Sample records for accurate detection results

  1. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  2. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  3. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    PubMed Central

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  4. Accurate LC Peak Boundary Detection for 16 O/ 18 O Labeled LC-MS Data

    PubMed Central

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang (SJ); Zhang, Jianqiu (Michelle)

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements. PMID:24115998

  5. Accurate registration of temporal CT images for pulmonary nodules detection

    NASA Astrophysics Data System (ADS)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  6. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    PubMed

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  7. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    PubMed

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Rapid glucosinolate detection and identification using accurate mass MS-MS

    USDA-ARS?s Scientific Manuscript database

    Currently, there is a demand for accurate evaluation of brassica plat species for their glucosinolate content. An optimized method has been developed for detecting and identifying glucosinolates in plant extracts using MS-MS fragmentation with ion trap collision induced dissociation (CID) and higher...

  9. Accurate detection of blood vessels improves the detection of exudates in color fundus images.

    PubMed

    Youssef, Doaa; Solouma, Nahed H

    2012-12-01

    Exudates are one of the earliest and most prevalent symptoms of diseases leading to blindness such as diabetic retinopathy and macular degeneration. Certain areas of the retina with such conditions are to be photocoagulated by laser to stop the disease progress and prevent blindness. Outlining these areas is dependent on outlining the lesions and the anatomic structures of the retina. In this paper, we provide a new method for the detection of blood vessels that improves the detection of exudates in fundus photographs. The method starts with an edge detection algorithm which results in a over segmented image. Then the new feature-based algorithm can be used to accurately detect the blood vessels. This algorithm considers the characteristics of a retinal blood vessel such as its width range, intensities and orientations for the purpose of selective segmentation. Because of its bulb shape and its color similarity with exudates, the optic disc can be detected using the common Hough transform technique. The extracted blood vessel tree and optic disc could be subtracted from the over segmented image to get an initial estimate of exudates. The final estimation of exudates can then be obtained by morphological reconstruction based on the appearance of exudates. This method is shown to be promising since it increases the sensitivity and specificity of exudates detection to 80% and 100% respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Population variability complicates the accurate detection of climate change responses.

    PubMed

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. © 2016 John Wiley & Sons Ltd.

  11. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  12. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  13. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service.

  14. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study

    PubMed Central

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-01-01

    AIM: To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. METHODS: We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ2 test. RESULTS: A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the

  15. Catalyzing Novel Approaches to Rapid, Accurate, and Affordable Early Cancer Detection.

    PubMed

    Dhar, Asif; Meagher, Beth; Ryscavage, Andrew

    Inspired by the Cancer Moonshot, a dedicated team of professionals worked with leaders across the cancer ecosystem to look for an opportunity to radically reduce cancer mortality globally by focusing on early cancer detection. After an initial survey of cancer innovation, progress, and pitfalls, the team believed that if new rapid, affordable, and accurate early detection solutions were appropriately brought to market, it would be possible to intervene earlier when cancer is most treatable.An extensive process began, informed by dozens of experts in the cancer ecosystem. The Cancer XPRIZE team designed a prize competition where "the winning team will develop a means to rapidly, accurately, and affordably screen for early cancers where intervention can reduce human suffering."The following outlines the Cancer XPRIZE's experience using a powerful approach-the radical prize design-to catch more cancers in time to make a difference saving lives, dollars, and suffering.

  16. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tissue resonance interaction accurately detects colon lesions: A double-blind pilot study.

    PubMed

    Dore, Maria P; Tufano, Marcello O; Pes, Giovanni M; Cuccu, Marianna; Farina, Valentina; Manca, Alessandra; Graham, David Y

    2015-07-07

    To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ(2) test. A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the negative predictive

  18. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  19. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  20. Rapid and accurate peripheral nerve detection using multipoint Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yasuaki; Minamikawa, Takeo; Kawamura, Akinori; Matsumura, Junichi; Tsuda, Yuichiro; Ukon, Juichiro; Harada, Yoshinori; Tanaka, Hideo; Takamatsu, Tetsuro

    2017-02-01

    Nerve-sparing surgery is essential to avoid functional deficits of the limbs and organs. Raman scattering, a label-free, minimally invasive, and accurate modality, is one of the best candidate technologies to detect nerves for nerve-sparing surgery. However, Raman scattering imaging is too time-consuming to be employed in surgery. Here we present a rapid and accurate nerve visualization method using a multipoint Raman imaging technique that has enabled simultaneous spectra measurement from different locations (n=32) of a sample. Five sec is sufficient for measuring n=32 spectra with good S/N from a given tissue. Principal component regression discriminant analysis discriminated spectra obtained from peripheral nerves (n=863 from n=161 myelinated nerves) and connective tissue (n=828 from n=121 tendons) with sensitivity and specificity of 88.3% and 94.8%, respectively. To compensate the spatial information of a multipoint-Raman-derived tissue discrimination image that is too sparse to visualize nerve arrangement, we used morphological information obtained from a bright-field image. When merged with the sparse tissue discrimination image, a morphological image of a sample shows what portion of Raman measurement points in arbitrary structure is determined as nerve. Setting a nerve detection criterion on the portion of "nerve" points in the structure as 40% or more, myelinated nerves (n=161) and tendons (n=121) were discriminated with sensitivity and specificity of 97.5%. The presented technique utilizing a sparse multipoint Raman image and a bright-field image has enabled rapid, safe, and accurate detection of peripheral nerves.

  1. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    PubMed

    Kawai, Nobuyuki; He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  2. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions

    PubMed Central

    He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions. PMID:27783686

  3. Accurate derivation of heart rate variability signal for detection of sleep disordered breathing in children.

    PubMed

    Chatlapalli, S; Nazeran, H; Melarkod, V; Krishnam, R; Estrada, E; Pamula, Y; Cabrera, S

    2004-01-01

    The electrocardiogram (ECG) signal is used extensively as a low cost diagnostic tool to provide information concerning the heart's state of health. Accurate determination of the QRS complex, in particular, reliable detection of the R wave peak, is essential in computer based ECG analysis. ECG data from Physionet's Sleep-Apnea database were used to develop, test, and validate a robust heart rate variability (HRV) signal derivation algorithm. The HRV signal was derived from pre-processed ECG signals by developing an enhanced Hilbert transform (EHT) algorithm with built-in missing beat detection capability for reliable QRS detection. The performance of the EHT algorithm was then compared against that of a popular Hilbert transform-based (HT) QRS detection algorithm. Autoregressive (AR) modeling of the HRV power spectrum for both EHT- and HT-derived HRV signals was achieved and different parameters from their power spectra as well as approximate entropy were derived for comparison. Poincare plots were then used as a visualization tool to highlight the detection of the missing beats in the EHT method After validation of the EHT algorithm on ECG data from the Physionet, the algorithm was further tested and validated on a dataset obtained from children undergoing polysomnography for detection of sleep disordered breathing (SDB). Sensitive measures of accurate HRV signals were then derived to be used in detecting and diagnosing sleep disordered breathing in children. All signal processing algorithms were implemented in MATLAB. We present a description of the EHT algorithm and analyze pilot data for eight children undergoing nocturnal polysomnography. The pilot data demonstrated that the EHT method provides an accurate way of deriving the HRV signal and plays an important role in extraction of reliable measures to distinguish between periods of normal and sleep disordered breathing (SDB) in children.

  4. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus.

    PubMed

    Hirschmann, J; Schoffelen, J M; Schnitzler, A; van Gerven, M A J

    2017-10-01

    To investigate the possibility of tremor detection based on deep brain activity. We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    PubMed

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  6. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR

    PubMed Central

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping

    2017-01-01

    ABSTRACT Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers (nuc and mecA) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli, MSSA, and other mecA-positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. PMID:28724560

  7. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    NASA Astrophysics Data System (ADS)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  8. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  9. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  11. Maximized Inter-Class Weighted Mean for Fast and Accurate Mitosis Cells Detection in Breast Cancer Histopathology Images.

    PubMed

    Nateghi, Ramin; Danyali, Habibollah; Helfroush, Mohammad Sadegh

    2017-08-14

    Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.

  12. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.

    PubMed

    Dao, Duy; Salehizadeh, S M A; Noh, Yeonsik; Chong, Jo Woon; Cho, Chae Ho; McManus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H

    2017-09-01

    Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach

  13. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  14. Lung ultrasound accurately detects pneumothorax in a preterm newborn lamb model.

    PubMed

    Blank, Douglas A; Hooper, Stuart B; Binder-Heschl, Corinna; Kluckow, Martin; Gill, Andrew W; LaRosa, Domenic A; Inocencio, Ishmael M; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie A; Davis, Peter G; Polglase, Graeme R

    2016-06-01

    Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  15. Accurate Fall Detection in a Top View Privacy Preserving Configuration.

    PubMed

    Ricciuti, Manola; Spinsante, Susanna; Gambi, Ennio

    2018-05-29

    Fall detection is one of the most investigated themes in the research on assistive solutions for aged people. In particular, a false-alarm-free discrimination between falls and non-falls is indispensable, especially to assist elderly people living alone. Current technological solutions designed to monitor several types of activities in indoor environments can guarantee absolute privacy to the people that decide to rely on them. Devices integrating RGB and depth cameras, such as the Microsoft Kinect, can ensure privacy and anonymity, since the depth information is considered to extract only meaningful information from video streams. In this paper, we propose an accurate fall detection method investigating the depth frames of the human body using a single device in a top-view configuration, with the subjects located under the device inside a room. Features extracted from depth frames train a classifier based on a binary support vector machine learning algorithm. The dataset includes 32 falls and 8 activities considered for comparison, for a total of 800 sequences performed by 20 adults. The system showed an accuracy of 98.6% and only one false positive.

  16. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  17. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  18. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species

    PubMed Central

    Renner, Kurra; Cole, Ellen; Seabloom, Eric W.; Borer, Elizabeth T.; Malmstrom, Carolyn M.

    2016-01-01

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. PMID:26773088

  19. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species.

    PubMed

    Lacroix, Christelle; Renner, Kurra; Cole, Ellen; Seabloom, Eric W; Borer, Elizabeth T; Malmstrom, Carolyn M

    2016-01-15

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Accurate Natural Trail Detection Using a Combination of a Deep Neural Network and Dynamic Programming.

    PubMed

    Adhikari, Shyam Prasad; Yang, Changju; Slot, Krzysztof; Kim, Hyongsuk

    2018-01-10

    This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.

  1. Detecting Cancer Quickly and Accurately

    NASA Astrophysics Data System (ADS)

    Gourley, Paul; McDonald, Anthony; Hendricks, Judy; Copeland, Guild; Hunter, John; Akhil, Ohmar; Capps, Heather; Curry, Marc; Skirboll, Steve

    2000-03-01

    We present a new technique for high throughput screening of tumor cells in a sensitive nanodevice that has the potential to quickly identify a cell population that has begun the rapid protein synthesis and mitosis characteristic of cancer cell proliferation. Currently, pathologists rely on microscopic examination of cell morphology using century-old staining methods that are labor-intensive, time-consuming and frequently in error. New micro-analytical methods for automated, real time screening without chemical modification are critically needed to advance pathology and improve diagnoses. We have teamed scientists with physicians to create a microlaser biochip (based upon our R&D award winning bio-laser concept)1 which evaluates tumor cells by quantifying their growth kinetics. The key new discovery was demonstrating that the lasing spectra are sensitive to the biomolecular mass in the cell, which changes the speed of light in the laser microcavity. Initial results with normal and cancerous human brain cells show that only a few hundred cells -- the equivalent of a billionth of a liter -- are required to detect abnormal growth. The ability to detect cancer in such a minute tissue sample is crucial for resecting a tumor margin or grading highly localized tumor malignancy. 1. P. L. Gourley, NanoLasers, Scientific American, March 1998, pp. 56-61. This work supported under DOE contract DE-AC04-94AL85000 and the Office of Basic Energy Sciences.

  2. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor.

    PubMed

    Ouyang, Lei; Yao, Ling; Zhou, Taohong; Zhu, Lihua

    2018-10-16

    Malachite Green (MG) is a banned pesticide for aquaculture products. As a required inspection item, its fast and accurate determination before the products' accessing market is very important. Surface enhanced Raman scattering (SERS) is a promising tool for MG sensing, but it requires the overcoming of several problems such as fairly poor sensitivity and reproducibility, especially laser induced chemical conversion and photo-bleaching during SERS observation. By using a graphene wrapped Ag array based flexible membrane sensor, a modified SERS strategy was proposed for the sensitive and accurate detection of MG. The graphene layer functioned as an inert protector for impeding chemical transferring of the bioproduct Leucomalachite Green (LMG) to MG during the SERS detection, and as a heat transmitter for preventing laser induced photo-bleaching, which enables the separate detection of MG and LMG in fish extracts. The combination of the Ag array and the graphene cover also produced plentiful densely and uniformly distributed hot spots, leading to analytical enhancement factor up to 3.9 × 10 8 and excellent reproducibility (relative standard deviation low to 5.8% for 70 runs). The proposed method was easily used for MG detection with limit of detection (LOD) as low as 2.7 × 10 -11  mol L -1 . The flexibility of the sensor enable it have a merit for in-field fast detection of MG residues on the scale of a living fish through a surface extraction and paste transferring manner. The developed strategy was successfully applied in the analysis of real samples, showing good prospects for both the fast inspection and quantitative detection of MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Accurate method for luminous transmittance and signal detection quotients measurements in sunglasses lenses

    NASA Astrophysics Data System (ADS)

    Loureiro, A. D.; Gomes, L. M.; Ventura, L.

    2018-02-01

    The international standard ISO 12312-1 proposes transmittance tests that quantify how dark sunglasses lenses are and whether or not they are suitable for driving. To perform these tests a spectrometer is required. In this study, we present and analyze theoretically an accurate alternative method for performing these measurements using simple components. Using three LEDs and a four-channel sensor we generated weighting functions similar to the standard ones for luminous and traffic lights transmittances. From 89 sunglasses lens spectroscopy data, we calculated luminous transmittance and signal detection quotients using our obtained weighting functions and the standard ones. Mean-difference Tukey plots were used to compare the results. All tested sunglasses lenses were classified in the right category and correctly as suitable or not for driving. The greatest absolute errors for luminous transmittance and red, yellow, green and blue signal detection quotients were 0.15%, 0.17, 0.06, 0.04 and 0.18, respectively. This method will be used in a device capable to perform transmittance tests (visible, traffic lights and ultraviolet (UV)) according to the standard. It is important to measure rightly luminous transmittance and relative visual attenuation quotients to report correctly whether or not sunglasses are suitable for driving. Moreover, standard UV requirements depend on luminous transmittance.

  4. Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.

    PubMed

    Nayor, Jennifer; Borges, Lawrence F; Goryachev, Sergey; Gainer, Vivian S; Saltzman, John R

    2018-07-01

    ADR is a widely used colonoscopy quality indicator. Calculation of ADR is labor-intensive and cumbersome using current electronic medical databases. Natural language processing (NLP) is a method used to extract meaning from unstructured or free text data. (1) To develop and validate an accurate automated process for calculation of adenoma detection rate (ADR) and serrated polyp detection rate (SDR) on data stored in widely used electronic health record systems, specifically Epic electronic health record system, Provation ® endoscopy reporting system, and Sunquest PowerPath pathology reporting system. Screening colonoscopies performed between June 2010 and August 2015 were identified using the Provation ® reporting tool. An NLP pipeline was developed to identify adenomas and sessile serrated polyps (SSPs) on pathology reports corresponding to these colonoscopy reports. The pipeline was validated using a manual search. Precision, recall, and effectiveness of the natural language processing pipeline were calculated. ADR and SDR were then calculated. We identified 8032 screening colonoscopies that were linked to 3821 pathology reports (47.6%). The NLP pipeline had an accuracy of 100% for adenomas and 100% for SSPs. Mean total ADR was 29.3% (range 14.7-53.3%); mean male ADR was 35.7% (range 19.7-62.9%); and mean female ADR was 24.9% (range 9.1-51.0%). Mean total SDR was 4.0% (0-9.6%). We developed and validated an NLP pipeline that accurately and automatically calculates ADRs and SDRs using data stored in Epic, Provation ® and Sunquest PowerPath. This NLP pipeline can be used to evaluate colonoscopy quality parameters at both individual and practice levels.

  5. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    NASA Astrophysics Data System (ADS)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  6. Retinal nerve fibre thickness measured with optical coherence tomography accurately detects confirmed glaucomatous damage

    PubMed Central

    Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R

    2007-01-01

    Aim To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Methods Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24‐2 SAP tests. For the mfVEP and 24‐2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Results Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. Conclusions The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice. PMID:17301118

  7. Simplified intraoperative sentinel-node detection performed by the urologist accurately determines lymph-node stage in prostate cancer.

    PubMed

    Kjölhede, Henrik; Bratt, Ola; Gudjonsson, Sigurdur; Sundqvist, Pernilla; Liedberg, Fredrik

    2015-04-01

    The reference standard for lymph-node staging in prostate cancer is currently an extended pelvic lymph-node dissection (ePLND), which detects most, but not all, regional lymph-node metastases. As an alternative to ePLND, sentinel-node dissection with preoperative isotope injection and imaging has been reported. The objective was to determine whether intraoperative sentinel-node detection with a simplified protocol can accurately determine lymph-node stage in prostate cancer patients. Patients with biopsy-verified high-risk prostate cancer with tumour stage T2-3 were included in the study. All patients underwent both ePLND and sentinel-node detection. (99m)Tc-marked nanocolloid was injected peritumourally by the operating urologist after induction of anaesthesia just before surgery. Sentinel nodes were detected both in vivo and ex vivo intraoperatively using a gamma probe. Sentinel nodes and metastases and their locations were recorded. Sensitivity and specificity were calculated. At least one sentinel node was detected in 72 (87%) of the 83 patients. In 13 (18%) of these 72 patients sentinel nodes were detected outside the ePLND template. In six of these 13 patients, the Sentinel nodes from outside the template contained metastases, which proved to be the only metastases in two. For 12 patients the only metastatic deposit found was a micrometastasis (≤2 mm) in a sentinel node. In the 72 patients with detectable sentinel nodes, pathological analysis of the sentinel node correctly categorized 71 and ePLND 70 patients. This protocol yielded results comparable to the commonly used technique of sentinel-node detection, but with more cases of non-detection.

  8. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  9. CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability.

    PubMed

    Montagne, Louise; Derhourhi, Mehdi; Piton, Amélie; Toussaint, Bénédicte; Durand, Emmanuelle; Vaillant, Emmanuel; Thuillier, Dorothée; Gaget, Stefan; De Graeve, Franck; Rabearivelo, Iandry; Lansiaux, Amélie; Lenne, Bruno; Sukno, Sylvie; Desailloud, Rachel; Cnop, Miriam; Nicolescu, Ramona; Cohen, Lior; Zagury, Jean-François; Amouyal, Mélanie; Weill, Jacques; Muller, Jean; Sand, Olivier; Delobel, Bruno; Froguel, Philippe; Bonnefond, Amélie

    2018-05-16

    The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (n total  = 145). CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    PubMed

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores

  11. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging

    PubMed Central

    Godoy, Sebastián E.; Hayat, Majeed M.; Ramirez, David A.; Myers, Stephen A.; Padilla, R. Steven; Krishna, Sanjay

    2017-01-01

    Skin cancer is the most common cancer in the United States with over 3.5M annual cases. Presently, visual inspection by a dermatologist has good sensitivity (> 90%) but poor specificity (< 10%), especially for melanoma, which leads to a high number of unnecessary biopsies. Here we use dynamic thermal imaging (DTI) to demonstrate a rapid, accurate and non-invasive imaging system for detection of skin cancer. In DTI, the lesion is cooled down and the thermal recovery is recorded using infrared imaging. The thermal recovery curves of the suspected lesions are then utilized in the context of continuous-time detection theory in order to define an optimal statistical decision rule such that the sensitivity of the algorithm is guaranteed to be at a maximum for every prescribed false-alarm probability. The proposed methodology was tested in a pilot study including 140 human subjects demonstrating a sensitivity in excess of 99% for a prescribed specificity in excess of 99% for detection of skin cancer. To the best of our knowledge, this is the highest reported accuracy for any non-invasive skin cancer diagnosis method. PMID:28736673

  12. COPS: A Sensitive and Accurate Tool for Detecting Somatic Copy Number Alterations Using Short-Read Sequence Data from Paired Samples

    PubMed Central

    Krishnan, Neeraja M.; Gaur, Prakhar; Chaudhary, Rakshit; Rao, Arjun A.; Panda, Binay

    2012-01-01

    Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username “cops” and password “cops”. PMID:23110103

  13. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  14. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    PubMed

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  16. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  17. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes

    PubMed Central

    French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-01-01

    Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently

  18. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque.

    PubMed

    Imamura, K; Takayama, S; Saito, A; Inoue, E; Nakayama, Y; Ogata, Y; Shirakawa, S; Nagano, T; Gomi, K; Morozumi, T; Akiishi, K; Watanabe, K; Yoshie, H

    2015-10-01

    An important goal for the improved diagnosis and management of infectious and inflammatory diseases, such as periodontitis, is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. The aim of this prospective multicenter study was to evaluate the clinical use of a novel immunochromatographic device with monoclonal antibodies for the rapid point-of-care detection and semi-quantification of Porphyromonas gingivalis in subgingival plaque. Sixty-three patients with chronic periodontitis and 28 periodontally healthy volunteers were subjected to clinical and microbiological examinations. Subgingival plaque samples were analyzed for the presence of P. gingivalis using a novel immunochromatography based device DK13-PG-001, designed to detect the 40k-outer membrane protein of P. gingivalis, and compared with a PCR-Invader method. In the periodontitis group, a significant strong positive correlation in detection results was found between the test device score and the PCR-Invader method (Spearman rank correlation, r=0.737, p<0.0001). The sensitivity, specificity, and positive and negative predictive values of the test device were 96.2%, 91.8%, 90.4% and 96.7%, respectively. The detection threshold of the test device was determined to be approximately 10(4) (per two paper points). There were significant differences in the bacterial counts by the PCR-Invader method among groups with different ranges of device scores. With a cut-off value of ≥0.25 in device score, none of periodontally healthy volunteers were tested positive for the subgingival presence of P. gingivalis, whereas 76% (n=48) of periodontitis subjects were tested positive. There was a significant positive correlation between device scores for P. gingivalis and periodontal parameters including probing pocket depth and clinical attachment level (r=0.317 and 0.281, respectively, p<0.01). The results suggested that the DK13-PG-001 device kit can be effectively used

  19. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  20. Photogrammetry: an accurate and reliable tool to detect thoracic musculoskeletal abnormalities in preterm infants.

    PubMed

    Davidson, Josy; dos Santos, Amelia Miyashiro N; Garcia, Kessey Maria B; Yi, Liu C; João, Priscila C; Miyoshi, Milton H; Goulart, Ana Lucia

    2012-09-01

    To analyse the accuracy and reproducibility of photogrammetry in detecting thoracic abnormalities in infants born prematurely. Cross-sectional study. The Premature Clinic at the Federal University of São Paolo. Fifty-eight infants born prematurely in their first year of life. Measurement of the manubrium/acromion/trapezius angle (degrees) and the deepest thoracic retraction (cm). Digitised photographs were analysed by two blinded physiotherapists using a computer program (SAPO; http://SAPO.incubadora.fapesp.br) to detect shoulder elevation and thoracic retraction. Physical examinations performed independently by two physiotherapists were used to assess the accuracy of the new tool. Thoracic alterations were detected in 39 (67%) and in 40 (69%) infants by Physiotherapists 1 and 2, respectively (kappa coefficient=0.80). Using a receiver operating characteristic curve, measurement of the manubrium/acromion/trapezius angle and the deepest thoracic retraction indicated accuracy of 0.79 and 0.91, respectively. For measurement of the manubrium/acromion/trapezius angle, the Bland and Altman limits of agreement were -6.22 to 7.22° [mean difference (d)=0.5] for repeated measures by one physiotherapist, and -5.29 to 5.79° (d=0.75) between two physiotherapists. For thoracic retraction, the intra-rater limits of agreement were -0.14 to 0.18cm (d=0.02) and the inter-rater limits of agreement were -0.20 to -0.17cm (d=0.02). SAPO provided an accurate and reliable tool for the detection of thoracic abnormalities in preterm infants. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  1. Accurate clinical detection of exon copy number variants in a targeted NGS panel using DECoN.

    PubMed

    Fowler, Anna; Mahamdallie, Shazia; Ruark, Elise; Seal, Sheila; Ramsay, Emma; Clarke, Matthew; Uddin, Imran; Wylie, Harriet; Strydom, Ann; Lunter, Gerton; Rahman, Nazneen

    2016-11-25

    Background: Targeted next generation sequencing (NGS) panels are increasingly being used in clinical genomics to increase capacity, throughput and affordability of gene testing. Identifying whole exon deletions or duplications (termed exon copy number variants, 'exon CNVs') in exon-targeted NGS panels has proved challenging, particularly for single exon CNVs.  Methods: We developed a tool for the Detection of Exon Copy Number variants (DECoN), which is optimised for analysis of exon-targeted NGS panels in the clinical setting. We evaluated DECoN performance using 96 samples with independently validated exon CNV data. We performed simulations to evaluate DECoN detection performance of single exon CNVs and to evaluate performance using different coverage levels and sample numbers. Finally, we implemented DECoN in a clinical laboratory that tests BRCA1 and BRCA2 with the TruSight Cancer Panel (TSCP). We used DECoN to analyse 1,919 samples, validating exon CNV detections by multiplex ligation-dependent probe amplification (MLPA).  Results: In the evaluation set, DECoN achieved 100% sensitivity and 99% specificity for BRCA exon CNVs, including identification of 8 single exon CNVs. DECoN also identified 14/15 exon CNVs in 8 other genes. Simulations of all possible BRCA single exon CNVs gave a mean sensitivity of 98% for deletions and 95% for duplications. DECoN performance remained excellent with different levels of coverage and sample numbers; sensitivity and specificity was >98% with the typical NGS run parameters. In the clinical pipeline, DECoN automatically analyses pools of 48 samples at a time, taking 24 minutes per pool, on average. DECoN detected 24 BRCA exon CNVs, of which 23 were confirmed by MLPA, giving a false discovery rate of 4%. Specificity was 99.7%.  Conclusions: DECoN is a fast, accurate, exon CNV detection tool readily implementable in research and clinical NGS pipelines. It has high sensitivity and specificity and acceptable false discovery rate

  2. Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits

    PubMed Central

    Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat

    2007-01-01

    The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078

  3. Retinal nerve fibre thickness measured with optical coherence tomography accurately detects confirmed glaucomatous damage.

    PubMed

    Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R

    2007-07-01

    To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24-2 SAP tests. For the mfVEP and 24-2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice.

  4. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-05

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. An Accurate Framework for Arbitrary View Pedestrian Detection in Images

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Wen, G.; Qiu, S.

    2018-01-01

    We consider the problem of detect pedestrian under from images collected under various viewpoints. This paper utilizes a novel framework called locality-constrained affine subspace coding (LASC). Firstly, the positive training samples are clustered into similar entities which represent similar viewpoint. Then Principal Component Analysis (PCA) is used to obtain the shared feature of each viewpoint. Finally, the samples that can be reconstructed by linear approximation using their top- k nearest shared feature with a small error are regarded as a correct detection. No negative samples are required for our method. Histograms of orientated gradient (HOG) features are used as the feature descriptors, and the sliding window scheme is adopted to detect humans in images. The proposed method exploits the sparse property of intrinsic information and the correlations among the multiple-views samples. Experimental results on the INRIA and SDL human datasets show that the proposed method achieves a higher performance than the state-of-the-art methods in form of effect and efficiency.

  6. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information.

    PubMed

    Wang, Chundong; Zhu, Likun; Gong, Liangyi; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun

    2018-03-15

    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.

  7. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information

    PubMed Central

    Wang, Chundong; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun

    2018-01-01

    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks. PMID:29543773

  8. Accurate Determination of the Q Quality Factor in Magnetoelastic Resonant Platforms for Advanced Biological Detection

    PubMed Central

    Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel

    2018-01-01

    The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance. PMID:29547578

  9. Accurate Determination of the Q Quality Factor in Magnetoelastic Resonant Platforms for Advanced Biological Detection.

    PubMed

    Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel

    2018-03-16

    The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance.

  10. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; hide

    2015-01-01

    system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. More precise calibration is highly desirable as the instruments will produce higher quality raw data that will require less post-acquisition data correction using results from in-flight pitch angle distribution measurements and ground calibration measurements. The detection system description and the fundamental concepts of this new calibration method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters and how to choose the optimum detection system operating point. This new method has been successfully applied to achieve a highly accurate calibration of the DESs and DISs of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown that, with further detailed modeling, this method can be extended for use in flight to achieve and maintain a highly accurate detection system calibration across a large number of instruments during the mission.

  11. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes.

    PubMed

    Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-05-04

    Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.

  12. An accurate and inexpensive color-based assay for detecting severe anemia in a limited-resource setting

    PubMed Central

    McGann, Patrick T.; Tyburski, Erika A.; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E.; Lam, Wilbur A.

    2016-01-01

    Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings. PMID:26317494

  13. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    USGS Publications Warehouse

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  14. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    PubMed

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    concepts of this method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters. This new method has been successfully applied to achieve a highly accurate calibration of the 16 Dual Electron Spectrometers and 16 Dual Ion Spectrometers of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown how this method will be applied to ensure the best possible in flight calibration during the mission.

  16. High-accurate optical fiber liquid level sensor

    NASA Astrophysics Data System (ADS)

    Sun, Dexing; Chen, Shouliu; Pan, Chao; Jin, Henghuan

    1991-08-01

    A highly accurate optical fiber liquid level sensor is presented. The single-chip microcomputer is used to process and control the signal. This kind of sensor is characterized by self-security and is explosion-proof, so it can be applied in any liquid level detecting areas, especially in the oil and chemical industries. The theories and experiments about how to improve the measurement accuracy are described. The relative error for detecting the measurement range 10 m is up to 0.01%.

  17. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles

    PubMed Central

    Zheng, Yun; Ji, Bo; Song, Renhua; Wang, Shengpeng; Li, Ting; Zhang, Xiaotuo; Chen, Kun; Li, Tianqing; Li, Jinyan

    2016-01-01

    Various types of mutation and editing (M/E) events in microRNAs (miRNAs) can change the stabilities of pre-miRNAs and/or complementarities between miRNAs and their targets. Small RNA (sRNA) high-throughput sequencing (HTS) profiles can contain many mutated and edited miRNAs. Systematic detection of miRNA mutation and editing sites from the huge volume of sRNA HTS profiles is computationally difficult, as high sensitivity and low false positive rate (FPR) are both required. We propose a novel method (named MiRME) for an accurate and fast detection of miRNA M/E sites using a progressive sequence alignment approach which refines sensitivity and improves FPR step-by-step. From 70 sRNA HTS profiles with over 1.3 billion reads, MiRME has detected thousands of statistically significant M/E sites, including 3′-editing sites, 57 A-to-I editing sites (of which 32 are novel), as well as some putative non-canonical editing sites. We demonstrated that a few non-canonical editing sites were not resulted from mutations in genome by integrating the analysis of genome HTS profiles of two human cell lines, suggesting the existence of new editing types to further diversify the functions of miRNAs. Compared with six existing studies or methods, MiRME has shown much superior performance for the identification and visualization of the M/E sites of miRNAs from the ever-increasing sRNA HTS profiles. PMID:27229138

  19. Optimal pcr primers for rapid and accurate detection of Aspergillus flavus isolates.

    PubMed

    Al-Shuhaib, Mohammed Baqur S; Albakri, Ali H; Alwan, Sabah H; Almandil, Noor B; AbdulAzeez, Sayed; Borgio, J Francis

    2018-03-01

    Aspergillus flavus is among the most devastating opportunistic pathogens of several food crops including rice, due to its high production of carcinogenic aflatoxins. The presence of these organisms in economically important rice strip farming is a serious food safety concern. Several polymerase chain reaction (PCR) primers have been designed to detect this species; however, a comparative assessment of their accuracy has not been conducted. This study aims to identify the optimal diagnostic PCR primers for the identification of A. flavus, among widely available primers. We isolated 122 A. flavus native isolates from randomly collected rice strips (N = 300). We identified 109 isolates to the genus level using universal fungal PCR primer pairs. Nine pairs of primers were examined for their PCR diagnostic specificity on the 109 isolates. FLA PCR was found to be the optimal PCR primer pair for specific identification of the native isolates, over aflP(1), aflM, aflA, aflD, aflP(3), aflP(2), and aflR. The PEP primer pair was found to be the most unsuitable for A. flavus identification. In conclusion, the present study indicates the powerful specificity of the FLA PCR primer over other commonly available diagnostic primers for accurate, rapid, and large-scale identification of A. flavus native isolates. This study provides the first simple, practical comparative guide to PCR-based screening of A. flavus infection in rice strips. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results.

    PubMed

    Popa-Burke, Ioana G; Issakova, Olga; Arroway, James D; Bernasconi, Paul; Chen, Min; Coudurier, Louis; Galasinski, Scott; Jadhav, Ajit P; Janzen, William P; Lagasca, Dennis; Liu, Darren; Lewis, Roderic S; Mohney, Robert P; Sepetov, Nikolai; Sparkman, Darren A; Hodge, C Nicholas

    2004-12-15

    As part of an overall systems approach to generating highly accurate screening data across large numbers of compounds and biological targets, we have developed and implemented streamlined methods for purifying and quantitating compounds at various stages of the screening process, coupled with automated "traditional" storage methods (DMSO, -20 degrees C). Specifically, all of the compounds in our druglike library are purified by LC/MS/UV and are then controlled for identity and concentration in their respective DMSO stock solutions by chemiluminescent nitrogen detection (CLND)/evaporative light scattering detection (ELSD) and MS/UV. In addition, the compound-buffer solutions used in the various biological assays are quantitated by LC/UV/CLND to determine the concentration of compound actually present during screening. Our results show that LC/UV/CLND/ELSD/MS is a widely applicable method that can be used to purify, quantitate, and identify most small organic molecules from compound libraries. The LC/UV/CLND technique is a simple and sensitive method that can be easily and cost-effectively employed to rapidly determine the concentrations of even small amounts of any N-containing compound in aqueous solution. We present data to establish error limits for concentration determination that are well within the overall variability of the screening process. This study demonstrates that there is a significant difference between the predicted amount of soluble compound from stock DMSO solutions following dilution into assay buffer and the actual amount present in assay buffer solutions, even at the low concentrations employed for the assays. We also demonstrate that knowledge of the concentrations of compounds to which the biological target is exposed is critical for accurate potency determinations. Accurate potency values are in turn particularly important for drug discovery, for understanding structure-activity relationships, and for building useful empirical models of

  1. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed Central

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  2. Accurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients

    PubMed Central

    de Bruin, Elza C.; Whiteley, Jessica L.; Corcoran, Claire; Kirk, Pauline M.; Fox, Jayne C.; Armisen, Javier; Lindemann, Justin P. O.; Schiavon, Gaia; Ambrose, Helen J.; Kohlmann, Alexander

    2017-01-01

    Personalized healthcare relies on accurate companion diagnostic assays that enable the most appropriate treatment decision for cancer patients. Extensive assay validation prior to use in a clinical setting is essential for providing a reliable test result. This poses a challenge for low prevalence mutations with limited availability of appropriate clinical samples harboring the mutation. To enable prospective screening for the low prevalence AKT1 E17K mutation, we have developed and validated a competitive allele-specific TaqMan® PCR (castPCR™) assay for mutation detection in formalin-fixed paraffin-embedded (FFPE) tumor tissue. Analysis parameters of the castPCR™ assay were established using an FFPE DNA reference standard and its analytical performance was assessed using 338 breast cancer and gynecological cancer FFPE samples. With recent technical advances for minimally invasive mutation detection in circulating tumor DNA (ctDNA), we subsequently also evaluated the OncoBEAM™ assay to enable plasma specimens as additional diagnostic opportunity for AKT1 E17K mutation testing. The analysis performance of the OncoBEAM™ test was evaluated using a novel AKT1 E17K ctDNA reference standard consisting of sheared genomic DNA spiked into human plasma. Both assays are employed at centralized testing laboratories operating according to quality standards for prospective identification of the AKT1 E17K mutation in ER+ breast cancer patients in the context of a clinical trial evaluating the AKT inhibitor AZD5363 in combination with endocrine (fulvestrant) therapy. PMID:28472036

  3. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  4. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  5. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    NASA Astrophysics Data System (ADS)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  6. Towards Accurate Node-Based Detection of P2P Botnets

    PubMed Central

    2014-01-01

    Botnets are a serious security threat to the current Internet infrastructure. In this paper, we propose a novel direction for P2P botnet detection called node-based detection. This approach focuses on the network characteristics of individual nodes. Based on our model, we examine node's flows and extract the useful features over a given time period. We have tested our approach on real-life data sets and achieved detection rates of 99-100% and low false positives rates of 0–2%. Comparison with other similar approaches on the same data sets shows that our approach outperforms the existing approaches. PMID:25089287

  7. Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs

    DOE PAGES

    Shatsky, Maxim; Arbelaez, Pablo; Han, Bong-Gyoon; ...

    2014-07-01

    Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a singlemore » optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar.« less

  8. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  9. Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation.

    PubMed

    Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo

    2017-09-01

    Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.

  10. Multidimensional gas chromatography in combination with accurate mass, tandem mass spectrometry, and element-specific detection for identification of sulfur compounds in tobacco smoke.

    PubMed

    Ochiai, Nobuo; Mitsui, Kazuhisa; Sasamoto, Kikuo; Yoshimura, Yuta; David, Frank; Sandra, Pat

    2014-09-05

    A method is developed for identification of sulfur compounds in tobacco smoke extract. The method is based on large volume injection (LVI) of 10μL of tobacco smoke extract followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography (GC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (Q-TOF-MS) using electron ionization (EI) and positive chemical ionization (PCI), with parallel sulfur chemiluminescence detection (SCD). In order to identify each individual sulfur compound, sequential heart-cuts of 28 sulfur fractions from (1)D GC to (2)D GC were performed with the three MS detection modes (SCD/EI-TOF-MS, SCD/PCI-TOF-MS, and SCD/PCI-Q-TOF-MS). Thirty sulfur compounds were positively identified by MS library search, linear retention indices (LRI), molecular mass determination using PCI accurate mass spectra, formula calculation using EI and PCI accurate mass spectra, and structure elucidation using collision activated dissociation (CAD) of the protonated molecule. Additionally, 11 molecular formulas were obtained for unknown sulfur compounds. The determined values of the identified and unknown sulfur compounds were in the range of 10-740ngmg total particulate matter (TPM) (RSD: 1.2-12%, n=3). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Achieving perceptually-accurate aural telepresence

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.

    Immersive multimedia requires not only realistic visual imagery but also a perceptually-accurate aural experience. A sound field may be presented simultaneously to a listener via a loudspeaker rendering system using the direct sound from acoustic sources as well as a simulation or "auralization" of room acoustics. Beginning with classical Wave-Field Synthesis (WFS), improvements are made to correct for asymmetries in loudspeaker array geometry. Presented is a new Spatially-Equalized WFS (SE-WFS) technique to maintain the energy-time balance of a simulated room by equalizing the reproduced spectrum at the listener for a distribution of possible source angles. Each reproduced source or reflection is filtered according to its incidence angle to the listener. An SE-WFS loudspeaker array of arbitrary geometry reproduces the sound field of a room with correct spectral and temporal balance, compared with classically-processed WFS systems. Localization accuracy of human listeners in SE-WFS sound fields is quantified by psychoacoustical testing. At a loudspeaker spacing of 0.17 m (equivalent to an aliasing cutoff frequency of 1 kHz), SE-WFS exhibits a localization blur of 3 degrees, nearly equal to real point sources. Increasing the loudspeaker spacing to 0.68 m (for a cutoff frequency of 170 Hz) results in a blur of less than 5 degrees. In contrast, stereophonic reproduction is less accurate with a blur of 7 degrees. The ventriloquist effect is psychometrically investigated to determine the effect of an intentional directional incongruence between audio and video stimuli. Subjects were presented with prerecorded full-spectrum speech and motion video of a talker's head as well as broadband noise bursts with a static image. The video image was displaced from the audio stimulus in azimuth by varying amounts, and the perceived auditory location measured. A strong bias was detectable for small angular discrepancies between audio and video stimuli for separations of less than 8

  12. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  13. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results

    PubMed Central

    Tonyushkina, Ksenia; Nichols, James H.

    2009-01-01

    , anemia, hypotension, and other disease states. This article reviews the challenges involved in obtaining accurate glucose meter results. PMID:20144348

  14. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  15. Hemorrhage Detection and Segmentation in Traumatic Pelvic Injuries

    PubMed Central

    Davuluri, Pavani; Wu, Jie; Tang, Yang; Cockrell, Charles H.; Ward, Kevin R.; Najarian, Kayvan; Hargraves, Rosalyn H.

    2012-01-01

    Automated hemorrhage detection and segmentation in traumatic pelvic injuries is vital for fast and accurate treatment decision making. Hemorrhage is the main cause of deaths in patients within first 24 hours after the injury. It is very time consuming for physicians to analyze all Computed Tomography (CT) images manually. As time is crucial in emergence medicine, analyzing medical images manually delays the decision-making process. Automated hemorrhage detection and segmentation can significantly help physicians to analyze these images and make fast and accurate decisions. Hemorrhage segmentation is a crucial step in the accurate diagnosis and treatment decision-making process. This paper presents a novel rule-based hemorrhage segmentation technique that utilizes pelvic anatomical information to segment hemorrhage accurately. An evaluation measure is used to quantify the accuracy of hemorrhage segmentation. The results show that the proposed method is able to segment hemorrhage very well, and the results are promising. PMID:22919433

  16. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  17. Accurate sub-millimetre rest frequencies for HOCO+ and DOCO+ ions

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Lattanzi, V.; Laas, J.; Spezzano, S.; Giuliano, B. M.; Prudenzano, D.; Endres, C.; Sipilä, O.; Caselli, P.

    2017-06-01

    Context. HOCO+ is a polar molecule that represents a useful proxy for its parent molecule CO2, which is not directly observable in the cold interstellar medium. This cation has been detected towards several lines of sight, including massive star forming regions, protostars, and cold cores. Despite the obvious astrochemical relevance, protonated CO2 and its deuterated variant, DOCO+, still lack an accurate spectroscopic characterisation. Aims: The aim of this work is to extend the study of the ground-state pure rotational spectra of HOCO+ and DOCO+ well into the sub-millimetre region. Methods: Ground-state transitions have been recorded in the laboratory using a frequency-modulation absorption spectrometer equipped with a free-space glow-discharge cell. The ions were produced in a low-density, magnetically confined plasma generated in a suitable gas mixture. The ground-state spectra of HOCO+ and DOCO+ have been investigated in the 213-967 GHz frequency range; 94 new rotational transitions have been detected. Additionally, 46 line positions taken from the literature have been accurately remeasured. Results: The newly measured lines have significantly enlarged the available data sets for HOCO+ and DOCO+, thus enabling the determination of highly accurate rotational and centrifugal distortion parameters. Our analysis shows that all HOCO+ lines with Ka ≥ 3 are perturbed by a ro-vibrational interaction that couples the ground state with the v5 = 1 vibrationally excited state. This resonance has been explicitly treated in the analysis in order to obtain molecular constants with clear physical meaning. Conclusions: The improved sets of spectroscopic parameters provide enhanced lists of very accurate sub-millimetre rest frequencies of HOCO+ and DOCO+ for astrophysical applications. These new data challenge a recent tentative identification of DOCO+ towards a pre-stellar core. Supplementary tables are only available at the CDS via anonymous ftp to http

  18. Flexibility in Visual Working Memory: Accurate Change Detection in the Face of Irrelevant Variations in Position

    PubMed Central

    Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.

    2012-01-01

    Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933

  19. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  20. Aptamer-conjugated live human immune cell based biosensors for the accurate detection of C-reactive protein

    NASA Astrophysics Data System (ADS)

    Hwang, Jangsun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Choi, Jonghoon

    2016-10-01

    C-reactive protein (CRP) is a pentameric protein that is present in the bloodstream during inflammatory events, e.g., liver failure, leukemia, and/or bacterial infection. The level of CRP indicates the progress and prognosis of certain diseases; it is therefore necessary to measure CRP levels in the blood accurately. The normal concentration of CRP is reported to be 1-3 mg/L. Inflammatory events increase the level of CRP by up to 500 times; accordingly, CRP is a biomarker of acute inflammatory disease. In this study, we demonstrated the preparation of DNA aptamer-conjugated peripheral blood mononuclear cells (Apt-PBMCs) that specifically capture human CRP. Live PBMCs functionalized with aptamers could detect different levels of human CRP by producing immune complexes with reporter antibody. The binding behavior of Apt-PBMCs toward highly concentrated CRP sites was also investigated. The immune responses of Apt-PBMCs were evaluated by measuring TNF-alpha secretion after stimulating the PBMCs with lipopolysaccharides. In summary, engineered Apt-PBMCs have potential applications as live cell based biosensors and for in vitro tracing of CRP secretion sites.

  1. Molecular methods for pathogen detection and quantification

    USDA-ARS?s Scientific Manuscript database

    Ongoing interest in convenient, inexpensive, fast, sensitive and accurate techniques for detecting and/or quantifying the presence of soybean pathogens has resulted in increased usage of molecular tools. The method of extracting a molecular target (usually DNA or RNA) for detection depends wholly up...

  2. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  3. MIDAS robust trend estimator for accurate GPS station velocities without step detection.

    PubMed

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes v ij  = ( x j -x i )/( t j -t i ) computed between all data pairs i  >  j . For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  4. Sub-millimeter detected z ~ 2 radio-quiet QSOs. Accurate redshifts, black hole masses, and inflow/outflow velocities

    NASA Astrophysics Data System (ADS)

    Orellana, G.; Nagar, N. M.; Isaak, K. G.; Priddey, R.; Maiolino, R.; McMahon, R.; Marconi, A.; Oliva, E.

    2011-07-01

    Context. We present near-IR spectroscopy of a sample of luminous (MB - 27.5; Lbol > 1014 L⊙), sub-millimeter-detected, dusty (Md ~ 109 M⊙), radio-quiet quasi-stellar objects (QSOs) at z ~ 2. Aims: A primary aim is to provide a more accurate QSO redshift determination in order to trace kinematics and inflows/outflows in these sub-mm bright QSOs. Additionally, the Hα and continuum properties allow an estimation of the black hole mass and accretion rate, offering insights into the starburst-AGN connection in sub-mm bright QSOs. Methods: We measure the redshift, width, and luminosity of the Hα line, and the continuum luminosity near Hα. Relative velocity differences between Hα and rest-frame UV emission lines are used to study the presence and strength of outflows/inflows. Luminosities and line widths are used to estimate the black hole masses, bolometric luminosities, Eddington fractions, and accretion rates; these are compared to the star-formation-rate (SFR), estimated from the sub-mm derived far-infrared (FIR) luminosity. Finally our sub-mm-bright QSO sample is compared with other QSO samples at similar redshifts. Results: The Hα emission line was strongly detected in all sources. Two components - a very broad (≳5000 km s-1) Gaussian and an intermediate-width (≳1500 km s-1) Gaussian, were required to fit the Hα profile of all observed QSOs. Narrow (≲1000 km s-1) lines were not detected in the sample QSOs. The rest-frame UV emission lines in these sub-mm bright QSOs show larger than average blue-shifted velocities, potentially tracing strong - up to 3000 km s-1 - outflows in the broad line region. With the exception of the one QSO which shows exceptionally broad Hα lines, the black hole masses of the QSO sample are in the range log MBH = 9.0-9.7 and the Eddington fractions are between 0.5 and ~1. In black hole mass and accretion rate, this sub-mm bright QSO sample is indistinguishable from the Shemmer et al. (2004, ApJ, 614, 547) optically

  5. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  6. Detecting Children's Lies: Are Parents Accurate Judges of Their Own Children's Lies?

    ERIC Educational Resources Information Center

    Talwar, Victoria; Renaud, Sarah-Jane; Conway, Lauryn

    2015-01-01

    The current study investigated whether parents are accurate judges of their own children's lie-telling behavior. Participants included 250 mother-child dyads. Children were between three and 11 years of age. A temptation resistance paradigm was used to elicit a minor transgressive behavior from the children involving peeking at a forbidden toy and…

  7. Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: results from a large scale multicenter analysis

    PubMed Central

    Dengler, Mirko; Staufer, Katharina; Huber, Heidemarie; Stauber, Rudolf; Bantel, Heike; Weiss, Karl Heinz; Starlinger, Patrick; Pock, Hannelore; Klöters-Plachky, Petra; Gotthardt, Daniel N.; Rauch, Peter; Lackner, Carolin; Stift, Judith; Brostjan, Christine; Gruenberger, Thomas; Kumada, Takashi; Toyoda, Hidenori; Tada, Toshifumi; Weiss, Thomas S.; Trauner, Michael; Mikulits, Wolfgang

    2017-01-01

    Patients with chronic liver disease (CLD) and cirrhosis are at high risk for hepatocellular carcinoma (HCC). Current diagnostic tools for HCC detection include imaging techniques and serum biomarkers such as α-fetoprotein (AFP). Yet, these methods are limited in sensitivity and specificity to accurately detect early HCC. Here we focused on the potential of soluble Axl (sAxl) as a biomarker in CLD patients by analyzing serum samples of 1067 patients and healthy controls from centers in Europe and Asia. We show that serum concentrations of sAxl were significantly increased at early (82.57 ng/mL) and later stages of HCC (114.50 ng/mL) as compared to healthy controls (40.15 ng/mL). Notably, no elevated sAxl levels were detected in patients with CLD including chronic viral hepatitis, autoimmune hepatitis, cholestatic liver disease, or non-alcoholic fatty liver disease versus healthy controls. Furthermore, sAxl did not rise in liver adenomas or cholangiocarcinoma (CCA). Yet, patients with advanced fibrosis (F3) or cirrhosis (F4) showed enhanced sAxl concentrations (F3: 54.67 ng/mL; F4: 94.74 ng/mL). Hepatic myofibroblasts exhibited an increased release of sAxl, suggesting that elevated sAxl levels arise from these cells during fibrosis. Receiver operating characteristic curve analysis of sAxl displayed a strongly increased sensitivity and specificity to detect both cirrhosis (80.8%/92.0%) and HCC (83.3%/86.7%) with an area under the curve of 0.935/0.903 as compared to AFP. In conclusion, sAxl shows high diagnostic accuracy at early stage HCC as well as cirrhosis, thereby outperforming AFP. Importantly, sAxl remains normal in most common CLDs, liver adenomas and CCA. PMID:28526812

  8. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.

    PubMed

    Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas

    2014-03-05

    With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available

  9. Sampling of the anterior apical region results in increased cancer detection and upgrading in transrectal repeat saturation biopsy of the prostate.

    PubMed

    Seles, Maximilian; Gutschi, Thomas; Mayrhofer, Katrin; Fischereder, Katja; Ehrlich, Georg; Gallé, Guenter; Gutschi, Stefan; Pachernegg, Oliver; Pummer, Karl; Augustin, Herbert

    2016-04-01

    To evaluate whether biopsy cores taken via a transrectal approach from the anterior apical region of the prostate in a repeat-biopsy population can result in an increased overall cancer detection rate and in more accurate assessment of the Gleason score. The study was a prospective, randomised (end-fire vs side-fire ultrasound probe) evaluation of 288 men by repeat transrectal saturation biopsy with 28 cores taken from the transition zone, base, mid-lobar, anterior and the anterior apical region located ventro-laterally to the urethra of the peripheral zone. The overall prostate cancer detection rate was 44.4%. Improvement of the overall detection rate by 7.8% could be achieved with additional biopsies of the anterior apical region. Two tumours featuring a Gleason score 7 could only be detected in the anterior apical region. In three cases (2.34%) Gleason score upgrading was achieved by separate analysis of each positive core of the anterior apical region. A five-fold higher cancer detection rate in the anterior apical region compared with the transition zone could be shown. Sampling of the anterior apical region results in higher overall cancer detection rate in repeat transrectal saturation biopsies of the prostate. Specimens from this region can detect clinically significant cancer, improve accuracy of the Gleason Scoring and therefore may alter therapy. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  10. An Accurate Transmitting Power Control Method in Wireless Communication Transceivers

    NASA Astrophysics Data System (ADS)

    Zhang, Naikang; Wen, Zhiping; Hou, Xunping; Bi, Bo

    2018-01-01

    Power control circuits are widely used in transceivers aiming at stabilizing the transmitted signal power to a specified value, thereby reducing power consumption and interference to other frequency bands. In order to overcome the shortcomings of traditional modes of power control, this paper proposes an accurate signal power detection method by multiplexing the receiver and realizes transmitting power control in the digital domain. The simulation results show that this novel digital power control approach has advantages of small delay, high precision and simplified design procedure. The proposed method is applicable to transceivers working at large frequency dynamic range, and has good engineering practicability.

  11. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  12. Laser spectrum detection methods for substance of Mars surface

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Xue, Bin; Zhao, Yi-yi

    2014-11-01

    The chemical element and mineral rock's abundance and distribution are the basic material of planetary geology evolution research [1], hence preterit detection for composition of Mars surface substance contains both elements sorts and mineral ingredients. This article introduced new ways to detect Mars elements and mineral components, Laser Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) which have distinct advantages, such as work over a long distance, detect rapidly, accuratly and nondestructively. LIBS and RS both use laser excitation to shoot the substance of Mars exciting new wavelengths. The techniques of LIBS and RS in laboratory are mature, besides the technique of LIBS is being used in MSL (Chemcam) now and RS will be used in ExoMars. Comparing LIBS and RS's detection results with XRF and APXS, Mossbauer spectrometer, these existed Mars surface material detection instruments,and the Infrared spectrometer, Mid-IR, they have more accurate detection results. So LIBS and RS are competent for Mars surface substance detection instead of X-ray spectrometer and Mossbauer spectrometer which were already used in 'Viking 1' and 'Opportunity'. Only accurate detection results about Mars surface substance can lead to scientist's right analysis in inversing geological evolution of the planet.

  13. An Accurate Co-registration Method for Airborne Repeat-pass InSAR

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.

    2017-10-01

    Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.

  14. An Integrated Tool to Study MHC Region: Accurate SNV Detection and HLA Genes Typing in Human MHC Region Using Targeted High-Throughput Sequencing

    PubMed Central

    Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui

    2013-01-01

    The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464

  15. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    PubMed

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  16. A method for the rapid detection of urinary tract infections.

    PubMed

    Olsson, Carl; Kapoor, Deepak; Howard, Glenn

    2012-04-01

    To determine the reliability of a rapid detection method compared with the reference standard streaked agar plate in diagnosing the presence of urinary tract infection (UTI). De-identified clean catch urine specimens from 980 office visit patients were processed during a 30-day period. Classic 1-μL and 10-μL streaked agar plates were used in parallel with the new CultureStat Rapid UTI Detection System (CSRUDS). Urine results were evaluated using the CSRUDS at 30 and 90 minutes after collection. A comparative analysis of the subsequent plate results versus the CSRUDS results was achieved for 973 of these samples. Positive UTI conditions were accurately identified by both CSRUDS and agar streak plate methods. CSRUDS accurately identified UTI negative conditions with 99.3% reliability at 90 minutes. The negative predictive value of CSRUDS was 99.2% at 30 minutes. Current agar plating for first-round UTI screening has substantial documented problems that can negatively affect an accurate and timely UTI diagnosis. A novel rapid detection system, the CSRUDS provides UTI negative/positive same-day results in ≤ 90 minutes from the start of test. Such rapidly available results will enable more accurate and timely clinical decisions to be made in the urology office, particularly regarding infection status before urologic instrumentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Accurate high-throughput structure mapping and prediction with transition metal ion FRET

    PubMed Central

    Yu, Xiaozhen; Wu, Xiongwu; Bermejo, Guillermo A.; Brooks, Bernard R.; Taraska, Justin W.

    2013-01-01

    Mapping the landscape of a protein’s conformational space is essential to understanding its functions and regulation. The limitations of many structural methods have made this process challenging for most proteins. Here, we report that transition metal ion FRET (tmFRET) can be used in a rapid, highly parallel screen, to determine distances from multiple locations within a protein at extremely low concentrations. The distances generated through this screen for the protein Maltose Binding Protein (MBP) match distances from the crystal structure to within a few angstroms. Furthermore, energy transfer accurately detects structural changes during ligand binding. Finally, fluorescence-derived distances can be used to guide molecular simulations to find low energy states. Our results open the door to rapid, accurate mapping and prediction of protein structures at low concentrations, in large complex systems, and in living cells. PMID:23273426

  18. SU-E-J-23: An Accurate Algorithm to Match Imperfectly Matched Images for Lung Tumor Detection Without Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozario, T; Bereg, S; Chiu, T

    Purpose: In order to locate lung tumors on projection images without internal markers, digitally reconstructed radiograph (DRR) is created and compared with projection images. Since lung tumors always move and their locations change on projection images while they are static on DRRs, a special DRR (background DRR) is generated based on modified anatomy from which lung tumors are removed. In addition, global discrepancies exist between DRRs and projections due to their different image originations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported. Methods: This method divides global images into a matrix ofmore » small tiles and similarities will be evaluated by calculating normalized cross correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) will be automatically optimized to keep the tumor within a single tile which has bad matching with the corresponding DRR tile. A pixel based linear transformation will be determined by linear interpolations of tile transformation results obtained during tile matching. The DRR will be transformed to the projection image level and subtracted from it. The resulting subtracted image now contains only the tumor. A DRR of the tumor is registered to the subtracted image to locate the tumor. Results: This method has been successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (Brainlab) for dynamic tumor tracking on phantom studies. Radiation opaque markers are implanted and used as ground truth for tumor positions. Although, other organs and bony structures introduce strong signals superimposed on tumors at some angles, this method accurately locates tumors on every projection over 12 gantry angles. The maximum error is less than 2.6 mm while the total average error is 1.0 mm. Conclusion: This algorithm is capable of detecting tumor without markers despite strong background

  19. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers

    PubMed Central

    Rozario, Timothy; Bereg, Sergey; Yan, Yulong; Chiu, Tsuicheng; Liu, Honghuan; Kearney, Vasant; Jiang, Lan

    2015-01-01

    implanted and used as ground truth for tumor positions. Although other organs and bony structures introduced strong signals superimposed on tumors at some angles, this method accurately located tumors on every projection over 12 gantry angles. The maximum error was less than 2.2 mm, while the total average error was less than 0.9 mm. This algorithm was capable of detecting tumors without markers, despite strong background signals. PACS numbers: 87.57.cj, 87.57.cp87.57.nj, 87.57.np, 87.57.Q‐, 87.59.bf, 87.63.lm

  20. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  1. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  2. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.

    PubMed

    Akram, Usman M; Khan, Shoab A

    2012-10-01

    There is an ever-increasing interest in the development of automatic medical diagnosis systems due to the advancement in computing technology and also to improve the service by medical community. The knowledge about health and disease is required for reliable and accurate medical diagnosis. Diabetic Retinopathy (DR) is one of the most common causes of blindness and it can be prevented if detected and treated early. DR has different signs and the most distinctive are microaneurysm and haemorrhage which are dark lesions and hard exudates and cotton wool spots which are bright lesions. Location and structure of blood vessels and optic disk play important role in accurate detection and classification of dark and bright lesions for early detection of DR. In this article, we propose a computer aided system for the early detection of DR. The article presents algorithms for retinal image preprocessing, blood vessel enhancement and segmentation and optic disk localization and detection which eventually lead to detection of different DR lesions using proposed hybrid fuzzy classifier. The developed methods are tested on four different publicly available databases. The presented methods are compared with recently published methods and the results show that presented methods outperform all others.

  3. Novel fMRI working memory paradigm accurately detects cognitive impairment in Multiple Sclerosis

    PubMed Central

    Nelson, Flavia; Akhtar, Mohammad A.; Zúñiga, Edward; Perez, Carlos A.; Hasan, Khader M.; Wilken, Jeffrey; Wolinsky, Jerry S.; Narayana, Ponnada A.; Steinberg, Joel L.

    2016-01-01

    Background Cognitive impairment (CI) cannot be diagnosed by MRI. Functional MRI (fMRI) paradigms such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory. Preliminary findings using I/DMT, showed differences in Blood Oxygenation Level Dependent (BOLD) activation between impaired (MSCI, n=12) and non-impaired (MSNI, n=9) MS patients. Objectives To confirm CI detection based on I/DMT’ BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and EDSS in magnitude of BOLD signal were also sought. Methods Fifty patients [EDSS mean (m) = 3.2, DD m =12 yr., age m =40yr.] underwent the Minimal Assessment of Cognitive Function in MS (MACFIMS) and the I/DMT. Working-memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. Results 10 MSNI, 30 MSCI and 4 borderline patients were included in analyses. ANOVA showed MSNI had significantly greater WMa than MSCI, in the left (L) prefrontal cortex and L supplementary motor area (p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas (p = 0.005, 0.004 respectively). Conclusion I/DMT-based BOLD activation detects CI in MS, larger studies are needed to confirm these findings. PMID:27613119

  4. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    PubMed Central

    McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.

    2014-01-01

    was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949

  5. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer.

    PubMed

    Ghanbarzadeh Dagheyan, Ashkan; Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-25

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients' overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  6. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). © 2012 American Academy of Forensic Sciences.

  7. Bat detective-Deep learning tools for bat acoustic signal detection.

    PubMed

    Mac Aodha, Oisin; Gibb, Rory; Barlow, Kate E; Browning, Ella; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R; Newson, Stuart E; Pandourski, Ivan; Parsons, Stuart; Russ, Jon; Szodoray-Paradi, Abigel; Szodoray-Paradi, Farkas; Tilova, Elena; Girolami, Mark; Brostow, Gabriel; Jones, Kate E

    2018-03-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.

  8. Salient man-made structure detection in infrared images

    NASA Astrophysics Data System (ADS)

    Li, Dong-jie; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.

  9. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  10. Accurate electromagnetic modeling of terahertz detectors

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; McGrath, William R.

    2004-01-01

    Twin slot antennas coupled to superconducting devices have been developed over the years as single pixel detectors in the terahertz (THz) frequency range for space-based and astronomy applications. Used either for mixing or direct detection, they have been object of several investigations, and are currently being developed for several missions funded or co-funded by NASA. Although they have shown promising performance in terms of noise and sensitivity, so far they have usually also shown a considerable disagreement in terms of performance between calculations and measurements, especially when considering center frequency and bandwidth. In this paper we present a thorough and accurate electromagnetic model of complete detector and we compare the results of calculations with measurements. Starting from a model of the embedding circuit, the effect of all the other elements in the detector in the coupled power have been analyzed. An extensive variety of measured and calculated data, as presented in this paper, demonstrates the effectiveness and reliability of the electromagnetic model at frequencies between 600 GHz and 2.5THz.

  11. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  12. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    PubMed

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  13. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    PubMed Central

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  14. Individuals Achieve More Accurate Results with Meters That Are Codeless and Employ Dynamic Electrochemistry

    PubMed Central

    Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie

    2010-01-01

    Background Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Methods Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Results Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Conclusions Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. PMID:20167178

  15. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees.

    PubMed

    Mai, Uyen; Mirarab, Siavash

    2018-05-08

    Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .

  16. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer †

    PubMed Central

    Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-01

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  17. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  18. Comparison of outliers and novelty detection to identify ionospheric TEC irregularities during geomagnetic storm and substorm

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Houw Liong, The; Purqon, Acep

    2016-08-01

    In this study, we compare two learning mechanisms: outliers and novelty detection in order to detect ionospheric TEC disturbance by November 2004 geomagnetic storm and January 2005 substorm. The mechanisms are applied by using v-SVR learning algorithm which is a regression version of SVM. Our results show that both mechanisms are quiet accurate in learning TEC data. However, novelty detection is more accurate than outliers detection in extracting anomalies related to geomagnetic events. The detected anomalies by outliers detection are mostly related to trend of data, while novelty detection are associated to geomagnetic events. Novelty detection also shows evidence of LSTID during geomagnetic events.

  19. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  20. The correct estimate of the probability of false detection of the matched filter in weak-signal detection problems . II. Further results with application to a set of ALMA and ATCA data

    NASA Astrophysics Data System (ADS)

    Vio, R.; Vergès, C.; Andreani, P.

    2017-08-01

    The matched filter (MF) is one of the most popular and reliable techniques to the detect signals of known structure and amplitude smaller than the level of the contaminating noise. Under the assumption of stationary Gaussian noise, MF maximizes the probability of detection subject to a constant probability of false detection or false alarm (PFA). This property relies upon a priori knowledge of the position of the searched signals, which is usually not available. Recently, it has been shown that when applied in its standard form, MF may severely underestimate the PFA. As a consequence the statistical significance of features that belong to noise is overestimated and the resulting detections are actually spurious. For this reason, an alternative method of computing the PFA has been proposed that is based on the probability density function (PDF) of the peaks of an isotropic Gaussian random field. In this paper we further develop this method. In particular, we discuss the statistical meaning of the PFA and show that, although useful as a preliminary step in a detection procedure, it is not able to quantify the actual reliability of a specific detection. For this reason, a new quantity is introduced called the specific probability of false alarm (SPFA), which is able to carry out this computation. We show how this method works in targeted simulations and apply it to a few interferometric maps taken with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Australia Telescope Compact Array (ATCA). We select a few potential new point sources and assign an accurate detection reliability to these sources.

  1. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  2. Varying face occlusion detection and iterative recovery for face recognition

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei

    2017-05-01

    In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.

  3. Loop mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias.

    PubMed

    Aydin-Schmidt, Berit; Xu, Weiping; González, Iveth J; Polley, Spencer D; Bell, David; Shakely, Delér; Msellem, Mwinyi I; Björkman, Anders; Mårtensson, Andreas

    2014-01-01

    Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6-782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94-99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0-4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1-98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2-99.9) and 76.9% (95%CI 46.2-95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1-100) in both study groups. Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low-density malaria infections in pre-elimination settings.

  4. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans.

    PubMed

    McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F

    2014-12-01

    in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.

  5. Detection of negative and positive audience behaviours by socially anxious subjects.

    PubMed

    Veljaca, K A; Rapee, R M

    1998-03-01

    Nineteen subjects high in social anxiety and 20 subjects low in social anxiety were asked to give a 5-min speech in front of three audience members. Audience members were trained to provide indicators of positive evaluation (e.g., smiles) and negative evaluation (e.g. frowns) at irregular intervals during the speech. Subjects were instructed to indicate, by depressing one of two buttons, when they detected either positive or negative behaviours. Results indicated that subjects high in social anxiety were both more accurate at, and had a more liberal criterion for, detecting negative audience behaviours while subjects low in social anxiety were more accurate at detecting positive audience behaviours.

  6. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  7. Addressing variability in the acoustic startle reflex for accurate gap detection assessment.

    PubMed

    Longenecker, Ryan J; Kristaponyte, Inga; Nelson, Gregg L; Young, Jesse W; Galazyuk, Alexander V

    2018-06-01

    The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets. The goal of this study was to examine the variance associated with several common data collection variables and data analyses with the aim to improve GPIAS reliability. To study this the GPIAS tests were conducted in adult male and female CBA/CaJ mice. Factors such as inter-trial interval, circadian rhythm, sex differences, and sensory adaptation were each evaluated. We then examined various data analysis factors which influence GPIAS assessment. Gap-induced facilitation, data processing options, and assessments of tinnitus were studied. We found that the startle reflex is highly variable in CBA/CaJ mice, but this can be minimized by certain data collection factors. We also found that careful consideration of temporal fluctuations of the ASR and controlling for facilitation can lead to more accurate GPIAS results. This study provides a guide for reducing variance in the GPIAS methodology - thereby improving the diagnostic power of the test. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A dental vision system for accurate 3D tooth modeling.

    PubMed

    Zhang, Li; Alemzadeh, K

    2006-01-01

    This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.

  9. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhleh, Luay

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less

  10. A dual-process account of auditory change detection.

    PubMed

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  11. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    PubMed Central

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  12. Individuals achieve more accurate results with meters that are codeless and employ dynamic electrochemistry.

    PubMed

    Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie

    2010-01-01

    Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. 2010 Diabetes Technology Society.

  13. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  14. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  15. Loop Mediated Isothermal Amplification (LAMP) Accurately Detects Malaria DNA from Filter Paper Blood Samples of Low Density Parasitaemias

    PubMed Central

    González, Iveth J.; Polley, Spencer D.; Bell, David; Shakely, Delér; Msellem, Mwinyi I.; Björkman, Anders; Mårtensson, Andreas

    2014-01-01

    Background Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots. Methods and Findings Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6–782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94–99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0–4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1–98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2–99.9) and 76.9% (95%CI 46.2–95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1–100) in both study groups. Conclusion Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low

  16. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE PAGES

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; ...

    2017-10-04

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  17. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  18. Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.

    PubMed

    Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J

    2018-05-03

    The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the decerebrate cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allows for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the decerebrate cat. Our results showed

  19. DNAzyme based gap-LCR detection of single-nucleotide polymorphism.

    PubMed

    Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo

    2013-07-15

    Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Variational mode decomposition based approach for accurate classification of color fundus images with hemorrhages

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim; Shmuel, Amir

    2017-11-01

    Diabetic retinopathy is a disease that can cause a loss of vision. An early and accurate diagnosis helps to improve treatment of the disease and prognosis. One of the earliest characteristics of diabetic retinopathy is the appearance of retinal hemorrhages. The purpose of this study is to design a fully automated system for the detection of hemorrhages in a retinal image. In the first stage of our proposed system, a retinal image is processed with variational mode decomposition (VMD) to obtain the first variational mode, which captures the high frequency components of the original image. In the second stage, four texture descriptors are extracted from the first variational mode. Finally, a classifier trained with all computed texture descriptors is used to distinguish between images of healthy and unhealthy retinas with hemorrhages. Experimental results showed evidence of the effectiveness of the proposed system for detection of hemorrhages in the retina, since a perfect detection rate was achieved. Our proposed system for detecting diabetic retinopathy is simple and easy to implement. It requires only short processing time, and it yields higher accuracy in comparison with previously proposed methods for detecting diabetic retinopathy.

  1. Compression ultrasonography of the lower extremity with portable vascular ultrasonography can accurately detect deep venous thrombosis in the emergency department.

    PubMed

    Crisp, Jonathan G; Lovato, Luis M; Jang, Timothy B

    2010-12-01

    Compression ultrasonography of the lower extremity is an established method of detecting proximal lower extremity deep venous thrombosis when performed by a certified operator in a vascular laboratory. Our objective is to determine the sensitivity and specificity of bedside 2-point compression ultrasonography performed in the emergency department (ED) with portable vascular ultrasonography for the detection of proximal lower extremity deep venous thrombosis. We did this by directly comparing emergency physician-performed ultrasonography to lower extremity duplex ultrasonography performed by the Department of Radiology. This was a prospective, cross-sectional study and diagnostic test assessment of a convenience sample of ED patients with a suspected lower extremity deep venous thrombosis, conducted at a single-center, urban, academic ED. All physicians had a 10-minute training session before enrolling patients. ED compression ultrasonography occurred before Department of Radiology ultrasonography and involved identification of 2 specific points: the common femoral and popliteal vessels, with subsequent compression of the common femoral and popliteal veins. The study result was considered positive for proximal lower extremity deep venous thrombosis if either vein was incompressible or a thrombus was visualized. Sensitivity and specificity were calculated with the final radiologist interpretation of the Department of Radiology ultrasonography as the criterion standard. A total of 47 physicians performed 199 2-point compression ultrasonographic examinations in the ED. Median number of examinations per physician was 2 (range 1 to 29 examinations; interquartile range 1 to 5 examinations). There were 45 proximal lower extremity deep venous thromboses observed on Department of Radiology evaluation, all correctly identified by ED 2-point compression ultrasonography. The 153 patients without proximal lower extremity deep venous thrombosis all had a negative ED compression

  2. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    PubMed

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  3. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    PubMed Central

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  4. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Towards Sensor-Free Affect Detection in Cognitive Tutor Algebra

    ERIC Educational Resources Information Center

    Baker, Ryan S. J. d.; Gowda, Sujith M.; Wixon, Michael; Kalka, Jessica; Wagner, Angela Z.; Salvi, Aatish; Aleven, Vincent; Kusbit, Gail W.; Ocumpaugh, Jaclyn; Rossi, Lisa

    2012-01-01

    In recent years, the usefulness of affect detection for educational software has become clear. Accurate detection of student affect can support a wide range of interventions with the potential to improve student affect, increase engagement, and improve learning. In addition, accurate detection of student affect could play an essential role in…

  6. An FPGA-Based People Detection System

    NASA Astrophysics Data System (ADS)

    Nair, Vinod; Laprise, Pierre-Olivier; Clark, James J.

    2005-12-01

    This paper presents an FPGA-based system for detecting people from video. The system is designed to use JPEG-compressed frames from a network camera. Unlike previous approaches that use techniques such as background subtraction and motion detection, we use a machine-learning-based approach to train an accurate detector. We address the hardware design challenges involved in implementing such a detector, along with JPEG decompression, on an FPGA. We also present an algorithm that efficiently combines JPEG decompression with the detection process. This algorithm carries out the inverse DCT step of JPEG decompression only partially. Therefore, it is computationally more efficient and simpler to implement, and it takes up less space on the chip than the full inverse DCT algorithm. The system is demonstrated on an automated video surveillance application and the performance of both hardware and software implementations is analyzed. The results show that the system can detect people accurately at a rate of about[InlineEquation not available: see fulltext.] frames per second on a Virtex-II 2V1000 using a MicroBlaze processor running at[InlineEquation not available: see fulltext.], communicating with dedicated hardware over FSL links.

  7. Self-controlled knowledge of results: age-related differences in motor learning, strategies, and error detection.

    PubMed

    Carter, Michael J; Patterson, Jae T

    2012-12-01

    Research has demonstrated that a self-controlled KR schedule is advantageous for motor learning; however, the usefulness of a self-controlled KR context in older adults remains unknown. To address this gap in knowledge, we examined whether (1) the learning benefits of a self-controlled KR schedule are modulated by the age of the learner; (2) practicing in a self-controlled KR context concurrently strengthens the learner's error detection mechanism, and (3) the KR strategy during acquisition changes as a function of practice trials completed and age. As a function of age, participants were quasirandomly assigned to either the self-control or yoked group resulting in four experimental groups (Self-Young, Yoked-Young, Self-Old, and Yoked-Old). The results revealed the Self-Young group: (1) demonstrated superior retention performance than all other groups (p<.05); (2) was more accurate in estimating motor performance than all other groups during retention (p<.05), and (3) self-reported a switch in their strategy for requesting KR during acquisition based on the number of practice trials completed. Collectively, our findings suggest that older adults do not demonstrate the same learning benefits of a self-controlled KR context as younger adults which may be attributed to differences in KR strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR.

    PubMed

    Ye, Wei; Tang, Xiaojun; Liu, Chu; Wen, Chaowei; Li, Wei; Lyu, Jianxin

    2017-04-01

    To establish a method for accurate quantitation of circulating cell-free mitochondrial DNA (ccf-mtDNA) in plasma by droplet digital PCR (ddPCR), we designed a ddPCR method to determine the copy number of ccf-mtDNA by amplifying mitochondrial ND1 (MT-ND1). To evaluate the sensitivity and specificity of the method, a recombinant pMD18-T plasmid containing MT-ND1 sequences and mtDNA-deleted (ρ 0 ) HeLa cells were used, respectively. Subsequently, different plasma samples were prepared for ddPCR to evaluate the feasibility of detecting plasma ccf-mtDNA. In the results, the ddPCR method showed high sensitivity and specificity. When the DNA was extracted from plasma prior to ddPCR, the ccf-mtDNA copy number was higher than that measured without extraction. This difference was not due to a PCR inhibitor, such as EDTA-Na 2 , an anti-coagulant in plasma, because standard EDTA-Na 2 concentration (5 mM) did not significantly inhibit ddPCR reactions. The difference might be attributable to plasma exosomal mtDNA, which was 4.21 ± 0.38 copies/μL of plasma, accounting for ∼19% of plasma ccf-mtDNA. Therefore, ddPCR can quickly and reliably detect ccf-mtDNA from plasma with a prior DNA extraction step, providing for a more accurate detection of ccf-mtDNA. The direct use of plasma as a template in ddPCR is suitable for the detection of exogenous cell-free nucleic acids within plasma, but not of nucleic acids that have a vesicle-associated form, such as exosomal mtDNA. Graphical Abstract Designs of the present work. *: Module 1, #: Module 2, &: Module 3.

  9. Accurate characterisation of hole size and location by projected fringe profilometry

    NASA Astrophysics Data System (ADS)

    Wu, Yuxiang; Dantanarayana, Harshana G.; Yue, Huimin; Huntley, Jonathan M.

    2018-06-01

    The ability to accurately estimate the location and geometry of holes is often required in the field of quality control and automated assembly. Projected fringe profilometry is a potentially attractive technique on account of being non-contacting, of lower cost, and orders of magnitude faster than the traditional coordinate measuring machine. However, we demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is identified based on the finite size of the imaging system’s point spread function and the resulting bias produced near to sample discontinuities in geometry and reflectivity. A mathematical model is proposed, from which a post-processing compensation algorithm is developed to suppress such errors around the holes. The algorithm includes a robust and accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. The proposed algorithm was found to reduce significantly the measurement artefacts near the hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of magnitude, to a few tens of µm for hole radii in the range 2–15 mm, compared to those from the uncompensated measurements.

  10. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less

  11. Detection of blur artifacts in histopathological whole-slide images of endomyocardial biopsies.

    PubMed

    Hang Wu; Phan, John H; Bhatia, Ajay K; Cundiff, Caitlin A; Shehata, Bahig M; Wang, May D

    2015-01-01

    Histopathological whole-slide images (WSIs) have emerged as an objective and quantitative means for image-based disease diagnosis. However, WSIs may contain acquisition artifacts that affect downstream image feature extraction and quantitative disease diagnosis. We develop a method for detecting blur artifacts in WSIs using distributions of local blur metrics. As features, these distributions enable accurate classification of WSI regions as sharp or blurry. We evaluate our method using over 1000 portions of an endomyocardial biopsy (EMB) WSI. Results indicate that local blur metrics accurately detect blurry image regions.

  12. Linear segmentation algorithm for detecting layer boundary with lidar.

    PubMed

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  13. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  14. On-line high-speed rail defect detection : research results.

    DOT National Transportation Integrated Search

    2008-08-01

    The rail defect detection prototype, which is being developed by the University of California-San Diego (UCSD) under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, has produced encouraging results in recent fi...

  15. Urinary PCR as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock.

    PubMed

    Hamond, C; Martins, G; Loureiro, A P; Pestana, C; Lawson-Ferreira, R; Medeiros, M A; Lilenbaum, W

    2014-03-01

    The aim of the present study was to consider the wide usage of urinary PCR as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock. A total of 512 adult animals (300 cattle, 138 horses, 59 goats and 15 pigs), from herds/flocks with reproductive problems in Rio de Janeiro, Brazil was studied by serology and urinary PCR. From the 512 serum samples tested, 223 (43.5 %) were seroreactive (cattle: 45.6 %, horses: 41.3 %, goats: 34%and pigs: 60 %). PCR detected leptospiral DNA in 32.4 % (cattle: 21.6 %, horses: 36.2 %, goats: 77.4 % and pigs: 33.3 %. To our knowledge there is no another study including such a large number of samples (512) from different species, providing a comprehensive analysis of the usage of PCR for detecting leptospiral carriers in livestock. Serological and molecular results were discrepant, regardless the titre, what was an expected outcome. Nevertheless, it is impossible to establish agreement between these tests, since the two methodologies are conducted on different samples (MAT - serum; PCR - urine). Additionally, the MAT is an indirect method and PCR is a direct one. In conclusion, we have demonstrated that urinary PCR should be considered and encouraged as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock.

  16. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  17. Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice

    PubMed Central

    Liu, Yang; Jennings, Nicole L; Dart, Anthony M; Du, Xiao-Jun

    2012-01-01

    AIM: To optimize the experimental protocols for a simple, sensitive and accurate bleeding assay. METHODS: Bleeding assay was performed in mice by tail tip amputation, immersing the tail in saline at 37 °C, continuously monitoring bleeding patterns and measuring bleeding volume from changes in the body weight. Sensitivity and extent of variation of bleeding time and bleeding volume were compared in mice treated with the P2Y receptor inhibitor prasugrel at various doses or in mice deficient of FcRγ, a signaling protein of the glycoprotein VI receptor. RESULTS: We described details of the bleeding assay with the aim of standardizing this commonly used assay. The bleeding assay detailed here was simple to operate and permitted continuous monitoring of bleeding pattern and detection of re-bleeding. We also reported a simple and accurate way of quantifying bleeding volume from changes in the body weight, which correlated well with chemical assay of hemoglobin levels (r2 = 0.990, P < 0.0001). We determined by tail bleeding assay the dose-effect relation of the anti-platelet drug prasugrel from 0.015 to 5 mg/kg. Our results showed that the correlation of bleeding time and volume was unsatisfactory and that compared with the bleeding time, bleeding volume was more sensitive in detecting a partial inhibition of platelet’s haemostatic activity (P < 0.01). Similarly, in mice with genetic disruption of FcRγ as a signaling molecule of P-selectin glycoprotein ligand-1 leading to platelet dysfunction, both increased bleeding volume and repeated bleeding pattern defined the phenotype of the knockout mice better than that of a prolonged bleeding time. CONCLUSION: Determination of bleeding pattern and bleeding volume, in addition to bleeding time, improved the sensitivity and accuracy of this assay, particularly when platelet function is partially inhibited. PMID:24520531

  18. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  19. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  20. Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs

    NASA Technical Reports Server (NTRS)

    Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen

    2015-01-01

    An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.

  1. Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.

    PubMed

    Sabherwal, Pooja; Singh, Latika; Agrawal, Monika

    2018-03-30

    In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.

  2. Asteroid Detection Results Using the Space Surveillance Telescope

    DTIC Science & Technology

    2015-10-18

    Distribution Statement A: Approved for public release, distribution unlimited. Asteroid Detection Results Using the Space Surveillance Telescope...issued a series of directives to the National Air and Space Administration (NASA), setting Near-Earth Asteroid (NEA) search and discovery targets in...order to protect the Earth and its inhabitants from the threat of asteroid impact. The focus of the original 1998 Congressional mandate was to catalog

  3. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks.

    PubMed

    Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan

    2018-04-01

    Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage deep learning framework. Our method consists of a deep segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed deep detection network for localizing mitosis by using contextual region information, and a deep verification network for improving detection accuracy by removing false positives. We validate the proposed deep learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the deep detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the deep detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Do doctors accurately assess coronary risk in their patients? Preliminary results of the coronary health assessment study.

    PubMed Central

    Grover, S. A.; Lowensteyn, I.; Esrey, K. L.; Steinert, Y.; Joseph, L.; Abrahamowicz, M.

    1995-01-01

    OBJECTIVE--To evaluate the ability of doctors in primary care to assess risk patients' risk of coronary heart disease. DESIGN--Questionnaire survey. SETTING--Continuing medical education meetings, Ontario and Quebec, Canada. SUBJECTS--Community based doctors who agreed to enroll in the coronary health assessment study. MAIN OUTCOME MEASURE--Ratings of coronary risk factors and estimates by doctors of relative and absolute coronary risk of two hypothetical patients and the "average" 40 year old Canadian man and 70 year old Canadian woman. RESULTS--253 doctors answered the questionnaire. For 30 year olds the doctors rated cigarette smoking as the most important risk factor and raised serum triglyceride concentrations as the least important; for 70 year old patients they rated diabetes as the most important risk factor and raised serum triglyceride concentrations as the least important. They rated each individual risk factor as significantly less important for 70 year olds than for 30 year olds (all risk factors, P < 0.001). They showed a strong understanding of the relative importance of specific risk factors, and most were confident in their ability to estimate coronary risk. While doctors accurately estimated the relative risk of a specific patient (compared with the average adult) they systematically overestimated the absolute baseline risk of developing coronary disease and the risk reductions associated with specific interventions. CONCLUSIONS--Despite guidelines on targeting patients at high risk of coronary disease accurate assessment of coronary risk remains difficult for many doctors. Additional strategies must be developed to help doctors to assess better their patients' coronary risk. PMID:7728035

  5. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe.

    PubMed

    Zhang, Jing; Liang, Lijia; Guan, Xin; Deng, Rong; Qu, Huixin; Huang, Dianshuai; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-01

    A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2'-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles. Graphical abstract A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS.

  6. Accurate high-speed liquid handling of very small biological samples.

    PubMed

    Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F

    1993-08-01

    Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.

  7. MSeq-CNV: accurate detection of Copy Number Variation from Sequencing of Multiple samples.

    PubMed

    Malekpour, Seyed Amir; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-05

    Currently a few tools are capable of detecting genome-wide Copy Number Variations (CNVs) based on sequencing of multiple samples. Although aberrations in mate pair insertion sizes provide additional hints for the CNV detection based on multiple samples, the majority of the current tools rely only on the depth of coverage. Here, we propose a new algorithm (MSeq-CNV) which allows detecting common CNVs across multiple samples. MSeq-CNV applies a mixture density for modeling aberrations in depth of coverage and abnormalities in the mate pair insertion sizes. Each component in this mixture density applies a Binomial distribution for modeling the number of mate pairs with aberration in the insertion size and also a Poisson distribution for emitting the read counts, in each genomic position. MSeq-CNV is applied on simulated data and also on real data of six HapMap individuals with high-coverage sequencing, in 1000 Genomes Project. These individuals include a CEU trio of European ancestry and a YRI trio of Nigerian ethnicity. Ancestry of these individuals is studied by clustering the identified CNVs. MSeq-CNV is also applied for detecting CNVs in two samples with low-coverage sequencing in 1000 Genomes Project and six samples form the Simons Genome Diversity Project.

  8. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  9. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  10. A robust recognition and accurate locating method for circular coded diagonal target

    NASA Astrophysics Data System (ADS)

    Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin

    2017-10-01

    As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.

  11. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2006-01-01

    Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.

  12. Shadow detection of moving objects based on multisource information in Internet of things

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Zhang, De-gan; Chen, Jie; Hou, Yue-xian

    2017-05-01

    Moving object detection is an important part in intelligent video surveillance under the banner of Internet of things. The detection of moving target's shadow is also an important step in moving object detection. On the accuracy of shadow detection will affect the detection results of the object directly. Based on the variety of shadow detection method, we find that only using one feature can't make the result of detection accurately. Then we present a new method for shadow detection which contains colour information, the invariance of optical and texture feature. Through the comprehensive analysis of the detecting results of three kinds of information, the shadow was effectively determined. It gets ideal effect in the experiment when combining advantages of various methods.

  13. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    NASA Astrophysics Data System (ADS)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  14. Automated accident detection at intersections.

    DOT National Transportation Integrated Search

    2004-03-01

    This research aims to provide a timely and accurate accident detection method at intersections, which is : very important for the Traffic Management System(TMS). This research uses acoustic signals to detect : accident at intersections. A system is c...

  15. Questioning the Specificity of ASRS-v1.1 to Accurately Detect ADHD in Substance Abusing Populations

    ERIC Educational Resources Information Center

    Chiasson, Jean-Pierre; Stavro, Katherine; Rizkallah, Elie; Lapierre, Luc; Dussault, Maxime; Legault, Louis; Potvin, Stephane

    2012-01-01

    Objective: To assess the specificity of the Adult ADHD Self-Report Scale (ASRS-v1.1) in detecting ADHD among individuals with substance use disorders (SUDs). Method: A chart review of 183 SUD patients was conducted. Patients were screened for ADHD with the ASRS-v1.1 and were later assessed by a psychiatrist specialized in ADHD. Results: Among SUD…

  16. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  17. Multiple Behavior Change Intervention to Improve Detection of Unmet Social Needs and Resulting Resource Referrals

    PubMed Central

    Colvin, Jeffrey D.; Bettenhausen, Jessica L.; Anderson-Carpenter, Kaston D.; Collie-Akers, Vicki; Plencner, Laura; Krager, Molly; Nelson, Brooke; Donnelly, Sara; Simmons, Julia; Higinio, Valeria; Chung, Paul J.

    2015-01-01

    Objective It is critical that pediatric residents learn to effectively screen families for active and addressable social needs (i.e., negative social determinants of health.) We sought to determine 1) whether a brief intervention teaching residents about IHELP, a social needs screening tool, could improve resident screening, and 2) how accurately IHELP could detect needs in the inpatient setting. Methods During an 18-month period, interns rotating on one of two otherwise identical inpatient general pediatrics teams were trained in IHELP. Interns on the other team served as the comparison group. Every admission history and physical (H&P) was reviewed for IHELP screening. Social work evaluations were used to establish the sensitivity and specificity of IHELP and document resources provided to families with active needs. During a 21-month post-intervention period, every third H&P was reviewed to determine median duration of continued IHELP use. Results 619 admissions met inclusion criteria. Over 80% of intervention team H&Ps documented use of IHELP. The percentage of social work consults was nearly 3 times greater on the intervention team than on the comparison team (P<0.001). Among H&Ps with documented use of IHELP, specificity was 0.96 (95% CI 0.87–0.99) and sensitivity was 0.63 (95% CI 0.50–0.73). Social work provided resources for 78% of positively screened families. The median duration of screening use by residents after the intervention was 8.1 months (IQR 1–10 months) Conclusions A brief intervention increased resident screening and detection of social needs, leading to important referrals to address those needs. PMID:26183003

  18. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.

    PubMed

    Neuwald, Andrew F

    2009-08-01

    The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.

  19. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  20. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  1. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.

    PubMed

    Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong

    2018-05-21

    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.

  2. Point of Care Ultrasound Accurately Distinguishes Inflammatory from Noninflammatory Disease in Patients Presenting with Abdominal Pain and Diarrhea

    PubMed Central

    Novak, Kerri L.; Jacob, Deepti; Kaplan, Gilaad G.; Boyce, Emma; Ghosh, Subrata; Ma, Irene; Lu, Cathy; Wilson, Stephanie; Panaccione, Remo

    2016-01-01

    Background. Approaches to distinguish inflammatory bowel disease (IBD) from noninflammatory disease that are noninvasive, accurate, and readily available are desirable. Such approaches may decrease time to diagnosis and better utilize limited endoscopic resources. The aim of this study was to evaluate the diagnostic accuracy for gastroenterologist performed point of care ultrasound (POCUS) in the detection of luminal inflammation relative to gold standard ileocolonoscopy. Methods. A prospective, single-center study was conducted on convenience sample of patients presenting with symptoms of diarrhea and/or abdominal pain. Patients were offered POCUS prior to having ileocolonoscopy. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence intervals (CI), as well as likelihood ratios, were calculated. Results. Fifty-eight patients were included in this study. The overall sensitivity, specificity, PPV, and NPV were 80%, 97.8%, 88.9%, and 95.7%, respectively, with positive and negative likelihood ratios (LR) of 36.8 and 0.20. Conclusion. POCUS can accurately be performed at the bedside to detect transmural inflammation of the intestine. This noninvasive approach may serve to expedite diagnosis, improve allocation of endoscopic resources, and facilitate initiation of appropriate medical therapy. PMID:27446838

  3. Effects of Linking Methods on Detection of DIF.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    1992-01-01

    Effects of the following methods for linking metrics on detection of differential item functioning (DIF) were compared: (1) test characteristic curve method (TCC); (2) weighted mean and sigma method; and (3) minimum chi-square method. With large samples, results were essentially the same. With small samples, TCC was most accurate. (SLD)

  4. Breast cancer detection risk in screening mammography after a false-positive result.

    PubMed

    Castells, X; Román, M; Romero, A; Blanch, J; Zubizarreta, R; Ascunce, N; Salas, D; Burón, A; Sala, M

    2013-02-01

    False-positives are a major concern in breast cancer screening. However, false-positives have been little evaluated as a prognostic factor for cancer detection. Our aim was to evaluate the association of false-positive results with the cancer detection risk in subsequent screening participations over a 17-year period. This is a retrospective cohort study of 762,506 women aged 45-69 years, with at least two screening participations, who underwent 2,594,146 screening mammograms from 1990 to 2006. Multilevel discrete-time hazard models were used to estimate the adjusted odds ratios (OR) of breast cancer detection in subsequent screening participations in women with false-positive results. False-positives involving a fine-needle aspiration cytology or a biopsy had a higher cancer detection risk than those involving additional imaging procedures alone (OR = 2.69; 95%CI: 2.28-3.16 and OR = 1.81; 95%CI: 1.70-1.94, respectively). The risk of cancer detection increased substantially if women with cytology or biopsy had a familial history of breast cancer (OR = 4.64; 95%CI: 3.23-6.66). Other factors associated with an increased cancer detection risk were age 65-69 years (OR = 1.84; 95%CI: 1.67-2.03), non-attendance at the previous screening invitation (OR = 1.26; 95%CI: 1.11-1.43), and having undergone a previous benign biopsy outside the screening program (OR = 1.24; 95%CI: 1.13-1.35). Women with a false-positive test have an increased risk of cancer detection in subsequent screening participations, especially those with a false-positive result involving cytology or biopsy. Understanding the factors behind this association could provide valuable information to increase the effectiveness of breast cancer screening. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. On computational Gestalt detection thresholds.

    PubMed

    Grompone von Gioi, Rafael; Jakubowicz, Jérémie

    2009-01-01

    The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.

  6. Detection of disseminated peritoneal tumors by fluorescein diacrylate in mice

    NASA Astrophysics Data System (ADS)

    Harada, Yoshinori; Furuta, Hirokazu; Murayama, Yasutoshi; Dai, Ping; Fujikawa, Yuta; Urano, Yasuteru; Nagano, Tetsuo; Morishita, Koki; Hasegawa, Akira; Takamatsu, Tetsuro

    2009-02-01

    Tumor invasion to the peritoneum is a poor prognostic factor in cancer patients. Accurate diagnosis of disseminated peritoneal tumors is essential to accurate cancer staging. To date, peritoneal washing cytology during laparotomy has been used for diagnosis of peritoneal dissemination of gastrointestinal cancer, but its sensitivity has not been satisfactory. Thus, a more direct approach is indispensable to detect peritoneal dissemination in vivo. Fluorescein diacrylate (FDAcr) is an esterase-sensitive fluorescent probe derived from fluorescein. In cancer cells, fluorescent fluorescein generated by exogenous application of FDAcr selectively deposits owing to its stronger hydrolytic enzyme activity and its lower leakage rate. We examined whether FDAcr can specifically detect disseminated peritoneal tumors in athymic nude mouse models. Intraperitoneally administered FDAcr revealed disseminated peritoneal microscopic tumors not readily recognized on white-light imaging. These results suggest that FDAcr is a useful probe for detecting disseminated peritoneal tumors.

  7. Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering

    PubMed Central

    Ding, Yufeng; Yin, Hongjun; Meng, Qingyun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun

    2017-01-01

    We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics. PMID:29261161

  8. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  9. Calculation of the detection limit in radiation measurements with systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.

    2015-06-01

    The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  10. High-resolution metabolomics assessment of military personnel: Evaluating analytical strategies for chemical detection

    PubMed Central

    Liu, Ken H.; Walker, Douglas I.; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M.; Jones, Dean P.

    2016-01-01

    Objective To maximize detection of serum metabolites with high-resolution metabolomics (HRM). Methods Department of Defense Serum Repository (DoDSR) samples were analyzed using ultra-high resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Results Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72%, and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Conclusions Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel. PMID:27501105

  11. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  12. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach

    PubMed Central

    Chitty, Lyn S; Mason, Sarah; Barrett, Angela N; McKay, Fiona; Lench, Nicholas; Daley, Rebecca; Jenkins, Lucy A

    2015-01-01

    Abstract Objective Accurate prenatal diagnosis of genetic conditions can be challenging and usually requires invasive testing. Here, we demonstrate the potential of next-generation sequencing (NGS) for the analysis of cell-free DNA in maternal blood to transform prenatal diagnosis of monogenic disorders. Methods Analysis of cell-free DNA using a PCR and restriction enzyme digest (PCR–RED) was compared with a novel NGS assay in pregnancies at risk of achondroplasia and thanatophoric dysplasia. Results PCR–RED was performed in 72 cases and was correct in 88.6%, inconclusive in 7% with one false negative. NGS was performed in 47 cases and was accurate in 96.2% with no inconclusives. Both approaches were used in 27 cases, with NGS giving the correct result in the two cases inconclusive with PCR–RED. Conclusion NGS provides an accurate, flexible approach to non-invasive prenatal diagnosis of de novo and paternally inherited mutations. It is more sensitive than PCR–RED and is ideal when screening a gene with multiple potential pathogenic mutations. These findings highlight the value of NGS in the development of non-invasive prenatal diagnosis for other monogenic disorders. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. What's already known about this topic? Non-invasive prenatal diagnosis (NIPD) using PCR-based methods has been reported for the detection or exclusion of individual paternally inherited or de novo alleles in maternal plasma. What does this study add? NIPD using next generation sequencing provides an accurate, more sensitive approach which can be used to detect multiple mutations in a single assay and so is ideal when screening a gene with multiple potential pathogenic mutations. Next generation sequencing thus provides a flexible approach to non-invasive prenatal diagnosis ideal for use in a busy service laboratory. PMID:25728633

  13. CRSP, numerical results for an electrical resistivity array to detect underground cavities

    NASA Astrophysics Data System (ADS)

    Amini, Amin; Ramazi, Hamidreza

    2017-03-01

    This paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.

  14. Accuracy of Carboxyhemoglobin Detection by Pulse CO-Oximetry During Hypoxemia

    PubMed Central

    Feiner, John R.; Rollins, Mark D.; Sall, Jeffrey; Eilers, Helge; Au, Paul; Bickler, Philip E.

    2015-01-01

    Background Carbon monoxide poisoning is a significant problem in most countries, and a reliable method of quick diagnosis would greatly improve patient care. Until the recent introduction of a multi-wavelength “pulse CO-oximeter” (Masimo Rainbow SET® Radical-7), carboxyhemoglobin (COHb) levels in blood required blood sampling and laboratory analysis. The purpose of this study was to determine if hypoxemia, which can accompany carbon monoxide poisoning, interferes with the accurate detection of COHb. Methods Twelve healthy non-smoking adult volunteers were fitted with 2 standard pulse oximeter finger probes and 2 Rainbow probes for COHb detection. A radial arterial catheter was placed for blood sampling during three interventions: 1) increasing hypoxemia in incremental steps with oxygen saturations (SaO2) of 100-80%; 2) normoxia with incremental increases in %COHb to 12%; and 3) elevated COHb combined with hypoxemia with SaO2 of 100-80%. Pulse oximeter readings (SpCO) were compared with simultaneous arterial blood values at the various increments of hypoxemia and carboxyhemoglobinemia (≈25 samples per subject). Pulse CO-oximeter performance was analyzed by calculating the mean bias (SpCO – %COHb), standard deviation of the bias (precision), and the root mean square error (Arms). Results The Radical 7 accurately detected hypoxemia with both normal and elevated levels of COHb (bias mean ± SD: 0.44 ± 1.69% at %COHb < 4%, and −0.29 ± 1.64% at %COHb ≥ 4%, P < 0.0001, and Arms 1.74% vs. 1.67%). COHb was accurately detected during normoxia and moderate hypoxia (bias mean ± SD: −0.98 ± 2.6 at SaO2 ≥ 95%, and −0.7 ± 4.0 at SaO2 < 95%, P = 0.60, and Arms 2.8% vs. 4.0%), but when SaO2 fell below ~85%, the pulse CO-oximeter always gave low signal quality errors and did not report SpCO values. Conclusions In healthy volunteers, the Radical 7 pulse CO-oximeter accurately detects hypoxemia with both low and elevated COHb levels, and accurately detects

  15. Juneau Airport Doppler Lidar Deployment: Extraction of Accurate Turbulent Wind Statistics

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Frehlich, Rod; Cornman, Larry; Goodrich, Robert; Norris, Douglas; Williams, John

    1999-01-01

    A 2 micrometer pulsed Doppler lidar was deployed to the Juneau Airport in 1998 to measure turbulence and wind shear in and around the departure and arrival corridors. The primary objective of the measurement program was to demonstrate and evaluate the capability of a pulsed coherent lidar to remotely and unambiguously measure wind turbulence. Lidar measurements were coordinated with flights of an instrumented research aircraft operated by representatives of the University of North Dakota (UND) under the direction of the National Center for Atmospheric Research (NCAR). The data collected is expected to aid both turbulence characterization as well as airborne turbulence detection algorithm development activities within NASA and the FAA. This paper presents a summary of the deployment and results of analysis and simulation which address important issues regarding the measurement requirements for accurate turbulent wind statistics extraction.

  16. Convolution neural networks for real-time needle detection and localization in 2D ultrasound.

    PubMed

    Mwikirize, Cosmas; Nosher, John L; Hacihaliloglu, Ilker

    2018-05-01

    We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization. Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and [Formula: see text]-[Formula: see text] insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory. Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an [Formula: see text] score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of [Formula: see text], tip localization error of [Formula: see text] mm, and a total processing time of 0.58 s were achieved. The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.

  17. An effective diagnostic strategy for accurate detection of RhD variants including Asian DEL type in apparently RhD-negative blood donors in Korea.

    PubMed

    Seo, M H; Won, E J; Hong, Y J; Chun, S; Kwon, J R; Choi, Y S; Kim, J N; Lee, S A; Lim, A H; Kim, S H; Park, K U; Cho, D

    2016-11-01

    The purpose of this study was to provide an effective RHD genotyping strategy for the East Asian blood donors. RhD phenotyping, weak D testing and RhCE phenotyping were performed on 110 samples from members of the RhD-negative club, private organization composed of RhD-negative blood donors, in the GwangJu-Chonnam region of Korea. The RHD promoter, intron 4, and exons 7 and 10 were analysed by real-time PCR. Two nucleotide changes (c.1227 G>A, and c.1222 T>C) in exon 9 were analysed by sequencing. Of 110 RhD-negative club members, 79 (71·8%) showed complete deletion of the RHD gene, 10 (9·1%) showed results consistent with RHD-CE-D hybrid, and 21 (19·1%) showed amplification of RHD promoter, intron 4, and exons 7 and 10. Of the latter group, 16 (14·5%) were in the DEL blood group including c.1227 G>A (N = 14) and c.1222 T>C (N = 2), 2 (1·8%) were weak D, 1(0·9%) was partial D, and 2 (1·8%) were undetermined. The RhD-negative phenotype samples consisted of 58 C-E-c+e+, 19 C-E+c+e+, 3 C-E+c+e-, 21 C+E-c+e-, 6 C+E-c+e+ and 3 C+E-c-e + . Notably, all 58 samples with the C-E-c+e+ phenotype were revealed to have complete deletion of the RHD gene. The C-E-c+e+ phenotype showed 100% positive predictive value for detecting D-negative cases. RHD genotyping is not required in half of D-negative cases. We suggest here an effective RHD genotyping strategy for accurate detection of RhD variants in apparently RhD-negative blood donors in East Asia. © 2016 International Society of Blood Transfusion.

  18. Urban change detection procedures using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.; Toll, D. L.

    1982-01-01

    Landsat multispectral scanner data was applied to an urban change detection problem in Denver, CO. A dichotomous key yielding ten stages of residential development at the urban fringe was developed. This heuristic model allowed one to identify certain stages of development which are difficult to detect when performing digital change detection using Landsat data. The stages of development were evaluated in terms of their spectral and derived textural characteristics. Landsat band 5 (0.6-0.7 micron) and texture data produced change detection maps which were approximately 81 percent accurate. Results indicated that the stage of development and the spectral/textural features affect the change in the spectral values used for change detection. These preliminary findings will hopefully prove valuable for improved change detection at the urban fringe.

  19. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  20. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  1. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  2. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    PubMed

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the

  3. Accurate Structural Correlations from Maximum Likelihood Superpositions

    PubMed Central

    Theobald, Douglas L; Wuttke, Deborah S

    2008-01-01

    The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091

  4. Community detection in networks with unequal groups.

    PubMed

    Zhang, Pan; Moore, Cristopher; Newman, M E J

    2016-01-01

    Recently, a phase transition has been discovered in the network community detection problem below which no algorithm can tell which nodes belong to which communities with success any better than a random guess. This result has, however, so far been limited to the case where the communities have the same size or the same average degree. Here we consider the case where the sizes or average degrees differ. This asymmetry allows us to assign nodes to communities with better-than-random success by examining their local neighborhoods. Using the cavity method, we show that this removes the detectability transition completely for networks with four groups or fewer, while for more than four groups the transition persists up to a critical amount of asymmetry but not beyond. The critical point in the latter case coincides with the point at which local information percolates, causing a global transition from a less-accurate solution to a more-accurate one.

  5. COBRA ATD minefield detection results for the Joint Countermine ACTD Demonstrations

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne P.; Witherspoon, Ned H.; Holloway, John H., Jr.; Suiter, Harold R.; Crosby, Frank J.; Hilton, Russell J.; McCarley, Karen A.

    2000-08-01

    The Coastal Battlefield Reconnaissance and Analysis)COBRA) system described here was a Marine Corps Advanced Technology Demonstration (ATD) development consisting of an unmanned aerial vehicle (UAV) airborne multispectral video sensor system and ground station which processes the multispectral video data to automatically detect minefields along the flight path. After successful completion of the ATD, the residual COBRA ATD system participated in the Joint Countermine (JCM) Advanced Concept Technology Demonstration (ACTD) Demo I held at Camp Lejeune, North Carolina in conjunction with JTFX97 and Demo II held in Stephenville, Newfoundland in conjunction with MARCOT98. These exercises demonstrated the COBRA ATD system in an operational environment, detecting minefields that included several different mine types in widely varying backgrounds. The COBRA system performed superbly during these demonstrations, detecting mines under water, in the surf zone, on the beach, and inland, and has transitioned to an acquisition program. This paper describes the COBRA operation and performance results for these demonstrations, which represent the first demonstrated capability for remote tactical minefield detection from a UAV. The successful COBRA technologies and techniques demonstrated for tactical UAV minefield detection in the Joint Countermine Advanced Concept Technology Demonstrations have formed the technical foundation for future developments in Marine Corps, Navy, and Army tactical remote airborne mine detection systems.

  6. Salient object detection method based on multiple semantic features

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Yu, Chunyan; Song, Meiping; Wang, Yulei

    2018-04-01

    The existing salient object detection model can only detect the approximate location of salient object, or highlight the background, to resolve the above problem, a salient object detection method was proposed based on image semantic features. First of all, three novel salient features were presented in this paper, including object edge density feature (EF), object semantic feature based on the convex hull (CF) and object lightness contrast feature (LF). Secondly, the multiple salient features were trained with random detection windows. Thirdly, Naive Bayesian model was used for combine these features for salient detection. The results on public datasets showed that our method performed well, the location of salient object can be fixed and the salient object can be accurately detected and marked by the specific window.

  7. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  8. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  9. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  10. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

    PubMed Central

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475

  11. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.

    PubMed

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2017-12-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.

  12. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  13. Trained neurons-based motion detection in optical camera communications

    NASA Astrophysics Data System (ADS)

    Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho

    2018-04-01

    A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.

  14. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  15. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  16. Concurrent and Accurate Short Read Mapping on Multicore Processors.

    PubMed

    Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S

    2015-01-01

    We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.

  17. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  18. Accurate simulation of backscattering spectra in the presence of sharp resonances

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Alves, E.; Jeynes, C.; Tosaki, M.

    2006-06-01

    In elastic backscattering spectrometry, the shape of the observed spectrum due to resonances in the nuclear scattering cross-section is influenced by many factors. If the energy spread of the beam before interaction is larger than the resonance width, then a simple convolution with the energy spread on exit and with the detection system resolution will lead to a calculated spectrum with a resonance much sharper than the observed signal. Also, the yield from a thin layer will not be calculated accurately. We have developed an algorithm for the accurate simulation of backscattering spectra in the presence of sharp resonances. Albeit approximate, the algorithm leads to dramatic improvements in the quality and accuracy of the simulations. It is simple to implement and leads to only small increases of the calculation time, being thus suitable for routine data analysis. We show different experimental examples, including samples with roughness and porosity.

  19. POLLUTION DETECTION DOGS: PROOF OF CONCEPT

    EPA Science Inventory

    Dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Dogs are regularly used in arson investigations to detect accelerants since they are much more accurate at discriminating between accelerants an...

  20. Results of an early hearing detection program.

    PubMed

    Borkoski Barreiro, Silvia A; Falcón González, Juan C; Bueno Yanes, Jorge; Pérez Bermúdez, José L; López Cano, Zoraida; Ramos Macías, Ángel

    2013-01-01

    Neonatal hearing loss is a public health problem that meets the requirements for submission to universal screening. Our objective was to analyse the results of the early hearing detection and intervention program implemented at our centre between January 2007 and December 2010. We studied 26,717 newborns during the period mentioned, using transient otoacoustic emissions (TOAEs) for the screening. The diagnostic phase was carried out at the hearing loss department. In our area, there were 27,935 births between January 2007 and December 2010. The screening was performed on 26,717 children. Of these, 24,173 had positive TOAEs, 1,040 had no TOAEs and 1,504 presented TOAEs in 1 ear with absence of TOAEs in the contralateral ear. Risk factors associated with hearing loss were found in 4,674 infants. In a second phase of the program, TOAEs were given to 5,156 children, of whom 4,626 had positive otoacoustic emissions in both ears, 323 had no TOAEs in 1 ear and 207 failed this second phase. Of all children studied, 3.8% were referred to auditory brainstem response (ABR) testing and 26 children entered the cochlear implant program. The program reached coverage of 95.64%. The early hearing detection and intervention program at our hospital is suitable for our environment, reaching 95.64% of coverage. We consider the relationship between effectiveness and efficiency to be positive. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  1. Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: initial results for vocal fold nodules.

    PubMed

    Ghassemi, Marzyeh; Van Stan, Jarrad H; Mehta, Daryush D; Zañartu, Matías; Cheyne, Harold A; Hillman, Robert E; Guttag, John V

    2014-06-01

    Voice disorders are medical conditions that often result from vocal abuse/misuse which is referred to generically as vocal hyperfunction. Standard voice assessment approaches cannot accurately determine the actual nature, prevalence, and pathological impact of hyperfunctional vocal behaviors because such behaviors can vary greatly across the course of an individual's typical day and may not be clearly demonstrated during a brief clinical encounter. Thus, it would be clinically valuable to develop noninvasive ambulatory measures that can reliably differentiate vocal hyperfunction from normal patterns of vocal behavior. As an initial step toward this goal we used an accelerometer taped to the neck surface to provide a continuous, noninvasive acceleration signal designed to capture some aspects of vocal behavior related to vocal cord nodules, a common manifestation of vocal hyperfunction. We gathered data from 12 female adult patients diagnosed with vocal fold nodules and 12 control speakers matched for age and occupation. We derived features from weeklong neck-surface acceleration recordings by using distributions of sound pressure level and fundamental frequency over 5-min windows of the acceleration signal and normalized these features so that intersubject comparisons were meaningful. We then used supervised machine learning to show that the two groups exhibit distinct vocal behaviors that can be detected using the acceleration signal. We were able to correctly classify 22 of the 24 subjects, suggesting that in the future measures of the acceleration signal could be used to detect patients with the types of aberrant vocal behaviors that are associated with hyperfunctional voice disorders.

  2. Initial experiences in the photoacoustic detection of melanoma metastases in resected lymph nodes

    NASA Astrophysics Data System (ADS)

    Grootendorst, D.; Jose, J.; Van der Jagt, P.; Van der Weg, W.; Nagel, K.; Wouters, M.; Van Boven, H.; Van Leeuwen, T. G.; Steenbergen, W.; Ruers, T.; Manohar, S.

    2011-03-01

    Accurate lymph node analysis is essential to determine the prognosis and treatment of patients suffering from melanoma. The initial results of a tomographic photoacoustic modality to detect melanoma metastases in resected lymph nodes are presented based on phantom models and a human lymph node. The results show melanoma metastases detection is feasible and the setup is capable of distinguishing absorbing structures down to 1 mm. In addition, the use of longer laser wavelengths could result in an image containing a higher contrast ratio. Future research shall be focused on using the melanin characteristics to improve contrast and detection possibilities.

  3. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  4. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics

    PubMed Central

    Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung

    2017-01-01

    Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388

  5. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  6. Methods to Detect Nitric Oxide and its Metabolites in Biological Samples

    PubMed Central

    Bryan, Nathan S.; Grisham, Matthew B.

    2007-01-01

    Nitric oxide (NO) methodology is a complex and often confusing science and the focus of many debates and discussion concerning NO biochemistry. NO is involved in many physiological processes including regulation of blood pressure, immune response and neural communication. Therefore its accurate detection and quantification is critical to understanding health and disease. Due to the extremely short physiological half life of this gaseous free radical, alternative strategies for the detection of reaction products of NO biochemistry have been developed. The quantification of NO metabolites in biological samples provides valuable information with regards to in vivo NO production, bioavailability and metabolism. Simply sampling a single compartment such as blood or plasma may not always provide an accurate assessment of whole body NO status, particularly in tissues. Therefore, extrapolation of plasma or blood NO status to specific tissues of interest is no longer a valid approach. As a result, methods continue to be developed and validated which allow the detection and quantification of NO and NO-related products/metabolites in multiple compartments of experimental animals in vivo. The methods described in this review is not an exhaustive or comprehensive discussion of all methods available for the detection of NO but rather a description of the most commonly used and practical methods which allow accurate and sensitive quantification of NO products/metabolites in multiple biological matrices under normal physiological conditions. PMID:17664129

  7. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  8. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  9. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    PubMed

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  10. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  11. 3D surface voxel tracing corrector for accurate bone segmentation.

    PubMed

    Guo, Haoyan; Song, Sicong; Wang, Jinke; Guo, Maozu; Cheng, Yuanzhi; Wang, Yadong; Tamura, Shinichi

    2018-06-18

    For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images. Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation [Formula: see text] to improve the estimation of normal direction. Secondly, we determine an optimal value of [Formula: see text] for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of [Formula: see text] is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of [Formula: see text] is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration. We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of [Formula: see text]% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of [Formula: see text], [Formula: see text]%, and [Formula: see text]% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively. Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two

  12. Accurate determination of the geoid undulation N

    NASA Astrophysics Data System (ADS)

    Lambrou, E.; Pantazis, G.; Balodimos, D. D.

    2003-04-01

    This work is related to the activities of the CERGOP Study Group Geodynamics of the Balkan Peninsula, presents a method for the determination of the variation ΔN and, indirectly, of the geoid undulation N with an accuracy of a few millimeters. It is based on the determination of the components xi, eta of the deflection of the vertical using modern geodetic instruments (digital total station and GPS receiver). An analysis of the method is given. Accuracy of the order of 0.01arcsec in the estimated values of the astronomical coordinates Φ and Δ is achieved. The result of applying the proposed method in an area around Athens is presented. In this test application, a system is used which takes advantage of the capabilities of modern geodetic instruments. The GPS receiver permits the determination of the geodetic coordinates at a chosen reference system and, in addition, provides accurate timing information. The astronomical observations are performed through a digital total station with electronic registering of angles and time. The required accuracy of the values of the coordinates is achieved in about four hours of fieldwork. In addition, the instrumentation is lightweight, easily transportable and can be setup in the field very quickly. Combined with a stream-lined data reduction procedure and the use of up-to-date astrometric data, the values of the components xi, eta of the deflection of the vertical and, eventually, the changes ΔN of the geoid undulation are determined easily and accurately. In conclusion, this work demonstrates that it is quite feasible to create an accurate map of the geoid undulation, especially in areas that present large geoid variations and other methods are not capable to give accurate and reliable results.

  13. Modeling inter-signal arrival times for accurate detection of CAN bus signal injection attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael Roy; Bridges, Robert A; Combs, Frank L

    Modern vehicles rely on hundreds of on-board electronic control units (ECUs) communicating over in-vehicle networks. As external interfaces to the car control networks (such as the on-board diagnostic (OBD) port, auxiliary media ports, etc.) become common, and vehicle-to-vehicle / vehicle-to-infrastructure technology is in the near future, the attack surface for vehicles grows, exposing control networks to potentially life-critical attacks. This paper addresses the need for securing the CAN bus by detecting anomalous traffic patterns via unusual refresh rates of certain commands. While previous works have identified signal frequency as an important feature for CAN bus intrusion detection, this paper providesmore » the first such algorithm with experiments on five attack scenarios. Our data-driven anomaly detection algorithm requires only five seconds of training time (on normal data) and achieves true positive / false discovery rates of 0.9998/0.00298, respectively (micro-averaged across the five experimental tests).« less

  14. Accurate Measurement of the Optical Constants for Organic and Organophosphorous Liquid Layers and Drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.

    We present accurate measurements for the determination of the optical constants for a series of organic liquids, including organophosphorous compounds. Bulk liquids are rarely encountered in the environment, but more commonly are present as droplets of liquids or thin layers on various substrates. Providing reference spectra to account for the plethora of morphological conditions that may be encountered under different scenarios is a challenge. An alternative approach is to provide the complex optical constants, n and k, which can be used to model the optical phenomena in media and at interfaces, minimizing the need for a vast number of laboratorymore » measurements. In this work, we present improved protocols for measuring the optical constants for a series of liquids that span the range from 7800 to 400 cm-1. The broad spectral range means that one needs to account for both the strong and weak spectral features that are encountered, all of which can be useful for detection, depending on the scenario. To span this dynamic range, both long and short cells are required for accurate measurements. The protocols are presented along with experimental and modeling results for thin layers of silicone oil on aluminum.« less

  15. Accurate mass measurement: terminology and treatment of data.

    PubMed

    Brenton, A Gareth; Godfrey, A Ruth

    2010-11-01

    High-resolution mass spectrometry has become ever more accessible with improvements in instrumentation, such as modern FT-ICR and Orbitrap mass spectrometers. This has resulted in an increase in the number of articles submitted for publication quoting accurate mass data. There is a plethora of terms related to accurate mass analysis that are in current usage, many employed incorrectly or inconsistently. This article is based on a set of notes prepared by the authors for research students and staff in our laboratories as a guide to the correct terminology and basic statistical procedures to apply in relation to mass measurement, particularly for accurate mass measurement. It elaborates on the editorial by Gross in 1994 regarding the use of accurate masses for structure confirmation. We have presented and defined the main terms in use with reference to the International Union of Pure and Applied Chemistry (IUPAC) recommendations for nomenclature and symbolism for mass spectrometry. The correct use of statistics and treatment of data is illustrated as a guide to new and existing mass spectrometry users with a series of examples as well as statistical methods to compare different experimental methods and datasets. Copyright © 2010. Published by Elsevier Inc.

  16. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  17. Facile and quantitative electrochemical detection of yeast cell apoptosis

    NASA Astrophysics Data System (ADS)

    Yue, Qiulin; Xiong, Shiquan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin

    2014-03-01

    An electrochemical method based on square wave anodic stripping voltammetry (SWASV) was developed to detect the apoptosis of yeast cells conveniently and quantitatively through the high affinity between Cu2+ and phosphatidylserine (PS) translocated from the inner to the outer plasma membrane of the apoptotic cells. The combination of negatively charged PS and Cu2+ could decrease the electrochemical response of Cu2+ on the electrode. The results showed that the apoptotic rates of cells could be detected quantitatively through the variations of peak currents of Cu2+ by SWASV, and agreed well with those obtained through traditional flow cytometry detection. This work thus may provide a novel, simple, immediate and accurate detection method for cell apoptosis.

  18. The Stool DNA Test is More Accurate than the Plasma Septin 9 Test in Detecting Colorectal Neoplasia

    PubMed Central

    Ahlquist, David A.; Taylor, William R.; Mahoney, Douglas W.; Zou, Hongzhi; Domanico, Michael; Thibodeau, Stephen N.; Boardman, Lisa A.; Berger, Barry M.; Lidgard, Graham P.

    2014-01-01

    Background & Aims Several noninvasive tests have been developed for colorectal cancer (CRC) screening. We compared the sensitivities of a multi-marker test for stool DNA (sDNA) and a plasma test for methylated Septin 9 (SEPT9) in identifying patients with large adenomas or CRC. Methods We analyzed paired stool and plasma samples from 30 patients with CRC and 22 with large adenomas from Mayo Clinic archives. Stool (n=46) and plasma (n=49) samples from age- and sex-matched patients with normal colonoscopy results were used as controls. The sDNA test is an assay for methylated BMP3, NDRG4, vimentin, and TFPI2; mutant KRAS; the β-actin gene, and quantity of hemoglobin (by the porphyrin method). It was performed blindly at Exact Sciences (Madison WI); the test for SEPT9 was performed at ARUP Laboratories (Salt Lake City UT). Results were considered positive based on the manufacturer's specificity cutoff values of 90% and 89%, respectively. Results The sDNA test detected adenomas (median 2 cm, range 1–5 cm) with 82% sensitivity (95% confidence interval [CI], 60%–95%); SEPT9 had 14% sensitivity (95% CI, 3%–35%; P=.0001). The sDNA test identified patients with CRC with 87% sensitivity (95% CI, 69%–96%); SEPT9 had 60% sensitivity (95% CI, 41%–77%; P=.046). The sDNA test identified patients with stage I–III CRC with 91% sensitivity (95% CI, 71%–99%); SEPT9 had 50% sensitivity (95% CI, 28%–72%; P=.013); for stage IV CRC, sensitivity values were 75% (95% CI, 35%–97%) and 88% (95% CI, 47%–100%), respectively (P=.56). False-positive rates were 7% for the sDNA test and 27% for SEPT9. Conclusions Based on analyses of paired samples, the sDNA test detects non-metastatic CRC and large adenomas with significantly greater levels of sensitivity than the SEPT9 test. These findings might be used to modify approaches for CRC prevention and early detection. PMID:22019796

  19. Lane detection based on color probability model and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Jo, Kang-Hyun

    2018-04-01

    In the vehicle driver assistance systems, the accuracy and speed of lane line detection are the most important. This paper is based on color probability model and Fuzzy Local Information C-Means (FLICM) clustering algorithm. The Hough transform and the constraints of structural road are used to detect the lane line accurately. The global map of the lane line is drawn by the lane curve fitting equation. The experimental results show that the algorithm has good robustness.

  20. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  1. Protein detection by Simple Western™ analysis.

    PubMed

    Harris, Valerie M

    2015-01-01

    Protein Simple© has taken a well-known protein detection method, the western blot, and revolutionized it. The Simple Western™ system uses capillary electrophoresis to identify and quantitate a protein of interest. Protein Simple© provides multiple detection apparatuses (Wes, Sally Sue, or Peggy Sue) that are suggested to save scientists valuable time by allowing the researcher to prepare the protein sample, load it along with necessary antibodies and substrates, and walk away. Within 3-5 h the protein will be separated by size, or charge, immuno-detection of target protein will be accurately quantitated, and results will be immediately made available. Using the Peggy Sue instrument, one study recently examined changes in MAPK signaling proteins in the sex-determining stage of gonadal development. Here the methodology is described.

  2. Label-free glucose detection using cantilever sensor technology based on gravimetric detection principles.

    PubMed

    Hsieh, Shuchen; Hsieh, Shu-Ling; Hsieh, Chiung-Wen; Lin, Po-Chiao; Wu, Chun-Hsin

    2013-01-01

    Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.

  3. Accurate Arabic Script Language/Dialect Classification

    DTIC Science & Technology

    2014-01-01

    Army Research Laboratory Accurate Arabic Script Language/Dialect Classification by Stephen C. Tratz ARL-TR-6761 January 2014 Approved for public...1197 ARL-TR-6761 January 2014 Accurate Arabic Script Language/Dialect Classification Stephen C. Tratz Computational and Information Sciences...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 January 2014 Final Accurate Arabic Script Language/Dialect Classification

  4. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues.

    PubMed

    Erard, Marie; Dupré-Crochet, Sophie; Nüße, Oliver

    2018-05-01

    Redox biology has become a major issue in numerous areas of physiology. Reactive oxygen species (ROS) have a broad range of roles from signal transduction to growth control and cell death. To understand the nature of these roles, accurate measurement of the reactive compounds is required. An increasing number of tools for ROS detection is available; however, the specificity and sensitivity of these tools are often insufficient. Furthermore, their specificity has been rarely evaluated in complex physiological conditions. Many ROS probes are sensitive to environmental conditions in particular pH, which may interfere with ROS detection and cause misleading results. Accurate detection of ROS in physiology and pathophysiology faces additional challenges concerning the precise localization of the ROS and the timing of their production and disappearance. Certain ROS are membrane permeable, and certain ROS probes move across cells and organelles. Targetable ROS probes such as fluorescent protein-based biosensors are required for accurate localization. Here we analyze these challenges in more detail, provide indications on the strength and weakness of current tools for ROS detection, and point out developments that will provide improved ROS detection methods in the future. There is no universal method that fits all situations in physiology and cell biology. A detailed knowledge of the ROS probes is required to choose the appropriate method for a given biological problem. The knowledge of the shortcomings of these probes should also guide the development of new sensors.

  5. Detection of nitrogen dioxide by CW cavity-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu

    2016-11-01

    In the paper, an accurate and sensitive system was used to monitor the ambient atmospheric NO2 concentrations. This system utilizes cavity attenuated phase shift spectroscopy(CAPS), a technology related to cavity ring down spectroscopy(CRDS). Advantages of the CAPS system include such as: (1) cheap and easy to control the light source, (2) high accuracy, and (3) low detection limit. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.08 ppb NO2) in the Allan plots show the optimum average time( 100s) for optimum detection performance of the CAPS system. Over a 20-day-long period of the ambient atmospheric NO2 concentrations monitoring, a comparison of the CAPS system with an extremely accurate and precise chemiluminescence-based NOx analyzer showed that the CAPS system was able to reliably and quantitatively measure both large and small fluctuations in the ambient nitrogen dioxide concentration. The experimental results show that the measuring instrument results correlation is 0.95.

  6. Meal Microstructure Characterization from Sensor-Based Food Intake Detection.

    PubMed

    Doulah, Abul; Farooq, Muhammad; Yang, Xin; Parton, Jason; McCrory, Megan A; Higgins, Janine A; Sazonov, Edward

    2017-01-01

    To avoid the pitfalls of self-reported dietary intake, wearable sensors can be used. Many food ingestion sensors offer the ability to automatically detect food intake using time resolutions that range from 23 ms to 8 min. There is no defined standard time resolution to accurately measure ingestive behavior or a meal microstructure. This paper aims to estimate the time resolution needed to accurately represent the microstructure of meals such as duration of eating episode, the duration of actual ingestion, and number of eating events. Twelve participants wore the automatic ingestion monitor (AIM) and kept a standard diet diary to report their food intake in free-living conditions for 24 h. As a reference, participants were also asked to mark food intake with a push button sampled every 0.1 s. The duration of eating episodes, duration of ingestion, and number of eating events were computed from the food diary, AIM, and the push button resampled at different time resolutions (0.1-30s). ANOVA and multiple comparison tests showed that the duration of eating episodes estimated from the diary differed significantly from that estimated by the AIM and the push button ( p -value <0.001). There were no significant differences in the number of eating events for push button resolutions of 0.1, 1, and 5 s, but there were significant differences in resolutions of 10-30s ( p -value <0.05). The results suggest that the desired time resolution of sensor-based food intake detection should be ≤5 s to accurately detect meal microstructure. Furthermore, the AIM provides more accurate measurement of the eating episode duration than the diet diary.

  7. Detection and characterization of pulses in broadband seismometers

    USGS Publications Warehouse

    Wilson, David; Ringler, Adam; Hutt, Charles R.

    2017-01-01

    Pulsing - caused either by mechanical or electrical glitches, or by microtilt local to a seismometer - can significantly compromise the long‐period noise performance of broadband seismometers. High‐fidelity long‐period recordings are needed for accurate calculation of quantities such as moment tensors, fault‐slip models, and normal‐mode measurements. Such pulses have long been recognized in accelerometers, and methods have been developed to correct these acceleration steps, but considerable work remains to be done in order to detect and correct similar pulses in broadband seismic data. We present a method for detecting and characterizing the pulses using data from a range of broadband sensor types installed in the Global Seismographic Network. The technique relies on accurate instrument response removal and employs a moving‐window approach looking for acceleration baseline shifts. We find that pulses are present at varying levels in all sensor types studied. Pulse‐detection results compared with average daily station noise values are consistent with predicted noise levels of acceleration steps. This indicates that we can calculate maximum pulse amplitude allowed per time window that would be acceptable without compromising long‐period data analysis.

  8. Group discussion improves lie detection

    PubMed Central

    Klein, Nadav; Epley, Nicholas

    2015-01-01

    Groups of individuals can sometimes make more accurate judgments than the average individual could make alone. We tested whether this group advantage extends to lie detection, an exceptionally challenging judgment with accuracy rates rarely exceeding chance. In four experiments, we find that groups are consistently more accurate than individuals in distinguishing truths from lies, an effect that comes primarily from an increased ability to correctly identify when a person is lying. These experiments demonstrate that the group advantage in lie detection comes through the process of group discussion, and is not a product of aggregating individual opinions (a “wisdom-of-crowds” effect) or of altering response biases (such as reducing the “truth bias”). Interventions to improve lie detection typically focus on improving individual judgment, a costly and generally ineffective endeavor. Our findings suggest a cheap and simple synergistic approach of enabling group discussion before rendering a judgment. PMID:26015581

  9. Power and type I error results for a bias-correction approach recently shown to provide accurate odds ratios of genetic variants for the secondary phenotypes associated with primary diseases.

    PubMed

    Wang, Jian; Shete, Sanjay

    2011-11-01

    We recently proposed a bias correction approach to evaluate accurate estimation of the odds ratio (OR) of genetic variants associated with a secondary phenotype, in which the secondary phenotype is associated with the primary disease, based on the original case-control data collected for the purpose of studying the primary disease. As reported in this communication, we further investigated the type I error probabilities and powers of the proposed approach, and compared the results to those obtained from logistic regression analysis (with or without adjustment for the primary disease status). We performed a simulation study based on a frequency-matching case-control study with respect to the secondary phenotype of interest. We examined the empirical distribution of the natural logarithm of the corrected OR obtained from the bias correction approach and found it to be normally distributed under the null hypothesis. On the basis of the simulation study results, we found that the logistic regression approaches that adjust or do not adjust for the primary disease status had low power for detecting secondary phenotype associated variants and highly inflated type I error probabilities, whereas our approach was more powerful for identifying the SNP-secondary phenotype associations and had better-controlled type I error probabilities. © 2011 Wiley Periodicals, Inc.

  10. Axillary Ultrasound Accurately Excludes Clinically Significant Lymph Node Disease in Patients with Early Stage Breast Cancer

    PubMed Central

    Tucker, Natalia S.; Cyr, Amy E.; Ademuyiwa, Foluso O.; Tabchy, Adel; George, Krystl; Sharma, Piyush; Jin, Linda X.; Sanati, Souzan; Aft, Rebecca; Gao, Feng; Margenthaler, Julie A.; Gillanders, William E.

    2016-01-01

    Objective Assess the performance characteristics of axillary ultrasound (AUS) for accurate exclusion of clinically significant axillary lymph node (ALN) disease. Background Sentinel lymph node biopsy (SLNB) is currently the standard of care for staging the axilla in patients with clinical T1–T2, N0 breast cancer. AUS is a noninvasive alternative to SLNB for staging the axilla. Methods Patients were identified using a prospectively maintained database. Sensitivity, specificity, and negative predictive value (NPV) were calculated by comparing AUS findings to pathology results. Multivariate analyses were performed to identify patient and/or tumor characteristics associated with false negative (FN) AUS. A blinded review of FN and matched true negative cases was performed by two independent medical oncologists to compare treatment recommendations and actual treatment received. Recurrence-free survival was described using Kaplan-Meier product limit methods. Results 647 patients with clinical T1–T2, N0 breast cancer underwent AUS between January, 2008 and March, 2013. AUS had a sensitivity of 70%, NPV of 84% and PPV of 56% for the detection of ALN disease. For detection of clinically significant disease (> 2.0 mm), AUS had a sensitivity of 76% and NPV of 89%. FN AUS did not significantly impact adjuvant medical decision making. Patients with FN AUS had recurrence-free survival equivalent to patients with pathologic N0 disease. Conclusions AUS accurately excludes clinically significant ALN disease in patients with clinical T1–T2, N0 breast cancer. AUS may be an alternative to SLNB in these patients where axillary surgery is no longer considered therapeutic, and predictors of tumor biology are increasingly used to make adjuvant therapy decisions. PMID:26779976

  11. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  12. Epoch length to accurately estimate the amplitude of interference EMG is likely the result of unavoidable amplitude cancellation

    PubMed Central

    Keenan, Kevin G.; Valero-Cuevas, Francisco J.

    2008-01-01

    Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the “true” average EMG amplitude calculated from a 28 s EMG trace (EMGref) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMGref. For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates. PMID:19081815

  13. Detection of molecular particles in live cells via machine learning.

    PubMed

    Jiang, Shan; Zhou, Xiaobo; Kirchhausen, Tom; Wong, Stephen T C

    2007-08-01

    Clathrin-coated pits play an important role in removing proteins and lipids from the plasma membrane and transporting them to the endosomal compartment. It is, however, still unclear whether there exist "hot spots" for the formation of Clathrin-coated pits or the pits and arrays formed randomly on the plasma membrane. To answer this question, first of all, many hundreds of individual pits need to be detected accurately and separated in live-cell microscope movies to capture and monitor how pits and vesicles were formed. Because of the noisy background and the low contrast of the live-cell movies, the existing image analysis methods, such as single threshold, edge detection, and morphological operation, cannot be used. Thus, this paper proposes a machine learning method, which is based on Haar features, to detect the particle's position. Results show that this method can successfully detect most of particles in the image. In order to get the accurate boundaries of these particles, several post-processing methods are applied and signal-to-noise ratio analysis is also performed to rule out the weak spots. Copyright 2007 International Society for Analytical Cytology.

  14. Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity

    PubMed Central

    da Costa, Leodante; Jetly, Rakesh; Pang, Elizabeth W.; Taylor, Margot J.

    2016-01-01

    Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz), together with increased connectivity in the slower alpha band (8–12 Hz). A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI. PMID:27906973

  15. An object detection and tracking system for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao

    2017-10-01

    Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.

  16. Accurate Simulation and Detection of Coevolution Signals in Multiple Sequence Alignments

    PubMed Central

    Ackerman, Sharon H.; Tillier, Elisabeth R.; Gatti, Domenico L.

    2012-01-01

    Background While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved positions can also be important because, for example, destabilizing effects at one position can be compensated by stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones. Methodology/Principal Findings We have used two complementary approaches to test the efficacy of these methods. In the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600 MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental MSAs. Conclusions/Significance Methods based on the identification of global correlations between pairs were found to be generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either simulated or experimental MSAs. However, the significant variability in the performance of different methods with different proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a valuable tool to identify the coevolution detection method that is most

  17. Accurate analysis of parabens in human urine using isotope-dilution ultrahigh-performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Zhou, Hui-Ting; Chen, Hsin-Chang; Ding, Wang-Hsien

    2018-02-20

    An analytical method that utilizes isotope-dilution ultrahigh-performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS or called UHPLC-HRMS) was developed, and validated to be highly precise and accurate for the detection of nine parabens (methyl-, ethyl-, propyl-, isopropyl-, butyl-, isobutyl-, pentyl-, hexyl-, and benzyl-parabens) in human urine samples. After sample preparation by ultrasound-assisted emulsification microextraction (USAEME), the extract was directly injected into UHPLC-HRMS. By using negative electrospray ionization in the multiple reaction monitoring (MRM) mode and measuring the peak area ratios of both the natural and the labeled-analogues in the samples and calibration standards, the target analytes could be accurately identified and quantified. Another use for the labeled-analogues was to correct for systematic errors associated with the analysis, such as the matrix effect and other variations. The limits of quantitation (LOQs) were ranging from 0.3 to 0.6 ng/mL. High precisions for both repeatability and reproducibility were obtained ranging from 1 to 8%. High trueness (mean extraction recovery, or called accuracy) ranged from 93 to 107% on two concentration levels. According to preliminary results, the total concentrations of four most detected parabens (methyl-, ethyl-, propyl- and butyl-) ranged from 0.5 to 79.1 ng/mL in male urine samples, and from 17 to 237 ng/mL in female urine samples. Interestingly, two infrequently detected pentyl- and hexyl-parabens were found in one of the male samples in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Accounting for Incomplete Species Detection in Fish Community Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Jager, Yetta

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated speciesmore » richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e

  19. Path Searching Based Crease Detection for Large Scale Scanned Document Images

    NASA Astrophysics Data System (ADS)

    Zhang, Jifu; Li, Yi; Li, Shutao; Sun, Bin; Sun, Jun

    2017-12-01

    Since the large size documents are usually folded for preservation, creases will occur in the scanned images. In this paper, a crease detection method is proposed to locate the crease pixels for further processing. According to the imaging process of contactless scanners, the shading on both sides of the crease usually varies a lot. Based on this observation, a convex hull based algorithm is adopted to extract the shading information of the scanned image. Then, the possible crease path can be achieved by applying the vertical filter and morphological operations on the shading image. Finally, the accurate crease is detected via Dijkstra path searching. Experimental results on the dataset of real scanned newspapers demonstrate that the proposed method can obtain accurate locations of the creases in the large size document images.

  20. Infrared small target detection technology based on OpenCV

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Huang, Zhijian

    2013-05-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  1. Infrared small target detection technology based on OpenCV

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Huang, Zhijian

    2013-09-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  2. Saliency detection by conditional generative adversarial network

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoxu; Yu, Hui

    2018-04-01

    Detecting salient objects in images has been a fundamental problem in computer vision. In recent years, deep learning has shown its impressive performance in dealing with many kinds of vision tasks. In this paper, we propose a new method to detect salient objects by using Conditional Generative Adversarial Network (GAN). This type of network not only learns the mapping from RGB images to salient regions, but also learns a loss function for training the mapping. To the best of our knowledge, this is the first time that Conditional GAN has been used in salient object detection. We evaluate our saliency detection method on 2 large publicly available datasets with pixel accurate annotations. The experimental results have shown the significant and consistent improvements over the state-of-the-art method on a challenging dataset, and the testing speed is much faster.

  3. Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.

    2017-05-01

    Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  9. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  10. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  11. Overseas testing of a multisensor landmine detection system: results and lessons learned

    NASA Astrophysics Data System (ADS)

    Keranen, Joe G.; Topolosky, Zeke

    2009-05-01

    The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.

  12. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  13. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis.

    PubMed

    Nelson, Flavia; Akhtar, Mohammad A; Zúñiga, Edward; Perez, Carlos A; Hasan, Khader M; Wilken, Jeffrey; Wolinsky, Jerry S; Narayana, Ponnada A; Steinberg, Joel L

    2017-05-01

    Cognitive impairment (CI) cannot be diagnosed by magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) paradigms, such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory (WM). Preliminary findings using I/DMT showed differences in blood oxygenation level dependent (BOLD) activation between impaired (MSCI, n = 12) and non-impaired (MSNI, n = 9) multiple sclerosis (MS) patients. The aim of the study was to confirm CI detection based on I/DMT BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and Expanded Disability Status Scale (EDSS) in magnitude of BOLD signal was also sought. A total of 50 patients (EDSS mean ( m) = 3.2, disease duration (DD) m = 12 years, and age m = 40 years) underwent the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and I/DMT. Working memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. A total of 10 MSNI, 30 MSCI, and 4 borderline patients were included in the analyses. Analysis of variance (ANOVA) showed MSNI had significantly greater WMa than MSCI, in the left prefrontal cortex and left supplementary motor area ( p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas ( p = 0.005, 0.004, respectively). I/DMT-based BOLD activation detects CI in MS. Larger studies are needed to confirm these findings.

  14. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  15. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  16. Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA

    PubMed Central

    Bode, Gerard H.; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J. G.; Schmitz, Christoph; Sinner, Frank M.; Losen, Mario; Steinbusch, Harry W. M.; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. PMID:25996618

  17. X-Ray Scan Detection for Cargo Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Juan D.; Miller, Steven D.

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, andmore » easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF« less

  18. Results of the first detection units of KM3NeT

    NASA Astrophysics Data System (ADS)

    Biagi, Simone; KM3NeT Collaboration

    2017-12-01

    The KM3NeT collaboration is building a km3-scale neutrino telescope in the Mediterranean Sea. The current phase of construction comprises the deep-sea and onshore infrastructures at two installation sites and the installation of the first detection units for the "ARCA" (Astroparticle Research with Cosmics in the Abyss) and "ORCA" (Oscillation Research with Cosmics in the Abyss) detector. At the KM3NeT-It site, 80 km offshore Capo Passero, Italy, the first 32 detection units for the ARCA detector are being installed and at the KM3Net-Fr site, 40 km offshore Toulon, France, 7 detection units for the ORCA detector will be deployed. The second phase of KM3NeT foresees the completion of ARCA for neutrino astronomy at energies above TeV and ORCA for neutrino mass hierarchy studies at energies in the GeV range. The basic element of the KM3NeT detector is the detection unit. In the ARCA geometry, the detection unit is a 700 m long vertical structure hosting 18 optical modules. Each optical module comprises 31 3 in photomultiplier tubes, instruments to monitor environmental parameters, and the electronic boards for the digitisation of the PMT signals and the management of data acquisition. In their final configuration, both ARCA and ORCA will be composed of about 200 detection units. The first detection unit was installed at the KM3NeT-It site in December 2015. It is active and taking data since its connection to the subsea network. The time of arrival and the duration of photon hits on each of the photomultipliers is measured with a time resolution of 1 ns and transferred onshore where the measurements are processed, triggered and stored on disk. A time calibration procedure, based on data recorded with flashing LED beacons during dedicated periods, allows for time synchronisation of the signals from the optical modules at the nanosecond level. In May 2016, an additional detection unit was installed at the KM3NeT-It site. The first results with two active detection units

  19. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  20. Lesion contrast and detection using sonoelastographic shear velocity imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Parker, Kevin J.

    2007-03-01

    This paper assesses lesion contrast and detection using sonoelastographic shear velocity imaging. Shear wave interference patterns, termed crawling waves, for a two phase medium were simulated assuming plane wave conditions. Shear velocity estimates were computed using a spatial autocorrelation algorithm that operates in the direction of shear wave propagation for a given kernel size. Contrast was determined by analyzing shear velocity estimate transition between mediums. Experimental results were obtained using heterogeneous phantoms with spherical inclusions (5 or 10 mm in diameter) characterized by elevated shear velocities. Two vibration sources were applied to opposing phantom edges and scanned (orthogonal to shear wave propagation) with an ultrasound scanner equipped for sonoelastography. Demodulated data was saved and transferred to an external computer for processing shear velocity images. Simulation results demonstrate shear velocity transition between contrasting mediums is governed by both estimator kernel size and source vibration frequency. Experimental results from phantoms further indicates that decreasing estimator kernel size produces corresponding decrease in shear velocity estimate transition between background and inclusion material albeit with an increase in estimator noise. Overall, results demonstrate the ability to generate high contrast shear velocity images using sonoelastographic techniques and detect millimeter-sized lesions.

  1. Detection ratios on winter surveys of Rocky Mountain Trumpeter Swans Cygnus buccinator

    USGS Publications Warehouse

    Bart, J.; Mitchell, C.D.; Fisher, M.N.; Dubovsky, J.A.

    2007-01-01

    We estimated the detection ratio for Rocky Mountain Trumpeter Swans Cygnus buccinator that were counted during aerial surveys made in winter. The standard survey involved counting white or grey birds on snow and ice and thus might be expected to have had low detection ratios. On the other hand, observers were permitted to circle areas where the birds were concentrated multiple times to obtain accurate counts. Actual numbers present were estimated by conducting additional intensive aerial counts either immediately before or immediately after the standard count. Surveyors continued the intensive surveys at each area until consecutive counts were identical. The surveys were made at 10 locations in 2006 and at 19 locations in 2007. A total of 2,452 swans were counted on the intensive surveys. Detection ratios did not vary detectably with year, observer, which survey was conducted first, age of the swans, or the number of swans present. The overall detection ratio was 0.93 (90% confidence interval 0.82-1.04), indicating that the counts were quite accurate. Results are used to depict changes in population size for Rocky Mountain Trumpeter Swans from 1974-2007. ?? Wildfowl & Wetlands Trust.

  2. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection

    PubMed Central

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-01-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706

  3. Pothole Detection System Using a Black-box Camera.

    PubMed

    Jo, Youngtae; Ryu, Seungki

    2015-11-19

    Aging roads and poor road-maintenance systems result a large number of potholes, whose numbers increase over time. Potholes jeopardize road safety and transportation efficiency. Moreover, they are often a contributing factor to car accidents. To address the problems associated with potholes, the locations and size of potholes must be determined quickly. Sophisticated road-maintenance strategies can be developed using a pothole database, which requires a specific pothole-detection system that can collect pothole information at low cost and over a wide area. However, pothole repair has long relied on manual detection efforts. Recent automatic detection systems, such as those based on vibrations or laser scanning, are insufficient to detect potholes correctly and inexpensively owing to the unstable detection of vibration-based methods and high costs of laser scanning-based methods. Thus, in this paper, we introduce a new pothole-detection system using a commercial black-box camera. The proposed system detects potholes over a wide area and at low cost. We have developed a novel pothole-detection algorithm specifically designed to work with the embedded computing environments of black-box cameras. Experimental results are presented with our proposed system, showing that potholes can be detected accurately in real-time.

  4. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  5. Surface-enhanced Raman scattering detection of ammonium nitrate samples fabricated using drop-on-demand inkjet technology.

    PubMed

    Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M

    2014-01-01

    The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

  6. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  7. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  8. Detecting of foreign object debris on airfield pavement using convolution neural network

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoguang; Gu, Yufeng; Bai, Xiangzhi

    2017-11-01

    It is of great practical significance to detect foreign object debris (FOD) timely and accurately on the airfield pavement, because the FOD is a fatal threaten for runway safety in airport. In this paper, a new FOD detection framework based on Single Shot MultiBox Detector (SSD) is proposed. Two strategies include making the detection network lighter and using dilated convolution, which are proposed to better solve the FOD detection problem. The advantages mainly include: (i) the network structure becomes lighter to speed up detection task and enhance detection accuracy; (ii) dilated convolution is applied in network structure to handle smaller FOD. Thus, we get a faster and more accurate detection system.

  9. STATISTICAL METHODS FOR ENVIRONMENTAL APPLICATIONS USING DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS AS INCORPORTED IN PROUCL 4.0

    EPA Science Inventory

    Nondetect (ND) or below detection limit (BDL) results cannot be measured accurately, and, therefore, are reported as less than certain detection limit (DL) values. However, since the presence of some contaminants (e.g., dioxin) in environmental media may pose a threat to human he...

  10. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms.

    PubMed

    Sharon, Itai; Kertesz, Michael; Hug, Laura A; Pushkarev, Dmitry; Blauwkamp, Timothy A; Castelle, Cindy J; Amirebrahimi, Mojgan; Thomas, Brian C; Burstein, David; Tringe, Susannah G; Williams, Kenneth H; Banfield, Jillian F

    2015-04-01

    Accurate evaluation of microbial communities is essential for understanding global biogeochemical processes and can guide bioremediation and medical treatments. Metagenomics is most commonly used to analyze microbial diversity and metabolic potential, but assemblies of the short reads generated by current sequencing platforms may fail to recover heterogeneous strain populations and rare organisms. Here we used short (150-bp) and long (multi-kb) synthetic reads to evaluate strain heterogeneity and study microorganisms at low abundance in complex microbial communities from terrestrial sediments. The long-read data revealed multiple (probably dozens of) closely related species and strains from previously undescribed Deltaproteobacteria and Aminicenantes (candidate phylum OP8). Notably, these are the most abundant organisms in the communities, yet short-read assemblies achieved only partial genome coverage, mostly in the form of short scaffolds (N50 = ∼ 2200 bp). Genome architecture and metabolic potential for these lineages were reconstructed using a new synteny-based method. Analysis of long-read data also revealed thousands of species whose abundances were <0.1% in all samples. Most of the organisms in this "long tail" of rare organisms belong to phyla that are also represented by abundant organisms. Genes encoding glycosyl hydrolases are significantly more abundant than expected in rare genomes, suggesting that rare species may augment the capability for carbon turnover and confer resilience to changing environmental conditions. Overall, the study showed that a diversity of closely related strains and rare organisms account for a major portion of the communities. These are probably common features of many microbial communities and can be effectively studied using a combination of long and short reads. © 2015 Sharon et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Results of neutron irradiation of GEM detector for plasma radiation detection

    NASA Astrophysics Data System (ADS)

    Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.

    2015-09-01

    The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.

  12. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  13. Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy

    PubMed Central

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  14. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  15. Infrared dim target detection based on visual attention

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lv, Guofang; Xu, Lizhong

    2012-11-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanisms, an automatic detection algorithm for infrared dim target is presented. After analyzing the characteristics of infrared dim target images, the method firstly designs Difference of Gaussians (DoG) filters to compute the saliency map. Then the salient regions where the potential targets exist in are extracted by searching through the saliency map with a control mechanism of winner-take-all (WTA) competition and inhibition-of-return (IOR). At last, these regions are identified by the characteristics of the dim IR targets, so the true targets are detected, and the spurious objects are rejected. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  16. A New Single-Step PCR Assay for the Detection of the Zoonotic Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lucchi, Naomi W.; Poorak, Mitra; Oberstaller, Jenna; DeBarry, Jeremy; Srinivasamoorthy, Ganesh; Goldman, Ira; Xayavong, Maniphet; da Silva, Alexandre J.; Peterson, David S.; Barnwell, John W.; Kissinger, Jessica; Udhayakumar, Venkatachalam

    2012-01-01

    Background Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. Methodology and Significant Findings We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. Conclusions The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi. PMID

  17. Meal Microstructure Characterization from Sensor-Based Food Intake Detection

    PubMed Central

    Doulah, Abul; Farooq, Muhammad; Yang, Xin; Parton, Jason; McCrory, Megan A.; Higgins, Janine A.; Sazonov, Edward

    2017-01-01

    To avoid the pitfalls of self-reported dietary intake, wearable sensors can be used. Many food ingestion sensors offer the ability to automatically detect food intake using time resolutions that range from 23 ms to 8 min. There is no defined standard time resolution to accurately measure ingestive behavior or a meal microstructure. This paper aims to estimate the time resolution needed to accurately represent the microstructure of meals such as duration of eating episode, the duration of actual ingestion, and number of eating events. Twelve participants wore the automatic ingestion monitor (AIM) and kept a standard diet diary to report their food intake in free-living conditions for 24 h. As a reference, participants were also asked to mark food intake with a push button sampled every 0.1 s. The duration of eating episodes, duration of ingestion, and number of eating events were computed from the food diary, AIM, and the push button resampled at different time resolutions (0.1–30s). ANOVA and multiple comparison tests showed that the duration of eating episodes estimated from the diary differed significantly from that estimated by the AIM and the push button (p-value <0.001). There were no significant differences in the number of eating events for push button resolutions of 0.1, 1, and 5 s, but there were significant differences in resolutions of 10–30s (p-value <0.05). The results suggest that the desired time resolution of sensor-based food intake detection should be ≤5 s to accurately detect meal microstructure. Furthermore, the AIM provides more accurate measurement of the eating episode duration than the diet diary. PMID:28770206

  18. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings.

    PubMed

    Baldassano, Steven N; Brinkmann, Benjamin H; Ung, Hoameng; Blevins, Tyler; Conrad, Erin C; Leyde, Kent; Cook, Mark J; Khambhati, Ankit N; Wagenaar, Joost B; Worrell, Gregory A; Litt, Brian

    2017-06-01

    There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Development of a novel constellation based landmark detection algorithm

    NASA Astrophysics Data System (ADS)

    Ghayoor, Ali; Vaidya, Jatin G.; Johnson, Hans J.

    2013-03-01

    Anatomical landmarks such as the anterior commissure (AC) and posterior commissure (PC) are commonly used by researchers for co-registration of images. In this paper, we present a novel, automated approach for landmark detection that combines morphometric constraining and statistical shape models to provide accurate estimation of landmark points. This method is made robust to large rotations in initial head orientation by extracting extra information of the eye centers using a radial Hough transform and exploiting the centroid of head mass (CM) using a novel estimation approach. To evaluate the effectiveness of this method, the algorithm is trained on a set of 20 images with manually selected landmarks, and a test dataset is used to compare the automatically detected against the manually detected landmark locations of the AC, PC, midbrain-pons junction (MPJ), and fourth ventricle notch (VN4). The results show that the proposed method is accurate as the average error between the automatically and manually labeled landmark points is less than 1 mm. Also, the algorithm is highly robust as it was successfully run on a large dataset that included different kinds of images with various orientation, spacing, and origin.

  20. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    NASA Astrophysics Data System (ADS)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  1. Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George

    2005-01-01

    This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.

  2. Detection of ESBL among ampc producing enterobacteriaceae using inhibitor-based method

    PubMed Central

    Bakthavatchalu, Sasirekha; Shakthivel, Uma; Mishra, Tannu

    2013-01-01

    Introduction The occurrence of multiple β-lactamases among bacteria only limits the therapeutic options but also poses a challenge. A study using boronic acid (BA), an AmpC enzyme inhibitor, was designed to detect the combined expression of AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) in bacterial isolates further different phenotypic methods are compared to detect ESBL and AmpC. Methods A total of 259 clinical isolates of Enterobacteriaceae were isolated and screened for ESBL production by (i) CLSI double-disk diffusion method (ii) cefepime- clavulanic acid method (iii) boronic disk potentiation method. AmpC production was detected using cefoxitin alone and in combination with boronic acid and confirmation was done by three dimensional disk methods. Isolates were also subjected to detailed antibiotic susceptibility test. Results Among 259 isolates, 20.46% were coproducers of ESBL and AmpC, 26.45% were ESBL and 5.40% were AmpC. All of the 53 AmpC and ESBL coproducers were accurately detected by boronic acid disk potentiation method. Conclusion The BA disk test using Clinical and Laboratory Standards Institute methodology is simple and very efficient method that accurately detects the isolates that harbor both AmpCs and ESBLs. PMID:23504148

  3. Can magnetic resonance imaging at 3.0-Tesla reliably detect patients with endometriosis? Initial results.

    PubMed

    Thomeer, Maarten G; Steensma, Anneke B; van Santbrink, Evert J; Willemssen, Francois E; Wielopolski, Piotr A; Hunink, Myriam G; Spronk, Sandra; Laven, Joop S; Krestin, Gabriel P

    2014-04-01

    The aim of this study was to determine whether an optimized 3.0-Tesla magnetic resonance imaging (MRI) protocol is sensitive and specific enough to detect patients with endometriosis. This was a prospective cohort study with consecutive patients. Forty consecutive patients with clinical suspicion of endometriosis underwent 3.0-Tesla MRI, including a T2-weighted high-resolution fast spin echo sequence (spatial resolution=0.75 ×1.2 ×1.5 mm³) and a 3D T1-weighted high-resolution gradient echo sequence (spatial resolution=0.75 ×1.2 × 2.0 mm³). Two radiologists reviewed the dataset with consensus reading. During laparoscopy, which was used as reference standard, all lesions were characterized according to the revised criteria of the American Fertility Society. Patient-level and region-level sensitivities and specificities and lesion-level sensitivities were calculated. Patient-level sensitivity was 42% for stage I (5/12) and 100% for stages II, III and IV (25/25). Patient-level specificity for all stages was 100% (3/3). The region-level sensitivity and specificity was 63% and 97%, respectively. The sensitivity per lesion was 61% (90% for deep lesions, 48% for superficial lesions and 100% for endometriomata). The detection rate of obliteration of the cul-the-sac was 100% (10/10) with no false positive findings. The interreader agreement was substantial to perfect (kappa=1 per patient, 0.65 per lesion and 0.71 for obliteration of the cul-the-sac). An optimized 3.0-Tesla MRI protocol is accurate in detecting stage II to stage IV endometriosis. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  4. [Study on Accurately Controlling Discharge Energy Method Used in External Defibrillator].

    PubMed

    Song, Biao; Wang, Jianfei; Jin, Lian; Wu, Xiaomei

    2016-01-01

    This paper introduces a new method which controls discharge energy accurately. It is achieved by calculating target voltage based on transthoracic impedance and accurately controlling charging voltage and discharge pulse width. A new defibrillator is designed and programmed using this method. The test results show that this method is valid and applicable to all kinds of external defibrillators.

  5. Diagnosis of toxoplasmosis after allogeneic stem cell transplantation: results of DNA detection and serological techniques.

    PubMed

    Fricker-Hidalgo, Hélène; Bulabois, Claude-Eric; Brenier-Pinchart, Marie-Pierre; Hamidfar, Rebecca; Garban, Frédéric; Brion, Jean-Paul; Timsit, Jean-François; Cahn, Jean-Yves; Pelloux, Hervé

    2009-01-15

    The biological diagnosis of toxoplasmosis after allogeneic hematopoietic stem cell transplantation (HSCT) is based on the detection of Toxoplasma gondii DNA in blood specimens or other samples. Serological testing is used mainly to define the immunity status of the patient before HSCT. The aim of our study was to examine the performance of polymerase chain reaction (PCR) and serological techniques in the diagnosis of toxoplasmosis after HSCT. Seventy patients underwent allogeneic HSCT from September 2004 through September 2006. DNA was detected by PCR, and immunoglobulin G and immunoglobulin M were detected by enzyme-linked immunosorbent assay. The results of immunoglobulin G detection before allogeneic HSCT were positive in 40 (57.1%) of the patients and negative in 30 (42.9%). After HSCT, 57 patients (81.4%) had test results that were negative for immunoglobulin M and had negative results of DNA detection, without toxoplasmosis infection. Four patients (5.7%) had at least 4 samples with positive PCR results and/or test results positive for immunoglobulin M against T. gondii; toxoplasmosis was then confirmed by clinical symptoms. Nine patients (12.9%) with positive PCR results and 1 or 2 samples with test results negative for immunoglobulin M were considered to have asymptomatic T. gondii infection. Reactivation of latent infection was the cause of toxoplasmosis in 3 of the 4 patients, and toxoplasmosis occurred as a primary infection in 1 patient. The detection of specific anti-T. gondii immunoglobulin M was the only biological evidence of toxoplasmosis in 2 patients, and samples were positive for immunoglobulin M before PCR was performed in 1 patient. Thus, after HSCT, all patients were at risk for toxoplasmosis; all patients who receive HSCTs should be followed up with biological testing that combines PCR and serological techniques.

  6. The contribution of an asthma diagnostic consultation service in obtaining an accurate asthma diagnosis for primary care patients: results of a real-life study.

    PubMed

    Gillis, R M E; van Litsenburg, W; van Balkom, R H; Muris, J W; Smeenk, F W

    2017-05-19

    Previous studies showed that general practitioners have problems in diagnosing asthma accurately, resulting in both under and overdiagnosis. To support general practitioners in their diagnostic process, an asthma diagnostic consultation service was set up. We evaluated the performance of this asthma diagnostic consultation service by analysing the (dis)concordance between the general practitioners working hypotheses and the asthma diagnostic consultation service diagnoses and possible consequences this had on the patients' pharmacotherapy. In total 659 patients were included in this study. At this service the patients' medical history was taken and a physical examination and a histamine challenge test were carried out. We compared the general practitioners working hypotheses with the asthma diagnostic consultation service diagnoses and the change in medication that was incurred. In 52% (n = 340) an asthma diagnosis was excluded. The diagnosis was confirmed in 42% (n = 275). Furthermore, chronic rhinitis was diagnosed in 40% (n = 261) of the patients whereas this was noted in 25% (n = 163) by their general practitioner. The adjusted diagnosis resulted in a change of medication for more than half of all patients. In 10% (n = 63) medication was started because of a new asthma diagnosis. The 'one-stop-shop' principle was met with 53% of patients and 91% (n = 599) were referred back to their general practitioner, mostly within 6 months. Only 6% (n = 41) remained under control of the asthma diagnostic consultation service because of severe unstable asthma. In conclusion, the asthma diagnostic consultation service helped general practitioners significantly in setting accurate diagnoses for their patients with an asthma hypothesis. This may contribute to diminish the problem of over and underdiagnosis and may result in more appropriate treatment regimens. SERVICE HELPS GENERAL PRACTITIONERS MAKE ACCURATE DIAGNOSES: A consultation service can

  7. Changes in laboratory test results and diagnostic imaging presentation before the detection of occupational cholangiocarcinoma.

    PubMed

    Kubo, Shoji; Takemura, Shigekazu; Sakata, Chikaharu; Urata, Yorihisa; Nishioka, Takayoshi; Nozawa, Akinori; Kinoshita, Masahiko; Hamano, Genya; Nakanuma, Yasuni; Endo, Ginji

    2014-01-01

    A cholangiocarcinoma outbreak among workers of an offset color proof-printing department in a printing company was recently reported. It is important to understand the clinical course leading to occupational cholangiocarcinoma development for investigation of the carcinogenesis process and for surveillance and early detection. We evaluated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma. We investigated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma in 2 patients because the data were available. Results The clinical courses observed in the 2 participating patients showed persistent elevation of serum γ-glutamyl transpeptidase levels with or without elevated serum levels of alanine aminotransferase and/or aspartate aminotransferase before cholangiocarcinoma detection. Dilatation of the bile ducts without tumor-induced stenosis was observed several years before cholangiocarcinoma detection and progressed gradually in both patients. The serum concentration of carbohydrate 19-9 also increased prior to cholangiocarcinoma detection in both patients. Eventually, observation of stenosis of the bile duct and a space-occupying lesion strongly suggested cholangiocarcinoma. Pathological examination of the resected specimens showed chronic bile duct injury and neoplastic lesions, such as "biliary intraepithelial neoplasia" and "intraductal papillary neoplasm of the bile duct" in various sites of the bile ducts, particularly in the dilated bile ducts. The changes in laboratory test results and diagnostic imaging might be related to the development of cholangiocarcinoma. It is important to monitor diagnostic imaging presentation and laboratory test results in workers with extended exposure to organic solvents.

  8. Four Types of Pulse Oximeters Accurately Detect Hypoxia during Low Perfusion and Motion.

    PubMed

    Louie, Aaron; Feiner, John R; Bickler, Philip E; Rhodes, Laura; Bernstein, Michael; Lucero, Jennifer

    2018-03-01

    Pulse oximeter performance is degraded by motion artifacts and low perfusion. Manufacturers developed algorithms to improve instrument performance during these challenges. There have been no independent comparisons of these devices. We evaluated the performance of four pulse oximeters (Masimo Radical-7, USA; Nihon Kohden OxyPal Neo, Japan; Nellcor N-600, USA; and Philips Intellivue MP5, USA) in 10 healthy adult volunteers. Three motions were evaluated: tapping, pseudorandom, and volunteer-generated rubbing, adjusted to produce photoplethsmogram disturbance similar to arterial pulsation amplitude. During motion, inspired gases were adjusted to achieve stable target plateaus of arterial oxygen saturation (SaO2) at 75%, 88%, and 100%. Pulse oximeter readings were compared with simultaneous arterial blood samples to calculate bias (oxygen saturation measured by pulse oximetry [SpO2] - SaO2), mean, SD, 95% limits of agreement, and root mean square error. Receiver operating characteristic curves were determined to detect mild (SaO2 < 90%) and severe (SaO2 < 80%) hypoxemia. Pulse oximeter readings corresponding to 190 blood samples were analyzed. All oximeters detected hypoxia but motion and low perfusion degraded performance. Three of four oximeters (Masimo, Nellcor, and Philips) had root mean square error greater than 3% for SaO2 70 to 100% during any motion, compared to a root mean square error of 1.8% for the stationary control. A low perfusion index increased error. All oximeters detected hypoxemia during motion and low-perfusion conditions, but motion impaired performance at all ranges, with less accuracy at lower SaO2. Lower perfusion degraded performance in all but the Nihon Kohden instrument. We conclude that different types of pulse oximeters can be similarly effective in preserving sensitivity to clinically relevant hypoxia.

  9. Detections of Propellers in Saturn's Rings using Machine Learning: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gordon, Mitchell K.; Showalter, Mark R.; Odess, Jennifer; Del Villar, Ambi; LaMora, Andy; Paik, Jin; Lakhani, Karim; Sergeev, Rinat; Erickson, Kristen; Galica, Carol; Grayzeck, Edwin; Morgan, Thomas; Knopf, William

    2015-11-01

    We report on the initial analysis of the output of a tool designed to identify persistent, non-axisymmetric features in the rings of Saturn. This project introduces a new paradigm for scientific software development. The preliminary results include what appear to be new detections of propellers in the rings of Saturn.The Planetary Data System (PDS), working with the NASA Tournament Lab (NTL), Crowd Innovation Lab at Harvard University, and the Topcoder community at Appirio, Inc., under the umbrella “Cassini Rings Challenge”, sponsored a set of competitions employing crowd sourcing and machine learning to develop a tool which could be made available to the community at large. The Challenge was tackled by running a series of separate contests to solve individual tasks prior to the major machine learning challenge. Each contest was comprised of a set of requirements, a timeline, one or more prizes, and other incentives, and was posted by Appirio to the Topcoder Community. In the case of the machine learning challenge (a “Marathon Challenge” on the Topcoder platform), members competed against each other by submitting solutions that were scored in real time and posted to a public leader-board by a scoring algorithm developed by Appirio for this contest.The current version of the algorithm was run against ~30,000 of the highest resolution Cassini ISS images. That set included 668 images with a total of 786 features previously identified as propellers in the main rings. The tool identified 81% of those previously identified propellers. In a preliminary, close examination of 130 detections identified by the tool, we determined that of the 130 detections, 11 were previously identified propeller detections, 5 appear to be new detections of known propellers, and 4 appear to be detections of propellers which have not been seen previously. A total of 20 valid detections from 130 candidates implies a relatively high false positive rate which we hope to reduce by further

  10. First results of the SONS survey: submillimetre detections of debris discs

    NASA Astrophysics Data System (ADS)

    Panić, O.; Holland, W. S.; Wyatt, M. C.; Kennedy, G. M.; Matthews, B. C.; Lestrade, J. F.; Sibthorpe, B.; Greaves, J. S.; Marshall, J. P.; Phillips, N. M.; Tottle, J.

    2013-10-01

    New detections of debris discs at submillimetre wavelengths present highly valuable complementary information to prior observations of these sources at shorter wavelengths. Characterization of discs through spectral energy distribution modelling including the submillimetre fluxes is essential for our basic understanding of disc mass and temperature, and presents a starting point for further studies using millimetre interferometric observations. In the framework of the ongoing SCUBA-2 Observations of Nearby Stars, the instrument SCUBA-2 on the James Clerk Maxwell Telescope was used to provide measurements of 450 and 850 μm fluxes towards a large sample of nearby main-sequence stars with debris discs detected previously at shorter wavelengths. We present the first results from the ongoing survey, concerning 850 μm detections and 450 μm upper limits towards 10 stars, the majority of which are detected at submillimetre wavelengths for the first time. One, or possibly two, of these new detections is likely a background source. We fit the spectral energy distributions of the star+disc systems with a blackbody emission approach and derive characteristic disc temperatures. We use these temperatures to convert the observed fluxes to disc masses. We obtain a range of disc masses from 0.001 to 0.1 M⊕, values similar to the prior dust mass measurements towards debris discs. There is no evidence for evolution in dust mass with age on the main sequence, and indeed the upper envelope remains relatively flat at ≈0.5 M⊕ at all ages. The inferred disc masses are lower than those from disc detections around pre-main-sequence stars, which may indicate a depletion of solid mass. This may also be due to a change in disc opacity, though limited sensitivity means that it is not yet known what fraction of pre-main-sequence stars have discs with dust masses similar to debris disc levels. New, high-sensitivity detections are a path towards investigating the trends in dust mass

  11. A New Moving Object Detection Method Based on Frame-difference and Background Subtraction

    NASA Astrophysics Data System (ADS)

    Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong

    2017-09-01

    Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.

  12. Reproducibility of positive results for the detection of serum galactomannan by Platelia™ aspergillus EIA.

    PubMed

    Pedroza, Kelly C M C; de Matos, Sócrates B; de Moura, Daniel L; Oliveira, Mônica B B; Araújo, Marco A S; Nascimento, Roberto J M; Lima, Fernanda W M

    2013-10-01

    Galactomannan (GM) was recently included in consensus guidelines as an indirect mycological criterion for the diagnosis of invasive aspergillosis. Currently, there is an enzyme immunoassay available to detect GM in biological samples, the Platelia™ Aspergillus EIA. In this study, the reproducibility of positive results obtained using this assay was evaluated using serum samples from neutropenic patients. A trend toward lower values was observed, and 55 %(27/49) of positive results were negative after retesting. A low reproducibility of positive results for the detection of GM in serum was observed.

  13. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  14. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  15. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  16. Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens

    USDA-ARS?s Scientific Manuscript database

    The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...

  17. The New Aptima HCV Quant Dx Real-time TMA Assay Accurately Quantifies Hepatitis C Virus Genotype 1-6 RNA.

    PubMed

    Chevaliez, Stéphane; Dubernet, Fabienne; Dauvillier, Claude; Hézode, Christophe; Pawlotsky, Jean-Michel

    2017-06-01

    Sensitive and accurate hepatitis C virus (HCV) RNA detection and quantification is essential for the management of chronic hepatitis C therapy. Currently available platforms and assays are usually batched and require at least 5hours of work to complete the analyses. The aim of this study was to evaluate the ability of the newly developed Aptima HCV Quant Dx assay that eliminates the need for batch processing and automates all aspects of nucleic acid testing in a single step, to accurately detect and quantify HCV RNA in a large series of patients infected with different HCV genotypes. The limit of detection was estimated to be 2.3 IU/mL. The specificity of the assay was 98.6% (95% confidence interval: 96.1%-99.5%). Intra-assay and inter-assay coefficients of variation ranged from 0.09% to 5.61%, and 1.05% to 3.65%, respectively. The study of serum specimens from patients infected with HCV genotypes 1 to 6 showed a satisfactory relationship between HCV RNA levels measured by the Aptima HCV Quant Dx assay, and both real-time PCR comparators (Abbott RealTime HCV and Cobas AmpliPrep/Cobas TaqMan HCV Test, version 2.0, assays). the new Aptima HCV Quant Dx assay is rapid, sensitive, reasonably specific and reproducible and accurately quantifies HCV RNA in serum samples from patients with chronic HCV infection, including patients on antiviral treatment. The Aptima HCV Quant Dx assay can thus be confidently used to detect and quantify HCV RNA in both clinical trials with new anti-HCV drugs and clinical practice in Europe and the US. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    PubMed

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  19. Detection algorithm for glass bottle mouth defect by continuous wavelet transform based on machine vision

    NASA Astrophysics Data System (ADS)

    Qian, Jinfang; Zhang, Changjiang

    2014-11-01

    An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.

  20. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational

  1. Automated detection of external ventricular and lumbar drain-related meningitis using laboratory and microbiology results and medication data.

    PubMed

    van Mourik, Maaike S M; Groenwold, Rolf H H; Berkelbach van der Sprenkel, Jan Willem; van Solinge, Wouter W; Troelstra, Annet; Bonten, Marc J M

    2011-01-01

    Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this

  2. Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results.

    PubMed

    Jeffrey Yang, Y; Haught, Roy C; Goodrich, James A

    2009-06-01

    Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation-reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.

  3. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  4. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  5. Oriented regions grouping based candidate proposal for infrared pedestrian detection

    NASA Astrophysics Data System (ADS)

    Wang, Jiangtao; Zhang, Jingai; Li, Huaijiang

    2018-04-01

    Effectively and accurately locating the positions of pedestrian candidates in image is a key task for the infrared pedestrian detection system. In this work, a novel similarity measuring metric is designed. Based on the selective search scheme, the developed similarity measuring metric is utilized to yield the possible locations for pedestrian candidate. Besides this, corresponding diversification strategies are also provided according to the characteristics of the infrared thermal imaging system. Experimental results indicate that the presented scheme can achieve more efficient outputs than the traditional selective search methodology for the infrared pedestrian detection task.

  6. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  7. Road detection and buried object detection in elevated EO/IR imagery

    NASA Astrophysics Data System (ADS)

    Kennedy, Levi; Kolba, Mark P.; Walters, Joshua R.

    2012-06-01

    To assist the warfighter in visually identifying potentially dangerous roadside objects, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has developed an elevated video sensor system testbed for data collection. This system provides color and mid-wave infrared (MWIR) imagery. Signal Innovations Group (SIG) has developed an automated processing capability that detects the road within the sensor field of view and identifies potentially threatening buried objects within the detected road. The road detection algorithm leverages system metadata to project the collected imagery onto a flat ground plane, allowing for more accurate detection of the road as well as the direct specification of realistic physical constraints in the shape of the detected road. Once the road has been detected in an image frame, a buried object detection algorithm is applied to search for threatening objects within the detected road space. The buried object detection algorithm leverages textural and pixel intensity-based features to detect potential anomalies and then classifies them as threatening or non-threatening objects. Both the road detection and the buried object detection algorithms have been developed to facilitate their implementation in real-time in the NVESD system.

  8. Utilization of independent component analysis for accurate pathological ripple detection in intracranial EEG recordings recorded extra- and intra-operatively

    PubMed Central

    Shimamoto, Shoichi; Waldman, Zachary J.; Orosz, Iren; Song, Inkyung; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sharan, Ashwini; Wu, Chengyuan; Sperling, Michael R.; Weiss, Shennan A.

    2018-01-01

    Objective To develop and validate a detector that identifies ripple (80–200 Hz) events in intracranial EEG (iEEG) recordings in a referential montage and utilizes independent component analysis (ICA) to eliminate or reduce high-frequency artifact contamination. Also, investigate the correspondence of detected ripples and the seizure onset zone (SOZ). Methods iEEG recordings from 16 patients were first band-pass filtered (80–600 Hz) and Infomax ICA was next applied to derive the first independent component (IC1). IC1 was subsequently pruned, and an artifact index was derived to reduce the identification of high-frequency events introduced by the reference electrode signal. A Hilbert detector identified ripple events in the processed iEEG recordings using amplitude and duration criteria. The identified ripple events were further classified and characterized as true or false ripple on spikes, or ripples on oscillations by utilizing a topographical analysis to their time-frequency plot, and confirmed by visual inspection. Results The signal to noise ratio was improved by pruning IC1. The precision of the detector for ripple events was 91.27 ± 4.3%, and the sensitivity of the detector was 79.4 ± 3.0% (N = 16 patients, 5842 ripple events). The sensitivity and precision of the detector was equivalent in iEEG recordings obtained during sleep or intra-operatively. Across all the patients, true ripple on spike rates and also the rates of false ripple on spikes, that were generated due to filter ringing, classified the seizure onset zone (SOZ) with an area under the receiver operating curve (AUROC) of >76%. The magnitude and spectral content of true ripple on spikes generated in the SOZ was distinct as compared with the ripples generated in the NSOZ (p < .001). Conclusions Utilizing ICA to analyze iEEG recordings in referential montage provides many benefits to the study of high-frequency oscillations. The ripple rates and properties defined using this approach may

  9. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulbaqi, Hayder Saad; Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya; Jafri, Mohd Zubir Mat

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introducemore » a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.« less

  10. CT Colonography with Computer-aided Detection: Recognizing the Causes of False-Positive Reader Results

    PubMed Central

    Dachman, Abraham H.; Wroblewski, Kristen; Vannier, Michael W.; Horne, John M.

    2014-01-01

    Computed tomography (CT) colonography is a screening modality used to detect colonic polyps before they progress to colorectal cancer. Computer-aided detection (CAD) is designed to decrease errors of detection by finding and displaying polyp candidates for evaluation by the reader. CT colonography CAD false-positive results are common and have numerous causes. The relative frequency of CAD false-positive results and their effect on reader performance on the basis of a 19-reader, 100-case trial shows that the vast majority of CAD false-positive results were dismissed by readers. Many CAD false-positive results are easily disregarded, including those that result from coarse mucosa, reconstruction, peristalsis, motion, streak artifacts, diverticulum, rectal tubes, and lipomas. CAD false-positive results caused by haustral folds, extracolonic candidates, diminutive lesions (<6 mm), anal papillae, internal hemorrhoids, varices, extrinsic compression, and flexural pseudotumors are almost always recognized and disregarded. The ileocecal valve and tagged stool are common sources of CAD false-positive results associated with reader false-positive results. Nondismissable CAD soft-tissue polyp candidates larger than 6 mm are another common cause of reader false-positive results that may lead to further evaluation with follow-up CT colonography or optical colonoscopy. Strategies for correctly evaluating CAD polyp candidates are important to avoid pitfalls from common sources of CAD false-positive results. ©RSNA, 2014 PMID:25384290

  11. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  12. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  13. Manifold structure preservative for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Imani, Maryam

    2018-05-01

    A nonparametric method termed as manifold structure preservative (MSP) is proposed in this paper for hyperspectral target detection. MSP transforms the feature space of data to maximize the separation between target and background signals. Moreover, it minimizes the reconstruction error of targets and preserves the topological structure of data in the projected feature space. MSP does not need to consider any distribution for target and background data. So, it can achieve accurate results in real scenarios due to avoiding unreliable assumptions. The proposed MSP detector is compared to several popular detectors and the experiments on a synthetic data and two real hyperspectral images indicate the superior ability of it in target detection.

  14. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  15. Lip boundary detection techniques using color and depth information

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-Myung; Yoon, Sung H.; Kim, Jung H.; Hur, Gi Taek

    2002-01-01

    This paper presents our approach to using a stereo camera to obtain 3-D image data to be used to improve existing lip boundary detection techniques. We show that depth information as provided by our approach can be used to significantly improve boundary detection systems. Our system detects the face and mouth area in the image by using color, geometric location, and additional depth information for the face. Initially, color and depth information can be used to localize the face. Then we can determine the lip region from the intensity information and the detected eye locations. The system has successfully been used to extract approximate lip regions using RGB color information of the mouth area. Merely using color information is not robust because the quality of the results may vary depending on light conditions, background, and the human race. To overcome this problem, we used a stereo camera to obtain 3-D facial images. 3-D data constructed from the depth information along with color information can provide more accurate lip boundary detection results as compared to color only based techniques.

  16. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    PubMed

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  17. Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions

    PubMed Central

    Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954

  18. Application of DBNs for concerned internet information detecting

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Gao, Song

    2017-03-01

    In recent years, deep learning has achieved great success in many fields, ranging from voice recognition and image classification to computer vision. In this study we apply DBNs to concerned internet information in Chinese detecting problem, since there are inherent differences between English and Chinese. Contrastive divergence (CD) is employed in the DBNs to learn a multi-layer generative model from numerous unlabeled data. The features obtained by this model are used to initialize the feed-forward neural network, which can be fine-tuned with backpropagation. Experiment results indicate that, the model and training method we proposed can be used to detect the concerned internet information effectively and accurately.

  19. Cloud Detection by Fusing Multi-Scale Convolutional Features

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  20. The Automated Assessment of Postural Stability: Balance Detection Algorithm.

    PubMed

    Napoli, Alessandro; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2017-12-01

    Impaired balance is a common indicator of mild traumatic brain injury, concussion and musculoskeletal injury. Given the clinical relevance of such injuries, especially in military settings, it is paramount to develop more accurate and reliable on-field evaluation tools. This work presents the design and implementation of the automated assessment of postural stability (AAPS) system, for on-field evaluations following concussion. The AAPS is a computer system, based on inexpensive off-the-shelf components and custom software, that aims to automatically and reliably evaluate balance deficits, by replicating a known on-field clinical test, namely, the Balance Error Scoring System (BESS). The AAPS main innovation is its balance error detection algorithm that has been designed to acquire data from a Microsoft Kinect ® sensor and convert them into clinically-relevant BESS scores, using the same detection criteria defined by the original BESS test. In order to assess the AAPS balance evaluation capability, a total of 15 healthy subjects (7 male, 8 female) were required to perform the BESS test, while simultaneously being tracked by a Kinect 2.0 sensor and a professional-grade motion capture system (Qualisys AB, Gothenburg, Sweden). High definition videos with BESS trials were scored off-line by three experienced observers for reference scores. AAPS performance was assessed by comparing the AAPS automated scores to those derived by three experienced observers. Our results show that the AAPS error detection algorithm presented here can accurately and precisely detect balance deficits with performance levels that are comparable to those of experienced medical personnel. Specifically, agreement levels between the AAPS algorithm and the human average BESS scores ranging between 87.9% (single-leg on foam) and 99.8% (double-leg on firm ground) were detected. Moreover, statistically significant differences in balance scores were not detected by an ANOVA test with alpha equal to 0

  1. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  2. Detection of ventricular fibrillation from multiple sensors

    NASA Astrophysics Data System (ADS)

    Lindsley, Stephanie A.; Ludeman, Lonnie C.

    1992-07-01

    Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.

  3. Hypertension Detection and Results Among Young Adults

    ERIC Educational Resources Information Center

    Garner, Walton R.; Gerald, Michael C.

    1977-01-01

    A comprehensive hypertension education and detection program, in which 2,852 students were tested and, if necessary, referred to area physicians, illustrates the unique position a university setting offers for work in this area. (MB)

  4. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  5. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  6. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  7. Effect of Age and Glaucoma on the Detection of Darks and Lights

    PubMed Central

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506

  8. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  9. Learning-based automatic detection of severe coronary stenoses in CT angiographies

    NASA Astrophysics Data System (ADS)

    Melki, Imen; Cardon, Cyril; Gogin, Nicolas; Talbot, Hugues; Najman, Laurent

    2014-03-01

    3D cardiac computed tomography angiography (CCTA) is becoming a standard routine for non-invasive heart diseases diagnosis. Thanks to its high negative predictive value, CCTA is increasingly used to decide whether or not the patient should be considered for invasive angiography. However, an accurate assessment of cardiac lesions using this modality is still a time consuming task and needs a high degree of clinical expertise. Thus, providing automatic tool to assist clinicians during the diagnosis task is highly desirable. In this work, we propose a fully automatic approach for accurate severe cardiac stenoses detection. Our algorithm uses the Random Forest classi cation to detect stenotic areas. First, the classi er is trained on 18 CT cardiac exams with CTA reference standard. Then, then classi cation result is used to detect severe stenoses (with a narrowing degree higher than 50%) in a 30 cardiac CT exam database. Features that best captures the di erent stenoses con guration are extracted along the vessel centerlines at di erent scales. To ensure the accuracy against the vessel direction and scale changes, we extract features inside cylindrical patterns with variable directions and radii. Thus, we make sure that the ROIs contains only the vessel walls. The algorithm is evaluated using the Rotterdam Coronary Artery Stenoses Detection and Quantication Evaluation Framework. The evaluation is performed using reference standard quanti cations obtained from quantitative coronary angiography (QCA) and consensus reading of CTA. The obtained results show that we can reliably detect severe stenosis with a sensitivity of 64%.

  10. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    PubMed

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  11. First Time Rapid and Accurate Detection of Massive Number of Metal Absorption Lines in the Early Universe Using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Zhao, Yinan; Ge, Jian; Yuan, Xiaoyong; Li, Xiaolin; Zhao, Tiffany; Wang, Cindy

    2018-01-01

    Metal absorption line systems in the distant quasar spectra have been used as one of the most powerful tools to probe gas content in the early Universe. The MgII λλ 2796, 2803 doublet is one of the most popular metal absorption lines and has been used to trace gas and global star formation at redshifts between ~0.5 to 2.5. In the past, machine learning algorithms have been used to detect absorption lines systems in the large sky survey, such as Principle Component Analysis, Gaussian Process and decision tree, but the overall detection process is not only complicated, but also time consuming. It usually takes a few months to go through the entire quasar spectral dataset from each of the Sloan Digital Sky Survey (SDSS) data release. In this work, we applied the deep neural network, or “ deep learning” algorithms, in the most recently SDSS DR14 quasar spectra and were able to randomly search 20000 quasar spectra and detect 2887 strong Mg II absorption features in just 9 seconds. Our detection algorithms were verified with previously released DR12 and DR7 data and published Mg II catalog and the detection accuracy is 90%. This is the first time that deep neural network has demonstrated its promising power in both speed and accuracy in replacing tedious, repetitive human work in searching for narrow absorption patterns in a big dataset. We will present our detection algorithms and also statistical results of the newly detected Mg II absorption lines.

  12. Insulation detection of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin

    2018-06-01

    In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.

  13. Phone camera detection of glucose blood level based on magnetic particles entrapped inside bubble wrap.

    PubMed

    Martinkova, Pavla; Pohanka, Miroslav

    2016-12-18

    Glucose is an important diagnostic biochemical marker of diabetes but also for organophosphates, carbamates, acetaminophens or salicylates poisoning. Hence, innovation of accurate and fast detection assay is still one of priorities in biomedical research. Glucose sensor based on magnetic particles (MPs) with immobilized enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) was developed and the GOx catalyzed reaction was visualized by a smart-phone-integrated camera. Exponential decay concentration curve with correlation coefficient 0.997 and with limit of detection 0.4 mmol/l was achieved. Interfering and matrix substances were measured due to possibility of assay influencing and no effect of the tested substances was observed. Spiked plasma samples were also measured and no influence of plasma matrix on the assay was proved. The presented assay showed complying results with reference method (standard spectrophotometry based on enzymes glucose oxidase and peroxidase inside plastic cuvettes) with linear dependence and correlation coefficient 0.999 in concentration range between 0 and 4 mmol/l. On the grounds of measured results, method was considered as highly specific, accurate and fast assay for detection of glucose.

  14. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  15. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  16. Fast and accurate inference of local ancestry in Latino populations

    PubMed Central

    Baran, Yael; Pasaniuc, Bogdan; Sankararaman, Sriram; Torgerson, Dara G.; Gignoux, Christopher; Eng, Celeste; Rodriguez-Cintron, William; Chapela, Rocio; Ford, Jean G.; Avila, Pedro C.; Rodriguez-Santana, Jose; Burchard, Esteban Gonzàlez; Halperin, Eran

    2012-01-01

    Motivation: It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate and unbiased estimation of the ancestry at every genomic locus in recently admixed populations. Although various methods have been proposed and shown to be extremely accurate in two-way admixtures (e.g. African Americans), only a few approaches have been proposed and thoroughly benchmarked on multi-way admixtures (e.g. Latino populations of the Americas). Results: To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos. Availability: http://lamp.icsi.berkeley.edu/lamp/lampld/ Contact: bpasaniu@hsph.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22495753

  17. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  18. Rapid Methods for the Detection of General Fecal Indicators

    EPA Science Inventory

    Specified that EPA should develop: appropriate and effective indicators for improving detection in a timely manner of pathogens in coastal waters appropriate, accurate, expeditious and cost-effective methods for the timely detection of pathogens in coastal waters

  19. A new metric for detecting change in slowly evolving brain tumors: validation in meningioma patients.

    PubMed

    Pohl, Kilian M; Konukoglu, Ender; Novellas, Sebastian; Ayache, Nicholas; Fedorov, Andriy; Talos, Ion-Florin; Golby, Alexandra; Wells, William M; Kikinis, Ron; Black, Peter M

    2011-03-01

    Change detection is a critical component in the diagnosis and monitoring of many slowly evolving pathologies. This article describes a semiautomatic monitoring approach using longitudinal medical images. We test the method on brain scans of patients with meningioma, which experts have found difficult to monitor because the tumor evolution is very slow and may be obscured by artifacts related to image acquisition. We describe a semiautomatic procedure targeted toward identifying difficult-to-detect changes in brain tumor imaging. The tool combines input from a medical expert with state-of-the-art technology. The software is easy to calibrate and, in less than 5 minutes, returns the total volume of tumor change in mm. We test the method on postgadolinium, T1-weighted magnetic resonance images of 10 patients with meningioma and compare our results with experts' findings. We also perform benchmark testing with synthetic data. Our experiments indicated that experts' visual inspections are not sensitive enough to detect subtle growth. Measurements based on experts' manual segmentations were highly accurate but also labor intensive. The accuracy of our approach was comparable to the experts' results. However, our approach required far less user input and generated more consistent measurements. The sensitivity of experts' visual inspection is often too low to detect subtle growth of meningiomas from longitudinal scans. Measurements based on experts' segmentation are highly accurate but generally too labor intensive for standard clinical settings. We described an alternative metric that provides accurate and robust measurements of subtle tumor changes while requiring a minimal amount of user input.

  20. Accurate forced-choice recognition without awareness of memory retrieval.

    PubMed

    Voss, Joel L; Baym, Carol L; Paller, Ken A

    2008-06-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.

  1. Accurate segmentation of lung fields on chest radiographs using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory

    2017-02-01

    Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.

  2. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  3. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  4. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    PubMed Central

    Wei, Pan; Anderson, Derek T.

    2018-01-01

    A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications. PMID:29562609

  5. The New Aptima HBV Quant Real-Time TMA Assay Accurately Quantifies Hepatitis B Virus DNA from Genotypes A to F

    PubMed Central

    Dauvillier, Claude; Dubernet, Fabienne; Poveda, Jean-Dominique; Laperche, Syria; Hézode, Christophe; Pawlotsky, Jean-Michel

    2017-01-01

    ABSTRACT Sensitive and accurate hepatitis B virus (HBV) DNA detection and quantification are essential to diagnose HBV infection, establish the prognosis of HBV-related liver disease, and guide the decision to treat and monitor the virological response to antiviral treatment and the emergence of resistance. Currently available HBV DNA platforms and assays are generally designed for batching multiple specimens within an individual run and require at least one full day of work to complete the analyses. The aim of this study was to evaluate the ability of the newly developed, fully automated, one-step Aptima HBV Quant assay to accurately detect and quantify HBV DNA in a large series of patients infected with different HBV genotypes. The limit of detection of the assay was estimated to be 4.5 IU/ml. The specificity of the assay was 100%. Intra-assay and interassay coefficients of variation ranged from 0.29% to 5.07% and 4.90% to 6.85%, respectively. HBV DNA levels from patients infected with HBV genotypes A to F measured with the Aptima HBV Quant assay strongly correlated with those measured by two commercial real-time PCR comparators (Cobas AmpliPrep/Cobas TaqMan HBV test, version 2.0, and Abbott RealTime HBV test). In conclusion, the Aptima HBV Quant assay is sensitive, specific, and reproducible and accurately quantifies HBV DNA in plasma samples from patients with chronic HBV infections of all genotypes, including patients on antiviral treatment with nucleoside or nucleotide analogues. The Aptima HBV Quant assay can thus confidently be used to detect and quantify HBV DNA in both clinical trials with new anti-HBV drugs and clinical practice. PMID:28202793

  6. A habituation based approach for detection of visual changes in surveillance camera

    NASA Astrophysics Data System (ADS)

    Sha'abani, M. N. A. H.; Adan, N. F.; Sabani, M. S. M.; Abdullah, F.; Nadira, J. H. S.; Yasin, M. S. M.

    2017-09-01

    This paper investigates a habituation based approach in detecting visual changes using video surveillance systems in a passive environment. Various techniques have been introduced for dynamic environment such as motion detection, object classification and behaviour analysis. However, in a passive environment, most of the scenes recorded by the surveillance system are normal. Therefore, implementing a complex analysis all the time in the passive environment resulting on computationally expensive, especially when using a high video resolution. Thus, a mechanism of attention is required, where the system only responds to an abnormal event. This paper proposed a novelty detection mechanism in detecting visual changes and a habituation based approach to measure the level of novelty. The objective of the paper is to investigate the feasibility of the habituation based approach in detecting visual changes. Experiment results show that the approach are able to accurately detect the presence of novelty as deviations from the learned knowledge.

  7. Detection of Peptide-based nanoparticles in blood plasma by ELISA.

    PubMed

    Bode, Gerard H; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J G; Schmitz, Christoph; Sinner, Frank M; Losen, Mario; Steinbusch, Harry W M; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions.

  8. Lane marking detection based on waveform analysis and CNN

    NASA Astrophysics Data System (ADS)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  9. Toward more accurate loss tangent measurements in reentrant cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  10. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    the underlying database impacts accuracy of results; many outliers in our dataset could be attributed to taxonomic and/or sequencing errors in BOLD and GenBank. It seems that an accurate and complete reference library of families and genera of life could provide accurate higher level taxonomic identifications cheaply and accessibly, within years rather than decades. PMID:27547527

  11. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification.

    PubMed

    Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A

    2008-10-01

    Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.

  12. Real-time 3D change detection of IEDs

    NASA Astrophysics Data System (ADS)

    Wathen, Mitch; Link, Norah; Iles, Peter; Jinkerson, John; Mrstik, Paul; Kusevic, Kresimir; Kovats, David

    2012-06-01

    Road-side bombs are a real and continuing threat to soldiers in theater. CAE USA recently developed a prototype Volume based Intelligence Surveillance Reconnaissance (VISR) sensor platform for IED detection. This vehicle-mounted, prototype sensor system uses a high data rate LiDAR (1.33 million range measurements per second) to generate a 3D mapping of roadways. The mapped data is used as a reference to generate real-time change detection on future trips on the same roadways. The prototype VISR system is briefly described. The focus of this paper is the methodology used to process the 3D LiDAR data, in real-time, to detect small changes on and near the roadway ahead of a vehicle traveling at moderate speeds with sufficient warning to stop the vehicle at a safe distance from the threat. The system relies on accurate navigation equipment to geo-reference the reference run and the change-detection run. Since it was recognized early in the project that detection of small changes could not be achieved with accurate navigation solutions alone, a scene alignment algorithm was developed to register the reference run with the change detection run prior to applying the change detection algorithm. Good success was achieved in simultaneous real time processing of scene alignment plus change detection.

  13. Towards robust specularity detection and inpainting in cardiac images

    NASA Astrophysics Data System (ADS)

    Alsaleh, Samar M.; Aviles, Angelica I.; Sobrevilla, Pilar; Casals, Alicia; Hahn, James

    2016-03-01

    Computer-assisted cardiac surgeries had major advances throughout the years and are gaining more popularity over conventional cardiac procedures as they offer many benefits to both patients and surgeons. One obvious advantage is that they enable surgeons to perform delicate tasks on the heart while it is still beating, avoiding the risks associated with cardiac arrest. Consequently, the surgical system needs to accurately compensate the physiological motion of the heart which is a very challenging task in medical robotics since there exist different sources of disturbances. One of which is the bright light reflections, known as specular highlights, that appear on the glossy surface of the heart and partially occlude the field of view. This work is focused on developing a robust approach that accurately detects and removes those highlights to reduce their disturbance to the surgeon and the motion compensation algorithm. As a first step, we exploit both color attributes and Fuzzy edge detector to identify specular regions in each acquired image frame. These two techniques together work as restricted thresholding and are able to accurately identify specular regions. Then, in order to eliminate the specularity artifact and give the surgeon a better perception of the heart, the second part of our solution is dedicated to correct the detected regions using inpainting to propagate and smooth the results. Our experimental results, which we carry out in realistic datasets, reveal how efficient and precise the proposed solution is, as well as demonstrate its robustness and real-time performance.

  14. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  15. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    PubMed

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.

  17. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data

    PubMed Central

    Rochefort, Christian M; Verma, Aman D; Eguale, Tewodros; Lee, Todd C; Buckeridge, David L

    2015-01-01

    Background Venous thromboembolisms (VTEs), which include deep vein thrombosis (DVT) and pulmonary embolism (PE), are associated with significant mortality, morbidity, and cost in hospitalized patients. To evaluate the success of preventive measures, accurate and efficient methods for monitoring VTE rates are needed. Therefore, we sought to determine the accuracy of statistical natural language processing (NLP) for identifying DVT and PE from electronic health record data. Methods We randomly sampled 2000 narrative radiology reports from patients with a suspected DVT/PE in Montreal (Canada) between 2008 and 2012. We manually identified DVT/PE within each report, which served as our reference standard. Using a bag-of-words approach, we trained 10 alternative support vector machine (SVM) models predicting DVT, and 10 predicting PE. SVM training and testing was performed with nested 10-fold cross-validation, and the average accuracy of each model was measured and compared. Results On manual review, 324 (16.2%) reports were DVT-positive and 154 (7.7%) were PE-positive. The best DVT model achieved an average sensitivity of 0.80 (95% CI 0.76 to 0.85), specificity of 0.98 (98% CI 0.97 to 0.99), positive predictive value (PPV) of 0.89 (95% CI 0.85 to 0.93), and an area under the curve (AUC) of 0.98 (95% CI 0.97 to 0.99). The best PE model achieved sensitivity of 0.79 (95% CI 0.73 to 0.85), specificity of 0.99 (95% CI 0.98 to 0.99), PPV of 0.84 (95% CI 0.75 to 0.92), and AUC of 0.99 (95% CI 0.98 to 1.00). Conclusions Statistical NLP can accurately identify VTE from narrative radiology reports. PMID:25332356

  18. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  19. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation.

    PubMed

    Boyer, Célia; Dolamic, Ljiljana

    2015-06-02

    To earn HONcode certification, a website must conform to the 8 principles of the HONcode of Conduct In the current manual process of certification, a HONcode expert assesses the candidate website using precise guidelines for each principle. In the scope of the European project KHRESMOI, the Health on the Net (HON) Foundation has developed an automated system to assist in detecting a website's HONcode conformity. Automated assistance in conducting HONcode reviews can expedite the current time-consuming tasks of HONcode certification and ongoing surveillance. Additionally, an automated tool used as a plugin to a general search engine might help to detect health websites that respect HONcode principles but have not yet been certified. The goal of this study was to determine whether the automated system is capable of performing as good as human experts for the task of identifying HONcode principles on health websites. Using manual evaluation by HONcode senior experts as a baseline, this study compared the capability of the automated HONcode detection system to that of the HONcode senior experts. A set of 27 health-related websites were manually assessed for compliance to each of the 8 HONcode principles by senior HONcode experts. The same set of websites were processed by the automated system for HONcode compliance detection based on supervised machine learning. The results obtained by these two methods were then compared. For the privacy criterion, the automated system obtained the same results as the human expert for 17 of 27 sites (14 true positives and 3 true negatives) without noise (0 false positives). The remaining 10 false negative instances for the privacy criterion represented tolerable behavior because it is important that all automatically detected principle conformities are accurate (ie, specificity [100%] is preferred over sensitivity [58%] for the privacy criterion). In addition, the automated system had precision of at least 75%, with a recall of more

  20. Detection of food intake from swallowing sequences by supervised and unsupervised methods.

    PubMed

    Lopez-Meyer, Paulo; Makeyev, Oleksandr; Schuckers, Stephanie; Melanson, Edward L; Neuman, Michael R; Sazonov, Edward

    2010-08-01

    Studies of food intake and ingestive behavior in free-living conditions most often rely on self-reporting-based methods that can be highly inaccurate. Methods of Monitoring of Ingestive Behavior (MIB) rely on objective measures derived from chewing and swallowing sequences and thus can be used for unbiased study of food intake with free-living conditions. Our previous study demonstrated accurate detection of food intake in simple models relying on observation of both chewing and swallowing. This article investigates methods that achieve comparable accuracy of food intake detection using only the time series of swallows and thus eliminating the need for the chewing sensor. The classification is performed for each individual swallow rather than for previously used time slices and thus will lead to higher accuracy in mass prediction models relying on counts of swallows. Performance of a group model based on a supervised method (SVM) is compared to performance of individual models based on an unsupervised method (K-means) with results indicating better performance of the unsupervised, self-adapting method. Overall, the results demonstrate that highly accurate detection of intake of foods with substantially different physical properties is possible by an unsupervised system that relies on the information provided by the swallowing alone.

  1. Detection of Food Intake from Swallowing Sequences by Supervised and Unsupervised Methods

    PubMed Central

    Lopez-Meyer, Paulo; Makeyev, Oleksandr; Schuckers, Stephanie; Melanson, Edward L.; Neuman, Michael R.; Sazonov, Edward

    2010-01-01

    Studies of food intake and ingestive behavior in free-living conditions most often rely on self-reporting-based methods that can be highly inaccurate. Methods of Monitoring of Ingestive Behavior (MIB) rely on objective measures derived from chewing and swallowing sequences and thus can be used for unbiased study of food intake with free-living conditions. Our previous study demonstrated accurate detection of food intake in simple models relying on observation of both chewing and swallowing. This article investigates methods that achieve comparable accuracy of food intake detection using only the time series of swallows and thus eliminating the need for the chewing sensor. The classification is performed for each individual swallow rather than for previously used time slices and thus will lead to higher accuracy in mass prediction models relying on counts of swallows. Performance of a group model based on a supervised method (SVM) is compared to performance of individual models based on an unsupervised method (K-means) with results indicating better performance of the unsupervised, self-adapting method. Overall, the results demonstrate that highly accurate detection of intake of foods with substantially different physical properties is possible by an unsupervised system that relies on the information provided by the swallowing alone. PMID:20352335

  2. Fast and Accurate Approximation to Significance Tests in Genome-Wide Association Studies

    PubMed Central

    Zhang, Yu; Liu, Jun S.

    2011-01-01

    Genome-wide association studies commonly involve simultaneous tests of millions of single nucleotide polymorphisms (SNP) for disease association. The SNPs in nearby genomic regions, however, are often highly correlated due to linkage disequilibrium (LD, a genetic term for correlation). Simple Bonferonni correction for multiple comparisons is therefore too conservative. Permutation tests, which are often employed in practice, are both computationally expensive for genome-wide studies and limited in their scopes. We present an accurate and computationally efficient method, based on Poisson de-clumping heuristics, for approximating genome-wide significance of SNP associations. Compared with permutation tests and other multiple comparison adjustment approaches, our method computes the most accurate and robust p-value adjustments for millions of correlated comparisons within seconds. We demonstrate analytically that the accuracy and the efficiency of our method are nearly independent of the sample size, the number of SNPs, and the scale of p-values to be adjusted. In addition, our method can be easily adopted to estimate false discovery rate. When applied to genome-wide SNP datasets, we observed highly variable p-value adjustment results evaluated from different genomic regions. The variation in adjustments along the genome, however, are well conserved between the European and the African populations. The p-value adjustments are significantly correlated with LD among SNPs, recombination rates, and SNP densities. Given the large variability of sequence features in the genome, we further discuss a novel approach of using SNP-specific (local) thresholds to detect genome-wide significant associations. This article has supplementary material online. PMID:22140288

  3. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    NASA Astrophysics Data System (ADS)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  4. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  5. USING CANINES IN SOURCE DETECTION OF INDOOR AIR POLLUTANTS

    EPA Science Inventory

    Dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Dogs are regularly used in arson investigations to detect accelerants since they are much more accurate at discriminating between accelerants an...

  6. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  7. Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems.

    PubMed

    Trimmer, Pete C; Houston, Alasdair I; Marshall, James A R; Bogacz, Rafal; Paul, Elizabeth S; Mendl, Mike T; McNamara, John M

    2008-10-22

    Empirical findings suggest that the mammalian brain has two decision-making systems that act at different speeds. We represent the faster system using standard signal detection theory. We represent the slower (but more accurate) cortical system as the integration of sensory evidence over time until a certain level of confidence is reached. We then consider how two such systems should be combined optimally for a range of information linkage mechanisms. We conclude with some performance predictions that will hold if our representation is realistic.

  8. Development of a Simple, Peripheral-Blood-Based Lateral-Flow Dipstick Assay for Accurate Detection of Patients with Enteric Fever

    PubMed Central

    Khan, Iqbal Hassan; Sayeed, M. Abu; Sultana, Nishat; Islam, Kamrul; Amin, Jakia; Faruk, M. Omar; Khan, Umama; Khanam, Farhana; Ryan, Edward T.

    2016-01-01

    Enteric fever is a systemic infection caused by typhoidal strains of Salmonella enterica and is a significant cause of mortality and morbidity in many parts of the world, especially in resource-limited areas. Unfortunately, currently available diagnostic tests for enteric fever lack sensitivity and/or specificity. No true clinically practical gold standard for diagnosing patients with enteric fever exists. Unfortunately, microbiologic culturing of blood is only 30 to 70% sensitive although 100% specific. Here, we report the development of a lateral-flow immunochromatographic dipstick assay based on the detection of Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS)-specific IgG in lymphocyte culture secretion. We tested the assay using samples from 142 clinically suspected enteric fever patients, 28 healthy individuals residing in a zone where enteric fever is endemic, and 35 patients with other febrile illnesses. In our analysis, the dipstick detected all blood culture-confirmed S. Typhi cases (48/48) and 5 of 6 Salmonella enterica serovar Paratyphi A blood cultured-confirmed cases. The test was negative in all 35 individuals febrile with other illnesses and all 28 healthy controls from the zone of endemicity. The test was positive in 19 of 88 individuals with suspected enteric fever but with negative blood cultures. Thus, the dipstick had a sensitivity of 98% compared to blood culture results and a specificity that ranged from 78 to 100% (95% confidence interval [CI], 70 to 100%), depending on the definition of a true negative. These results suggest that this dipstick assay can be very useful for the detection of enteric fever patients especially in regions of endemicity. PMID:26961857

  9. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.

    PubMed

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2016-12-01

    In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.

  10. Oral-Fluid Thiol-Detection Test Identifies Underlying Active Periodontal Disease Not Detected by the Visual Awake Examination.

    PubMed

    Queck, Katherine E; Chapman, Angela; Herzog, Leslie J; Shell-Martin, Tamara; Burgess-Cassler, Anthony; McClure, George David

    Periodontal disease in dogs is highly prevalent but can only be accurately diagnosed by performing an anesthetized oral examination with periodontal probing and dental radiography. In this study, 114 dogs had a visual awake examination of the oral cavity and were administered an oral-fluid thiol-detection test prior to undergoing a a full-mouth anesthetized oral examination and digital dental radiographs. The results show the visual awake examination underestimated the presence and severity of active periodontal disease. The thiol-detection test was superior to the visual awake examination at detecting the presence and severity of active periodontal disease and was an indicator of progression toward alveolar bone loss. The thiol-detection test detected active periodontal disease at early stages of development, before any visual cues were present, indicating the need for intervention to prevent periodontal bone loss. Early detection is important because without intervention, dogs with gingivitis (active periodontal disease) progress to irreversible periodontal bone loss (stage 2+). As suggested in the current AAHA guidelines, a thiol-detection test administered in conjunction with the visual awake examination during routine wellness examinations facilitates veterinarian-client communication and mitigates under-diagnosis of periodontal disease and underutilization of dental services. The thiol-detection test can be used to monitor the periodontal health status of the conscious patient during follow-up examinations based on disease severity.

  11. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  12. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    PubMed

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  13. Rubber hose surface defect detection system based on machine vision

    NASA Astrophysics Data System (ADS)

    Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng

    2018-01-01

    As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.

  14. Patients’ Knowledge, Beliefs, and Distress associated with Detection and Evaluation of Incidental Pulmonary Nodules for Cancer: Results from a Multi-Center Survey

    PubMed Central

    Freiman, Marc R.; Clark, Jack A.; Slatore, Christopher G.; Gould, Michael K.; Woloshin, Steven; Schwartz, Lisa M.; Wiener, Renda Soylemez

    2016-01-01

    Introduction Pulmonary nodules are detected in over a million Americans each year. Prior qualitative work suggests the detection of incidental pulmonary nodules can be burdensome for patients, but it is unknown whether these findings generalize to a broader sample of patients. We categorized patients’ knowledge, beliefs, and distress associated with detection and evaluation of a pulmonary nodule, and their impressions of clinician communication. Methods We administered a cross-sectional survey to adults with an incidental pulmonary nodule recruited from a rural medical center, an urban safety net hospital, and a Veterans Affairs hospital. Results Of 490 surveys mailed, 244 (50%) responded. Median nodule size was 7 mm; mean patient age was 67 years; 29% were female, and 86% were white. A quarter (26%) of respondents reported clinically significant distress related to their nodule as measured by the Impact of Event scale, our primary outcome. Patients reported multiple concerns including uncertainty about the nodule’s etiology (78%), the possibility of cancer (73%), and the possible need for surgery (64%). Only 25% of patients accurately estimated their lung cancer risk (within 15% of their actual risk); overall there was no correlation between perceived and actual risk (r=−0.007, p=0.93). Among the 23% of patients who did receive cancer risk information from their provider, they were more likely to find this information reassuring (16%) than scary (7%). Conclusion A quarter of patients with incidental pulmonary nodules experienced clinically significant distress. Knowledge about cancer risk and evaluation was poor. Clinician communication may help bridge knowledge gaps and alleviate distress in some patients. PMID:26961390

  15. Bat detective—Deep learning tools for bat acoustic signal detection

    PubMed Central

    Barlow, Kate E.; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R.; Newson, Stuart E.; Pandourski, Ivan; Russ, Jon; Szodoray-Paradi, Abigel; Tilova, Elena; Girolami, Mark; Jones, Kate E.

    2018-01-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio. PMID:29518076

  16. DNA Microarray Detection of 18 Important Human Blood Protozoan Species

    PubMed Central

    Chen, Jun-Hu; Feng, Xin-Yu; Chen, Shao-Hong; Cai, Yu-Chun; Lu, Yan; Zhou, Xiao-Nong; Chen, Jia-Xu; Hu, Wei

    2016-01-01

    Background Accurate detection of blood protozoa from clinical samples is important for diagnosis, treatment and control of related diseases. In this preliminary study, a novel DNA microarray system was assessed for the detection of Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with microscopy and PCR data. Developing a rapid, simple, and convenient detection method for protozoan detection is an urgent need. Methodology/Principal Findings The microarray assay simultaneously identified 18 species of common blood protozoa based on the differences in respective target genes. A total of 20 specific primer pairs and 107 microarray probes were selected according to conserved regions which were designed to identify 18 species in 5 blood protozoan genera. The positive detection rate of the microarray assay was 91.78% (402/438). Sensitivity and specificity for blood protozoan detection ranged from 82.4% (95%CI: 65.9% ~ 98.8%) to 100.0% and 95.1% (95%CI: 93.2% ~ 97.0%) to 100.0%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) ranged from 20.0% (95%CI: 2.5% ~ 37.5%) to 100.0% and 96.8% (95%CI: 95.0% ~ 98.6%) to 100.0%, respectively. Youden index varied from 0.82 to 0.98. The detection limit of the DNA microarrays ranged from 200 to 500 copies/reaction, similar to PCR findings. The concordance rate between microarray data and DNA sequencing results was 100%. Conclusions/Significance Overall, the newly developed microarray platform provides a convenient, highly accurate, and reliable clinical assay for the determination of blood protozoan species. PMID:27911895

  17. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    PubMed

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Male greater sage-grouse detectability on leks

    Treesearch

    Aleshia L. Fremgen; Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2016-01-01

    It is unlikely all male sage-grouse are detected during lek counts, which could complicate the use of lek counts as an index to population abundance. Understanding factors that influence detection probabilities will allow managers to more accurately estimate the number of males present on leks. We fitted 410 males with global positioning system and very high...

  19. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  20. Detecting nonsense for Chinese comments based on logistic regression

    NASA Astrophysics Data System (ADS)

    Zhuolin, Ren; Guang, Chen; Shu, Chen

    2016-07-01

    To understand cyber citizens' opinion accurately from Chinese news comments, the clear definition on nonsense is present, and a detection model based on logistic regression (LR) is proposed. The detection of nonsense can be treated as a binary-classification problem. Besides of traditional lexical features, we propose three kinds of features in terms of emotion, structure and relevance. By these features, we train an LR model and demonstrate its effect in understanding Chinese news comments. We find that each of proposed features can significantly promote the result. In our experiments, we achieve a prediction accuracy of 84.3% which improves the baseline 77.3% by 7%.

  1. Autofocusing and Polar Body Detection in Automated Cell Manipulation.

    PubMed

    Wang, Zenan; Feng, Chen; Ang, Wei Tech; Tan, Steven Yih Min; Latt, Win Tun

    2017-05-01

    Autofocusing and feature detection are two essential processes for performing automated biological cell manipulation tasks. In this paper, we have introduced a technique capable of focusing on a holding pipette and a mammalian cell under a bright-field microscope automatically, and a technique that can detect and track the presence and orientation of the polar body of an oocyte that is rotated at the tip of a micropipette. Both algorithms were evaluated by using mouse oocytes. Experimental results show that both algorithms achieve very high success rates: 100% and 96%. As robust and accurate image processing methods, they can be widely applied to perform various automated biological cell manipulations.

  2. Entanglement-enhanced Neyman-Pearson target detection using quantum illumination

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-08-01

    Quantum illumination (QI) provides entanglement-based target detection---in an entanglement-breaking environment---whose performance is significantly better than that of optimum classical-illumination target detection. QI's performance advantage was established in a Bayesian setting with the target presumed equally likely to be absent or present and error probability employed as the performance metric. Radar theory, however, eschews that Bayesian approach, preferring the Neyman-Pearson performance criterion to avoid the difficulties of accurately assigning prior probabilities to target absence and presence and appropriate costs to false-alarm and miss errors. We have recently reported an architecture---based on sum-frequency generation (SFG) and feedforward (FF) processing---for minimum error-probability QI target detection with arbitrary prior probabilities for target absence and presence. In this paper, we use our results for FF-SFG reception to determine the receiver operating characteristic---detection probability versus false-alarm probability---for optimum QI target detection under the Neyman-Pearson criterion.

  3. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  4. Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Honda, K.; Kimura, K.; Honma, T.

    2008-12-01

    Early detection of wildfires is an issue for reduction of damage to environment and human. There are some attempts to detect wildfires by using satellite imagery, which are mainly classified into three methods: Dozier Method(1981-), Threshold Method(1986-) and Contextual Method(1994-). However, the accuracy of these methods is not enough: some commission and omission errors are included in the detected results. In addition, it is not so easy to analyze satellite imagery with high accuracy because of insufficient ground truth data. Kudoh and Hosoi (2003) developed the detection method by using three-dimensional (3D) histogram from past fire data with the NOAA-AVHRR imagery. But their method is impractical because their method depends on their handworks to pick up past fire data from huge data. Therefore, the purpose of this study is to collect fire points as hot spots efficiently from satellite imagery and to improve the method to detect wildfires with the collected data. As our method, we collect past fire data with the Alaska Fire History data obtained by the Alaska Fire Service (AFS). We select points that are expected to be wildfires, and pick up the points inside the fire area of the AFS data. Next, we make 3D histogram with the past fire data. In this study, we use Bands 1, 21 and 32 of MODIS. We calculate the likelihood to detect wildfires with the three-dimensional histogram. As our result, we select wildfires with the 3D histogram effectively. We can detect the troidally spreading wildfire. This result shows the evidence of good wildfire detection. However, the area surrounding glacier tends to rise brightness temperature. It is a false alarm. Burnt area and bare ground are sometimes indicated as false alarms, so that it is necessary to improve this method. Additionally, we are trying various combinations of MODIS bands as the better method to detect wildfire effectively. So as to adjust our method in another area, we are applying our method to tropical

  5. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    PubMed

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  6. Identification of imidacloprid metabolites in onion (Allium cepa L.) using high-resolution mass spectrometry and accurate mass tools.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Zavitsanos, Paul; Zweigenbaum, Jerry A

    2013-09-15

    Imidacloprid is a potent and widely used insecticide on vegetable crops, such as onion (Allium cepa L.). Because of possible toxicity to beneficial insects, imidacloprid and several metabolites have raised safety concerns for pollenating insects, such as honey bees. Thus, imidacloprid metabolites continue to be an important subject for new methods that better understand its dissipation and fate in plants, such as onions. One month after a single addition of imidacloprid to soil containing onion plants, imidacloprid and its metabolites were extracted from pulverized onion with a methanol/water-buffer mixture and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) using a labeled imidacloprid internal standard and tandem mass spectrometric (MS/MS) analysis. Accurate mass tools were developed and applied to detect seven new metabolites of imidacloprid with the goal to better understand its fate in onion. The accurate mass tools include: database searching, diagnostic ions, chlorine mass filters, Mass Profiler software, and manual use of metabolic analogy. The new metabolites discovered included an amine reduction product (m/z 226.0854), and its methylated analogue (m/z 240.1010), and five other metabolites, all of unknown toxicity to insects. The accurate mass tools were combined with LC/QTOF-MS and were able to detect both known and new metabolites of imidacloprid using fragmentation studies of both parent and labeled standards. New metabolites and their structures were inferred from these MS/MS studies with accurate mass, which makes it possible to better understand imidacloprid metabolism in onion as well as new metabolite targets for toxicity studies. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    PubMed

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  8. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  9. Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies

    PubMed Central

    2013-01-01

    The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039

  10. Anomaly detection in reconstructed quantum states using a machine-learning technique

    NASA Astrophysics Data System (ADS)

    Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki

    2014-02-01

    The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.

  11. An accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments.

    PubMed

    Bansal, Vikas

    2018-01-01

    The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragments using aligned sequence reads and assembling the fragments into long haplotypes. Although a number of computational methods have been developed for haplotype assembly, the problem of identifying DNA fragments from dilution pool sequence data has not received much attention. We formulate the problem of detecting DNA fragments from dilution pool sequencing experiments as a genome segmentation problem and develop an algorithm that uses dynamic programming to optimize a likelihood function derived from a generative model for the sequence reads. This algorithm uses an iterative approach to automatically infer the mean background read depth and the number of fragments in each pool. Using simulated data, we demonstrate that our method, FragmentCut, has 25-30% greater sensitivity compared with an HMM based method for fragment detection and can also detect overlapping fragments. On a whole-genome human fosmid pool dataset, the haplotypes assembled using the fragments identified by FragmentCut had greater N50 length, 16.2% lower switch error rate and 35.8% lower mismatch error rate compared with two existing methods. We further demonstrate the greater accuracy of our method using two additional dilution pool datasets. FragmentCut is available from https://bansal-lab.github.io/software/FragmentCut. vibansal@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. The New Aptima HBV Quant Real-Time TMA Assay Accurately Quantifies Hepatitis B Virus DNA from Genotypes A to F.

    PubMed

    Chevaliez, Stéphane; Dauvillier, Claude; Dubernet, Fabienne; Poveda, Jean-Dominique; Laperche, Syria; Hézode, Christophe; Pawlotsky, Jean-Michel

    2017-04-01

    Sensitive and accurate hepatitis B virus (HBV) DNA detection and quantification are essential to diagnose HBV infection, establish the prognosis of HBV-related liver disease, and guide the decision to treat and monitor the virological response to antiviral treatment and the emergence of resistance. Currently available HBV DNA platforms and assays are generally designed for batching multiple specimens within an individual run and require at least one full day of work to complete the analyses. The aim of this study was to evaluate the ability of the newly developed, fully automated, one-step Aptima HBV Quant assay to accurately detect and quantify HBV DNA in a large series of patients infected with different HBV genotypes. The limit of detection of the assay was estimated to be 4.5 IU/ml. The specificity of the assay was 100%. Intra-assay and interassay coefficients of variation ranged from 0.29% to 5.07% and 4.90% to 6.85%, respectively. HBV DNA levels from patients infected with HBV genotypes A to F measured with the Aptima HBV Quant assay strongly correlated with those measured by two commercial real-time PCR comparators (Cobas AmpliPrep/Cobas TaqMan HBV test, version 2.0, and Abbott RealTi m e HBV test). In conclusion, the Aptima HBV Quant assay is sensitive, specific, and reproducible and accurately quantifies HBV DNA in plasma samples from patients with chronic HBV infections of all genotypes, including patients on antiviral treatment with nucleoside or nucleotide analogues. The Aptima HBV Quant assay can thus confidently be used to detect and quantify HBV DNA in both clinical trials with new anti-HBV drugs and clinical practice. Copyright © 2017 American Society for Microbiology.

  13. Accurate lithography simulation model based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  14. Is routine dengue vector surveillance in central Brazil able to accurately monitor the Aedes aegypti population? Results from a pupal productivity survey.

    PubMed

    Pilger, Daniel; Lenhart, Audrey; Manrique-Saide, Pablo; Siqueira, Joao Bosco; da Rocha, Welington Tristão; Kroeger, Axel

    2011-09-01

    To assess how well the Aedes aegypti infestation rapid survey, Levantamento Rapido de Indice para Aedes aegypti (LIRAa), is able to accurately estimate dengue vector densities and target the most important breeding sites in Goiania, Brazil. In February 2009, a pupal productivity survey was conducted in 2 districts of the city of Goiania, central Brazil. The results were compared to those of LIRAas conducted in the same districts during the months before and after the pupal productivity survey. In the pupal productivity survey, 2,024 houses were surveyed and 2,969 water-holding containers were inspected. Discarded small water containers most frequently contained immature Ae. aegypti. The most pupal-productive containers were elevated water tanks, roof gutters and water holding roofs. Combined, these three containers accounted for <40% of all positive containers but produced >70% of all pupae. In the two districts where the pupal productivity survey was conducted, the house indices were 5.1 and 4.6 and the Breteau indices were 5.9 and 6.0. In contrast, the two LIRAs conducted in the same two districts resulted in an average house index of 1.5 and Breteau index of 2.5, with discarded items identified as the most frequently infested container type. Both the LIRAa and the pupal productivity survey identified discarded items as being most frequently infested with immature stages of Ae. aegypti, but the pupal productivity survey showed that elevated containers produced the greatest proportion of Ae. aegypti pupae (a proxy measure of adult vector density) and that the values of the Stegomyia indices were substantially underestimated by LIRAa. Although both surveys differ considerably in terms of sampling method and manpower, in the case of this study the LIRAa did not accurately identify or target the containers that were the most important to adult mosquito production. © 2011 Blackwell Publishing Ltd.

  15. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  16. Mass spectrometry-based protein identification with accurate statistical significance assignment.

    PubMed

    Alves, Gelio; Yu, Yi-Kuo

    2015-03-01

    Assigning statistical significance accurately has become increasingly important as metadata of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of metadata at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry-based proteomics, even though accurate statistics for peptide identification can now be achieved, accurate protein level statistics remain challenging. We have constructed a protein ID method that combines peptide evidences of a candidate protein based on a rigorous formula derived earlier; in this formula the database P-value of every peptide is weighted, prior to the final combination, according to the number of proteins it maps to. We have also shown that this protein ID method provides accurate protein level E-value, eliminating the need of using empirical post-processing methods for type-I error control. Using a known protein mixture, we find that this protein ID method, when combined with the Sorić formula, yields accurate values for the proportion of false discoveries. In terms of retrieval efficacy, the results from our method are comparable with other methods tested. The source code, implemented in C++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  17. The Field Assessment Stroke Triage for Emergency Destination (FAST-ED): a Simple and Accurate Pre-Hospital Scale to Detect Large Vessel Occlusion Strokes

    PubMed Central

    Lima, Fabricio O.; Silva, Gisele S.; Furie, Karen L.; Frankel, Michael R.; Lev, Michael H.; Camargo, Érica CS; Haussen, Diogo C.; Singhal, Aneesh B.; Koroshetz, Walter J.; Smith, Wade S.; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Patients with large vessel occlusion strokes (LVOS) may be better served by direct transfer to endovascular capable centers avoiding hazardous delays between primary and comprehensive stroke centers. However, accurate stroke field triage remains challenging. We aimed to develop a simple field scale to identify LVOS. Methods The FAST-ED scale was based on items of the NIHSS with higher predictive value for LVOS and tested in the STOPStroke cohort, in which patients underwent CT angiography within the first 24 hours of stroke onset. LVOS were defined by total occlusions involving the intracranial-ICA, MCA-M1, MCA-2, or basilar arteries. Patients with partial, bi-hemispheric, and/or anterior + posterior circulation occlusions were excluded. Receiver operating characteristic (ROC) curve, sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of FAST-ED were compared with the NIHSS, Rapid Arterial oCclusion Evaluation (RACE) scale and Cincinnati Prehospital Stroke Severity Scale (CPSSS). Results LVO was detected in 240 of the 727 qualifying patients (33%). FAST-ED had comparable accuracy to predict LVO to the NIHSS and higher accuracy than RACE and CPSS (area under the ROC curve: FAST-ED=0.81 as reference; NIHSS=0.80, p=0.28; RACE=0.77, p=0.02; and CPSS=0.75, p=0.002). A FAST-ED ≥4 had sensitivity of 0.60, specificity 0.89, PPV 0.72, and NPV 0.82 versus RACE ≥5 of 0.55, 0.87, 0.68, 0.79 and CPSS ≥2 of 0.56, 0.85, 0.65, 0.78, respectively. Conclusions FAST-ED is a simple scale that if successfully validated in the field may be used by medical emergency professionals to identify LVOS in the pre-hospital setting enabling rapid triage of patients. PMID:27364531

  18. A novel approach to describing and detecting performance anti-patterns

    NASA Astrophysics Data System (ADS)

    Sheng, Jinfang; Wang, Yihan; Hu, Peipei; Wang, Bin

    2017-08-01

    Anti-pattern, as an extension to pattern, describes a widely used poor solution which can bring negative influence to application systems. Aiming at the shortcomings of the existing anti-pattern descriptions, an anti-pattern description method based on first order predicate is proposed. This method synthesizes anti-pattern forms and symptoms, which makes the description more accurate and has good scalability and versatility as well. In order to improve the accuracy of anti-pattern detection, a Bayesian classification method is applied in validation for detection results, which can reduce false negatives and false positives of anti-pattern detection. Finally, the proposed approach in this paper is applied to a small e-commerce system, the feasibility and effectiveness of the approach is demonstrated further through experiments.

  19. USING CANINES IN SOURCE DETECTION OF INDOOR AIR POLLUTANTS EPA SCIENCE FORUM

    EPA Science Inventory

    Scent detection dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Controlled laboratory studies have documented accurate detection by dogs of specific compounds associated with explosives and nar...

  20. Detecting and Categorizing Fleeting Emotions in Faces

    PubMed Central

    Sweeny, Timothy D.; Suzuki, Satoru; Grabowecky, Marcia; Paller, Ken A.

    2013-01-01

    Expressions of emotion are often brief, providing only fleeting images from which to base important social judgments. We sought to characterize the sensitivity and mechanisms of emotion detection and expression categorization when exposure to faces is very brief, and to determine whether these processes dissociate. Observers viewed 2 backward-masked facial expressions in quick succession, 1 neutral and the other emotional (happy, fearful, or angry), in a 2-interval forced-choice task. On each trial, observers attempted to detect the emotional expression (emotion detection) and to classify the expression (expression categorization). Above-chance emotion detection was possible with extremely brief exposures of 10 ms and was most accurate for happy expressions. We compared categorization among expressions using a d′ analysis, and found that categorization was usually above chance for angry versus happy and fearful versus happy, but consistently poor for fearful versus angry expressions. Fearful versus angry categorization was poor even when only negative emotions (fearful, angry, or disgusted) were used, suggesting that this categorization is poor independent of decision context. Inverting faces impaired angry versus happy categorization, but not emotion detection, suggesting that information from facial features is used differently for emotion detection and expression categorizations. Emotion detection often occurred without expression categorization, and expression categorization sometimes occurred without emotion detection. These results are consistent with the notion that emotion detection and expression categorization involve separate mechanisms. PMID:22866885

  1. Accurate indel prediction using paired-end short reads

    PubMed Central

    2013-01-01

    Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375

  2. Results from Automated Cloud and Dust Devil Detection Onboard the MER

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark

    2008-01-01

    We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.

  3. Accuracy of carboxyhemoglobin detection by pulse CO-oximetry during hypoxemia.

    PubMed

    Feiner, John R; Rollins, Mark D; Sall, Jeffrey W; Eilers, Helge; Au, Paul; Bickler, Philip E

    2013-10-01

    Carbon monoxide poisoning is a significant problem in most countries, and a reliable method of quick diagnosis would greatly improve patient care. Until the recent introduction of a multiwavelength "pulse CO-oximeter" (Masimo Rainbow SET(®) Radical-7), obtaining carboxyhemoglobin (COHb) levels in blood required blood sampling and laboratory analysis. In this study, we sought to determine whether hypoxemia, which can accompany carbon monoxide poisoning, interferes with the accurate detection of COHb. Twelve healthy, nonsmoking, adult volunteers were fitted with 2 standard pulse-oximeter finger probes and 2 Rainbow probes for COHb detection. A radial arterial catheter was placed for blood sampling during 3 interventions: (1) increasing hypoxemia in incremental steps with arterial oxygen saturations (SaO2) of 100% to 80%; (2) normoxia with incremental increases in %COHb to 12%; and (3) elevated COHb combined with hypoxemia with SaO2 of 100% to 80%. Pulse-oximeter (SpCO) readings were compared with simultaneous arterial blood values at the various increments of hypoxemia and carboxyhemoglobinemia (≈25 samples per subject). Pulse CO-oximeter performance was analyzed by calculating the mean bias (SpCO - %COHb), standard deviation of the bias (precision), and the root-mean-square error (A(rms)). The Radical-7 accurately detected hypoxemia with both normal and elevated levels of COHb (bias mean ± SD: 0.44% ± 1.69% at %COHb <4%, and -0.29% ± 1.64% at %COHb ≥4%, P < 0.0001, and A(rms) 1.74% vs 1.67%). COHb was accurately detected during normoxia and moderate hypoxia (bias mean ± SD: -0.98 ± 2.6 at SaO2 ≥95%, and -0.7 ± 4.0 at SaO2 <95%, P = 0.60, and A(rms) 2.8% vs 4.0%), but when SaO2 decreased below approximately 85%, the pulse CO-oximeter always gave low signal quality errors and did not report SpCO values. In healthy volunteers, the Radical-7 pulse CO-oximeter accurately detects hypoxemia with both low and elevated COHb levels, and accurately detects COHb

  4. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  5. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.

    PubMed

    McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D

    2017-01-01

    Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.

  6. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.

    PubMed

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-22

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  7. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742

  8. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages.

  9. Detection of periods of food intake using Support Vector Machines.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Sazonov, Edward

    2010-01-01

    Studies of obesity and eating disorders need objective tools of Monitoring of Ingestive Behavior (MIB) that can detect and characterize food intake. In this paper we describe detection of food intake by a Support Vector Machine classifier trained on time history of chews and swallows. The training was performed on data collected from 18 subjects in 72 experiments involving eating and other activities (for example, talking). The highest accuracy of detecting food intake (94%) was achieved in configuration where both chews and swallows were used as predictors. Using only swallowing as a predictor resulted in 80% accuracy. Experimental results suggest that these two predictors may be used for differentiation between periods of resting and food intake with a resolution of 30 seconds. Proposed methods may be utilized for development of an accurate, inexpensive, and non-intrusive methodology to objectively monitor food intake in free living conditions.

  10. Automatic quantification framework to detect cracks in teeth

    PubMed Central

    Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz

    2018-01-01

    Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755

  11. Automated Detection of HONcode Website Conformity Compared to Manual Detection: An Evaluation

    PubMed Central

    2015-01-01

    Background To earn HONcode certification, a website must conform to the 8 principles of the HONcode of Conduct In the current manual process of certification, a HONcode expert assesses the candidate website using precise guidelines for each principle. In the scope of the European project KHRESMOI, the Health on the Net (HON) Foundation has developed an automated system to assist in detecting a website’s HONcode conformity. Automated assistance in conducting HONcode reviews can expedite the current time-consuming tasks of HONcode certification and ongoing surveillance. Additionally, an automated tool used as a plugin to a general search engine might help to detect health websites that respect HONcode principles but have not yet been certified. Objective The goal of this study was to determine whether the automated system is capable of performing as good as human experts for the task of identifying HONcode principles on health websites. Methods Using manual evaluation by HONcode senior experts as a baseline, this study compared the capability of the automated HONcode detection system to that of the HONcode senior experts. A set of 27 health-related websites were manually assessed for compliance to each of the 8 HONcode principles by senior HONcode experts. The same set of websites were processed by the automated system for HONcode compliance detection based on supervised machine learning. The results obtained by these two methods were then compared. Results For the privacy criterion, the automated system obtained the same results as the human expert for 17 of 27 sites (14 true positives and 3 true negatives) without noise (0 false positives). The remaining 10 false negative instances for the privacy criterion represented tolerable behavior because it is important that all automatically detected principle conformities are accurate (ie, specificity [100%] is preferred over sensitivity [58%] for the privacy criterion). In addition, the automated system had precision

  12. Multiple Behavior Change Intervention to Improve Detection of Unmet Social Needs and Resulting Resource Referrals.

    PubMed

    Colvin, Jeffrey D; Bettenhausen, Jessica L; Anderson-Carpenter, Kaston D; Collie-Akers, Vicki; Plencner, Laura; Krager, Molly; Nelson, Brooke; Donnelly, Sara; Simmons, Julia; Higinio, Valeria; Chung, Paul J

    2016-03-01

    It is critical that pediatric residents learn to effectively screen families for active and addressable social needs (ie, negative social determinants of health). We sought to determine 1) whether a brief intervention teaching residents about IHELP, a social needs screening tool, could improve resident screening, and 2) how accurately IHELP could detect needs in the inpatient setting. During an 18-month period, interns rotating on 1 of 2 otherwise identical inpatient general pediatrics teams were trained in IHELP. Interns on the other team served as the comparison group. Every admission history and physical examination (H&P) was reviewed for IHELP screening. Social work evaluations were used to establish the sensitivity and specificity of IHELP and document resources provided to families with active needs. During a 21-month postintervention period, every third H&P was reviewed to determine median duration of continued IHELP use. A total of 619 admissions met inclusion criteria. Over 80% of intervention team H&Ps documented use of IHELP. The percentage of social work consults was nearly 3 times greater on the intervention team than on the comparison team (P < .001). Among H&Ps with documented use of IHELP, specificity was 0.96 (95% confidence interval 0.87-0.99) and sensitivity was 0.63 (95% confidence interval 0.50-0.73). Social work provided resources for 78% of positively screened families. The median duration of screening use by residents after the intervention was 8.1 months (interquartile range 1-10 months). A brief intervention increased resident screening and detection of social needs, leading to important referrals to address those needs. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  13. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Wang, Xin; Hu, Chao

    2016-10-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on POME(the principle of maximum entropy), target candidates are iteratively segmented. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  14. The current and future role of magnetic resonance imaging in prostate cancer detection and management

    PubMed Central

    Radtke, Jan Philipp; Teber, Dogu; Hohenfellner, Markus

    2015-01-01

    Purpose Accurate detection of clinically significant prostate cancer (PC) and correct risk attribution are essential to individually counsel men with PC. Multiparametric MRI (mpMRI) facilitates correct localization of index lesions within the prostate and MRI-targeted prostate biopsy (TPB) helps to avoid the shortcomings of conventional biopsy such as false-negative results or underdiagnosis of aggressive PC. In this review we summarize the different sequences of mpMRI, characterize the possibilities of incorporating MRI in the biopsy workflow and outline the performance of targeted and systematic cores in significant cancer detection. Furthermore, we outline the potential of MRI in patients undergoing active surveillance (AS) and in the pre-operative setting. Materials and methods An electronic MEDLINE/PubMed search up to February 2015 was performed. English language articles were reviewed for inclusion ability and data were extracted, analyzed and summarized. Results Targeted biopsies significantly outperform conventional systematic biopsies in the detection of significant PC and are not inferior when compared to transperineal saturation biopsies. MpMRI can detect index lesions in app. 90% of cases as compared to prostatectomy specimen. The diagnostic performance of biparametric MRI (T2w + DWI) is not inferior to mpMRI, offering options to diminish cost- and time-consumption. Since app 10% of significant lesions are still MRI-invisible, systematic cores seem to be necessary. In-bore biopsy and MRI/TRUS-fusion-guided biopsy tend to be superior techniques compared to cognitive fusion. In AS, mpMRI avoids underdetection of significant PC and confirms low-risk disease accurately. In higher-risk disease, pre-surgical MRI can change the clinically-based surgical plan in up to a third of cases. Conclusions mpMRI and targeted biopsies are able to detect significant PC accurately and mitigate insignificant PC detection. As long as the negative predictive value (NPV) is

  15. Open-source software for collision detection in external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.

  16. Accurate Detection of Streptococcus pyogenes at the Point of Care Using the cobas Liat Strep A Nucleic Acid Test.

    PubMed

    Wang, Fangnian; Tian, Yu; Chen, Lingjun; Luo, Robert; Sickler, Joanna; Liesenfeld, Oliver; Chen, Shuqi

    2017-10-01

    The performance of a polymerase chain reaction-based point-of-care assay, the cobas Strep A Nucleic Acid Test for use on the cobas Liat System (cobas Liat Strep A assay), for the detection of group A Streptococcus bacteria was evaluated in primary care settings. Throat swab specimens from 427 patients were tested with the cobas Liat Strep A assay and a rapid antigen detection test (RADT) by existing medical staff at 5 primary care clinics, and results were compared with bacterial culture. The cobas Liat Strep A assay demonstrated equivalent sensitivity (97.7%) and specificity (93.3%) to reference culture with a 15-minute turnaround time. In comparison to RADTs, the cobas Liat Strep A assay showed improved sensitivity (97.7% Liat vs 84.5% RADT). The Clinical Laboratory Improvement Amendments-waived cobas Liat Strep A assay demonstrated the ease of use and improved turnaround time of RADTs along with the sensitivity of culture.

  17. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation

    NASA Astrophysics Data System (ADS)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.

    2018-01-01

    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  18. STFT or CWT for the detection of Doppler ultrasound embolic signals.

    PubMed

    Gonçalves, Ivo B; Leiria, Ana; Moura, M M M

    2013-09-01

    Aiming reliable detection and localization of cerebral blood flow and emboli, embolic signals were added to simulated middle cerebral artery Doppler signals and analysed. Short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used in the evaluation. The following parameters were used in this study: the powers of the embolic signals added were 5, 6, 6.5, 7, 7.5, 8 and 9 dB; the mother wavelets for CWT analysis were Morlet, Mexican hat, Meyer, Gaussian (order 4) and Daubechies (orders 4 and 8); and the thresholds for detection (equated in terms of false positive, false negative and sensitivity) were 2 and 3.5 dB for the CWT and STFT, respectively. The results indicate that although the STFT allows accurately detecting emboli, better time localization can be achieved with the CWT. Among the CWT, the current best overall results were obtained with Mexican Hat mother wavelet, with optimal results for sensitivity (100% detection rate) for nearly all emboli power values studied. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Data fusion for QRS complex detection in multi-lead electrocardiogram recordings

    NASA Astrophysics Data System (ADS)

    Ledezma, Carlos A.; Perpiñan, Gilberto; Severeyn, Erika; Altuve, Miguel

    2015-12-01

    Heart diseases are the main cause of death worldwide. The first step in the diagnose of these diseases is the analysis of the electrocardiographic (ECG) signal. In turn, the ECG analysis begins with the detection of the QRS complex, which is the one with the most energy in the cardiac cycle. Numerous methods have been proposed in the bibliography for QRS complex detection, but few authors have analyzed the possibility of taking advantage of the information redundancy present in multiple ECG leads (simultaneously acquired) to produce accurate QRS detection. In our previous work we presented such an approach, proposing various data fusion techniques to combine the detections made by an algorithm on multiple ECG leads. In this paper we present further studies that show the advantages of this multi-lead detection approach, analyzing how many leads are necessary in order to observe an improvement in the detection performance. A well known QRS detection algorithm was used to test the fusion techniques on the St. Petersburg Institute of Cardiological Technics database. Results show improvement in the detection performance with as little as three leads, but the reliability of these results becomes interesting only after using seven or more leads. Results were evaluated using the detection error rate (DER). The multi-lead detection approach allows an improvement from DER = 3:04% to DER = 1:88%. Further works are to be made in order to improve the detection performance by implementing further fusion steps.

  20. OpenMC In Situ Source Convergence Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Garrett Allen; Dutta, Soumya; Woodring, Jonathan Lee

    2016-05-07

    We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are ablemore » to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.« less

  1. Intrusion detection using rough set classification.

    PubMed

    Zhang, Lian-hua; Zhang, Guan-hua; Zhang, Jie; Bai, Ying-cai

    2004-09-01

    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of "IF-THEN" rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

  2. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    PubMed Central

    Noecker, Cecilia; Schaefer, Krista; Zaccheo, Kelly; Yang, Yiding; Day, Judy; Ganusov, Vitaly V.

    2015-01-01

    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results

  3. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  4. Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents.

    PubMed

    Atkins, D L; Hartley, L L; York, D K

    1998-03-01

    To evaluate the accuracy and efficacy of automated external defibrillators (AEDs) in patients <16 years old. AEDs are standard therapy in out-of-hospital resuscitation of adults and have led to higher success rates. Their use in children and adolescents has never been evaluated, despite recommendations from the American Heart Association that they be used in children >8 years of age. This was a retrospective cohort study of children <16 years old who underwent out-of-hospital cardiac resuscitation and on whom an AED was used during the resuscitation. The setting was rural and urban prehospital emergency medical systems. Patients were identified by review of a database of cardiac arrests maintained by a large surveillance program of these services. AEDs were used to assess cardiac rhythm in 18 patients with a mean age of 12.1 +/- 3.7 years. The cardiac rhythms were analyzed 67 times and included ventricular fibrillation (25), asystole/pulseless electrical activity (32), sinus bradycardia (6), and sinus tachycardia (4). The AEDs recognized all nonshockable rhythms accurately and advised no shock. Ventricular fibrillation was recognized accurately in 22 (88%) of 25 episodes and advised or administered a shock 22 times. Sensitivity and specificity for accurate rhythm analysis were 88% and 100%, respectively. One patient with a nonshockable rhythm survived, whereas 3 of 9 patients with ventricular fibrillation survived. These data furnish evidence that AEDs provide accurate rhythm detection and shock delivery to children and young adolescents. AED use is potentially as effective for children as it is for adults.

  5. A simplified Suomi NPP VIIRS dust detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  6. Multichannel waveguides for the simultaneous detection of disease biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K

    2009-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease ormore » for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.« less

  7. Oil Spill Detection and Modelling: Preliminary Results for the Cercal Accident

    NASA Astrophysics Data System (ADS)

    da Costa, R. T.; Azevedo, A.; da Silva, J. C. B.; Oliveira, A.

    2013-03-01

    Oil spill research has significantly increased mainly as a result of the severe consequences experienced from industry accidents. Oil spill models are currently able to simulate the processes that determine the fate of oil slicks, playing an important role in disaster prevention, control and mitigation, generating valuable information for decision makers and the population in general. On the other hand, satellite Synthetic Aperture Radar (SAR) imagery has demonstrated significant potential in accidental oil spill detection, when they are accurately differentiated from look-alikes. The combination of both tools can lead to breakthroughs, particularly in the development of Early Warning Systems (EWS). This paper presents a hindcast simulation of the oil slick resulting from the Motor Tanker (MT) Cercal oil spill, listed by the Portuguese Navy as one of the major oil spills in the Portuguese Atlantic Coast. The accident took place nearby Leix˜oes Harbour, North of the Douro River, Porto (Portugal) on the 2nd of October 1994. The oil slick was segmented from available European Remote Sensing (ERS) satellite SAR images, using an algorithm based on a simplified version of the K-means clustering formulation. The image-acquired information, added to the initial conditions and forcings, provided the necessary inputs for the oil spill model. Simulations were made considering the tri-dimensional hydrodynamics in a crossscale domain, from the interior of the Douro River Estuary to the open-ocean on the Iberian Atlantic shelf. Atmospheric forcings (from ECMWF - the European Centre for Medium-Range Weather Forecasts and NOAA - the National Oceanic and Atmospheric Administration), river forcings (from SNIRH - the Portuguese National Information System of the Hydric Resources) and tidal forcings (from LNEC - the National Laboratory for Civil Engineering), including baroclinic gradients (NOAA), were considered. The lack of data for validation purposes only allowed the use of the

  8. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  9. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    PubMed Central

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  10. A Novel Technique for Detecting Antibiotic-Resistant Typhoid from Rapid Diagnostic Tests

    PubMed Central

    Nic Fhogartaigh, Caoimhe; Dance, David A. B.; Davong, Viengmon; Tann, Pisey; Phetsouvanh, Rattanaphone; Turner, Paul; Newton, Paul N.

    2015-01-01

    Fluoroquinolone-resistant typhoid is increasing. An antigen-detecting rapid diagnotic test (RDT) can rapidly diagnose typhoid from blood cultures. A simple, inexpensive molecular technique performed with DNA from positive RDTs accurately identified gyrA mutations consistent with phenotypic susceptibility testing results. Field diagnosis combined with centralized molecular resistance testing could improve typhoid management and surveillance in low-resource settings. PMID:25762768

  11. On the performance of energy detection-based CR with SC diversity over IG channel

    NASA Astrophysics Data System (ADS)

    Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka

    2017-12-01

    Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.

  12. A dedicated on-line detecting system for auto air dryers

    NASA Astrophysics Data System (ADS)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  13. How accurate is unenhanced multidetector-row CT (MDCT) for localization of renal calculi?

    PubMed

    Goetschi, Stefan; Umbehr, Martin; Ullrich, Stephan; Glenck, Michael; Suter, Stefan; Weishaupt, Dominik

    2012-11-01

    To investigate the correlation between unenhanced MDCT and intraoperative findings with regard to the exact anatomical location of renal calculi. Fifty-nine patients who underwent unenhanced MDCT for suspected urinary stone disease, and who underwent subsequent flexible ureterorenoscopy (URS) as treatment of nephrolithiasis were included in this retrospective study. All MDCT data sets were independently reviewed by three observers with different degrees of experience in reading CT. Each observer was asked to indicate presence and exact anatomical location of any calcification within pyelocaliceal system, renal papilla or renal cortex. Results were compared to intraoperative findings which have been defined as standard of reference. Calculi not described at surgery, but present on MDCT data were counted as renal cortex calcifications. Overall 166 calculi in 59 kidneys have been detected on MDCT, 100 (60.2%) were located in the pyelocaliceal system and 66 (39.8%) in the renal parenchyma. Of the 100 pyelocaliceal calculi, 84 (84%) were correctly located on CT data sets by observer 1, 62 (62%) by observer 2, and 71 (71%) by observer 3. Sensitivity/specificity was 90-94% and 50-100% if only pyelocaliceal calculi measuring >4 mm in size were considered. For pyelocaliceal calculi≤4 mm in size diagnostic performance of MDCT was inferior. Compared to flexible URS, unenhanced MDCT is accurate for distinction between pyelocaliceal calculi and renal parenchyma calcifications if renal calculi are >4 mm in size. For smaller renal calculi, unenhanced MDCT is less accurate and distinction between a pyelocaliceal calculus and renal parenchyma calcification is difficult. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  15. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2004-03-01

    Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever. In this letter we address this problem and present simple yet accurate formulas that enable the interaction force and energy to be determined directly from the measured frequency shift. These formulas are valid for any oscillation amplitude and interaction force, and are therefore of widespread applicability in frequency modulation dynamic force spectroscopy.

  16. Chromothripsis Detection and Characterization Using the CTLPScanner Web Server.

    PubMed

    Yang, Jian; Liu, Bo; Cai, Haoyang

    2018-01-01

    Accurate detection of chromothripsis event is important to study the mechanisms underlying this phenomenon. CTLPScanner ( http://cgma.scu.edu.cn/CTLPScanner/ ) is a web-based tool for identification and annotation of chromothripsis-like pattern (CTLP) in genomic array data. In this chapter, we illustrate the utility of CTLPScanner for screening chromosome pulverization regions and give interpretation of the results. The web interface offers a set of parameters and thresholds for customized screening. We also provide practical recommendations for effective chromothripsis detection. In addition to the user data processing module, CTLPScanner contains more than 50,000 preprocessed oncogenomic arrays, which allow users to explore the presence of chromothripsis signatures from public data resources.

  17. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  18. Can phenological models predict tree phenology accurately under climate change conditions?

    NASA Astrophysics Data System (ADS)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  19. Detecting and measuring metabolic byproducts by electrochemical sensing

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.

    1974-01-01

    Method of detecting certain groups of bacteria is based on sensing buildup in molecular hydrogen. Apparatus is easy to assemble and use, and it has added advantage that hydrogen evolution by test micro-organisms can be measured automatically and accurately. System has been used to detect and enumerate variety of gram-negative bacteria of enterobacteriaceae group.

  20. Damage Detection for Historical Architectures Based on Tls Intensity Data

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cheng, X.

    2018-04-01

    TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS systems also record the intensity information, which is considered as an important measurement of the spectral property of the scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for damage detection.

  1. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    PubMed

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  2. Hydrogen atoms can be located accurately and precisely by x-ray crystallography

    PubMed Central

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-01-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545

  3. Robust and accurate vectorization of line drawings.

    PubMed

    Hilaire, Xavier; Tombre, Karl

    2006-06-01

    This paper presents a method for vectorizing the graphical parts of paper-based line drawings. The method consists of separating the input binary image into layers of homogeneous thickness, skeletonizing each layer, segmenting the skeleton by a method based on random sampling, and simplifying the result. The segmentation method is robust with a best bound of 50 percent noise reached for indefinitely long primitives. Accurate estimation of the recognized vector's parameters is enabled by explicitly computing their feasibility domains. Theoretical performance analysis and expression of the complexity of the segmentation method are derived. Experimental results and comparisons with other vectorization systems are also provided.

  4. Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography.

    PubMed

    Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-07-25

    A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fire detection and incidents localization based on public information channels and social media

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Skroumpelou, Katerina; Rizogiannis, Konstantinos; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Thomopoulos, Stelios C. A.

    2017-05-01

    In this paper a solution is presented aiming to assist the early detection and localization of a fire incident by exploiting crowdsourcing and unofficial civilian online reports. It consists of two components: (a) the potential fire incident detection and (b) the visualization component. The first component comprises two modules that run in parallel and aim to collect reports posted on public platforms and conclude to potential fire incident locations. It collects the public reports, distinguishes reports that refer to a potential fire incident and store the corresponding information in a structured way. The second module aggregates all these stored reports and conclude to a probable fire location, based on the amount of reports per area, the time and location of these reports. In further the result is entered to a fusion module which combines it with information collected by sensors if available in order to provide a more accurate fire event detection capability. The visualization component is a fully - operational public information channel which provides accurate and up-to-date information about active and past fires, raises awareness about forest fires and the relevant hazards among citizens. The channel has visualization capabilities for presenting in an efficient way information regarding detected fire incidents fire expansion areas, and relevant information such as detecting sensors and reporting origin. The paper concludes with insight to current CONOPS end user with regards to the inclusion of the proposed solution to the current CONOPS of fire detection.

  6. Detection of underground pipeline based on Golay waveform design

    NASA Astrophysics Data System (ADS)

    Dai, Jingjing; Xu, Dazhuan

    2017-08-01

    The detection of underground pipeline is an important problem in the development of the city, but the research about it is not mature at present. In this paper, based on the principle of waveform design in wireless communication, we design an acoustic signal detection system to detect the location of underground pipelines. According to the principle of acoustic localization, we chose DSP-F28335 as the development board, and use DA and AD module as the master control chip. The DA module uses complementary Golay sequence as emission signal. The AD module acquisiting data synchronously, so that the echo signals which containing position information of the target is recovered through the signal processing. The test result shows that the method in this paper can not only calculate the sound velocity of the soil, but also can locate the location of underground pipelines accurately.

  7. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  8. A more accurate detection of codon 72 polymorphism and LOH of the TP53 gene.

    PubMed

    Baccouche, Sami; Mabrouk, Imed; Said, Salem; Mosbah, Ali; Jlidi, Rachid; Gargouri, Ali

    2003-01-10

    The polymorphism at codon 72 of the TP53 gene has been extensively studied for its involvement in cancerogenesis and loss of heterozygosity (LOH) detection. Usually, the exon 4 of the TP53 gene is amplified by polymerase chain reaction (PCR) on DNA extracted from blood and tumor tissues, then digested by AccII. In the case of heterozygosity, the comparison of AccII profile from blood and tumor DNA PCR products allowed the identification of a potential LOH in the TP53 locus. This method can be hindered by a partial AccII digestion and/or DNA contamination of non-tumor cells. To circumvent these problems, we have developed a new approach by using the AccII restriction site between exon 4 and exon 6. The PCR amplification of exon 4-6, followed by AccII digestion allowed us to detect without ambiguity any LOH case.

  9. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    PubMed

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  10. Accurate evaluation of axillary sentinel lymph node metastasis using contrast-enhanced ultrasonography with Sonazoid in breast cancer: a preliminary clinical trial.

    PubMed

    Matsuzawa, Fumihiko; Omoto, Kiyoka; Einama, Takahiro; Abe, Hironori; Suzuki, Takashi; Hamaguchi, Jun; Kaga, Terumi; Sato, Mami; Oomura, Masako; Takata, Yumiko; Fujibe, Ayako; Takeda, Chie; Tamura, Etsuya; Taketomi, Akinobu; Kyuno, Kenichi

    2015-01-01

    Breast cancer is the most common type of cancer in women. The 5-year survival rate in patients with breast cancer ranges from 74 to 82 %. Sentinel lymph node biopsy has become an alternative to axillary lymph node dissection for nodal staging. We evaluated the detection of the sentinel lymph node and metastasis of the lymph node using contrast enhanced ultrasonography with Sonazoid. Between December 2013 and May 2014, 32 patients with operable breast cancer were enrolled in this study. We evaluated the detection of axillary sentinel lymph nodes and the evaluation of axillary lymph nodes metastasis using contrast enhanced computed tomography, color Doppler ultrasonography and contrast enhanced ultrasonography with Sonazoid. All the sentinel lymph nodes were identified, and the sentinel lymph nodes detected by contrast enhanced ultrasonography with Sonazoid corresponded with those detected by computed tomography lymphography and indigo carmine method. The detection of metastasis based on contrast enhanced computed tomography were sensitivity 20.0 %, specificity 88.2 %, PPV 60.0 %, NPV 55.6 %, accuracy 56.3 %. Based on color Doppler ultrasonography, the results were sensitivity 36.4 %, specificity 95.2 %, PPV 80.0 %, NPV 74.1 %, accuracy 75.0 %. Based on contrast enhanced ultrasonography with Sonazoid, the results were sensitivity 81.8 %, specificity 95.2 %, PPV 90.0 %, NPV 90.9 %, accuracy 90.6 %. The results suggested that contrast enhanced ultrasonography with Sonazoid was the most accurate among the evaluations of these modalities. In the future, we believe that our method would take the place of conventional sentinel lymph node biopsy for an axillary staging method.

  11. Detecting both melanoma depth and volume in vivo with a handheld photoacoustic probe

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Li, Guo; Zhu, Liren; Li, Chiye; Cornelius, Lynn A.; Wang, Lihong V.

    2016-03-01

    We applied a linear-array-based photoacoustic probe to detect the tumor depth and volume of melanin-containing melanoma in nude mice in vivo. We demonstrated the ability of this linear-array-based system to measure both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is important in quantifying tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment at the bedside.

  12. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  13. Are Registration of Disease Codes for Adult Anaphylaxis Accurate in the Emergency Department?

    PubMed Central

    Choi, Byungho; Lee, Hyeji

    2018-01-01

    Purpose There has been active research on anaphylaxis, but many study subjects are limited to patients registered with anaphylaxis codes. However, anaphylaxis codes tend to be underused. The aim of this study was to investigate the accuracy of anaphylaxis code registration and the clinical characteristics of accurate and inaccurate anaphylaxis registration in anaphylactic patients. Methods This retrospective study evaluated the medical records of adult patients who visited the university hospital emergency department between 2012 and 2016. The study subjects were divided into the groups with accurate and inaccurate anaphylaxis codes registered under anaphylaxis and other allergy-related codes and symptom-related codes, respectively. Results Among 211,486 patients, 618 (0.29%) had anaphylaxis. Of these, 161 and 457 were assigned to the accurate and inaccurate coding groups, respectively. The average age, transportation to the emergency department, past anaphylaxis history, cancer history, and the cause of anaphylaxis differed between the 2 groups. Cutaneous symptom manifested more frequently in the inaccurate coding group, while cardiovascular and neurologic symptoms were more frequently observed in the accurate group. Severe symptoms and non-alert consciousness were more common in the accurate group. Oxygen supply, intubation, and epinephrine were more commonly used as treatments for anaphylaxis in the accurate group. Anaphylactic patients with cardiovascular symptoms, severe symptoms, and epinephrine use were more likely to be accurately registered with anaphylaxis disease codes. Conclusions In case of anaphylaxis, more patients were registered inaccurately under other allergy-related codes and symptom-related codes rather than accurately under anaphylaxis disease codes. Cardiovascular symptoms, severe symptoms, and epinephrine treatment were factors associated with accurate registration with anaphylaxis disease codes in patients with anaphylaxis. PMID:29411554

  14. New approaches in GMO detection.

    PubMed

    Querci, Maddalena; Van den Bulcke, Marc; Zel, Jana; Van den Eede, Guy; Broll, Hermann

    2010-03-01

    The steady rate of development and diffusion of genetically modified plants and their increasing diversification of characteristics, genes and genetic control elements poses a challenge in analysis of genetically modified organisms (GMOs). It is expected that in the near future the picture will be even more complex. Traditional approaches, mostly based on the sequential detection of one target at a time, or on a limited multiplexing, allowing only a few targets to be analysed at once, no longer meet the testing requirements. Along with new analytical technologies, new approaches for the detection of GMOs authorized for commercial purposes in various countries have been developed that rely on (1) a smart and accurate strategy for target selection, (2) the use of high-throughput systems or platforms for the detection of multiple targets and (3) algorithms that allow the conversion of analytical results into an indication of the presence of individual GMOs potentially present in an unknown sample. This paper reviews the latest progress made in GMO analysis, taking examples from the most recently developed strategies and tools, and addresses some of the critical aspects related to these approaches.

  15. Nonlinear detection for a high rate extended binary phase shift keying system.

    PubMed

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.

  16. Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System

    PubMed Central

    Chen, Xian-Qing; Wu, Le-Nan

    2013-01-01

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034

  17. Critical analysis of dual-chamber implantable cardioverter-defibrillator arrhythmia detection : results and technical considerations.

    PubMed

    Wilkoff, B L; Kühlkamp, V; Volosin, K; Ellenbogen, K; Waldecker, B; Kacet, S; Gillberg, J M; DeSouza, C M

    2001-01-23

    One of the perceived benefits of dual-chamber implantable cardioverter-defibrillators (ICDs) is the reduction in inappropriate therapy due to new detection algorithms. It was the purpose of the present investigation to propose methods to minimize bias during such comparisons and to report the arrhythmia detection clinical results of the PR Logic dual-chamber detection algorithm in the GEM DR ICD in the context of these methods. Between November 1997 and October 1998, 933 patients received the GEM DR ICD in this prospective multicenter study. A total of 4856 sustained arrhythmia episodes (n=311) with stored electrogram and marker channel were classified by the investigators; 3488 episodes (n=232) were ventricular tachycardia (VT)/ventricular fibrillation (VF), and 1368 episodes (n=149) were supraventricular tachycardia (SVT). The overall detection results were corrected for multiple episodes within a patient with the generalized estimating equations (GEE) method with an exchangeable correlation structure between episodes. The relative sensitivity for detection of sustained VT and/or VF was 100.0% (3488 of 3488, n=232; 95% CI 98.3% to 100%), the VT/VF positive predictivity was 88.4% uncorrected (3488 of 3945, n=278) and 78.1% corrected (95% CI 73.3% to 82.3%) with the GEE method, and the SVT positive predictivity was 100.0% (911 of 911, n=101; 95% CI 96% to 100%). A structured approach to analysis limits the bias inherent in the evaluation of tachycardia discrimination algorithms through the use of relative VT/VF sensitivity, VT/VF positive predictivity, and SVT positive predictivity along with corrections for multiple tachycardia episodes in a single patient.

  18. 77 FR 3800 - Accurate NDE & Inspection, LLC; Confirmatory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... In the Matter of Accurate NDE & Docket: 150-00017, General Inspection, LLC Broussard, Louisiana... an attempt to resolve issues associated with this matter. In response, on August 9, 2011, Accurate NDE requested ADR to resolve this matter with the NRC. On September 28, 2011, the NRC and Accurate NDE...

  19. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging : A spatial filtering approach.

    PubMed

    Subbaraju, Vigneshwaran; Suresh, Mahanand Belathur; Sundaram, Suresh; Narasimhan, Sundararajan

    2017-01-01

    This paper presents a new approach for detecting major differences in brain activities between Autism Spectrum Disorder (ASD) patients and neurotypical subjects using the resting state fMRI. Further the method also extracts discriminative features for an accurate diagnosis of ASD. The proposed approach determines a spatial filter that projects the covariance matrices of the Blood Oxygen Level Dependent (BOLD) time-series signals from both the ASD patients and neurotypical subjects in orthogonal directions such that they are highly separable. The inverse of this filter also provides a spatial pattern map within the brain that highlights those regions responsible for the distinguishable activities between the ASD patients and neurotypical subjects. For a better classification, highly discriminative log-variance features providing the maximum separation between the two classes are extracted from the projected BOLD time-series data. A detailed study has been carried out using the publicly available data from the Autism Brain Imaging Data Exchange (ABIDE) consortium for the different gender and age-groups. The study results indicate that for all the above categories, the regional differences in resting state activities are more commonly found in the right hemisphere compared to the left hemisphere of the brain. Among males, a clear shift in activities to the prefrontal cortex is observed for ASD patients while other parts of the brain show diminished activities compared to neurotypical subjects. Among females, such a clear shift is not evident; however, several regions, especially in the posterior and medial portions of the brain show diminished activities due to ASD. Finally, the classification performance obtained using the log-variance features is found to be better when compared to earlier studies in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.