's global oscillations (g-modes) can drive east-west flows at low latitude deep inside the Sun. This flow is analogous to the Quasi Biennial Oscillation in the Earth s upper atmosphere. It has an observed period of 1.3 years in the solar case but its cause was not known until we published an explanation in a Letter to the Editor a few months ago. Now we give full details of the model and show how it can be used to limit the range of g-modes that can be actively driving the reversing flows. A nonlinear feedback feature of the model is that the flow itself creates the turbulent dissipation that extracts momentum from the g-modes that, in turn, drives the flow.
Accurate response surface approximations for weight equations based on structural optimization
NASA Astrophysics Data System (ADS)
Papila, Melih
Accurate weight prediction methods are vitally important for aircraft design optimization. Therefore, designers seek weight prediction techniques with low computational cost and high accuracy, and usually require a compromise between the two. The compromise can be achieved by combining stress analysis and response surface (RS) methodology. While stress analysis provides accurate weight information, RS techniques help to transmit effectively this information to the optimization procedure. The focus of this dissertation is structural weight equations in the form of RS approximations and their accuracy when fitted to results of structural optimizations that are based on finite element analyses. Use of RS methodology filters out the numerical noise in structural optimization results and provides a smooth weight function that can easily be used in gradient-based configuration optimization. In engineering applications RS approximations of low order polynomials are widely used, but the weight may not be modeled well by low-order polynomials, leading to bias errors. In addition, some structural optimization results may have high-amplitude errors (outliers) that may severely affect the accuracy of the weight equation. Statistical techniques associated with RS methodology are sought in order to deal with these two difficulties: (1) high-amplitude numerical noise (outliers) and (2) approximation model inadequacy. The investigation starts with reducing approximation error by identifying and repairing outliers. A potential reason for outliers in optimization results is premature convergence, and outliers of such nature may be corrected by employing different convergence settings. It is demonstrated that outlier repair can lead to accuracy improvements over the more standard approach of removing outliers. The adequacy of approximation is then studied by a modified lack-of-fit approach, and RS errors due to the approximation model are reduced by using higher order polynomials. In
NASA Astrophysics Data System (ADS)
Medvedev, A. E.; Fomin, V. M.
1998-05-01
An approximate analytical model for calculation of the parameters of a steady gas flow inside a plane constricting channel formed by two symmetrically positioned wedges is suggested. A Mach configuration of shock waves (triple point) is formed in the channel when the wedge angles are larger than some critical value. The flow calculation in a constricting channel reduces to the solution of the iterative problem for a system of nonlinear algebraic equations. The configurations of shock waves, the slipstream, and the sonic line are described by the proposed model of a gas flow. A comparison of the results obtained using this model allows a fairly accurate calculation of the Mach stem and the length of the subsonic-flow region.
NASA Astrophysics Data System (ADS)
Wu, Dongmei; Wang, Zhongcheng
2006-03-01
, we present a new iteration algorithm to calculate the coefficients of the Fourier series. By using this new method, the iteration procedure starts with a(x)cos(ωx)+b(x)sin(ωx), and the accuracy may be improved gradually by determining new coefficients a,a,… will be produced automatically in an one-by-one manner. In all the stage of calculation, we need only to solve a cubic equation. Using this new algorithm, we develop a Mathematica program, which demonstrates following main advantages over the previous HB method: (1) it avoids solving a set of associate nonlinear equations; (2) it is easier to be implemented into a computer program, and produces a highly accurate solution with analytical expression efficiently. It is interesting to find that, generally, for a given set of parameters, a nonlinear Duffing equation can have three independent oscillation modes. For some sets of the parameters, it can have two modes with complex displacement and one with real displacement. But in some cases, it can have three modes, all of them having real displacement. Therefore, we can divide the parameters into two classes, according to the solution property: there is only one mode with real displacement and there are three modes with real displacement. This program should be useful to study the dynamically periodic behavior of a Duffing oscillator and can provide an approximate analytical solution with high-accuracy for testing the error behavior of newly developed numerical methods with a wide range of parameters. Program summaryTitle of program:AnalyDuffing.nb Catalogue identifier:ADWR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWR_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed and others on which it has been tested:the program has been designed for a microcomputer and been tested on the microcomputer. Computers:IBM PC Installations:the address
Approximate analytical solutions for excitation and propagation in cardiac tissue.
Greene, D'Artagnan; Shiferaw, Yohannes
2015-04-01
It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium release (SCR). However, it is not understood how the size and morphology of these focal excitations are related to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage dependence of the inward rectifier potassium current (I(K1)), and is insensitive to the detailed properties of the sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required to induce a propagating action potential (AP), and argue that this relationship determines the necessary number of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel properties and important tissue scale processes such as excitation and propagation. PMID:25974539
An Approximate Analytical Solution for Backward-Facing Step Flow
NASA Astrophysics Data System (ADS)
Celik, Ismail; Parsons, Don; Karaismail, Ertan; Nanduri, Jagannath
2007-11-01
Flow past a backward facing step is a classical bench mark for both laminar and turbulent flow calculations. Due to the near-singular behavior arising from the presence of the sharp step, it is very difficult to predict the size of the recirculation region and the reattachment length. This difficulty, in turn, manifests itself as a significant discrepancy between predicted and measured velocity profiles. The aim of the current work is to formulate an analytical solution to the 2D, steady flow in question that satisfies the Navier-Stokes equations with a source term. The proposed solution is a superposition of two stream functions, one being a semi-potential solution that satisfies all the boundary conditions for real incompressible fluids, and another composed of rotational vortices (e.g. Rankine vortices) which enable flow separation. The location and distribution of the vortices is selected to emulate the Reynolds number dependence of the re-attachment length, while other parameters in the model are used to minimize the additional source term that is needed. The proposed solution can be primarily used in code-verification, and quantification of discretization errors in CFD (Computational Fluid Dynamics). It can also be used to assess modeling errors, by adding additional source terms that represent the spatial variations in turbulent-eddy viscosity, the key quantity used in Boussinesq-type turbulence models.
Analytical approximation of transit time scattering due to magnetosonic waves
NASA Astrophysics Data System (ADS)
Bortnik, J.; Thorne, R. M.; Ni, B.; Li, J.
2015-03-01
Recent test particle simulations have shown that energetic electrons traveling through fast magnetosonic (MS) wave packets can experience an effect which is specifically associated with the tight equatorial confinement of these waves, known as transit time scattering. However, such test particle simulations can be computationally cumbersome and offer limited insight into the dominant physical processes controlling the wave-particle interactions, that is, in determining the effects of the various wave parameters and equatorial confinement on the particle scattering. In this paper, we show that such nonresonant effects can be effectively captured with a straightforward analytical treatment that is made possible with a set of reasonable, simplifying assumptions. It is shown that the effect of the wave confinement, which is not captured by the standard quasi-linear theory approach, acts in such a way as to broaden the range of particle energies and pitch angles that can effectively resonate with the wave. The resulting diffusion coefficients can be readily incorporated into global diffusion models in order to test the effects of transit time scattering on the dynamical evolution of radiation belt fluxes.
Approximate analytical solutions for excitation and propagation in cardiac tissue
NASA Astrophysics Data System (ADS)
Greene, D'Artagnan; Shiferaw, Yohannes
2015-04-01
It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium release (SCR). However, it is not understood how the size and morphology of these focal excitations are related to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage dependence of the inward rectifier potassium current (IK 1) , and is insensitive to the detailed properties of the sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required to induce a propagating action potential (AP), and argue that this relationship determines the necessary number of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel properties and important tissue scale processes such as excitation and propagation.
NASA Astrophysics Data System (ADS)
Sviercoski, R. F.
2010-07-01
The direct numerical simulation of flows through composites is difficult due to the fine-scale heterogeneity in the media and also due to the complexity of the dynamic systems. Thus, flow based on upscaling of the effective diffusion has become an important step in practical simulations of flow through composites. In this paper, an analytical form for computing the effective diffusion tensor is proposed when the variable coefficient is locally isotropic, K( x) = k( x) I, where k(x) is a scalar function, not necessarily periodic, and may be defined as a step function. Currently, similar results are obtained by numerical means and require a special (re)design of a numerical code and may be computationally demanding. The proposed analytical upscaled tensor approximates the one obtained from the periodic cell-problem in the context of classical homogenization theory. The diagonal values are computed by an averaging procedure of the well known Cardwell and Parsons bounds. The off-diagonals are derived from the rotation of an angle related to the center of mass of the unit cell or representative elementary volume (REV). When comparing the proposed form with various known analytical and numerical results, it shows to be accurate within less than 3% on average. The comparisons include realistic reservoirs description and analytical results, such as the concentric spheres of Hashin-Shtrikman and the two and four-phase checkerboard geometries. Moreover, convergence results corroborate theoretical ones from classical homogenization literature. Convergence is obtained by performing successive refinement from an initial coarse description of a given heterogeneous medium, which include the SPE10 comparative solution project.
Sharapov, Vladimir A; Mandelshtam, Vladimir A
2007-10-18
We consider systems undergoing very-low-temperature solid-solid transitions associated with minima of similar energy but different symmetry, and separated by a high potential barrier. In such cases the well-known "broken-ergodicity" problem is often difficult to overcome, even using the most advanced Monte Carlo (MC) techniques, including the replica exchange method (REM). The methodology that we develop in this paper is suitable for the above specified cases and is numerically accurate and efficient. It is based on a new MC move implemented within the REM framework, in which trial points are generated analytically using an auxiliary harmonic superposition system that mimics well the true system at low temperatures. Due to the new move, the low-temperature random walks are able to frequently switch the relevant potential energy funnels leading to an efficient sampling. Numerically accurate results are obtained for a number of Lennard-Jones clusters, including those that have so far been treated only by the harmonic superposition approximation (HSA). The latter is believed to provide good estimates for low-temperature equilibrium properties but is manifestly uncontrollable and is difficult to validate. The present results provide a good test for the HSA and demonstrate its reliability, particularly for estimation of the solid-solid transition temperatures in most cases considered. PMID:17685597
NASA Astrophysics Data System (ADS)
Shu, Yu-Chen; Chern, I.-Liang; Chang, Chien C.
2014-10-01
Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule (1D63) which is double-helix shape and composed of hundreds of atoms.
Shu, Yu-Chen; Chern, I-Liang; Chang, Chien C.
2014-10-15
Most elliptic interface solvers become complicated for complex interface problems at those “exceptional points” where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.
Large deflection of clamped circular plate and accuracy of its approximate analytical solutions
NASA Astrophysics Data System (ADS)
Zhang, Yin
2016-02-01
A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.
NASA Technical Reports Server (NTRS)
Dubois, George B; Ocvirk, Fred W
1953-01-01
An approximate analytical solution including the effect of end leakage from the oil film of short plain bearings is presented because of the importance of endwise flow in sleeve bearings of the short lengths commonly used. The analytical approximation is supported by experimental data, resulting in charts which facilitate analysis of short plain bearings. The analytical approximation includes the endwise flow and that part of the circumferential flow which is related to surface velocity and film thickness but neglects the effect of film pressure on the circumferential flow. In practical use, this approximation applies best to bearings having a length-diameter ratio up to 1, and the effects of elastic deflection, inlet oil pressure, and changes of clearance with temperature minimize the relative importance of the neglected term. The analytical approximation was found to be an extension of a little-known pressure-distribution function originally proposed by Michell and Cardullo.
Fast and accurate approximate inference of transcript expression from RNA-seq data
Hensman, James; Papastamoulis, Panagiotis; Glaus, Peter; Honkela, Antti; Rattray, Magnus
2015-01-01
Motivation: Assigning RNA-seq reads to their transcript of origin is a fundamental task in transcript expression estimation. Where ambiguities in assignments exist due to transcripts sharing sequence, e.g. alternative isoforms or alleles, the problem can be solved through probabilistic inference. Bayesian methods have been shown to provide accurate transcript abundance estimates compared with competing methods. However, exact Bayesian inference is intractable and approximate methods such as Markov chain Monte Carlo and Variational Bayes (VB) are typically used. While providing a high degree of accuracy and modelling flexibility, standard implementations can be prohibitively slow for large datasets and complex transcriptome annotations. Results: We propose a novel approximate inference scheme based on VB and apply it to an existing model of transcript expression inference from RNA-seq data. Recent advances in VB algorithmics are used to improve the convergence of the algorithm beyond the standard Variational Bayes Expectation Maximization algorithm. We apply our algorithm to simulated and biological datasets, demonstrating a significant increase in speed with only very small loss in accuracy of expression level estimation. We carry out a comparative study against seven popular alternative methods and demonstrate that our new algorithm provides excellent accuracy and inter-replicate consistency while remaining competitive in computation time. Availability and implementation: The methods were implemented in R and C++, and are available as part of the BitSeq project at github.com/BitSeq. The method is also available through the BitSeq Bioconductor package. The source code to reproduce all simulation results can be accessed via github.com/BitSeq/BitSeqVB_benchmarking. Contact: james.hensman@sheffield.ac.uk or panagiotis.papastamoulis@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online
Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry
NASA Astrophysics Data System (ADS)
Umer, Muhammad; Kopp, Wassja A.; Leonhard, Kai
2015-12-01
We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 — both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably.
Development of highly accurate approximate scheme for computing the charge transfer integral.
Pershin, Anton; Szalay, Péter G
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117
Development of highly accurate approximate scheme for computing the charge transfer integral
Pershin, Anton; Szalay, Péter G.
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.
Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry.
Umer, Muhammad; Kopp, Wassja A; Leonhard, Kai
2015-12-01
We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 - both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably. PMID:26646881
NASA Astrophysics Data System (ADS)
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean
NASA Astrophysics Data System (ADS)
Afanas'ev, A. P.; Dzyuba, S. M.
2015-10-01
A method for constructing approximate analytic solutions of systems of ordinary differential equations with a polynomial right-hand side is proposed. The implementation of the method is based on the Picard method of successive approximations and a procedure of continuation of local solutions. As an application, the problem of constructing the minimal sets of the Lorenz system is considered.
Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?
Sengupta, Dola; Kar, Sandip
2015-01-01
Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626
Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities
NASA Astrophysics Data System (ADS)
Turner, S. Fiona; Metcalfe, Stuart F.; Mellor, Andrew; Willmott, Jon; Drögmöller, Peter
2012-06-01
Remote temperature sensing and thermal imaging can be invaluable tools for process control and optimization. Their utilization is limited within the metal processing industries, however, as bright metal surfaces are highly reflective, with low emissivity that can vary critically with oxide thickness and alloy composition. Any infrared temperature measurement is vulnerable to background reflection and limited to the uncertainty in the emissivity. An enclosure or cavity made of any material offers an approximation to blackbody radiation, as both emitted and reflected radiation are collected within the cavity, and background radiation is excluded by the geometry. By exploiting natural cavities formed during processing, emissivity-independent measurements can be made. This paper presents thermal imaging data from an aluminum rolling application. Data was gathered using Land's FTI-E imaging system. Based on an uncooled amorphous silicon array, the system provides measurement in the range 200°C to 600°C to an accuracy of +/-1°C. The 320 x 240 pixels each have field of view 570:1, providing a total viewing angle of 32° by 24°. Data was processed by Land's LIPS ASPS software, which features a patented algorithm for identifying the area of true temperature measurement within the cavity. The software automatically locates the wedge as the strip is coiled, and tracks its position as the coil increases in size. Successive profile graphs are collated to form a '2D map' of the whole strip. The results demonstrate that accurate, emissivity-independent temperature measurements can be obtained from the wedge-shaped cavity formed where the sheet aluminum joins the roll.
Spittel, Ron; Bartelt, Harmut; Schmidt, Markus A
2014-05-19
We present a highly efficient semi-analytical and straightforward-to-implement model for the determination of plasmonic band edges of metallic nanowire arrays inside photonic crystal fibers. The model relies on the approximation of the hexagonal unit cell by a circle and using particular boundary conditions, showing an accurate agreement with finite element simulations. The model reduces simulation time by a factor of 100, thus representing an efficient tool for structure design. It further allows the calculation of all relevant modes in the system by slight changes of the entries in a 4 × 4 matrix. PMID:24921296
An approximate analytical solution for interlaminar stresses in angle-ply laminates
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Herakovich, Carl T.
1991-01-01
An improved approximate analytical solution for interlaminar stresses in finite width, symmetric, angle-ply laminated coupons subjected to axial loading is presented. The solution is based upon statically admissible stress fields which take into consideration local property mismatch effects and global equilibrium requirements. Unknown constants in the admissible stress states are determined through minimization of the complementary energy. Typical results are presented for through-the-thickness and interlaminar stress distributions for angle-ply laminates. It is shown that the results represent an improved approximate analytical solution for interlaminar stresses.
Gu, S
2016-08-01
Despite its low accuracy and consistency, growing degree days (GDD) has been widely used to approximate growing heat summation (GHS) for regional classification and phenological prediction. GDD is usually calculated from the mean of daily minimum and maximum temperatures (GDDmm) above a growing base temperature (T gb). To determine approximation errors and accuracy, daily and cumulative GDDmm was compared to GDD based on daily average temperature (GDDavg), growing degree hours (GDH) based on hourly temperatures, and growing degree minutes (GDM) based on minute-by-minute temperatures. Finite error, due to the difference between measured and true temperatures above T gb is large in GDDmm but is negligible in GDDavg, GDH, and GDM, depending only upon the number of measured temperatures used for daily approximation. Hidden negative error, due to the temperatures below T gb when being averaged for approximation intervals larger than measuring interval, is large in GDDmm and GDDavg but is negligible in GDH and GDM. Both GDH and GDM improve GHS approximation accuracy over GDDmm or GDDavg by summation of multiple integration rectangles to reduce both finite and hidden negative errors. GDH is proposed as the standardized GHS approximation protocol, providing adequate accuracy and high precision independent upon T gb while requiring simple data recording and processing. PMID:26589826
NASA Astrophysics Data System (ADS)
Gu, S.
2016-08-01
Despite its low accuracy and consistency, growing degree days (GDD) has been widely used to approximate growing heat summation (GHS) for regional classification and phenological prediction. GDD is usually calculated from the mean of daily minimum and maximum temperatures (GDDmm) above a growing base temperature ( T gb). To determine approximation errors and accuracy, daily and cumulative GDDmm was compared to GDD based on daily average temperature (GDDavg), growing degree hours (GDH) based on hourly temperatures, and growing degree minutes (GDM) based on minute-by-minute temperatures. Finite error, due to the difference between measured and true temperatures above T gb is large in GDDmm but is negligible in GDDavg, GDH, and GDM, depending only upon the number of measured temperatures used for daily approximation. Hidden negative error, due to the temperatures below T gb when being averaged for approximation intervals larger than measuring interval, is large in GDDmm and GDDavg but is negligible in GDH and GDM. Both GDH and GDM improve GHS approximation accuracy over GDDmm or GDDavg by summation of multiple integration rectangles to reduce both finite and hidden negative errors. GDH is proposed as the standardized GHS approximation protocol, providing adequate accuracy and high precision independent upon T gb while requiring simple data recording and processing.
Barlow, Nathaniel S.; Schultz, Andrew J. Kofke, David A.; Weinstein, Steven J.
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. t has been reported that by treating the radioactive de...
Simple analytical expression for work function in the “nearest neighbour” approximation
NASA Astrophysics Data System (ADS)
Chrzanowski, J.; Kravtsov, Yu. A.
2011-01-01
Nonlocal operator of potential is suggested, based on the “nearest neighbour” approximation (NNA) for single electron wave function in metals. It is shown that Schrödinger equation with nonlocal potential leads to quite simple analytical expression for work function, which surprisingly well fits to experimental data.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
NASA Astrophysics Data System (ADS)
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
Bonetto, Paola; Qi, Jinyi; Leahy, Richard M.
1999-10-01
We describe a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, we derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. We show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow us to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
NASA Astrophysics Data System (ADS)
Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang
2016-08-01
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Accurate Analytic Results for the Steady State Distribution of the Eigen Model
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun
2016-04-01
Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.
A method for the accurate and smooth approximation of standard thermodynamic functions
NASA Astrophysics Data System (ADS)
Coufal, O.
2013-01-01
A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
Marelli, Damián; Baumgartner, Robert; Majdak, Piotr
2015-01-01
Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930
NASA Astrophysics Data System (ADS)
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
An analytical technique for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1980-01-01
An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.
Construction of approximate analytical solutions to a new class of non-linear oscillator equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.; Oyedeji, K.
1985-01-01
The principle of harmonic balance is invoked in the development of an approximate analytic model for a class of nonlinear oscillators typified by a mass attached to a stretched wire. By assuming that harmonic balance will hold, solutions are devised for a steady state limit cycle and/or limit point motion. A method of slowly varying amplitudes then allows derivation of approximate solutions by determining the form of the exact solutions and substituting into them the lowest order terms of their respective Fourier expansions. The latter technique is actually a generalization of the method proposed by Kryloff and Bogoliuboff (1943).
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.
Analytical approximation to characterize the performance of in situ aquifer bioremediation
NASA Astrophysics Data System (ADS)
Keijzer, H.; van Dijke, M. I. J.; van der Zee, S. E. A. T. M.
The performance of in situ bioremediation to remove organic contaminants from contaminated aquifers depends on the physical and biochemical parameters. We characterize the performance by the contaminant removal rate and the region where biodegradation occurs, the biologically active zone (BAZ). The numerical fronts obtained by one-dimensional in situ bioremediation modeling reveal a traveling wave behavior: fronts of microbial mass, organic contaminant and electron acceptor move with a constant velocity and constant front shape through the domain. Hence, only one front shape and a linear relation between the front position and time is found for each of the three compounds. We derive analytical approximations for the traveling wave front shape and front position that agree perfectly with the traveling wave behavior resulting from the bioremediation model. Using these analytical approximations, we determine the contaminant removal rate and the BAZ. Furthermore, we assess the influence of the physical and biochemical parameters on the performance of the in situ bioremediation technique.
Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A
2015-12-21
In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482
NASA Astrophysics Data System (ADS)
Zingerman, K. M.; Shavyrin, D. A.
2016-06-01
The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress-strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov-Muskhelishvili's potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.
Căruntu, Bogdan
2014-01-01
The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method. The applications presented emphasize the high accuracy of the method by means of a comparison with previous results. PMID:25003150
Approximate Analytical Solutions for Primary Chatter in the Non-Linear Metal Cutting Model
NASA Astrophysics Data System (ADS)
Warmiński, J.; Litak, G.; Cartmell, M. P.; Khanin, R.; Wiercigroch, M.
2003-01-01
This paper considers an accepted model of the metal cutting process dynamics in the context of an approximate analysis of the resulting non-linear differential equations of motion. The process model is based upon the established mechanics of orthogonal cutting and results in a pair of non-linear ordinary differential equations which are then restated in a form suitable for approximate analytical solution. The chosen solution technique is the perturbation method of multiple time scales and approximate closed-form solutions are generated for the most important non-resonant case. Numerical data are then substituted into the analytical solutions and key results are obtained and presented. Some comparisons between the exact numerical calculations for the forces involved and their reduced and simplified analytical counterparts are given. It is shown that there is almost no discernible difference between the two thus confirming the validity of the excitation functions adopted in the analysis for the data sets used, these being chosen to represent a real orthogonal cutting process. In an attempt to provide guidance for the selection of technological parameters for the avoidance of primary chatter, this paper determines for the first time the stability regions in terms of the depth of cut and the cutting speed co-ordinates.
Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone. PMID:26298108
NASA Astrophysics Data System (ADS)
Chung, H. Y.; Guo, G. Y.; Chiang, H.-P.; Tsai, D. P.; Leung, P. T.
2010-10-01
The optical response of a multilayered spherical system of unlimited number of layers (a “matryushka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryushka in each of the two limits: the nonlocal optical response for ultrasmall systems (<10nm) , and the “finite-wavelength corrections” for systems ˜100nm . This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations.
Approximate analytical time-domain Green's functions for the Caputo fractional wave equation.
Kelly, James F; McGough, Robert J
2016-08-01
The Caputo fractional wave equation [Geophys. J. R. Astron. Soc. 13, 529-539 (1967)] models power-law attenuation and dispersion for both viscoelastic and ultrasound wave propagation. The Caputo model can be derived from an underlying fractional constitutive equation and is causal. In this study, an approximate analytical time-domain Green's function is derived for the Caputo equation in three dimensions (3D) for power law exponents greater than one. The Green's function consists of a shifted and scaled maximally skewed stable distribution multiplied by a spherical spreading factor 1/(4πR). The approximate one dimensional (1D) and two dimensional (2D) Green's functions are also computed in terms of stable distributions. Finally, this Green's function is decomposed into a loss component and a diffraction component, revealing that the Caputo wave equation may be approximated by a coupled lossless wave equation and a fractional diffusion equation. PMID:27586735
NASA Astrophysics Data System (ADS)
Walter, Johannes; Thajudeen, Thaseem; Süß, Sebastian; Segets, Doris; Peukert, Wolfgang
2015-04-01
Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles.
Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation
NASA Astrophysics Data System (ADS)
Poddar, Banibrata; Giurgiutiu, Victor
2016-04-01
Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.
Analytical approximation of the neutrino oscillation matter effects at large θ 13
NASA Astrophysics Data System (ADS)
Agarwalla, Sanjib Kumar; Kao, Yee; Takeuchi, Tatsu
2014-04-01
We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to `run' with the matter effect parameter a = , where N e is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these `running' parameters. We show that for the moderately large value of θ 13, as discovered by the reactor experiments, the running of the mixing angle θ 23 and the CP violating phase δ can be neglected. It simplifies the analysis of the resulting expressions for the oscillation probabilities considerably. Approaches which attempt to directly provide approximate analytical expressions for the oscillation probabilities in matter suffer in accuracy due to their reliance on expansion in θ 13, or in simplicity when higher order terms in θ 13 are included. We demonstrate the accuracy of our method by comparing it to the exact numerical result, as well as the direct approximations of Cervera et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of our approach in figuring out the required baseline lengths and neutrino energies for the oscillation probabilities to exhibit certain desirable features.
Approximation of orbital elements of telluric planets by compact analytical series
NASA Astrophysics Data System (ADS)
Kudryavtsev, S.
2014-12-01
We take the long-term numerical ephemeris of the major planets DE424 (Folkner 2011) and approximate the orbital elements of the telluric planets from that ephemeris by trigonometric series. Amplitudes of the series' terms are the second- or third-degree polynomials of time, and arguments are the fourth-degree time polynomials. The resulting series are precise and compact; in particular the maximum deviation of the planetary mean longitude calculated by the analytical series from that given by DE-424 over [-3000; 3000].
Derivation of an analytical approximation of the spectrum of spinning dust emission
Stevenson, Matthew A.
2014-02-01
An analytical function for the spectrum of spinning dust emission is presented. It is derived through the application of careful approximations, with each step tested against numerical calculations. This approach ensures accuracy while providing an intuitive picture of the physics. The final result may be useful for fitting of anomalous microwave emission observations, as is demonstrated by a comparison with the Planck observations of the Perseus Molecular Cloud. It is hoped that this will lead to a broader consideration of the spinning dust model when interpreting microwave continuum observations, and that it will provide a standard framework for interpreting and comparing the variety of anomalous microwave emission observations.
ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA
Goossens, M.; Soler, R.; Arregui, I.
2012-12-01
Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.
Ohshima, Hiroyuki
2015-12-29
An approximate analytic expression for the electrophoretic mobility of an infinitely long cylindrical colloidal particle in a symmetrical electrolyte solution in a transverse electric field is obtained. This mobility expression, which is correct to the order of the third power of the zeta potential ζ of the particle, considerably improves Henry's mobility formula correct to the order of the first power of ζ (Proc. R. Soc. London, Ser. A 1931, 133, 106). Comparison with the numerical calculations by Stigter (J. Phys. Chem. 1978, 82, 1417) shows that the obtained mobility formula is an excellent approximation for low-to-moderate zeta potential values at all values of κa (κ = Debye-Hückel parameter and a = cylinder radius). PMID:26639309
Walter, Johannes; Thajudeen, Thaseem; Süss, Sebastian; Segets, Doris; Peukert, Wolfgang
2015-04-21
Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles. PMID:25789666
Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary
NASA Astrophysics Data System (ADS)
Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing
2016-04-01
An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.
An approximate analytic solution for the radiation from a line-driven fluid-loaded plate
NASA Astrophysics Data System (ADS)
Diperna, Daniel T.; Feit, David
2001-12-01
In the analysis of a fluid loaded line-driven plate, the fields in the structure and the fluid are often expressed in terms of a Fourier transform. Once the boundary conditions are matched, the structural displacement can be expressed as an inverse transform, which can be evaluated using contour integration. The result is then a sum of propagating or decaying waves, each arising from poles in the complex plane, plus a branch cut integral. The branch cut is due to a square root in the transform of the acoustic impedance. The complex layer analysis (CLA) used here eliminates the branch cut singularity by approximating the square root with a rational function, causing the characteristic equation to become a polynomial in the transform variable. An approximate analytic solution to the characteristic equation is then found using a perturbation method. The result is four poles corresponding to the roots of the in vacuo plate, modified by the presence of the fluid, plus an infinity of poles located along the branch cut of the acoustic impedance. The solution is then found analytically using contour integration, with the integrand containing only simple poles.
NASA Astrophysics Data System (ADS)
Wang, Ping; Lu, DongQiang
2013-11-01
An analytic approximation method known as the homotopy analysis method (HAM) is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure (VLFS) on the surface of deep water. A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter. Based on the analytical solution the effects of different parameters are considered. We find that the plate deflection becomes lower with an increasing Young's modulus of the plate. The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases, and the larger density of the plate also causes analogous results. Furthermore, it is shown that the hydroelastic response of the plate is greatly affected by the high-amplitude incident wave. The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.
Bilgen, M.; Rose, J.H. )
1994-11-01
An approximate analytic series solution is obtained for the effects of randomly rough surfaces on the time-dependent ultrasonic backscatter that are due to beam-microstructure interactions. The transmission of sound through the rough surface is modeled by scalar waves by use of the phase-screen and Fresnel approximations, whereas the transducer is assumed to produce a focused normally oriented Gaussian beam. The beam-microstructure interaction is described by a simple, generic model that attributes backscattering to inhomogeneities in the elastic constants of the sample; density variations are ignored. Key predictions of the approximate series solution are that (a) acoustic backscatter is relatively insensitive to surface roughness for unfocused probes, (b) roughness can dramatically reduce the backscatter noise seen by focused probes, (c) backscatter is increased at early times because of weak localization, and (d) backscatter is reduced at late times because of increased diffraction. The predictions of the series solution are briefly compared with available experiment. 32 refs., 10 figs.
Adiabatic Expansion of Supernova Remnants - an Explicit, Analytical Approximation in Two Dimensions
NASA Astrophysics Data System (ADS)
Maciejewski, W.; Shelton, R. L.; Cox, D. P.
1996-05-01
We propose a simple, analytical approximation for an adiabatic shock wave propagating in an exponentially stratified ambient medium. We aim to provide an effective tool for exploring the parameter space of 2-dimensional numerical models of supernova remnants (SNRs). We start from Kompaneets's (1960, Soviet Phys. Doklady, 5, 46) axisymmetric generalization of Sedov's spherically symmetric problem, to which he derived an implicit solution. We notice that the SNR shape in his solution can be closely approximated as an ellipsoid. In this case, an explicit solution for the size, eccentricity and expansion velocity of the remnant can be found. Our results are in excellent agreement with Kompaneets's solution, even when the ambient density varies across the remnant by factors as large as 1000. Beyond that, the blowout occurs, and Kompaneets's assumptions no longer hold. The remnant shapes are remarkably close to spherical for moderate density gradients. Using Kahn's cooling law (alpha T(-1/2) ) we derived a formula to estimate how long it takes for a cold shell to form. Even a small gradient in ambient density causes this time to vary substantially within a single remnant, so that for a period the H I shell will be only partially formed. To demonstrate how our approximation can be used, the parameter space for models of the supernova remnant W44 is explored.
Tolias, P.; Ratynskaia, S.; Angelis, U. de
2015-08-15
The soft mean spherical approximation is employed for the study of the thermodynamics of dusty plasma liquids, the latter treated as Yukawa one-component plasmas. Within this integral theory method, the only input necessary for the calculation of the reduced excess energy stems from the solution of a single non-linear algebraic equation. Consequently, thermodynamic quantities can be routinely computed without the need to determine the pair correlation function or the structure factor. The level of accuracy of the approach is quantified after an extensive comparison with numerical simulation results. The approach is solved over a million times with input spanning the whole parameter space and reliable analytic expressions are obtained for the basic thermodynamic quantities.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma
NASA Astrophysics Data System (ADS)
Camporeale, E.; Hogan, E. A.; MacDonald, E. A.
2015-04-01
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The
NASA Astrophysics Data System (ADS)
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The
Analytical descriptions of cross-polarisation dynamics: relaxing the secular approximations
NASA Astrophysics Data System (ADS)
Hirschinger, J.; Raya, J.
2015-11-01
In this work, analytical expressions of the cross-polarisation (CP) dynamics under both static and magic-angle spinning (MAS) conditions are obtained by solving the generalised Liouville-von Neumann quantum mechanical equation beyond the standard approximations, i.e., reintroducing neglected non-secular terms in the system superoperator. Although the simple model of a two-spin system interacting with a spin bath gives a rather crude description of CP dynamics, it accounts well for the orientation dependence of CP in a static sample of ferrocene powder and permits to detect slight departures from the Hartmann-Hahn matching condition. This approach also has the advantage of yielding manageable analytical expressions that can be used even by less inclined or experienced workers to obtain results that are good enough in an operational sense. Moreover, the resulting spin diffusion rate constants containing different sources of anisotropy of the system-environment interaction as well as their dependence on the MAS frequency are related semi-quantitatively to the local network of dipolar interactions. Finally, it is shown that non-secular solutions improve significantly the analysis of CPMAS-based separated-local-field spectroscopy experimental data in the absence of homonuclear decoupling.
Tian, Lian; Henningsen, Joseph; Salick, Max R; Crone, Wendy C; Gunderson, McLean; Dailey, Seth H; Chesler, Naomi C
2015-07-01
The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test. PMID:25881308
Tian, Lian; Henningsen, Joseph; Salick, Max R.; Crone, Wendy C.; Gunderson, McLean; Dailey, Seth H.; Chesler, Naomi C.
2015-01-01
The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test. PMID:25881308
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn
2016-08-01
Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.
Vibration of thick composite laminates - Analytic theory and finite element approximations
NASA Technical Reports Server (NTRS)
Tessler, A.; Saether, E.; Tsui, T.
1992-01-01
Two versions of a (1,2) higher-order laminate plate theory are extended to elastodynamics, and their performance on free vibration problems for homogeneous and laminated plates is examined. Both versions are based on continuously varying through-the-thickness linear and parabolic distributions for the inplane and transverse displacements, respectively. They also use continuous parabolic distributions for the transverse shear strains. The theory is capable of providing an improved accuracy as compared to other approximate theories and accurately predicting the lowest thickness-stretch frequencies which cannot be obtained with shear-deformable theories. The theory is considered to be particularly well-suited for generating simple and efficient variationally-based displacement finite elements leading to C sup 0 elements with only five degrees of freedom per node.
Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients.
Heuser, Johannes; Höfener, Sebastian
2016-05-01
We report the derivation of approximate analytical nuclear ground-state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second-order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2-in-RICC2, RICC2-in-DFT, and DFT-in-DFT FDE level of theory using a dispersion correction, required due to the DFT-based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson-Crick pair adenine-thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. PMID:26804310
NASA Astrophysics Data System (ADS)
Oluwadare, O. J.; Oyewumi, K. J.; Akoshile, C. O.; Babalola, O. A.
2012-09-01
By employing the Pekeris-type (or a new improved approximation) to deal with the (pseudo or) centrifugal term, we solve the Klein-Gordon and Dirac equations with equally mixed scalar and vector Deng-Fan molecular potentials for all values of l (orbital the angular momentum quantum number) and κ (spin-orbit coupling quantum number), respectively. Using the formalism of the Nikiforov-Uvarov method, the approximate analytical bound state energy equations and the associated two-component spinors corresponding to the two relativistic equations are obtained. Also, special cases including the non-relativistic limits of the relativistic equation are obtained.
NASA Astrophysics Data System (ADS)
Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.
2014-01-01
Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling
NASA Astrophysics Data System (ADS)
Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal
2013-01-01
A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.
NASA Astrophysics Data System (ADS)
Hofman, Radek; Seibert, Petra; Kovalets, Ivan; Andronopoulos, Spyros
2015-04-01
We are concerned with source term retrieval in the case of an accident in a nuclear power with off-site consequences. The goal is to optimize atmospheric dispersion model inputs using inverse modeling of gamma dose rate measurements (instantaneous or time-integrated). These are the most abundant type of measurements provided by various radiation monitoring networks across Europe and available continuously in near-real time. Usually, a source term of an accidental release comprises of a mixture of nuclides. Unfortunately, gamma dose rate measurements do not provide a direct information on the source term composition; however, physical properties of respective nuclides (deposition properties, decay half-life) can yield some insight. In the method presented, we assume that nuclide ratios are known at least approximately, e.g. from nuclide specific observations or reactor inventory and assumptions on the accident type. The source term can be in multiple phases, each being characterized by constant nuclide ratios. The method is an extension of a well-established source term inversion approach based on the optimization of an objective function (minimization of a cost function). This function has two quadratic terms: mismatch between model and measurements weighted by an observation error covariance matrix and the deviation of the solution from a first guess weighted by the first-guess error covariance matrix. For simplicity, both error covariance matrices are approximated as diagonal. Analytical minimization of the cost function leads to a liner system of equations. Possible negative parts of the solution are iteratively removed by the means of first guess error variance reduction. Nuclide ratios enter the problem in the form of additional linear equations, where the deviations from prescribed ratios are weighted by factors; the corresponding error variance allows us to control how strongly we want to impose the prescribed ratios. This introduces some freedom into the
Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy
Schuemann, Jan Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald
2015-08-01
Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.
NASA Astrophysics Data System (ADS)
Heng, Kevin; Mendonça, João M.; Lee, Jae-Min
2014-11-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.
Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch
2014-11-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.
Assessing the clinical impact of approximations in analytical dose calculations for proton therapy
Schuemann, J.; Giantsoudi, D.; Grassberger, C.; Moteabbed, M.; Min, C.H.; Paganetti, H.
2015-01-01
Purpose To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods Dose distributions planned with ADC were compared to delivered dose distributions (as determined by Monte Carlo simulations). A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume-histogram analysis, a γ-index analysis and estimations of TCP. Results We find that ADC overestimates the target doses on average by 1–2% for all patients considered. The mean dose, D95, D50 and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3mm criteria. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior-rectum of prostate patients were less than 3%. Conclusion Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. In order to ensure full target coverage, advanced dose-calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required in order to avoid biases due to systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy to conventional radiotherapy. PMID:26025779
Accurate analytical method for the extraction of solar cell model parameters
NASA Astrophysics Data System (ADS)
Phang, J. C. H.; Chan, D. S. H.; Phillips, J. R.
1984-05-01
Single diode solar cell model parameters are rapidly extracted from experimental data by means of the presently derived analytical expressions. The parameter values obtained have a less than 5 percent error for most solar cells, in light of the extraction of model parameters for two cells of differing quality which were compared with parameters extracted by means of the iterative method.
NASA Astrophysics Data System (ADS)
Kupriyanov, N. A.; Simankin, F. A.; Manabaev, K. K.
2016-04-01
A new approximate algorithm for calculating a stress-strain state of viscoelastic bodies is used. The algorithm is based on the derivation of the expressions of time-effective modules. These modules are obtained by iterative changes, compressing the fork of Voigt-Reuss. As an example the analytic solution about the action of a concentrated force on the viscoelastic half-space is compared with the approximate solution. Numerical calculations are performed for a wide range of relaxation characteristics of a viscoelastic half-space. Results of the comparison of stresses and displacements with the analytic solution give coincidence within 3... 15%.
NASA Astrophysics Data System (ADS)
O'Brien, Chris; Scully, Marlan O.
2016-01-01
In a straightforward manner, we utilize Floquet theory and adiabatic elimination to derive an analytic expression for a monochromatically driven two-level atom, without making the rotating wave approximation. We show that the counter-rotating terms dropped in the rotating wave approximation are responsible for three major effects. First an ac-Stark phase shift of the driven transition, second increased excited state population from far-detuned driving of the Lorentzian line, and third extra frequencies in the population dynamics that result in "wiggles." The analytic result agrees well with numerical simultations over a wide range of parameters.
Fixing a rigorous formalism for the accurate analytic derivation of halo properties
NASA Astrophysics Data System (ADS)
Juan, Enric; Salvador-Solé, Eduard; Domènech, Guillem; Manrique, Alberto
2014-03-01
We establish a one-to-one correspondence between virialized haloes and their seeds, namely peaks with a given density contrast at appropriate Gaussian-filtering radii, in the initial Gaussian random density field. This fixes a rigorous formalism for the analytic derivation of halo properties from the linear power spectrum of density perturbations in any hierarchical cosmology. The typical spherically averaged density profile and mass function of haloes so obtained match those found in numerical simulations.
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Meshkov, Vladimir V.; Stolyarov, Andrej V.
2009-06-01
We have shown that one and two-parameter analytical mapping functions such as r(y;bar{r}, α)=bar{r}[1 + {1}/{α} tan(π y/2)] and r(y;bar{r})=bar{r} [ {1+ y}/{1-y} ] transform the conventional radial Schrödinger equation into equivalent alternate forms {d^2φ(y)}/{dy^2} = [{π^2}/{4}+({2μ}/ {hbar^2} ) g^2(y) [E - U(r(y))
NASA Astrophysics Data System (ADS)
RoyChoudhury, Raja; RoyChoudhury, Arundhati
2011-02-01
This paper presents a semi analytical formulation of modal properties of a non linear optical fiber having Kerr non linearity with a three parameter approximation of fundamental modal field. The minimization of core parameter ( U) which involves Kerr nonlinearity through the non-stationary expression of propagation constant, is carried out by Nelder-Mead Simplex method of non linear unconstrained minimization, suitable for problems with non-smooth functions as the method does not require any derivative information. Use of three parameters in modal approximation and implementation of Simplex methods enables our semi analytical description to be an alternative way having less computational burden for calculation of modal parameters than full numerical methods.
Tan, C.Y.; Ranjbar, V.H.; /Tech-X, Boulder
2007-11-01
We will explore a method for measuring chromaticity by continuously kicking the beam transversely. This is called the continuous head-tail method for measuring chromaticity. The complete analytic approximation in terms of trigonometric functions is derived for zero transverse emittance beam. A simple formula for calculating chromaticity from experimental data is also shown. Finally the theory is compared with experimental data.
NASA Astrophysics Data System (ADS)
Dutt, Ranabir; Mukherji, Uma
1982-08-01
We propose a new approximation scheme to obtain analytic expressions for the bond-state energies and eigenfunctions for any arbitrary bound nl-state of the Hulthén potential. The predicted energies Enl are in excellent agreement with the perturbative results of Lai and Lin. The scope for an extension of the method to the continuum states is also discussed.
Hill, M.C.
1989-01-01
Inaccuracies in parameter values, parameterization, stresses, and boundary conditions of analytical solutions and numerical models of groundwater flow produce errors in simulated hydraulic heads. These errors can be quantified in terms of approximate, simultaneous, nonlinear confidence intervals presented in the literature. Approximate confidence intervals can be applied in both error and sensitivity analysis and can be used prior to calibration or when calibration was accomplished by trial and error. The method is expanded for use in numerical problems, and the accuracy of the approximate intervals is evaluated using Monte Carlo runs. Four test cases are reported. -from Author
Analytical Grid Generation for accurate representation of clearances in CFD for Screw Machines
NASA Astrophysics Data System (ADS)
Rane, S.; Kovačević, A.; Stošić, N.
2015-08-01
One of the major factors affecting the performance prediction of twin screw compressors by use of computational fluid dynamics (CFD) is the accuracy with which the leakage gaps are captured by the discretization methods. The accuracy of mapping leakage flows can be improved by increasing the number of grid points on the profile. However, this method faces limitations when it comes to the complex deforming domains of a twin screw compressor because the computational time increases tremendously. In order to address this problem, an analytical grid distribution procedure is formulated that can independently refine the region of high importance for leakage flows in the interlobe space. This paper describes the procedure of analytical grid generation with the refined mesh in the interlobe area and presents a test case to show the influence of the mesh refinement in that area on the performance prediction. It is shown that by using this method, the flow domains in the vicinity of the interlobe gap and the blowhole area are refined which improves accuracy of leakage flow predictions.
NASA Astrophysics Data System (ADS)
Tinoco Arenas, A.; González Bolívar, M.; Medina Covarrubias, R.; Raga, A. C.
2015-10-01
We present analytic models for a photoionized region in pressure equilibrium with the surrounding, neutral material. The models are based on the assumption of a linear relation between the H ionization fraction and the square of the sound speed of the gas. We show that under these assumptions the "grey" radiative transfer equation has analytic solutions that provide the ionization structure and the density of the nebula as a function of radius.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
A novel fast and accurate pseudo-analytical simulation approach for MOAO
NASA Astrophysics Data System (ADS)
Gendron, É.; Charara, A.; Abdelfattah, A.; Gratadour, D.; Keyes, D.; Ltaief, H.; Morel, C.; Vidal, F.; Sevin, A.; Rousset, G.
2014-08-01
Multi-object adaptive optics (MOAO) is a novel adaptive optics (AO) technique for wide-field multi-object spectrographs (MOS). MOAO aims at applying dedicated wavefront corrections to numerous separated tiny patches spread over a large field of view (FOV), limited only by that of the telescope. The control of each deformable mirror (DM) is done individually using a tomographic reconstruction of the phase based on measurements from a number of wavefront sensors (WFS) pointing at natural and artificial guide stars in the field. We have developed a novel hybrid, pseudo-analytical simulation scheme, somewhere in between the end-to- end and purely analytical approaches, that allows us to simulate in detail the tomographic problem as well as noise and aliasing with a high fidelity, and including fitting and bandwidth errors thanks to a Fourier-based code. Our tomographic approach is based on the computation of the minimum mean square error (MMSE) reconstructor, from which we derive numerically the covariance matrix of the tomographic error, including aliasing and propagated noise. We are then able to simulate the point-spread function (PSF) associated to this covariance matrix of the residuals, like in PSF reconstruction algorithms. The advantage of our approach is that we compute the same tomographic reconstructor that would be computed when operating the real instrument, so that our developments open the way for a future on-sky implementation of the tomographic control, plus the joint PSF and performance estimation. The main challenge resides in the computation of the tomographic reconstructor which involves the inversion of a large matrix (typically 40 000 × 40 000 elements). To perform this computation efficiently, we chose an optimized approach based on the use of GPUs as accelerators and using an optimized linear algebra library: MORSE providing a significant speedup against standard CPU oriented libraries such as Intel MKL. Because the covariance matrix is
Brunet, Edouard; Ajdari, Armand
2006-05-01
We set up an analytical framework that allows one to describe and compute streaming effects and electro-osmosis on an equal footing. This framework relies on the thin double layer approximation commonly used for description of electroosmotic flows, but rarely used for streaming problems. Using this framework we quantitatively assess the induction of bulk streaming current patterns by topographic or charge heterogeneities on surfaces. This too also permits analytical computation of all linear electrokinetic effects in complex microfluidic geometries, and we discuss a few immediate applications. PMID:16803036
NASA Astrophysics Data System (ADS)
Haven, Emmanuel
2005-11-01
Analytical solutions to the backward Kolmogorov PDE are very dependent on the functional form of b(y,t) and a(y,t). We suggest one solution technique for obtaining analytical solutions via the use of an adiabatic approximation to the Schrödinger PDE. This approximation takes the specific form of a so-called WKB (W D Wentzel [G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Phys. 38 (1926) 518-529], K D Kramers [H. Kramers, Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39 (1926) 828-840], B D Brillouin [L. Brillouin, La mécanique ondulatoire de Schrödinger: une méthode générale de résolution par approximations successives, C. R. Acad. Sci. 183 (1926) 24-26]) approximation. We provide for two examples, in financial option pricing, where we show how the proposed approximation could be of use.
NASA Technical Reports Server (NTRS)
Singhvi, Sarvesh; Kapania, Rakesh K.
1992-01-01
In the present determination of the derivatives of natural frequencies and mode shapes of a generally laminated tapered skew plate, with respect to various shape parameters, springs are used to simulate the essential boundary conditions. The independent shape parameters are plate surface area, aspect ratio, taper ratio, and sweep angle. Eigenvalues and eigenvectors are approximated over the range of the variable using linear, exponential, and pseudoexponential approximation schemes, and are compared with reanalysis-obtained values. Numerical results are presented for symmetrically and unsymmetrically laminated plates.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Orio, Patricio; Soudry, Daniel
2012-01-01
Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when
NASA Astrophysics Data System (ADS)
Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.
2010-12-01
This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to
An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode
Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter
2012-01-01
The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhu, Jing-yu
2016-07-01
Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.
Analytic approximation to 5 dimensional black holes with one compact dimension
NASA Astrophysics Data System (ADS)
Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C.
2005-01-01
We study black hole solutions in R4×S1 space, using an expansion to second order in the square of the ratio of the radius of the horizon, μ, and the circumference of the compact dimension, L. A study of geometric and thermodynamic properties indicates that the black hole fills the space in the compact dimension at ɛ=(μ/L)2≃0.1. At the same value of ɛ the entropies of the uniform black string and of the black hole are approximately equal.
Analytical approximations for spatial stochastic gene expression in single cells and tissues.
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2016-05-01
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction-diffusion master equation (RDME) describing stochastic reaction-diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction-diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686
Analytical approximations for spatial stochastic gene expression in single cells and tissues
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2016-01-01
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686
On the evolution of the snow line in protoplanetary discs - II. Analytic approximations
NASA Astrophysics Data System (ADS)
Martin, Rebecca G.; Livio, Mario
2013-09-01
We examine the evolution of the snow line in a protoplanetary disc that contains a dead zone (a region of zero or low turbulence). The snow line is within a self-gravitating part of the dead zone, and we obtain a fully analytic solution for its radius. Our formula could prove useful for future observational attempts to characterize the demographics of planets outside the snow line. External sources such as cosmic rays or X-rays from the central star can ionize the disc surface layers and allow the magnetorotational instability to drive turbulence there. We show that provided that the surface density in this layer is less than about 50 g cm-2, the dead zone solution exists, after an initial outbursting phase, until the disc is dispersed by photoevaporation. We demonstrate that the snow line radius is significantly larger than that predicted by a fully turbulent disc model, and that in our own Solar system it remains outside of the orbital radius of the Earth. Thus, the inclusion of a dead zone into a protoplanetary disc model explains how our Earth formed with very little water.
NASA Astrophysics Data System (ADS)
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations. PMID:27343483
Analytical approximations of K-corrections in optical and near-infrared bands
NASA Astrophysics Data System (ADS)
Chilingarian, Igor V.; Melchior, Anne-Laure; Zolotukhin, Ivan Yu.
2010-07-01
To compare photometric properties of galaxies at different redshifts, the fluxes need to be corrected for the changes of effective rest-frame wavelengths of filter bandpasses, called K-corrections. Usual approaches to compute them are based on the template fitting of observed spectral energy distributions (SED) and, thus, require multicolour photometry. Here, we demonstrate that, in cases of widely used optical and near-infrared (NIR) filters, K-corrections can be precisely approximated as two-dimensional low-order polynomials of only two parameters: redshift and one observed colour. With this minimalist approach, we present the polynomial fitting functions for K-corrections in Sloan Digital Sky Survey (SDSS) ugriz, United Kingdom Infrared Telescope (UKIRT) Wide Field Camera YJHK, Johnson-Cousins UBVRcIc and Two Micron All Sky Survey JHKs bands for galaxies at redshifts Z < 0.5 based on empirically computed values obtained by fitting combined optical-NIR SEDs of a set of 105 galaxies constructed from SDSS Data Release 7 (DR7) and UKIRT Infrared Deep Sky Survey DR5 photometry using the Virtual Observatory. For luminous red galaxies we provide K-corrections as functions of their redshifts only. In two filters, g and r, we validate our solutions by computing K-corrections directly from SDSS DR7 spectra. We also present a K-corrections calculator, a web-based service for computing K-corrections online.
Hollingshead, Kyle B; Jain, Avni; Truskett, Thomas M
2013-10-28
We study whether fine discretization (i.e., terracing) of continuous pair interactions, when used in combination with first-order mean-spherical approximation theory, can lead to a simple and general analytical strategy for predicting the equilibrium structure and thermodynamics of complex fluids. Specifically, we implement a version of this approach to predict how screened electrostatic repulsions, solute-mediated depletion attractions, or ramp-shaped repulsions modify the radial distribution function and the potential energy of reference hard-sphere fluids, and we compare the predictions to exact results from molecular simulations. PMID:24181996
Kristóf, T; Boda, D; Szalai, I
2012-08-22
An analytic formula is derived for the magnetization of a two-dimensional dipolar hard disk fluid using a variational functional series expansion of the free energy as a function of the orientational distribution function. The excess term expressing the effect of the intermolecular forces is calculated on the basis of the mean spherical approximation. Comparison with our own Monte Carlo simulation data shows excellent agreement for large external fields and for the zero-field susceptibility. At intermediate field strengths, the agreement is satisfactory for moderate dipole moments and densities. PMID:22810162
Dodin, Amro; Tscherbul, Timur V; Brumer, Paul
2016-06-28
Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter ζ=12(γ1+γ2)/Δp, where γi are the radiative decay rates of the excited levels i = 1, 2, and Δp=Δ(2)+(1-p(2))γ1γ2 depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit (ζ ≫ 1), approach a long-lived quasi-steady state in the overdamped limit (ζ ≪ 1), and display an intermediate behavior at critical damping (ζ = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates |e1〉 and |e2〉 and their in-phase coherent superposition |ϕ+〉=1r1+r2(r1|e1〉+r2|e2〉), which is remarkably long-lived in the overdamped limit (where r1 and r2 are the incoherent pumping rates). Formation of this coherent superposition enhances the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when r1 = r2 and the transition dipole moments are fully aligned. PMID:27369498
NASA Astrophysics Data System (ADS)
Dodin, Amro; Tscherbul, Timur V.; Brumer, Paul
2016-06-01
Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter ζ = /1 2 ( γ 1 + γ 2) / Δ p , where γi are the radiative decay rates of the excited levels i = 1, 2, and Δ p = √{ Δ 2 + ( 1 - p 2) γ 1 γ 2 } depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit (ζ ≫ 1), approach a long-lived quasi-steady state in the overdamped limit (ζ ≪ 1), and display an intermediate behavior at critical damping (ζ = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates |e1> and |e2> and their in-phase coherent superposition | ϕ + > = /1 √{ r 1 + r 2 } ( √{ r 1 } | e 1 > + √{ r 2 } | e 2 >) , which is remarkably long-lived in the overdamped limit (where r1 and r2 are the incoherent pumping rates). Formation of this coherent superposition enhances the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when r1 = r2 and the transition dipole moments are fully aligned.
Delfino, A.; Silva, J.B.; Malheiro, M.
2006-03-15
We study nuclear matter, at the mean-field approximation, by considering as equal the values of the scalar and the vector density in the Walecka model, which is a very reasonable approximation up to the nuclear matter saturation density. It turns out that the model has an analytical solution for the scalar and vector couplings as functions only of the nuclear matter density and binding energy. The nuclear matter properties are very close to the original version of the model. This solution allows us to show that the correlation between the binding energy and the saturation density is Coester line like. The liquid-gas phase transition is also studied and the critical and flash temperatures are again very similar to the original ones.
Friese, Daniel H; Hättig, Christof; Koβmann, Jörg
2013-03-12
An implementation of analytic second derivatives for the approximate coupled cluster singles and doubles model CC2 and for second-order Møller-Plesset perturbation theory (MP2) will be presented. The RI approximation for the two-electron repulsion integrals is used to reduce memory demands, operation count, and I/O requirements. During the calculation, the storage of [Formula: see text] quantities (where [Formula: see text] is a measure for the system size) can completely be avoided. It is shown that with the MP2 method and an appropriate scaling of the harmonic frequencies, especially C-F stretch frequencies are reproduced much better in comparison to experiments than with the B3LYP density functional. Similar advantages are observed for molecules with strong, internal van der Waals interactions. Spin scaling offers additional improvements in these cases. The implementation has been tested for molecules with up to 81 atoms and 684 basis functions. PMID:26587609
NASA Astrophysics Data System (ADS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-01
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500
Liu, Jie; Liang, WanZhen
2011-07-01
We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values. PMID:21744894
NASA Astrophysics Data System (ADS)
Liu, Fenglai; Gan, Zhengting; Shao, Yihan; Hsu, Chao-Ping; Dreuw, Andreas; Head-Gordon, Martin; Miller, Benjamin T.; Brooks, Bernard R.; Yu, Jian-Guo; Furlani, Thomas R.; Kong, Jing
2010-10-01
We derived the analytic gradient for the excitation energies from a time-dependent density functional theory calculation within the Tamm-Dancoff approximation (TDDFT/TDA) using Gaussian atomic orbital basis sets, and introduced an efficient serial and parallel implementation. Some timing results are shown from a B3LYP/6-31G**/SG-1-grid calculation on zincporphyrin. We also performed TDDFT/TDA geometry optimizations for low-lying excited states of 20 small molecules, and compared adiabatic excitation energies and optimized geometry parameters to experimental values using the B3LYP and ωB97 functionals. There are only minor differences between TDDFT and TDA optimized excited state geometries and adiabatic excitation energies. Optimized bond lengths are in better agreement with experiment for both functionals than either CC2 or SOS-CIS(D0), while adiabatic excitation energies are in similar or slightly poorer agreement. Optimized bond angles with both functionals are more accurate than CIS values, but less accurate than either CC2 or SOS-CIS(D0) ones.
NASA Technical Reports Server (NTRS)
Kylling, Arve; Stamnes, Knut
1992-01-01
The present solutions to the linear transport equation pertain to monoenergetic particles' interaction with a multiple scattering/absorbing layered medium with a general anisotropic internal source term. Attention is given to a novel exponential-linear approximation to the internal source, as a function of scattering depth, which furnishes an at-once efficient and accurate solution to the linear transport equation through its reduction of the spatial mesh size. The great superiority of the proposed method is demonstrated by the numerical results obtained in the illustrative cases of (1) an embedded thermal source and (2) a rapidly varying beam pseudosource.
Serdyuk, Vladimir; Rudnitsky, Anton
2015-05-01
We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity. PMID:26366908
Bozkaya, Uğur; Sherrill, C David
2016-05-01
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies. PMID:27155621
NASA Astrophysics Data System (ADS)
Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V.; Li, W.
2014-12-01
The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet time distributions are well recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce- and drift-averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur; Sherrill, C. David
2016-05-01
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.
NASA Astrophysics Data System (ADS)
Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng
2008-12-01
In this paper, using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthén potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of t-waves scattering states are presented. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the “ k/2π scale” and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solution is discussed.
NASA Astrophysics Data System (ADS)
Chen, Chang-Yuan; Lu, Fa-Lin; Sun, Dong-Sheng
2008-12-01
In this paper, using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthén potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of t-waves scattering states are presented. The normalized wave functions expressed in terms of hypergeometric functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solution is discussed.
Lewis, E.R.; Schwartz, S.
2010-03-15
Light scattering by aerosols plays an important role in Earth’s radiative balance, and quantification of this phenomenon is important in understanding and accounting for anthropogenic influences on Earth’s climate. Light scattering by an aerosol particle is determined by its radius and index of refraction, and for aerosol particles that are hygroscopic, both of these quantities vary with relative humidity RH. Here exact expressions are derived for the dependences of the radius ratio (relative to the volume-equivalent dry radius) and index of refraction on RH for aqueous solutions of single solutes. Both of these quantities depend on the apparent molal volume of the solute in solution and on the practical osmotic coefficient of the solution, which in turn depend on concentration and thus implicitly on RH. Simple but accurate approximations are also presented for the RH dependences of both radius ratio and index of refraction for several atmospherically important inorganic solutes over the entire range of RH values for which these substances can exist as solution drops. For all substances considered, the radius ratio is accurate to within a few percent, and the index of refraction to within ~0.02, over this range of RH. Such parameterizations will be useful in radiation transfer models and climate models.
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim
2012-07-01
Onsager-like theories are commonly used to describe the phase behavior of nematic (only orientationally ordered) liquid crystals. A key ingredient in such theories is the orientation-dependent excluded volume of two molecules. Although for hard convex molecular models this is generally known in analytical form, for more realistic molecular models that incorporate intramolecular flexibility, one has to rely on approximations or on computationally expensive Monte Carlo techniques. In this work, we provide a general correlation for the excluded volume of tangent hard-sphere chains of arbitrary chain length and flexibility. The flexibility is introduced by means of the rod-coil model. The resulting correlation is of simple analytical form and accurately covers a wide range of pure component excluded volume data obtained from Monte Carlo simulations of two-chain molecules. The extension to mixtures follows naturally by applying simple combining rules for the parameters involved. The results for mixtures are also in good agreement with data from Monte Carlo simulations. We have expressed the excluded volume as a second order power series in sin (γ), where γ is the angle between the molecular axes. Such a representation is appealing since the solution of the Onsager Helmholtz energy functional usually involves an expansion of the excluded volume in Legendre coefficients. Both for pure components and mixtures, the correlation reduces to an exact expression in the limit of completely linear chains. The expression for mixtures, as derived in this work, is thereby an exact extension of the pure component result of Williamson and Jackson [Mol. Phys. 86, 819-836 (1995)], 10.1080/00268979500102391.
NASA Astrophysics Data System (ADS)
Schindlmayr, Arno
2013-02-01
The GW approximation for the electronic self-energy is an important tool for the quantitative prediction of excited states in solids, but its mathematical exploration is hampered by the fact that it must, in general, be evaluated numerically even for very simple systems. In this paper I describe a nontrivial model consisting of two electrons on the surface of a sphere, interacting with the normal long-range Coulomb potential, and show that the GW self-energy, in the absence of self-consistency, can in fact be derived completely analytically in this case. The resulting expression is subsequently used to analyze the convergence of the energy gap between the highest occupied and the lowest unoccupied quasiparticle orbital with respect to the total number of states included in the spectral summations. The asymptotic formula for the truncation error obtained in this way, whose dominant contribution is proportional to the cutoff energy to the power -3/2, may be adapted to extrapolate energy gaps in other systems.
Terçariol, César Augusto Sangaletti; Martinez, Alexandre Souto
2008-09-01
Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2 , as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N1) is just n=e=2.72... while in the mu=2 case, the mean number n of visited points grows proportionally to N;{12} . Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones. PMID:18850997
NASA Astrophysics Data System (ADS)
Lajohn, L. A.; Pratt, R. H.
2015-05-01
There is no simple parameter that can be used to predict when impulse approximation (IA) can yield accurate Compton scattering doubly differential cross sections (DDCS) in relativistic regimes. When Z is low, a small value of the parameter /q (where is the average initial electron momentum and q is the momentum transfer) suffices. For small Z the photon electron kinematic contribution described in relativistic S-matrix (SM) theory reduces to an expression, Xrel, which is present in the relativistic impulse approximation (RIA) formula for Compton DDCS. When Z is high, the S-Matrix photon electron kinematics no longer reduces to Xrel, and this along with the error characterized by the magnitude of /q contribute to the RIA error Δ. We demonstrate and illustrate in the form of contour plots that there are regimes of incident photon energy ωi and scattering angle θ in which the two types of errors at least partially cancel. Our calculations show that when θ is about 65° for Uranium K-shell scattering, Δ is less than 1% over an ωi range of 300 to 900 keV.
NASA Astrophysics Data System (ADS)
Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.
2015-09-01
Modeling the spatiotemporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modeling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection) at low L together with enhanced wave-induced losses and outward radial transport at higher L. Assuming that radial diffusion can be further described as the spatial broadening within the plasmasphere of this preexisting flux peak, simple approximate analytical solutions for the distribution of trapped relativistic electrons are derived. Such a simplified formalism provides a convenient means for easily determining whether radial diffusion actually prevails over atmospheric losses at any particular time for given electron energy E and location L. It is further used to infer favorable conditions for relativistic electron access to the inner belt, providing an explanation for the relative scarcity of such a feat under most circumstances. Comparisons with electron flux measurements on board the Van Allen Probes show a reasonable agreement between a few weeks and 4 months after the formation of a flux peak.
NASA Astrophysics Data System (ADS)
Atteia, O.; Höhener, P.
2012-09-01
Various numerical reactive transport models were developed in the last decade to simulate plumes of pollutants in heterogeneous aquifers. However, these models remain difficult to use for the non-specialist, and the computation times are often long. Users who need to fit several model parameters to match predictions with field data in heterogeneous aquifers may be discouraged by the time needed to run the simulations. The objective of this paper is to provide a set of approximations that allow performing almost instantaneous calculations for transport of redox-reactive pollutants, the most common examples being benzene, toluene, ethylbenzene and xylenes (BTEX). The approach relies on two major tools: (i) the use of flux tubes (FT), a variant of stream tubes that include dispersion, and (ii) sequential superposition of the reactions (Mixed Instantaneous and Kinetics Superposition Sequence (MIKSS)). The calculation of transport is uncoupled from the calculation of reactions. The superposition principle has been used previously for the analytical solution of a bimolecular reaction of an electron donor with an acceptor and is here extended to more than one dissolved electron acceptor reacting with more than one donor. The approach is furthermore improved by including limitations of the kinetic reactions according to the availability of the reactants and by combining kinetic and instantaneous reactions. The results computed with this approach are compared to three well known numerical models (RT3D, PHT3D, PHAST) for various test cases including uniform, slightly diverted or highly irregular flow fields and several reaction schemes for BTEX. The FT-MIKSS solution gives nearly the same results as the other models and proved to be very flexible. The major advantage of the FT-MIKSS solution is fast computation times that are generally 100 to 1000 times faster than other numerical models. This approach might be a useful tool during the long fitting procedure of field data
Zeinali-Rafsanjani, B.; Mosleh-Shirazi, M. A.; Faghihi, R.; Karbasi, S.; Mosalaei, A.
2015-01-01
To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam. PMID:26170553
Zeinali-Rafsanjani, B; Mosleh-Shirazi, M A; Faghihi, R; Karbasi, S; Mosalaei, A
2015-01-01
To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam. PMID:26170553
NASA Astrophysics Data System (ADS)
Atteia, O.; Höhener, P.
2012-09-01
The aim of this work was to extend and to validate the flux tube-mixed instantaneous and kinetics superposition sequence approach (FT-MIKSS) to reaction chains of degrading species. Existing analytical solutions for the reactive transport of chains of decaying solutes were embedded in the flux-tube approach in order to conceive a semi-analytical model that allows fast parameter fitting. The model was applied for chloroethenes undergoing reductive dechlorination and oxidation in homogeneous and heterogeneous aquifers with sorption. The results from the semi-analytical model were compared to results from three numerical models (RT3D, PH3TD, PHAST). All models were validated in a homogeneous domain with an existing analytical solution. In heterogeneous domains, we found significant differences between the four models. FT-MIKSS gave intermediate results for all modelled cases. Results were obtained almost instantaneously, whereas other models had calculation times of up to several hours. Chloroethene plumes and redox conditions at the Plattsburgh field site were realistically modelled by FT-MIKSS, although results differed somewhat from those of PHT3D and PHAST. It is concluded that it may be tedious to obtain correct modelling results in heterogeneous media with degradation chain reactions and that the comparison of two different models may be useful. FT-MIKSS is a valuable tool for fast parameter fitting at field sites and should be used in the preparation of longer model runs with other numerical models.
NASA Technical Reports Server (NTRS)
Jordon, D. E.; Patterson, W.; Sandlin, D. R.
1985-01-01
The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..
NASA Technical Reports Server (NTRS)
Schlesinger, Robert E.
1990-01-01
Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.
Thin film flow of an Oldroyd 6-constant fluid over a moving belt: an analytic approximate solution
NASA Astrophysics Data System (ADS)
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Valentin Bogdan
2016-01-01
In this paper the thin film flow of an Oldroyd 6-constant fluid on a vertically moving belt is investigated. The basic equation of a non-Newtonian fluid in a container with a wide moving belt which passes through the container moving vertically upward with constant velocity, is reduced to an ordinary nonlinear differential equation. This equation is solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM). The solutions take into account the behavior of Newtonian and non-Newtonian fluids. Our procedure intended for solving nonlinear problems does not need small parameters in the equation and provides a convenient way to control the convergence of the approximate solutions.
NASA Astrophysics Data System (ADS)
Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Zhu, Zun-Lue; Yang, Xiang-Dong
2006-12-01
The reasonable dissociation limit of the second excited singlet state B1Π of 7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B1Π state are calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. The whole potential energy curve for the B1Π state is obtained over the internuclear distance ranging from about 0.10 nm to 0.54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B1Π state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B1Π state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.
NASA Astrophysics Data System (ADS)
Alsing, P. M.; Fanto, M. L.
2016-01-01
We present an analytical formulation of the recent one-shot decoupling model of Bràdler and Adami (2015 arXiv:1505.0284) and compute the resulting 'Page information' curves, for the reduced density matrices for the evaporating black hole (BH) internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. We argue that BH evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete.
NASA Astrophysics Data System (ADS)
Zhou, Kai
2011-12-01
of parameters over which the approximation is accurate. In the present contribution, we provide an exact solution to the charge and field-induced force for semi-spheroid standing on a ground plane, derive the commonly used approximation from the exact solution, and find that the commonly used approximate solution for the force on a rodlike particle agrees poorly with finite element computations of the force. We provide both "exact" and approximated formulas which agree well with finite element computations of the force on a rod-like particle for asperities from 2 to 100. An analytical expression is derived for the chemical potential of a water-filled spheroid in a dielectric medium based on Zeller's hypothesis for the chemical potential, against which Zeller's approximations for chemical potential could be compared for the same system. In doing so, we found that Zeller's approximation for DC component of the chemical potential is very good, although his expression for the conductivity at which the peak DC component occurs is not accurate at low spheroid asperities. However Zeller's approximation does not provide a very good approximation for the AC component of the chemical potential. Following Zeller's approach but with corrections, we have developed a much more accurate approximation for the AC component of the chemical potential which was compared with both the exact analytical solution and FEA computations.
NASA Astrophysics Data System (ADS)
Choudhury, Raja Roy; Choudhury, Arundhati Roy; Ghose, Mrinal Kanti
2013-09-01
To characterize nonlinear optical fiber, a semi-analytical formulation using variational principle and the Nelder-Mead Simplex method for nonlinear unconstrained minimization is proposed. The number of optimizing parameters in order to optimize core parameter U has been increased to incorporate more flexibility in the formulation of an innovative form of fundamental modal field. This formulation provides accurate analytical expressions for modal dispersion parameter (g) of optical fiber with Kerr nonlinearity. The minimization of core parameter (U), which involves Kerr nonlinearity through the nonstationary expression of propagation constant, is carried out by the Nelder-Mead Simplex method of nonlinear unconstrained minimization, suitable for problems with nonsmooth functions as the method does not require any derivative information. This formulation has less computational burden for calculation of modal parameters than full numerical methods.
NASA Astrophysics Data System (ADS)
Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao
2015-12-01
Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (TC + 10 K) and pressure (PC + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables.
DiFrancesco, D; Noble, D
1980-01-01
1. Regular perturbation theory was used to obtain analytical solutions for the time course of membrane current decay following voltage-clamp depolarizing pulses when both time-dependent K conductance mechanisms and the process of K accumulation in extracellular spaces are present. These solutions apply when the current and K concentration changes are small enough for linear relations to be assumed between current and K concentration. 2. In the case of a single Hodgkin-Huxley type conductance variable with time constant tau chi the presence of an accumulation process which, by itself, would produce a current decay with time constant tau alpha, induces the appearance of two infinite sets of components with decreasing time constants (1/(n+1/tau chi) and 1/(1/tau alpha + n/tau chi), where n is integer), and decreasing magnitudes. 3. The analytical solutions are used to investigate the range of conditions over which semi-exponential (curve-stripping) analysis of current decay tails may give useful information on the kinetics of current change. It is shown that, except at very large decay tail amplitudes, the method may give a good estimate of the true time constants of conductance decay even when the currents are assumed to be strongly dependent on external K concentration. 4. The method introduces error in current amplitude, but over the range in which curve-stripping gives useful results, the direct distortion of activation curves by variations in external K concentration is fairly small. However, as the current decay becomes grossly distorted in its time course by accumulation, so does the activation curve. The effects are very similar both to those obtained using numerical computation without linearization, and to those obtained experimentally. 5. Even with a large dependence of current on external K concentration the linear model does not reproduce i chi, fast as a perturbation of i chi, slow by K accumulation. PMID:7463358
Srinivasan, B.; Shumlak, U.
2011-09-15
The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC).
NASA Astrophysics Data System (ADS)
Boyd, John P.
2011-02-01
Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.
NASA Astrophysics Data System (ADS)
Louarroudi, E.; Pintelon, R.; Lataire, J.
2014-10-01
Time-periodic (TP) phenomena occurring, for instance, in wind turbines, helicopters, anisotropic shaft-bearing systems, and cardiovascular/respiratory systems, are often not addressed when classical frequency response function (FRF) measurements are performed. As the traditional FRF concept is based on the linear time-invariant (LTI) system theory, it is only approximately valid for systems with varying dynamics. Accordingly, the quantification of any deviation from this ideal LTI framework is more than welcome. The “measure of deviation” allows us to define the notion of the best LTI (BLTI) approximation, which yields the best - in mean square sense - LTI description of a linear time-periodic LTP system. By taking into consideration the TP effects, it is shown in this paper that the variability of the BLTI measurement can be reduced significantly compared with that of classical FRF estimators. From a single experiment, the proposed identification methods can handle (non-)linear time-periodic [(N)LTP] systems in open-loop with a quantification of (i) the noise and/or the NL distortions, (ii) the TP distortions and (iii) the transient (leakage) errors. Besides, a geometrical interpretation of the BLTI approximation is provided, leading to a framework called vector FRF analysis. The theory presented is supported by numerical simulations as well as real measurements mimicking the well-known mechanical Mathieu oscillator.
NASA Technical Reports Server (NTRS)
Chaudhuri, Reaz A.; Seide, Paul
1987-01-01
An approximate semianalytical method for determination of interlaminar shear stress distribution through the thickness of an arbitrarily laminated thick plate has been presented. The method is based on the assumptions of transverse inextensibility and layerwise constant shear angle theory (LCST) and utilizes an assumed quadratic displacement potential energy based finite element method (FEM). Centroid of the triangular surface has been proved from a rigorous mathematical point of view (Aubin-Nitsche theory), to be the point of exceptional accuracy for the interlaminar shear stresses. Numerical results indicate close agreement with the available three-dimensional elasticity theory solutions. A comparison between the present theory and that due to an assumed stress hybrid FEM suggest that the (normal) traction-free-edge condition is not satisfied in the latter approach. Furthermore, the present paper is the first to present the results for interlaminar shear stresses in a two-layer thick square plate of balanced unsymmetric angle-ply construction. A comparison with the recently proposed Equilibrium Method (EM) indicates the superiority of the present method, because the latter assures faster convergence as well as simultaneous vanishing of the transverse shear stresses on both of the exposed surfaces of the laminate. Superiority of the present method over the EM, in the case of a symmetric laminate, is limited to faster convergence alone. It has also been demonstrated that the combination of the present method and the reduced (quadratic order) numerical integration scheme yields convergence of the interlaminar shear stresses almost as rapidly as that of the nodal displacements, in the case of a thin plate.
NASA Astrophysics Data System (ADS)
Bykov, Dmytro; Petrenko, Taras; Izsák, Róbert; Kossmann, Simone; Becker, Ute; Valeev, Edward; Neese, Frank
2015-07-01
In this paper, various implementations of the analytic Hartree-Fock and hybrid density functional energy second derivatives are studied. An approximation-free four-centre implementation is presented, and its accuracy is rigorously analysed in terms of self-consistent field (SCF), coupled-perturbed SCF (CP-SCF) convergence and prescreening criteria. The CP-SCF residual norm convergence threshold turns out to be the most important of these. Final choices of convergence thresholds are made such that an accuracy of the vibrational frequencies of better than 5 cm-1 compared to the numerical noise-free results is obtained, even for the highly sensitive low frequencies (<100-200 cm-1). The effects of the choice of numerical grid for density functional exchange-correlation integrations are studied and various weight derivative schemes are analysed in detail. In the second step of the work, approximations are introduced in order to speed up the computation without compromising its accuracy. To this end, the accuracy and efficiency of the resolution of identity approximation for the Coulomb terms and the semi-numerical chain of spheres approximation to the exchange terms are carefully analysed. It is shown that the largest performance improvements are realised if either Hartree-Fock exchange is absent (pure density functionals) and otherwise, if the exchange terms in the CP-SCF step of the calculation are approximated by the COSX method in conjunction with a small integration grid. Default values for all the involved truncation parameters are suggested. For vancomycine (176 atoms and 3593 basis functions), the RIJCOSX Hessian calculation with the B3LYP functional and the def2-TZVP basis set takes ∼3 days using 16 Intel® Xeon® 2.60GHz processors with the COSX algorithm having a net parallelisation scaling of 11.9 which is at least ∼20 times faster than the calculation without the RIJCOSX approximation.
Pernal, Katarzyna; Chatterjee, Koushik; Kowalski, Piotr H.
2014-01-07
Performance of the antisymmetrized product of strongly orthogonal geminal (APSG) ansatz in describing ground states of molecules has been extensively explored in the recent years. Not much is known, however, about possibilities of obtaining excitation energies from methods that would rely on the APSG ansatz. In the paper we investigate the recently proposed extended random phase approximations, ERPA and ERPA2, that employ APSG reduced density matrices. We also propose a time-dependent linear response APSG method (TD-APSG). Its relation to the recently proposed phase including natural orbital theory is elucidated. The methods are applied to Li{sub 2}, BH, H{sub 2}O, and CH{sub 2}O molecules at equilibrium geometries and in the dissociating limits. It is shown that ERPA2 and TD-APSG perform better in describing double excitations than ERPA due to inclusion of the so-called diagonal double elements. Analysis of the potential energy curves of Li{sub 2}, BH, and H{sub 2}O reveals that ERPA2 and TD-APSG describe correctly excitation energies of dissociating molecules if orbitals involved in breaking bonds are involved. For single excitations of molecules at equilibrium geometries the accuracy of the APSG-based methods approaches that of the time-dependent Hartree-Fock method with the increase of the system size. A possibility of improving the accuracy of the TD-APSG method for single excitations by splitting the electron-electron interaction operator into the long- and short-range terms and employing density functionals to treat the latter is presented.
NASA Astrophysics Data System (ADS)
Pernal, Katarzyna; Chatterjee, Koushik; Kowalski, Piotr H.
2014-01-01
Performance of the antisymmetrized product of strongly orthogonal geminal (APSG) ansatz in describing ground states of molecules has been extensively explored in the recent years. Not much is known, however, about possibilities of obtaining excitation energies from methods that would rely on the APSG ansatz. In the paper we investigate the recently proposed extended random phase approximations, ERPA and ERPA2, that employ APSG reduced density matrices. We also propose a time-dependent linear response APSG method (TD-APSG). Its relation to the recently proposed phase including natural orbital theory is elucidated. The methods are applied to Li2, BH, H2O, and CH2O molecules at equilibrium geometries and in the dissociating limits. It is shown that ERPA2 and TD-APSG perform better in describing double excitations than ERPA due to inclusion of the so-called diagonal double elements. Analysis of the potential energy curves of Li2, BH, and H2O reveals that ERPA2 and TD-APSG describe correctly excitation energies of dissociating molecules if orbitals involved in breaking bonds are involved. For single excitations of molecules at equilibrium geometries the accuracy of the APSG-based methods approaches that of the time-dependent Hartree-Fock method with the increase of the system size. A possibility of improving the accuracy of the TD-APSG method for single excitations by splitting the electron-electron interaction operator into the long- and short-range terms and employing density functionals to treat the latter is presented.
Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J
2015-07-15
Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. PMID:25828436
NASA Astrophysics Data System (ADS)
Wan, X.; Tse, P. W.; Xu, G. H.; Tao, T. F.; Zhang, Q.
2016-04-01
Most previous studies on nonlinear Lamb waves are conducted using mode pairs that satisfying strict phase velocity matching and non-zero power flux criteria. However, there are some limitations in existence. First, strict phase velocity matching is not existed in the whole frequency bandwidth; Second, excited center frequency is not always exactly equal to the true phase-velocity-matching frequency; Third, mode pairs are isolated and quite limited in number; Fourth, exciting a single desired primary mode is extremely difficult in practice and the received signal is quite difficult to process and interpret. And few attention has been paid to solving these shortcomings. In this paper, nonlinear S0 mode Lamb waves at low-frequency range satisfying approximate phase velocity matching is proposed for the purpose of overcoming these limitations. In analytical studies, the secondary amplitudes with the propagation distance considering the fundamental frequency, the maximum cumulative propagation distance (MCPD) with the fundamental frequency and the maximum linear cumulative propagation distance (MLCPD) using linear regression analysis are investigated. Based on analytical results, approximate phase velocity matching is quantitatively characterized as the relative phase velocity deviation less than a threshold value of 1%. Numerical studies are also conducted using tone burst as the excitation signal. The influences of center frequency and frequency bandwidth on the secondary amplitudes and MCPD are investigated. S1-S2 mode with the fundamental frequency at 1.8 MHz, the primary S0 mode at the center frequencies of 100 and 200 kHz are used respectively to calculate the ratios of nonlinear parameter of Al 6061-T6 to Al 7075-T651. The close agreement of the computed ratios to the actual value verifies the effectiveness of nonlinear S0 mode Lamb waves satisfying approximate phase velocity matching for characterizing the material nonlinearity. Moreover, the ratios derived from
Badano, Aldo; Freed, Melanie; Fang Yuan
2011-04-15
Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 {mu}m for indirect CsI:Tl and 200 {mu}m for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the
Forgeron, Michelle A.; Wasylishen, Roderick E.
2006-06-21
Solid-state 95Mo NMR spectroscopy is shown to be an efficient and effective tool for analyzing the diamagnetic octacyanomolybdate(IV) anions, Mo(CN)8 4-, of approximate dodecahedral, D2d, and square antiprismatic, D4d, symmetry. The sensitivity of the Mo magnetic shielding (?) and electric field gradient (EFG) tensors to small changes in the local structure of these anions allows the approximate D2d and D4d Mo(CN)8 4- anions to be readily distinguished. The use of high applied magnetic fields, 11.75, 17.63 and 21.1 T, amplifies the overall sensitivity of the NMR experiment and enables more accurate characterization of the Mo ? and EFG tensors. Although the magnitudes of the Mo ? and EFG interactions are comparable for the D2d and D4d Mo(CN)8 4- anions, the relative values and orientations of the principal components of the Mo ? and EFG tensors give rise to 95Mo NMR line shapes that are significantly different at the fields utilized here. Quantum chemical calculations of the Mo ? and EFG tensors, using zeroth-order regular approximation density functional theory (ZORA DFT) and restricted Hartree-Fock (RHF) methods, have also been carried out and are in good agreement with experiment. The most significant and surprising result from the DFT and RHF calculations is a significant EFG at Mo for an isolated Mo(CN)8 4- anion possessing an ideal square antiprismatic structure; this is contrary to the point-charge approximation, PCA, which predicts a zero EFG at Mo for this structure.
Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli
2015-01-01
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073
Lanman, Richard B; Mortimer, Stefanie A; Zill, Oliver A; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A; Divers, Stephen G; Hoon, Dave S B; Kopetz, E Scott; Lee, Jeeyun; Nikolinakos, Petros G; Baca, Arthur M; Kermani, Bahram G; Eltoukhy, Helmy; Talasaz, AmirAli
2015-01-01
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital Sequencing™ is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient's cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073
ERIC Educational Resources Information Center
Rom, Mark Carl
2011-01-01
Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…
Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas
2014-01-01
Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise. PMID:25278872
NASA Astrophysics Data System (ADS)
Okita, Taishi; Takagi, Toshiyuki
2010-01-01
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.
An adiabatic approximation for grain alignment theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-10-01
The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
An Adiabatic Approximation for Grain Alignment Theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-12-01
The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
NASA Technical Reports Server (NTRS)
Schwenke, David W.
1993-01-01
We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.
NASA Astrophysics Data System (ADS)
Meath, William J.; Jagatap, B. N.
2011-10-01
One of the purposes of this paper is to develop an analytical many-level generalized rotating wave approximation (GRWA), including the effects of permanent dipoles, for the excitation of many-level molecules through the simultaneous absorption of two photons. Included are expressions for the two-photon laser-molecule coupling C, and its two components Cd and Cv corresponding to the direct permanent dipole and the virtual state excitation mechanisms, respectively, and related observables such as the time-dependent populations of the initial and final states of the excitation process and resonance profiles. This GRWA treatment also includes an energy shift parameter ɛ, which causes shifts in the position of the resonance energy as the laser intensity increases. The effects of permanent dipoles are very different in Cv and ɛ versus Cd. These effects have been discussed previously for Cd using analytic two-level RWA approaches. The analytical results for Cv and ɛ obtained here are new as is their use in discussing the influence of permanent dipoles in the parts of the two-photon excitation process involving virtual states. In the absence of permanent dipoles Cd is zero whereas Cv and ɛ are not; they equal the corresponding perturbation theory results. The GRWA and perturbative results are related by Bessel function damping functions which, for dipolar molecules, damp out the divergence of the perturbative results as the laser intensity increases. Illustrative examples are given for a two-photon excitation involving a model chromophore which has a significant virtual state contribution through both the laser-molecule coupling and the energy shift parameter.
Fast and accurate propagation of coherent light
Lewis, R. D.; Beylkin, G.; Monzón, L.
2013-01-01
We describe a fast algorithm to propagate, for any user-specified accuracy, a time-harmonic electromagnetic field between two parallel planes separated by a linear, isotropic and homogeneous medium. The analytical formulation of this problem (ca 1897) requires the evaluation of the so-called Rayleigh–Sommerfeld integral. If the distance between the planes is small, this integral can be accurately evaluated in the Fourier domain; if the distance is very large, it can be accurately approximated by asymptotic methods. In the large intermediate region of practical interest, where the oscillatory Rayleigh–Sommerfeld kernel must be applied directly, current numerical methods can be highly inaccurate without indicating this fact to the user. In our approach, for any user-specified accuracy ϵ>0, we approximate the kernel by a short sum of Gaussians with complex-valued exponents, and then efficiently apply the result to the input data using the unequally spaced fast Fourier transform. The resulting algorithm has computational complexity , where we evaluate the solution on an N×N grid of output points given an M×M grid of input samples. Our algorithm maintains its accuracy throughout the computational domain. PMID:24204184
An analytical method for Mathieu oscillator based on method of variation of parameter
NASA Astrophysics Data System (ADS)
Li, Xianghong; Hou, Jingyu; Chen, Jufeng
2016-08-01
A simple, but very accurate analytical method for forced Mathieu oscillator is proposed, the idea of which is based on the method of variation of parameter. Assuming that the time-varying parameter in Mathieu oscillator is constant, one could easily obtain its accurately analytical solution. Then the approximately analytical solution for Mathieu oscillator could be established after substituting periodical time-varying parameter for the constant one in the obtained accurate analytical solution. In order to certify the correctness and precision of the proposed analytical method, the first-order and ninth-order approximation solutions by harmonic balance method (HBM) are also presented. The comparisons between the results by the proposed method with those by the numerical simulation and HBM verify that the results by the proposed analytical method agree very well with those by the numerical simulation. Moreover, the precision of the proposed new analytical method is not only higher than the approximation solution by first-order HBM, but also better than the approximation solution by the ninth-order HBM in large ranges of system parameters.
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid; Bhrawy, Ali; Abdelkawy, Mohamed; Hafez, Ramy
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion. PMID:22181475
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024
Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols
NASA Astrophysics Data System (ADS)
Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.
2009-04-01
We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
Approximation of Failure Probability Using Conditional Sampling
NASA Technical Reports Server (NTRS)
Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.
2008-01-01
In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.
Analytic dipole moment geometric derivatives from nuclear electric shielding in molecules
NASA Astrophysics Data System (ADS)
Lazzeretti, P.; Zanasi, R.
1986-04-01
We present ab initio calculations of dipole moment geometric derivatives for some first-row atom hydrides. Dipole moment derivatives, in terms of atomic polar tensors (APT), are equivalent to nuclear electric shieldings and were determined analytically, within the random phase approximation (RPA). Polarized basis sets were used, which give accurate results with small computer effort.
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Heat pipe transient response approximation
NASA Astrophysics Data System (ADS)
Reid, Robert S.
2002-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .
Alguire, Ethan C; Fatehi, Shervin; Shao, Yihan; Subotnik, Joseph E
2014-12-26
In a previous paper [ Fatehi , S. ; et al. J. Chem. Phys. 2013 , 139 , 124112 ], we demonstrated a practical method by which analytic derivative couplings of Boys-localized CIS states can be obtained. In this paper, we now apply that same method to the analysis of triplet-triplet energy transfer systems studied by Closs and collaborators [ Closs , G. L. ; et al. J. Am. Chem. Soc. 1988 , 110 , 2652 ]. For the systems examined, we are able to conclude that (i) the derivative coupling in the BoysOV basis is negligible, and (ii) the diabatic coupling will likely change little over the configuration space explored at room temperature. Furthermore, we propose and evaluate an approximation that allows for the inexpensive calculation of accurate diabatic energy gradients, called the "strictly diabatic" approximation. This work highlights the effectiveness of diabatic state analytic gradient theory in realistic systems and demonstrates that localized diabatic states can serve as an acceptable approximation to strictly diabatic states. PMID:24447246
Abrupt PN junctions: Analytical solutions under equilibrium and non-equilibrium
NASA Astrophysics Data System (ADS)
Khorasani, Sina
2016-08-01
We present an explicit solution of carrier and field distributions in abrupt PN junctions under equilibrium. An accurate logarithmic numerical method is implemented and results are compared to the analytical solutions. Analysis of results shows reasonable agreement with numerical solution as well as the depletion layer approximation. We discuss extensions to the asymmetric junctions. Approximate relations for differential capacitance C-V and current-voltage I-V characteristics are also found under non-zero external bias.
Liu, Fang; Lin, Lin; Vigil-Fowler, Derek; Lischner, Johannes; Kemper, Alexander F.; Sharifzadeh, Sahar; Jornada, Felipe H. da; Deslippe, Jack; Yang, Chao; and others
2015-04-01
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.
Approximate Bayesian multibody tracking.
Lanz, Oswald
2006-09-01
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Approximate probability distributions of the master equation
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
Approximation by hinge functions
Faber, V.
1997-05-01
Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
Approximation for nonresonant beam target fusion reactivities
Mikkelsen, D.R.
1988-11-01
The beam target fusion reactivity for a monoenergetic beam in a Maxwellian target is approximately evaluated for nonresonant reactions. The approximation is accurate for the DD and TT fusion reactions to better than 4% for all beam energies up to 300 keV and all ion temperatures up to 2/3 of the beam energy. 12 refs., 1 fig., 1 tab.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.
2011-01-01
Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.
An explicit series approximation to the optimal exercise boundary of American put options
NASA Astrophysics Data System (ADS)
Cheng, Jun; Zhu, Song-Ping; Liao, Shi-Jun
2010-05-01
This paper derives an explicit series approximation solution for the optimal exercise boundary of an American put option by means of a new analytical method for strongly nonlinear problems, namely the homotopy analysis method (HAM). The Black-Sholes equation subject to the moving boundary conditions for an American put option is transferred into an infinite number of linear sub-problems in a fixed domain through the deformation equations. Different from perturbation/asymptotic approximations, the HAM approximation can be applicable for options with much longer expiry. Accuracy tests are made in comparison with numerical solutions. It is found that the current approximation is as accurate as many numerical methods. Considering its explicit form of expression, it can bring great convenience to the market practitioners.
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Generalized gradient approximation to the angle- and system-averaged exchange hole
NASA Astrophysics Data System (ADS)
Ernzerhof, Matthias; Perdew, John P.
1998-09-01
A simple analytic model is proposed for the angle- and system-averaged exchange hole of a many-electron system. The model hole depends on the local density and density gradient. It recovers a nonoscillatory local-spin density (LSD) approximation to the exchange hole for a vanishing density gradient. The model hole reproduces the exchange energy density of the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) for exchange, and facilitates a detailed understanding of the PBE GGA. The hole model is applied to atoms and molecules, and a comparison is made to exact and LSD angle- and system-averaged exchange holes. We find that the GGA hole model significantly improves upon the LSD model. Furthermore, the GGA hole model accurately describes the change in the exchange hole upon the formation of single bonds, but is less accurate for the formation of multiple bonds, where it misses the appearance of a long-range tail.
An approximate model for pulsar navigation simulation
NASA Astrophysics Data System (ADS)
Jovanovic, Ilija; Enright, John
2016-02-01
This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
Analytic barrage attack model. Final report, January 1986-January 1989
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
1989-01-01
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for the analytic model and for a numerical model used to check the analytic results.
Accurate verification of the conserved-vector-current and standard-model predictions
Sirlin, A.; Zucchini, R.
1986-10-20
An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad
2015-01-01
Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.
Approximate Solutions Of Equations Of Steady Diffusion
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1992-01-01
Rigorous analysis yields reliable criteria for "best-fit" functions. Improved "curve-fitting" method yields approximate solutions to differential equations of steady-state diffusion. Method applies to problems in which rates of diffusion depend linearly or nonlinearly on concentrations of diffusants, approximate solutions analytic or numerical, and boundary conditions of Dirichlet type, of Neumann type, or mixture of both types. Applied to equations for diffusion of charge carriers in semiconductors in which mobilities and lifetimes of charge carriers depend on concentrations.
NASA Astrophysics Data System (ADS)
Itano, Wayne M.; Ramsey, Norman F.
1993-07-01
The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.
NASA Technical Reports Server (NTRS)
Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.
1981-01-01
Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.
Accurate ab Initio Spin Densities
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Technical Reports Server (NTRS)
Connor, J. N. L.; Curtis, P. R.; Farrelly, D.
1984-01-01
Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.
On the use and error of approximation in the Domenico (1987) solution.
West, Michael R; Kueper, Bernard H; Ungs, Michael J
2007-01-01
A mathematical solution for solute transport in a three-dimensional porous medium with a patch source under steady-state, uniform ground water flow conditions was developed by Domenico (1987). The solution derivation strategy used an approximate approach to solve the boundary value problem, resulting in a nonexact solution. Variations of the Domenico (1987) solution are incorporated into the software programs BIOSCREEN and BIOCHLOR, which are frequently used to evaluate subsurface contaminant transport problems. This article mathematically elucidates the error in the approximation and presents simulations that compare different versions of the Domenico (1987) solution to an exact analytical solution to demonstrate the potential error inherent in the approximate expressions. Results suggest that the accuracy of the approximate solutions is highly variable and dependent on the selection of input parameters. For solute transport in a medium-grained sand aquifer, the Domenico (1987) solution underpredicts solute concentrations along the centerline of the plume by as much as 80% depending on the case of interest. Increasing the dispersivity, time, or dimensionality of the system leads to increased error. Because more accurate exact analytical solutions exist, we suggest that the Domenico (1987) solution, and its predecessor and successor approximate solutions, need not be employed as the basis for screening tools at contaminated sites. PMID:17335477
Computer Experiments for Function Approximations
Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C
2007-10-15
This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.
NASA Astrophysics Data System (ADS)
Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.
2013-06-01
The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.
Fall with linear drag and Wien's displacement law: approximate solution and Lambert function
NASA Astrophysics Data System (ADS)
Vial, Alexandre
2012-07-01
We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for undergraduate students, as they show that some transcendental equations found in physics may be solved without purely numerical methods. Moreover, as will be seen in the case of Wien's displacement law, solutions based on series expansion can be very accurate even with few terms.
Calculator Function Approximation.
ERIC Educational Resources Information Center
Schelin, Charles W.
1983-01-01
The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)
Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations
Weinstein, Marvin; /SLAC
2009-02-12
It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
Analytical scatter kernels for portal imaging at 6 MV.
Spies, L; Bortfeld, T
2001-04-01
X-ray photon scatter kernels for 6 MV electronic portal imaging are investigated using an analytical and a semi-analytical model. The models are tested on homogeneous phantoms for a range of uniform circular fields and scatterer-to-detector air gaps relevant for clinical use. It is found that a fully analytical model based on an exact treatment of photons undergoing a single Compton scatter event and an approximate treatment of second and higher order scatter events, assuming a multiple-scatter source at the center of the scatter volume, is accurate within 1% (i.e., the residual scatter signal is less than 1% of the primary signal) for field sizes up to 100 cm2 and air gaps over 30 cm, but shows significant discrepancies for larger field sizes. Monte Carlo results are presented showing that the effective multiple-scatter source is located toward the exit surface of the scatterer, rather than at its center. A second model is therefore investigated where second and higher-order scattering is instead modeled by fitting an analytical function describing a nonstationary isotropic point-scatter source to Monte Carlo generated data. This second model is shown to be accurate to within 1% for air gaps down to 20 cm, for field sizes up to 900 cm2 and phantom thicknesses up to 50 cm. PMID:11339752
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.