Estimating Bias Error Distributions
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Finley, Tom D.
2001-01-01
This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.
Bayesian Error Estimation Functionals
NASA Astrophysics Data System (ADS)
Jacobsen, Karsten W.
The challenge of approximating the exchange-correlation functional in Density Functional Theory (DFT) has led to the development of numerous different approximations of varying accuracy on different calculated properties. There is therefore a need for reliable estimation of prediction errors within the different approximation schemes to DFT. The Bayesian Error Estimation Functionals (BEEF) have been developed with this in mind. The functionals are constructed by fitting to experimental and high-quality computational databases for molecules and solids including chemisorption and van der Waals systems. This leads to reasonably accurate general-purpose functionals with particual focus on surface science. The fitting procedure involves considerations on how to combine different types of data, and applies Tikhonov regularization and bootstrap cross validation. The methodology has been applied to construct GGA and metaGGA functionals with and without inclusion of long-ranged van der Waals contributions. The error estimation is made possible by the generation of not only a single functional but through the construction of a probability distribution of functionals represented by a functional ensemble. The use of the functional ensemble is illustrated on compound heat of formation and by investigations of the reliability of calculated catalytic ammonia synthesis rates.
Micromagnetometer calibration for accurate orientation estimation.
Zhang, Zhi-Qiang; Yang, Guang-Zhong
2015-02-01
Micromagnetometers, together with inertial sensors, are widely used for attitude estimation for a wide variety of applications. However, appropriate sensor calibration, which is essential to the accuracy of attitude reconstruction, must be performed in advance. Thus far, many different magnetometer calibration methods have been proposed to compensate for errors such as scale, offset, and nonorthogonality. They have also been used for obviate magnetic errors due to soft and hard iron. However, in order to combine the magnetometer with inertial sensor for attitude reconstruction, alignment difference between the magnetometer and the axes of the inertial sensor must be determined as well. This paper proposes a practical means of sensor error correction by simultaneous consideration of sensor errors, magnetic errors, and alignment difference. We take the summation of the offset and hard iron error as the combined bias and then amalgamate the alignment difference and all the other errors as a transformation matrix. A two-step approach is presented to determine the combined bias and transformation matrix separately. In the first step, the combined bias is determined by finding an optimal ellipsoid that can best fit the sensor readings. In the second step, the intrinsic relationships of the raw sensor readings are explored to estimate the transformation matrix as a homogeneous linear least-squares problem. Singular value decomposition is then applied to estimate both the transformation matrix and magnetic vector. The proposed method is then applied to calibrate our sensor node. Although there is no ground truth for the combined bias and transformation matrix for our node, the consistency of calibration results among different trials and less than 3(°) root mean square error for orientation estimation have been achieved, which illustrates the effectiveness of the proposed sensor calibration method for practical applications. PMID:25265625
A posteriori error estimator and error control for contact problems
NASA Astrophysics Data System (ADS)
Weiss, Alexander; Wohlmuth, Barbara I.
2009-09-01
In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H( div ) -conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.
Control by model error estimation
NASA Technical Reports Server (NTRS)
Likins, P. W.; Skelton, R. E.
1976-01-01
Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).
NASA Astrophysics Data System (ADS)
Lasemi, Ali; Xue, Deyi; Gu, Peihua
2016-05-01
Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.
Accurate pose estimation using single marker single camera calibration system
NASA Astrophysics Data System (ADS)
Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal
2013-03-01
Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.
Systematic Error Estimation for Chemical Reaction Energies.
Simm, Gregor N; Reiher, Markus
2016-06-14
For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation. PMID:27159007
Adjoint Error Estimation for Linear Advection
Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S
2011-03-30
An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.
Accurate parameter estimation for unbalanced three-phase system.
Chen, Yuan; So, Hing Cheung
2014-01-01
Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056
Accurate pose estimation for forensic identification
NASA Astrophysics Data System (ADS)
Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk
2010-04-01
In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.
Statistical errors in Monte Carlo estimates of systematic errors
NASA Astrophysics Data System (ADS)
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.
Estimates of Random Error in Satellite Rainfall Averages
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.
2003-01-01
Satellite rain estimates are most accurate when obtained with microwave instruments on low earth-orbiting satellites. Estimation of daily or monthly total areal rainfall, typically of interest to hydrologists and climate researchers, is made difficult, however, by the relatively poor coverage generally available from such satellites. Intermittent coverage by the satellites leads to random "sampling error" in the satellite products. The inexact information about hydrometeors inferred from microwave data also leads to random "retrieval errors" in the rain estimates. In this talk we will review approaches to quantitative estimation of the sampling error in area/time averages of satellite rain retrievals using ground-based observations, and methods of estimating rms random error, both sampling and retrieval, in averages using satellite measurements themselves.
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Accurate estimation of sigma(exp 0) using AIRSAR data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Rignot, Eric
1995-01-01
During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
Approaches to relativistic positioning around Earth and error estimations
NASA Astrophysics Data System (ADS)
Puchades, Neus; Sáez, Diego
2016-01-01
In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.
Systematic Error Modeling and Bias Estimation
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
Effects of Structural Errors on Parameter Estimates
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Paper introduces concept of near equivalence in probability between different parameters or mathematical models of physical system. One in series of papers, each establishes different part of rigorous theory of mathematical modeling based on concepts of structural error, identifiability, and equivalence. This installment focuses upon effects of additive structural errors on degree of bias in estimates parameters.
Systematic Error Modeling and Bias Estimation.
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
Error Estimates for Numerical Integration Rules
ERIC Educational Resources Information Center
Mercer, Peter R.
2005-01-01
The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.
Estimating Filtering Errors Using the Peano Kernel Theorem
Jerome Blair
2009-02-20
The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.
Estimating Filtering Errors Using the Peano Kernel Theorem
Jerome Blair
2008-03-01
The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.
Accurate and robust estimation of camera parameters using RANSAC
NASA Astrophysics Data System (ADS)
Zhou, Fuqiang; Cui, Yi; Wang, Yexin; Liu, Liu; Gao, He
2013-03-01
Camera calibration plays an important role in the field of machine vision applications. The popularly used calibration approach based on 2D planar target sometimes fails to give reliable and accurate results due to the inaccurate or incorrect localization of feature points. To solve this problem, an accurate and robust estimation method for camera parameters based on RANSAC algorithm is proposed to detect the unreliability and provide the corresponding solutions. Through this method, most of the outliers are removed and the calibration errors that are the main factors influencing measurement accuracy are reduced. Both simulative and real experiments have been carried out to evaluate the performance of the proposed method and the results show that the proposed method is robust under large noise condition and quite efficient to improve the calibration accuracy compared with the original state.
Optimal error regions for quantum state estimation
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Khoon Ng, Hui; Sehrawat, Arun; Li, Xikun; Englert, Berthold-Georg
2013-12-01
An estimator is a state that represents one's best guess of the actual state of the quantum system for the given data. Such estimators are points in the state space. To be statistically meaningful, they have to be endowed with error regions, the generalization of error bars beyond one dimension. As opposed to standard ad hoc constructions of error regions, we introduce the maximum-likelihood region—the region of largest likelihood among all regions of the same size—as the natural counterpart of the popular maximum-likelihood estimator. Here, the size of a region is its prior probability. A related concept is the smallest credible region—the smallest region with pre-chosen posterior probability. In both cases, the optimal error region has constant likelihood on its boundary. This surprisingly simple characterization permits concise reporting of the error regions, even in high-dimensional problems. For illustration, we identify optimal error regions for single-qubit and two-qubit states from computer-generated data that simulate incomplete tomography with few measured copies.
Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation
NASA Technical Reports Server (NTRS)
Morelli, Eugene a.
2006-01-01
Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.
Reducing Measurement Error in Student Achievement Estimation
ERIC Educational Resources Information Center
Battauz, Michela; Bellio, Ruggero; Gori, Enrico
2008-01-01
The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed…
MONTE CARLO ERROR ESTIMATION APPLIED TO NONDESTRUCTIVE ASSAY METHODS
R. ESTEP; ET AL
2000-06-01
Monte Carlo randomization of nuclear counting data into N replicate sets is the basis of a simple and effective method for estimating error propagation through complex analysis algorithms such as those using neural networks or tomographic image reconstructions. The error distributions of properly simulated replicate data sets mimic those of actual replicate measurements and can be used to estimate the std. dev. for an assay along with other statistical quantities. We have used this technique to estimate the standard deviation in radionuclide masses determined using the tomographic gamma scanner (TGS) and combined thermal/epithermal neutron (CTEN) methods. The effectiveness of this approach is demonstrated by a comparison of our Monte Carlo error estimates with the error distributions in actual replicate measurements and simulations of measurements. We found that the std. dev. estimated this way quickly converges to an accurate value on average and has a predictable error distribution similar to N actual repeat measurements. The main drawback of the Monte Carlo method is that N additional analyses of the data are required, which may be prohibitively time consuming with slow analysis algorithms.
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-04-01
The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space
Tolerance for error and computational estimation ability.
Hogan, Thomas P; Wyckoff, Laurie A; Krebs, Paul; Jones, William; Fitzgerald, Mark P
2004-06-01
Previous investigators have suggested that the personality variable tolerance for error is related to success in computational estimation. However, this suggestion has not been tested directly. This study examined the relationship between performance on a computational estimation test and scores on the NEO-Five Factor Inventory, a measure of the Big Five personality traits, including Openness, an index of tolerance for ambiguity. Other variables included SAT-I Verbal and Mathematics scores and self-rated mathematics ability. Participants were 65 college students. There was no significant relationship between the tolerance variable and computational estimation performance. There was a modest negative relationship between Agreeableness and estimation performance. The skepticism associated with the negative pole of the Agreeableness dimension may be important to pursue in further understanding of estimation ability. PMID:15362423
31 CFR 205.24 - How are accurate estimates maintained?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are accurate estimates maintained... Treasury-State Agreement § 205.24 How are accurate estimates maintained? (a) If a State has knowledge that an estimate does not reasonably correspond to the State's cash needs for a Federal assistance...
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay
2005-01-01
The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.
Estimating errors in least-squares fitting
NASA Technical Reports Server (NTRS)
Richter, P. H.
1995-01-01
While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.
Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion
Yadav, Nagesh; Bleakley, Chris
2014-01-01
Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584
Density Estimation Framework for Model Error Assessment
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Liu, Z.; Najm, H. N.; Safta, C.; VanBloemenWaanders, B.; Michelsen, H. A.; Bambha, R.
2014-12-01
In this work we highlight the importance of model error assessment in physical model calibration studies. Conventional calibration methods often assume the model is perfect and account for data noise only. Consequently, the estimated parameters typically have biased values that implicitly compensate for model deficiencies. Moreover, improving the amount and the quality of data may not improve the parameter estimates since the model discrepancy is not accounted for. In state-of-the-art methods model discrepancy is explicitly accounted for by enhancing the physical model with a synthetic statistical additive term, which allows appropriate parameter estimates. However, these statistical additive terms do not increase the predictive capability of the model because they are tuned for particular output observables and may even violate physical constraints. We introduce a framework in which model errors are captured by allowing variability in specific model components and parameterizations for the purpose of achieving meaningful predictions that are both consistent with the data spread and appropriately disambiguate model and data errors. Here we cast model parameters as random variables, embedding the calibration problem within a density estimation framework. Further, we calibrate for the parameters of the joint input density. The likelihood function for the associated inverse problem is degenerate, therefore we use Approximate Bayesian Computation (ABC) to build prediction-constraining likelihoods and illustrate the strengths of the method on synthetic cases. We also apply the ABC-enhanced density estimation to the TransCom 3 CO2 intercomparison study (Gurney, K. R., et al., Tellus, 55B, pp. 555-579, 2003) and calibrate 15 transport models for regional carbon sources and sinks given atmospheric CO2 concentration measurements.
Ultraspectral Sounding Retrieval Error Budget and Estimation
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2011-01-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..
Factoring Algebraic Error for Relative Pose Estimation
Lindstrom, P; Duchaineau, M
2009-03-09
We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.
GOMOS data characterization and error estimation
NASA Astrophysics Data System (ADS)
Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.
2010-03-01
The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone and other trace gases in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required, provides excellent possibilities for long term monitoring of atmospheric composition. GOMOS uses about 180 brightest stars as the light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS is changing from star to star, resulting also varying accuracy to the retrieved profiles. We present the overview of the GOMOS data characterization and error estimation, including modeling errors, for ozone, NO2, NO3 and aerosol profiles. The retrieval error (precision) of the night time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are the incompletely corrected atmospheric turbulence causing scintillation, inaccurate aerosol modeling, uncertainties in cross sections of the trace gases and in the atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km resolution for ozone and 4 km resolution for other trace gases.
GOMOS data characterisation and error estimation
NASA Astrophysics Data System (ADS)
Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.
2010-10-01
The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone, other trace gases and aerosols in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required provides excellent possibilities for long-term monitoring of atmospheric composition. GOMOS uses about 180 of the brightest stars as its light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS varies from star to star, resulting also in varying accuracy of retrieved profiles. We present here an overview of the GOMOS data characterisation and error estimation, including modeling errors, for O3, NO2, NO3, and aerosol profiles. The retrieval error (precision) of night-time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are incompletely corrected scintillation, inaccurate aerosol modeling, uncertainties in cross sections of trace gases and in atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km vertical resolution for ozone and 4 km resolution for other trace gases and aerosols.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method
ERIC Educational Resources Information Center
Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey
2013-01-01
Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…
High-dimensional bolstered error estimation
Sima, Chao; Braga-Neto, Ulisses M.; Dougherty, Edward R.
2011-01-01
Motivation: In small-sample settings, bolstered error estimation has been shown to perform better than cross-validation and competitively with bootstrap with regard to various criteria. The key issue for bolstering performance is the variance setting for the bolstering kernel. Heretofore, this variance has been determined in a non-parametric manner from the data. Although bolstering based on this variance setting works well for small feature sets, results can deteriorate for high-dimensional feature spaces. Results: This article computes an optimal kernel variance depending on the classification rule, sample size, model and feature space, both the original number and the number remaining after feature selection. A key point is that the optimal variance is robust relative to the model. This allows us to develop a method for selecting a suitable variance to use in real-world applications where the model is not known, but the other factors in determining the optimal kernel are known. Availability: Companion website at http://compbio.tgen.org/paper_supp/high_dim_bolstering Contact: edward@mail.ece.tamu.edu PMID:21914630
Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco
2014-01-01
Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454
Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco
2014-01-01
Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454
A posteriori pointwise error estimates for the boundary element method
Paulino, G.H.; Gray, L.J.; Zarikian, V.
1995-01-01
This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.
Real-Time Parameter Estimation Using Output Error
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2014-01-01
Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.
Estimating IMU heading error from SAR images.
Doerry, Armin Walter
2009-03-01
Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.
Gap filling strategies and error in estimating annual soil respiration.
Gomez-Casanovas, Nuria; Anderson-Teixeira, Kristina; Zeri, Marcelo; Bernacchi, Carl J; DeLucia, Evan H
2013-06-01
Soil respiration (Rsoil ) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap filling of automated records to produce a complete time series. Although many gap filling methodologies have been employed, there is no standardized procedure for producing defensible estimates of annual Rsoil . Here, we test the reliability of nine different gap filling techniques by inserting artificial gaps into 20 automated Rsoil records and comparing gap filling Rsoil estimates of each technique to measured values. We show that although the most commonly used techniques do not, on average, produce large systematic biases, gap filling accuracy may be significantly improved through application of the most reliable methods. All methods performed best at lower gap fractions and had relatively high, systematic errors for simulated survey measurements. Overall, the most accurate technique estimated Rsoil based on the soil temperature dependence of Rsoil by assuming constant temperature sensitivity and linearly interpolating reference respiration (Rsoil at 10 °C) across gaps. The linear interpolation method was the second best-performing method. In contrast, estimating Rsoil based on a single annual Rsoil - Tsoil relationship, which is currently the most commonly used technique, was among the most poorly-performing methods. Thus, our analysis demonstrates that gap filling accuracy may be improved substantially without sacrificing computational simplicity. Improved and standardized techniques for estimation of annual Rsoil will be valuable for understanding the role of Rsoil in the global C cycle. PMID:23504959
A Note on Confidence Interval Estimation and Margin of Error
ERIC Educational Resources Information Center
Gilliland, Dennis; Melfi, Vince
2010-01-01
Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…
Improved Soundings and Error Estimates using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2006-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.
Field evaluation of distance-estimation error during wetland-dependent bird surveys
Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point
Estimation of Model Error Variances During Data Assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick
2003-01-01
Data assimilation is all about understanding the error characteristics of the data and models that are used in the assimilation process. Reliable error estimates are needed to implement observational quality control, bias correction of observations and model fields, and intelligent data selection. Meaningful covariance specifications are obviously required for the analysis as well, since the impact of any single observation strongly depends on the assumed structure of the background errors. Operational atmospheric data assimilation systems still rely primarily on climatological background error covariances. To obtain error estimates that reflect both the character of the flow and the current state of the observing system, it is necessary to solve three problems: (1) how to account for the short-term evolution of errors in the initial conditions; (2) how to estimate the additional component of error caused by model defects; and (3) how to compute the error reduction in the analysis due to observational information. Various approaches are now available that provide approximate solutions to the first and third of these problems. However, the useful accuracy of these solutions very much depends on the size and character of the model errors and the ability to account for them. Model errors represent the real-world forcing of the error evolution in a data assimilation system. Clearly, meaningful model error estimates and/or statistics must be based on information external to the model itself. The most obvious information source is observational, and since the volume of available geophysical data is growing rapidly, there is some hope that a purely statistical approach to model error estimation can be viable. This requires that the observation errors themselves are well understood and quantifiable. We will discuss some of these challenges and present a new sequential scheme for estimating model error variances from observations in the context of an atmospheric data
Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.
2006-10-01
This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.
Semiclassical Dynamicswith Exponentially Small Error Estimates
NASA Astrophysics Data System (ADS)
Hagedorn, George A.; Joye, Alain
We construct approximate solutions to the time-dependent Schrödingerequation
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Improved Margin of Error Estimates for Proportions in Business: An Educational Example
ERIC Educational Resources Information Center
Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael
2015-01-01
This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…
Winham, Stacey J.; Motsinger-Reif, Alison A.
2010-01-01
SUMMARY The standard in genetic association studies of complex diseases is replication and validation of positive results, with an emphasis on assessing the predictive value of associations. In response to this need, a number of analytical approaches have been developed to identify predictive models that account for complex genetic etiologies. Multifactor Dimensionality Reduction (MDR) is a commonly used, highly successful method designed to evaluate potential gene-gene interactions. MDR relies on classification error in a cross-validation framework to rank and evaluate potentially predictive models. Previous work has demonstrated the high power of MDR, but has not considered the accuracy and variance of the MDR prediction error estimate. Currently, we evaluate the bias and variance of the MDR error estimate as both a retrospective and prospective estimator and show that MDR can both underestimate and overestimate error. We argue that a prospective error estimate is necessary if MDR models are used for prediction, and propose a bootstrap resampling estimate, integrating population prevalence, to accurately estimate prospective error. We demonstrate that this bootstrap estimate is preferable for prediction to the error estimate currently produced by MDR. While demonstrated with MDR, the proposed estimation is applicable to all data-mining methods that use similar estimates. PMID:20560921
An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance
Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun
2015-01-01
Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314
An accurate link correlation estimator for improving wireless protocol performance.
Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun
2015-01-01
Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314
Fisher classifier and its probability of error estimation
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
Finite element error estimation and adaptivity based on projected stresses
Jung, J.
1990-08-01
This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.
Error Estimation for Reduced Order Models of Dynamical Systems
Homescu, C; Petzold, L; Serban, R
2004-01-22
The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample statistical condition estimation and error estimation using the adjoint method. Most importantly, the proposed approach allows the assessment of regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.
Fast and accurate estimation for astrophysical problems in large databases
NASA Astrophysics Data System (ADS)
Richards, Joseph W.
2010-10-01
A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems
Parameter estimation and error analysis in environmental modeling and computation
NASA Technical Reports Server (NTRS)
Kalmaz, E. E.
1986-01-01
A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Preliminary estimates of radiosonde thermistor errors
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Luers, J. K.; Huffman, P. D.
1986-01-01
Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument.
NASA Astrophysics Data System (ADS)
Konings, A. G.; Gruber, A.; Mccoll, K. A.; Alemohammad, S. H.; Entekhabi, D.
2015-12-01
Validating large-scale estimates of geophysical variables by comparing them to in situ measurements neglects the fact that these in situ measurements are not generally representative of the larger area. That is, in situ measurements contain some `representativeness error'. They also have their own sensor errors. The naïve approach of characterizing the errors of a remote sensing or modeling dataset by comparison to in situ measurements thus leads to error estimates that are spuriously inflated by the representativeness and other errors in the in situ measurements. Nevertheless, this naïve approach is still very common in the literature. In this work, we introduce an alternative estimator of the large-scale dataset error that explicitly takes into account the fact that the in situ measurements have some unknown error. The performance of the two estimators is then compared in the context of soil moisture datasets under different conditions for the true soil moisture climatology and dataset biases. The new estimator is shown to lead to a more accurate characterization of the dataset errors under the most common conditions. If a third dataset is available, the principles of the triple collocation method can be used to determine the errors of both the large-scale estimates and in situ measurements. However, triple collocation requires that the errors in all datasets are uncorrelated with each other and with the truth. We show that even when the assumptions of triple collocation are violated, a triple collocation-based validation approach may still be more accurate than a naïve comparison to in situ measurements that neglects representativeness errors.
Spatio-temporal Error on the Discharge Estimates for the SWOT Mission
NASA Astrophysics Data System (ADS)
Biancamaria, S.; Alsdorf, D. E.; Andreadis, K. M.; Clark, E.; Durand, M.; Lettenmaier, D. P.; Mognard, N. M.; Oudin, Y.; Rodriguez, E.
2008-12-01
The Surface Water and Ocean Topography (SWOT) mission measures two key quantities over rivers: water surface elevation and slope. Water surface elevation from SWOT will have a vertical accuracy, when averaged over approximately one square kilometer, on the order of centimeters. Over reaches from 1-10 km long, SWOT slope measurements will be accurate to microradians. Elevation (depth) and slope offer the potential to produce discharge as a derived quantity. Estimates of instantaneous and temporally integrated discharge from SWOT data will also contain a certain degree of error. Two primary sources of measurement error exist. The first is the temporal sub-sampling of water elevations. For example, SWOT will sample some locations twice in the 21-day repeat cycle. If these two overpasses occurred during flood stage, an estimate of monthly discharge based on these observations would be much higher than the true value. Likewise, if estimating maximum or minimum monthly discharge, in some cases, SWOT may miss those events completely. The second source of measurement error results from the instrument's capability to accurately measure the magnitude of the water surface elevation. How this error affects discharge estimates depends on errors in the model used to derive discharge from water surface elevation. We present a global distribution of estimated relative errors in mean annual discharge based on a power law relationship between stage and discharge. Additionally, relative errors in integrated and average instantaneous monthly discharge associated with temporal sub-sampling over the proposed orbital tracks are presented for several river basins.
Methods for accurate estimation of net discharge in a tidal channel
Simpson, M.R.; Bland, R.
2000-01-01
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three
A-posteriori error estimation for second order mechanical systems
NASA Astrophysics Data System (ADS)
Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter
2012-06-01
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.
2008-01-01
Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.
Error Estimates for Generalized Barycentric Interpolation.
Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit
2012-10-01
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826
Error Estimates for Generalized Barycentric Interpolation
Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit
2011-01-01
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826
Nonparametric Item Response Curve Estimation with Correction for Measurement Error
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
CTER-rapid estimation of CTF parameters with error assessment.
Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T
2014-05-01
In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. PMID:24562077
CTER—Rapid estimation of CTF parameters with error assessment
Penczek, Pawel A.; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M.T.
2014-01-01
In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300 kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03 Å without, and 3.85 Å with, inclusion of astigmatism parameters. PMID:24562077
Correcting errors in the optical path difference in Fourier spectroscopy: a new accurate method.
Kauppinen, J; Kärkköinen, T; Kyrö, E
1978-05-15
A new computational method for calculating and correcting the errors of the optical path difference in Fourier spectrometers is presented. This method only requires an one-sided interferogram and a single well-separated line in the spectrum. The method also cancels out the linear phase error. The practical theory of the method is included, and an example of the progress of the method is illustrated by simulations. The method is also verified by several simulations in order to estimate its usefulness and accuracy. An example of the use of this method in practice is also given. PMID:20198027
Error magnitude estimation in model-reference adaptive systems
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1975-01-01
A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.
Robust ODF smoothing for accurate estimation of fiber orientation.
Beladi, Somaieh; Pathirana, Pubudu N; Brotchie, Peter
2010-01-01
Q-ball imaging was presented as a model free, linear and multimodal diffusion sensitive approach to reconstruct diffusion orientation distribution function (ODF) using diffusion weighted MRI data. The ODFs are widely used to estimate the fiber orientations. However, the smoothness constraint was proposed to achieve a balance between the angular resolution and noise stability for ODF constructs. Different regularization methods were proposed for this purpose. However, these methods are not robust and quite sensitive to the global regularization parameter. Although, numerical methods such as L-curve test are used to define a globally appropriate regularization parameter, it cannot serve as a universal value suitable for all regions of interest. This may result in over smoothing and potentially end up in neglecting an existing fiber population. In this paper, we propose to include an interpolation step prior to the spherical harmonic decomposition. This interpolation based approach is based on Delaunay triangulation provides a reliable, robust and accurate smoothing approach. This method is easy to implement and does not require other numerical methods to define the required parameters. Also, the fiber orientations estimated using this approach are more accurate compared to other common approaches. PMID:21096202
Accurate estimators of correlation functions in Fourier space
NASA Astrophysics Data System (ADS)
Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.
2016-08-01
Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.
Using doppler radar images to estimate aircraft navigational heading error
Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.
2012-07-03
A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
Evaluating concentration estimation errors in ELISA microarray experiments
Daly, Don Simone; White, Amanda M; Varnum, Susan M; Anderson, Kevin K; Zangar, Richard C
2005-01-01
Background Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are uncertain due to processing error and biological variability. Evaluating estimation error is critical to interpreting biological significance and improving the ELISA microarray process. Estimation error evaluation must be automated to realize a reliable high-throughput ELISA microarray system. In this paper, we present a statistical method based on propagation of error to evaluate concentration estimation errors in the ELISA microarray process. Although propagation of error is central to this method and the focus of this paper, it is most effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization, and statistical diagnostics when evaluating ELISA microarray concentration estimation errors. Results We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of concentration estimation errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error. We summarize the results with a simple, three-panel diagnostic visualization featuring a scatterplot of the standard data with logistic standard curve and 95% confidence intervals, an annotated histogram of sample measurements, and a plot of the 95% concentration coefficient of variation, or relative error, as a function of concentration. Conclusions This statistical method should be of value in the rapid evaluation and quality control of high-throughput ELISA microarray analyses
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
PERIOD ERROR ESTIMATION FOR THE KEPLER ECLIPSING BINARY CATALOG
Mighell, Kenneth J.; Plavchan, Peter
2013-06-15
The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg{sup 2} Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log {sigma}{sub P} Almost-Equal-To - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods {>=}62.5 days have KEBC period errors of {approx}0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.
Period Error Estimation for the Kepler Eclipsing Binary Catalog
NASA Astrophysics Data System (ADS)
Mighell, Kenneth J.; Plavchan, Peter
2013-06-01
The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg2 Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log σ P ≈ - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods >=62.5 days have KEBC period errors of ~0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
Estimation of optical proximity effect caused by mask fabrication error
NASA Astrophysics Data System (ADS)
Kamon, Kazuya; Hanawa, Tetsuro; Moriizumi, Koichi
1997-07-01
To get wide lithography latitudes in ULSI fabrication, an optical proximity correction system is being widely used. We previously demonstrated that the optical proximity effect is highly dependent on beam interference conditions. By using an aperture with a spindle shaped opaque region and a controlling interference beam number optimized for imaging, we can obtain a high correction accuracy of less than +/- 0.01 micrometers for all kinds of pattern. To put the optical proximity correction into practical use, we must fabricate the corrected mask either by an EB or a laser writing system. But during mask writing, there is another problematic proximity effect. The optical proximity effect caused by mask fabrication error is becoming a serious problem. In this paper, we estimate the optical proximity effect caused by mask fabrication error. For EB writing, the mask feature size of 0.35 micrometers line changes dramatically in a space less than 0.8 micrometers in size; this is not tolerable. For a large pitch pattern, modified illumination reduces the DOF to 0 micrometers . Otherwise, laser writing stably fabricates a mask feature size for a 0.35 micrometers line, and the modified illumination reduces the optical proximity effect. This resist feature fluctuation is binary, so, correcting the mask pattern is easy. Although, it was wrongly thought that for larger pitch pattern, the DOF was reduced by the modified illumination, the DOF reduction actually came from the combination of the two proximity effects. Using an accurate mask produced by a laser writer, we do not observe any DOF reduction in modified illumination. Moreover, this has led to development of an optical proximity correction system with EB proximity correction.
Errors-in-variables modeling in optical flow estimation.
Ng, L; Solo, V
2001-01-01
Gradient-based optical flow estimation methods typically do not take into account errors in the spatial derivative estimates. The presence of these errors causes an errors-in-variables (EIV) problem. Moreover, the use of finite difference methods to calculate these derivatives ensures that the errors are strongly correlated between pixels. Total least squares (TLS) has often been used to address this EIV problem. However, its application in this context is flawed as TLS implicitly assumes that the errors between neighborhood pixels are independent. In this paper, a new optical flow estimation method (EIVM) is formulated to properly treat the EIV problem in optical flow. EIVM is based on Sprent's (1966) procedure which allows the incorporation of a general EIV model in the estimation process. In EIVM, the neighborhood size acts as a smoothing parameter. Due to the weights in the EIVM objective function, the effect of changing the neighborhood size is more complex than in other local model methods such as Lucas and Kanade (1981). These weights, which are functions of the flow estimate, can alter the effective size and orientation of the neighborhood. In this paper, we also present a data-driven method for choosing the neighborhood size based on Stein's unbiased risk estimators (SURE). PMID:18255496
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large
Sensitivity analysis of DOA estimation algorithms to sensor errors
NASA Astrophysics Data System (ADS)
Li, Fu; Vaccaro, Richard J.
1992-07-01
A unified statistical performance analysis using subspace perturbation expansions is applied to subspace-based algorithms for direction-of-arrival (DOA) estimation in the presence of sensor errors. In particular, the multiple signal classification (MUSIC), min-norm, state-space realization (TAM and DDA) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms are analyzed. This analysis assumes that only a finite amount of data is available. An analytical expression for the mean-squared error of the DOA estimates is developed for theoretical comparison in a simple and self-contained fashion. The tractable formulas provide insight into the algorithms. Simulation results verify the analysis.
Error decomposition and estimation of inherent optical properties.
Salama, Mhd Suhyb; Stein, Alfred
2009-09-10
We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60-90% and 67-90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation. PMID:19745859
Error Estimation for Reduced Order Models of Dynamical systems
Homescu, C; Petzold, L R; Serban, R
2003-12-16
The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of the small sample statistical condition estimation method and of error estimation using the adjoint method. More importantly, the proposed approach allows the assessment of so-called regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. This question is particularly important for applications in which reduced models are used not just to approximate the solution to the system that provided the data used in constructing the reduced model, but rather to approximate the solution of systems perturbed from the original one. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.
Minimax Mean-Squared Error Location Estimation Using TOA Measurements
NASA Astrophysics Data System (ADS)
Shen, Chih-Chang; Chang, Ann-Chen
This letter deals with mobile location estimation based on a minimax mean-squared error (MSE) algorithm using time-of-arrival (TOA) measurements for mitigating the nonline-of-sight (NLOS) effects in cellular systems. Simulation results are provided for illustrating the minimax MSE estimator yields good performance than the other least squares and weighted least squares estimators under relatively low signal-to-noise ratio and moderately NLOS conditions.
Sampling errors in satellite estimates of tropical rain
NASA Technical Reports Server (NTRS)
Mcconnell, Alan; North, Gerald R.
1987-01-01
The GATE rainfall data set is used in a statistical study to estimate the sampling errors that might be expected for the type of snapshot sampling that a low earth-orbiting satellite makes. For averages over the entire 400-km square and for the duration of several weeks, strong evidence is found that sampling errors less than 10 percent can be expected in contributions from each of four rain rate categories which individually account for about one quarter of the total rain.
Estimation of rod scale errors in geodetic leveling
Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.
1995-01-01
Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.
NASA Astrophysics Data System (ADS)
Jones, Reese E.; Mandadapu, Kranthi K.
2012-04-01
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; Center for Quantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
Verification of unfold error estimates in the unfold operator code
Fehl, D.L.; Biggs, F.
1997-01-01
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}
Verification of unfold error estimates in the unfold operator code
NASA Astrophysics Data System (ADS)
Fehl, D. L.; Biggs, F.
1997-01-01
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums.
Regularization Based Iterative Point Match Weighting for Accurate Rigid Transformation Estimation.
Liu, Yonghuai; De Dominicis, Luigi; Wei, Baogang; Chen, Liang; Martin, Ralph R
2015-09-01
Feature extraction and matching (FEM) for 3D shapes finds numerous applications in computer graphics and vision for object modeling, retrieval, morphing, and recognition. However, unavoidable incorrect matches lead to inaccurate estimation of the transformation relating different datasets. Inspired by AdaBoost, this paper proposes a novel iterative re-weighting method to tackle the challenging problem of evaluating point matches established by typical FEM methods. Weights are used to indicate the degree of belief that each point match is correct. Our method has three key steps: (i) estimation of the underlying transformation using weighted least squares, (ii) penalty parameter estimation via minimization of the weighted variance of the matching errors, and (iii) weight re-estimation taking into account both matching errors and information learnt in previous iterations. A comparative study, based on real shapes captured by two laser scanners, shows that the proposed method outperforms four other state-of-the-art methods in terms of evaluating point matches between overlapping shapes established by two typical FEM methods, resulting in more accurate estimates of the underlying transformation. This improved transformation can be used to better initialize the iterative closest point algorithm and its variants, making 3D shape registration more likely to succeed. PMID:26357287
Error estimates for Gaussian quadratures of analytic functions
NASA Astrophysics Data System (ADS)
Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.
2009-12-01
For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes [varrho]>1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod's method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.
Application of variance components estimation to calibrate geoid error models.
Guo, Dong-Mei; Xu, Hou-Ze
2015-01-01
The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model. PMID:26306296
Bootstrapped DEPICT for error estimation in PET functional imaging.
Kukreja, Sunil L; Gunn, Roger N
2004-03-01
Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology. PMID:15006677
Estimation of errors in partial Mueller matrix polarimeter calibration
NASA Astrophysics Data System (ADS)
Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott
2016-05-01
While active polarimeters have been shown to be successful at improving discriminability of the targets of interest from their background in a wide range of applications, their use can be problematic for cases with strong bandwidth constraints. In order to limit the number of performed measurements, a number of successive studies have developed the concept of partial Mueller matrix polarimeters (pMMPs) into a competitive solution. Like all systems, pMMPs need to be calibrated in order to yield accurate results. In this treatment we provide a method by which to select a limited number of reference objects to calibrate a given pMMP design. To demonstrate the efficacy of the approach, we apply the method to a sample system and show that, depending on the kind of errors present within the system, a significantly reduced number of reference objects measurements will suffice for accurate characterization of the errors.
Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees.
Omasa, Kenji; Qiu, Guo Yu; Watanuki, Kenichi; Yoshimi, Kenji; Akiyama, Yukihide
2003-03-15
Forests are one of the most important carbon sinks on Earth. However, owing to the complex structure, variable geography, and large area of forests, accurate estimation of forest carbon stocks is still a challenge for both site surveying and remote sensing. For these reasons, the Kyoto Protocol requires the establishment of methodologies for estimating the carbon stocks of forests (Kyoto Protocol, Article 5). A possible solution to this challenge is to remotely measure the carbon stocks of every tree in an entire forest. Here, we present a methodology for estimating carbon stocks of a Japanese cedar forest by using a high-resolution, helicopter-borne 3-dimensional (3-D) scanning lidar system that measures the 3-D canopy structure of every tree in a forest. Results show that a digital image (10-cm mesh) of woody canopy can be acquired. The treetop can be detected automatically with a reasonable accuracy. The absolute error ranges for tree height measurements are within 42 cm. Allometric relationships of height to carbon stocks then permit estimation of total carbon storage by measurement of carbon stocks of every tree. Thus, we suggest that our methodology can be used to accurately estimate the carbon stocks of Japanese cedar forests at a stand scale. Periodic measurements will reveal changes in forest carbon stocks. PMID:12680675
Accurate reconstruction of viral quasispecies spectra through improved estimation of strain richness
2015-01-01
Background Estimating the number of different species (richness) in a mixed microbial population has been a main focus in metagenomic research. Existing methods of species richness estimation ride on the assumption that the reads in each assembled contig correspond to only one of the microbial genomes in the population. This assumption and the underlying probabilistic formulations of existing methods are not useful for quasispecies populations where the strains are highly genetically related. The lack of knowledge on the number of different strains in a quasispecies population is observed to hinder the precision of existing Viral Quasispecies Spectrum Reconstruction (QSR) methods due to the uncontrolled reconstruction of a large number of in silico false positives. In this work, we formulated a novel probabilistic method for strain richness estimation specifically targeting viral quasispecies. By using this approach we improved our recently proposed spectrum reconstruction pipeline ViQuaS to achieve higher levels of precision in reconstructed quasispecies spectra without compromising the recall rates. We also discuss how one other existing popular QSR method named ShoRAH can be improved using this new approach. Results On benchmark data sets, our estimation method provided accurate richness estimates (< 0.2 median estimation error) and improved the precision of ViQuaS by 2%-13% and F-score by 1%-9% without compromising the recall rates. We also demonstrate that our estimation method can be used to improve the precision and F-score of ShoRAH by 0%-7% and 0%-5% respectively. Conclusions The proposed probabilistic estimation method can be used to estimate the richness of viral populations with a quasispecies behavior and to improve the accuracy of the quasispecies spectra reconstructed by the existing methods ViQuaS and ShoRAH in the presence of a moderate level of technical sequencing errors. Availability http://sourceforge.net/projects/viquas/ PMID:26678073
Error propagation and scaling for tropical forest biomass estimates.
Chave, Jerome; Condit, Richard; Aguilar, Salomon; Hernandez, Andres; Lao, Suzanne; Perez, Rolando
2004-01-01
The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 10(4) m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass. PMID:15212093
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Error estimation for the linearized auto-localization algorithm.
Guevara, Jorge; Jiménez, Antonio R; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons' positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Real-Time Estimation Of Aiming Error Of Spinning Antenna
NASA Technical Reports Server (NTRS)
Dolinsky, Shlomo
1992-01-01
Spinning-spacecraft dynamics and amplitude variations in communications links studied from received-signal fluctuations. Mathematical model and associated analysis procedure provide real-time estimates of aiming error of remote rotating transmitting antenna radiating constant power in narrow, pencillike beam from spinning platform, and current amplitude of received signal. Estimates useful in analyzing and enhancing calibration of communication system, and in analyzing complicated dynamic effects in spinning platform and antenna-aiming mechanism.
Development of an integrated system for estimating human error probabilities
Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.
1998-12-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.
ORAN- ORBITAL AND GEODETIC PARAMETER ESTIMATION ERROR ANALYSIS
NASA Technical Reports Server (NTRS)
Putney, B.
1994-01-01
The Orbital and Geodetic Parameter Estimation Error Analysis program, ORAN, was developed as a Bayesian least squares simulation program for orbital trajectories. ORAN does not process data, but is intended to compute the accuracy of the results of a data reduction, if measurements of a given accuracy are available and are processed by a minimum variance data reduction program. Actual data may be used to provide the time when a given measurement was available and the estimated noise on that measurement. ORAN is designed to consider a data reduction process in which a number of satellite data periods are reduced simultaneously. If there is more than one satellite in a data period, satellite-to-satellite tracking may be analyzed. The least squares estimator in most orbital determination programs assumes that measurements can be modeled by a nonlinear regression equation containing a function of parameters to be estimated and parameters which are assumed to be constant. The partitioning of parameters into those to be estimated (adjusted) and those assumed to be known (unadjusted) is somewhat arbitrary. For any particular problem, the data will be insufficient to adjust all parameters subject to uncertainty, and some reasonable subset of these parameters is selected for estimation. The final errors in the adjusted parameters may be decomposed into a component due to measurement noise and a component due to errors in the assumed values of the unadjusted parameters. Error statistics associated with the first component are generally evaluated in an orbital determination program. ORAN is used to simulate the orbital determination processing and to compute error statistics associated with the second component. Satellite observations may be simulated with desired noise levels given in many forms including range and range rate, altimeter height, right ascension and declination, direction cosines, X and Y angles, azimuth and elevation, and satellite-to-satellite range and
An Empirically Based Error-Model for Radar Rainfall Estimates
NASA Astrophysics Data System (ADS)
Ciach, G. J.
2004-05-01
Mathematical modeling of the way radar rainfall (RR) approximates the physical truth is a prospective method to quantify the RR uncertainties. In this approach one can represent RR in the form of an "observation equation," that is, as a function of the corresponding true rainfall and a random error process. The error process describes the cumulative effect of all the sources of RR uncertainties. We present the results of our work on the identification and estimation of this relationship. They are based on the Level II reflectivity data from the WSR-88D radar in Tulsa, Oklahoma, and rainfall measurements from 23 surrounding Oklahoma Mesonet raingauges. Accumulation intervals from one hour to one day were analyzed using this sample. The raingauge accumulations were used as an approximation of the true rainfall in this study. The RR error-model that we explored is factorized into a deterministic distortion, which is a function of the true rainfall, and a multiplicative random error factor that is a positively-defined random variable. The distribution of the error factor depends on the true rainfall, however, its expectation in this representation is always equal to one (all the biases are modeled by the deterministic component). With this constraint, the deterministic distortion function can be defined as the conditional mean of RR conditioned on the true rainfall. We use nonparametric regression to estimate the deterministic distortion, and the variance and quantiles of the random error factor, as functions of the true rainfall. The results show that the deterministic distortion is a nonlinear function of the true rainfall that indicates systematic overestimation of week rainfall and underestimation of strong rainfall (conditional bias). The standard deviation of the error factor is a decreasing function of the true rainfall that ranges from about 0.8 for week rainfall to about 0.3 for strong rainfall. For larger time-scales, both the deterministic distortion and the
Error estimates for universal back-projection-based photoacoustic tomography
NASA Astrophysics Data System (ADS)
Pandey, Prabodh K.; Naik, Naren; Munshi, Prabhat; Pradhan, Asima
2015-07-01
Photo-acoustic tomography is a hybrid imaging modality that combines the advantages of optical as well as ultrasound imaging techniques to produce images with high resolution and good contrast at high penetration depths. Choice of reconstruction algorithm as well as experimental and computational parameters plays a major role in governing the accuracy of a tomographic technique. Therefore error estimates with the variation of these parameters have extreme importance. Due to the finite support, that photo-acoustic source has, the pressure signals are not band-limited, but in practice, our detection system is. Hence the reconstructed image from ideal, noiseless band-limited forward data (for future references we will call this band-limited reconstruction) is the best approximation that we have for the unknown object. In the present study, we report the error that arises in the universal back-projection (UBP) based photo-acoustic reconstruction for planer detection geometry due to sampling and filtering of forward data (pressure signals).Computational validation of the error estimates have been carried out for synthetic phantoms. Validation with noisy forward data has also been carried out, to study the effect of noise on the error estimates derived in our work. Although here we have derived the estimates for planar detection geometry, the derivations for spherical and cylindrical geometries follow accordingly.
Condition and Error Estimates in Numerical Matrix Computations
Konstantinov, M. M.; Petkov, P. H.
2008-10-30
This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.
Concise Formulas for the Standard Errors of Component Loading Estimates.
ERIC Educational Resources Information Center
Ogasawara, Haruhiko
2002-01-01
Derived formulas for the asymptotic standard errors of component loading estimates to cover the cases of principal component analysis for unstandardized and standardized variables with orthogonal and oblique rotations. Used the formulas with a real correlation matrix of 355 subjects who took 12 psychological tests. (SLD)
Note: Statistical errors estimation for Thomson scattering diagnostics
Maslov, M.; Beurskens, M. N. A.; Flanagan, J.; Kempenaars, M.; Collaboration: JET-EFDA Contributors
2012-09-15
A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.
Bootstrap Standard Error Estimates in Dynamic Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Browne, Michael W.
2010-01-01
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…
Error analysis for the Fourier domain offset estimation algorithm
NASA Astrophysics Data System (ADS)
Wei, Ling; He, Jieling; He, Yi; Yang, Jinsheng; Li, Xiqi; Shi, Guohua; Zhang, Yudong
2016-02-01
The offset estimation algorithm is crucial for the accuracy of the Shack-Hartmann wave-front sensor. Recently, the Fourier Domain Offset (FDO) algorithm has been proposed for offset estimation. Similar to other algorithms, the accuracy of FDO is affected by noise such as background noise, photon noise, and 'fake' spots. However, no adequate quantitative error analysis has been performed for FDO in previous studies, which is of great importance for practical applications of the FDO. In this study, we quantitatively analysed how the estimation error of FDO is affected by noise based on theoretical deduction, numerical simulation, and experiments. The results demonstrate that the standard deviation of the wobbling error is: (1) inversely proportional to the raw signal to noise ratio, and proportional to the square of the sub-aperture size in the presence of background noise; and (2) proportional to the square root of the intensity in the presence of photonic noise. Furthermore, the upper bound of the estimation error is proportional to the intensity of 'fake' spots and the sub-aperture size. The results of the simulation and experiments agreed with the theoretical analysis.
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1983-01-01
Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.
DEB: definite error bounded tangent estimator for digital curves.
Prasad, Dilip K; Leung, Maylor K H; Quek, Chai; Brown, Michael S
2014-10-01
We propose a simple and fast method for tangent estimation of digital curves. This geometric-based method uses a small local region for tangent estimation and has a definite upper bound error for continuous as well as digital conics, i.e., circles, ellipses, parabolas, and hyperbolas. Explicit expressions of the upper bounds for continuous and digitized curves are derived, which can also be applied to nonconic curves. Our approach is benchmarked against 72 contemporary tangent estimation methods and demonstrates good performance for conic, nonconic, and noisy curves. In addition, we demonstrate a good multigrid and isotropic performance and low computational complexity of O(1) and better performance than most methods in terms of maximum and average errors in tangent computation for a large variety of digital curves. PMID:25122569
Cancilla, John C; Díaz-Rodríguez, Pablo; Matute, Gemma; Torrecilla, José S
2015-02-14
The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model. PMID:25583241
Background error covariance estimation for atmospheric CO2 data assimilation
NASA Astrophysics Data System (ADS)
Chatterjee, Abhishek; Engelen, Richard J.; Kawa, Stephan R.; Sweeney, Colm; Michalak, Anna M.
2013-09-01
any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble-based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO2 transport model. We propose an approach where the differences between two modeled CO2 concentration fields, based on different but plausible CO2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state-of-the-art four-dimensional variational (4D-VAR) system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO2 concentration estimates. Observations from the Greenhouse gases Observing SATellite "IBUKI" (GOSAT) are assimilated into the ECMWF 4D-VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast-based technique. Evaluation of the four-dimensional CO2 fields against independent CO2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present.
Error estimates and specification parameters for functional renormalization
Schnoerr, David; Boettcher, Igor; Pawlowski, Jan M.; Wetterich, Christof
2013-07-15
We present a strategy for estimating the error of truncated functional flow equations. While the basic functional renormalization group equation is exact, approximated solutions by means of truncations do not only depend on the choice of the retained information, but also on the precise definition of the truncation. Therefore, results depend on specification parameters that can be used to quantify the error of a given truncation. We demonstrate this for the BCS–BEC crossover in ultracold atoms. Within a simple truncation the precise definition of the frequency dependence of the truncated propagator affects the results, indicating a shortcoming of the choice of a frequency independent cutoff function.
Accurate estimation of motion blur parameters in noisy remote sensing image
NASA Astrophysics Data System (ADS)
Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong
2015-05-01
The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
NASA Astrophysics Data System (ADS)
Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander
2015-06-01
Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.
Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander
2015-01-01
Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors. PMID:26065707
NASA Astrophysics Data System (ADS)
Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong
2015-08-01
For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Fast and Accurate Learning When Making Discrete Numerical Estimates
Sanborn, Adam N.; Beierholm, Ulrik R.
2016-01-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.
2013-01-01
Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).
Divergent estimation error in portfolio optimization and in linear regression
NASA Astrophysics Data System (ADS)
Kondor, I.; Varga-Haszonits, I.
2008-08-01
The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.
GPS/DR Error Estimation for Autonomous Vehicle Localization.
Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In
2015-01-01
Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997
Stress Recovery and Error Estimation for Shell Structures
NASA Technical Reports Server (NTRS)
Yazdani, A. A.; Riggs, H. R.; Tessler, A.
2000-01-01
The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.
GPS/DR Error Estimation for Autonomous Vehicle Localization
Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In
2015-01-01
Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
Real-Time Baseline Error Estimation and Correction for GNSS/Strong Motion Seismometer Integration
NASA Astrophysics Data System (ADS)
Li, C. Y. N.; Groves, P. D.; Ziebart, M. K.
2014-12-01
Accurate and rapid estimation of permanent surface displacement is required immediately after a slip event for earthquake monitoring or tsunami early warning. It is difficult to achieve the necessary accuracy and precision at high- and low-frequencies using GNSS or seismometry alone. GNSS and seismic sensors can be integrated to overcome the limitations of each. Kalman filter algorithms with displacement and velocity states have been developed to combine GNSS and accelerometer observations to obtain the optimal displacement solutions. However, the sawtooth-like phenomena caused by the bias or tilting of the sensor decrease the accuracy of the displacement estimates. A three-dimensional Kalman filter algorithm with an additional baseline error state has been developed. An experiment with both a GNSS receiver and a strong motion seismometer mounted on a movable platform and subjected to known displacements was carried out. The results clearly show that the additional baseline error state enables the Kalman filter to estimate the instrument's sensor bias and tilt effects and correct the state estimates in real time. Furthermore, the proposed Kalman filter algorithm has been validated with data sets from the 2010 Mw 7.2 El Mayor-Cucapah Earthquake. The results indicate that the additional baseline error state can not only eliminate the linear and quadratic drifts but also reduce the sawtooth-like effects from the displacement solutions. The conventional zero-mean baseline-corrected results cannot show the permanent displacements after an earthquake; the two-state Kalman filter can only provide stable and optimal solutions if the strong motion seismometer had not been moved or tilted by the earthquake. Yet the proposed Kalman filter can achieve the precise and accurate displacements by estimating and correcting for the baseline error at each epoch. The integration filters out noise-like distortions and thus improves the real-time detection and measurement capability
Bioaccessibility tests accurately estimate bioavailability of lead to quail
Technology Transfer Automated Retrieval System (TEKTRAN)
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...
BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2013-08-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2012-01-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379
Model error estimation and correction by solving a inverse problem
NASA Astrophysics Data System (ADS)
Xue, Haile
2016-04-01
Nowadays, the weather forecasts and climate predictions are increasingly relied on numerical models. Yet, errors inevitably exist in model due to the imperfect numeric and parameterizations. From the practical point of view, model correction is an efficient strategy. Despite of the different complexity of forecast error correction algorithms, the general idea is to estimate the forecast errors by considering the NWP as a direct problem. Chou (1974) suggested an alternative view by considering the NWP as an inverse problem. The model error tendency term (ME) due to the model deficiency is assumed as an unknown term in NWP model, which can be discretized into short intervals (for example 6 hour) and considered as a constant or linear form in each interval. Given the past re-analyses and NWP model, the discretized MEs in the past intervals can be solved iteratively as a constant or linear-increased tendency term in each interval. These MEs can be further used as the online corrections. In this study, an iterative method for obtaining the MEs in past intervals was presented, and its convergence had been confirmed with sets of experiments in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August (JA) 2009 and January-February (JF) 2010. Then these MEs were used to get online model corretions based of systematic errors of GRAPES-GFS for July 2009 and January 2010. The data sets associated with initial condition and sea surface temperature (SST) used in this study are both based on NCEP final (FNL) data. According to the iterative numerical experiments, the following key conclusions can be drawn:(1) Batches of iteration test results indicated that the hour 6 forecast errors were reduced to 10% of their original value after 20 steps of iteration.(2) By offlinely comparing the error corrections estimated by MEs to the mean forecast errors, the patterns of estimated errors were considered to agree well with those
Quantifying Error in the CMORPH Satellite Precipitation Estimates
NASA Astrophysics Data System (ADS)
Xu, B.; Yoo, S.; Xie, P.
2010-12-01
As part of the collaboration between China Meteorological Administration (CMA) National Meteorological Information Centre (NMIC) and NOAA Climate Prediction Center (CPC), a new system is being developed to construct hourly precipitation analysis on a 0.25olat/lon grid over China by merging information derived from gauge observations and CMORPH satellite precipitation estimates. Foundation to the development of the gauge-satellite merging algorithm is the definition of the systematic and random error inherent in the CMORPH satellite precipitation estimates. In this study, we quantify the CMORPH error structures through comparisons against a gauge-based analysis of hourly precipitation derived from station reports from a dense network over China. First, systematic error (bias) of the CMORPH satellite estimates are examined with co-located hourly gauge precipitation analysis over 0.25olat/lon grid boxes with at least one reporting station. The CMORPH exhibits biases of regional variations showing over-estimates over eastern China, and seasonal changes with over-/under-estimates during warm/cold seasons. The CMORPH bias presents range-dependency. In general, the CMORPH tends to over-/under-estimate weak / strong rainfall. The bias, when expressed in the form of ratio between the gauge observations and the CMORPH satellite estimates, increases with the rainfall intensity but tends to saturate at a certain level for high rainfall. Based on the above results, a prototype algorithm is developed to remove the CMORPH bias through matching the PDF of original CMORPH estimates against that of the gauge analysis using data pairs co-located over grid boxes with at least one reporting gauge over a 30-day period ending at the target date. The spatial domain for collecting the co-located data pairs is expanded so that at least 5000 pairs of data are available to ensure statistical availability. The bias-corrected CMORPH is then compared against the gauge data to quantify the
A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications
Bronevetsky, G; de Supinski, B; Schulz, M
2009-02-13
Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.
Estimation of discretization errors in contact pressure measurements.
Fregly, Benjamin J; Sawyer, W Gregory
2003-04-01
Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical. PMID:12600352
Gross error detection and stage efficiency estimation in a separation process
Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)
1993-10-01
Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette
2009-01-01
Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.
Impacts of Characteristics of Errors in Radar Rainfall Estimates for Rainfall-Runoff Simulation
NASA Astrophysics Data System (ADS)
KO, D.; PARK, T.; Lee, T. S.; Shin, J. Y.; Lee, D.
2015-12-01
For flood prediction, weather radar has been commonly employed to measure the amount of precipitation and its spatial distribution. However, estimated rainfall from the radar contains uncertainty caused by its errors such as beam blockage and ground clutter. Even though, previous studies have been focused on removing error of radar data, it is crucial to evaluate runoff volumes which are influenced primarily by the radar errors. Furthermore, resolution of rainfall modeled by previous studies for rainfall uncertainty analysis or distributed hydrological simulation are quite coarse to apply to real application. Therefore, in the current study, we tested the effects of radar rainfall errors on rainfall runoff with a high resolution approach, called spatial error model (SEM). In the current study, the synthetic generation of random and cross-correlated radar errors were employed as SEM. A number of events for the Nam River dam region were tested to investigate the peak discharge from a basin according to error variance. The results indicate that the dependent error brings much higher variations in peak discharge than the independent random error. To further investigate the effect of the magnitude of cross-correlation between radar errors, the different magnitudes of spatial cross-correlations were employed for the rainfall-runoff simulation. The results demonstrate that the stronger correlation leads to higher variation of peak discharge and vice versa. We conclude that the error structure in radar rainfall estimates significantly affects on predicting the runoff peak. Therefore, the efforts must take into consideration on not only removing radar rainfall error itself but also weakening the cross-correlation structure of radar errors in order to forecast flood events more accurately. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which
NASA Astrophysics Data System (ADS)
Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.
2013-10-01
transport model errors in current inverse systems. Future inversions should include more accurately prescribed observation covariances matrices in order to limit the impact of transport model errors on estimated methane fluxes.
CADNA: a library for estimating round-off error propagation
NASA Astrophysics Data System (ADS)
Jézéquel, Fabienne; Chesneaux, Jean-Marie
2008-06-01
The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code. Program summaryProgram title:CADNA Catalogue identifier:AEAT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAT_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:53 420 No. of bytes in distributed program, including test data, etc.:566 495 Distribution format:tar.gz Programming language:Fortran Computer:PC running LINUX with an i686 or an ia64 processor, UNIX workstations including SUN, IBM Operating system:LINUX, UNIX Classification:4.14, 6.5, 20 Nature of problem:A simulation program which uses floating-point arithmetic generates round-off errors, due to the rounding performed at each assignment and at each arithmetic operation. Round-off error propagation may invalidate the result of a program. The CADNA library enables one to estimate round-off error propagation in any simulation program and to detect all numerical instabilities that may occur at run time. Solution method:The CADNA library [1] implements Discrete Stochastic Arithmetic [2-4] which is based on a probabilistic model of round-off errors. The program is run several times with a random rounding mode generating different results each
Local error estimates for discontinuous solutions of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1989-01-01
Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.
Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.
Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet
2016-05-01
Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments. PMID:26851474
NASA Technical Reports Server (NTRS)
Lu, Hui-Ling; Cheng, Victor H. L.; Leitner, Jesse A.; Carpenter, Kenneth G.
2004-01-01
Long-baseline space interferometers involving formation flying of multiple spacecraft hold great promise as future space missions for high-resolution imagery. The major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to control these spacecraft and their optics payloads in the specified configuration accurately. In this paper, we describe our effort toward fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present an estimation procedure that effectively extracts relative x/y translational exit pupil aperture deviations from the raw interferometric image with small estimation errors.
Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry
NASA Astrophysics Data System (ADS)
van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.
2016-03-01
Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.
Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long
2001-01-01
This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.
Effects of measurement error on estimating biological half-life
Caudill, S.P.; Pirkle, J.L.; Michalek, J.E. )
1992-10-01
Direct computation of the observed biological half-life of a toxic compound in a person can lead to an undefined estimate when subsequent concentration measurements are greater than or equal to previous measurements. The likelihood of such an occurrence depends upon the length of time between measurements and the variance (intra-subject biological and inter-sample analytical) associated with the measurements. If the compound is lipophilic the subject's percentage of body fat at the times of measurement can also affect this likelihood. We present formulas for computing a model-predicted half-life estimate and its variance; and we derive expressions for the effect of sample size, measurement error, time between measurements, and any relevant covariates on the variability in model-predicted half-life estimates. We also use statistical modeling to estimate the probability of obtaining an undefined half-life estimate and to compute the expected number of undefined half-life estimates for a sample from a study population. Finally, we illustrate our methods using data from a study of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure among 36 members of Operation Ranch Hand, the Air Force unit responsible for the aerial spraying of Agent Orange in Vietnam.
How Accurately Do Spectral Methods Estimate Effective Elastic Thickness?
NASA Astrophysics Data System (ADS)
Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Velicogna, I.
2002-12-01
The effective elastic thickness, Te, is an important parameter that has the potential to provide information on the long-term thermal and mechanical properties of the the lithosphere. Previous studies have estimated Te using both forward and inverse (spectral) methods. While there is generally good agreement between the results obtained using these methods, spectral methods are limited because they depend on the spectral estimator and the window size chosen for analysis. In order to address this problem, we have used a multitaper technique which yields optimal estimates of the bias and variance of the Bouguer coherence function relating topography and gravity anomaly data. The technique has been tested using realistic synthetic topography and gravity. Synthetic data were generated assuming surface and sub-surface (buried) loading of an elastic plate with fractal statistics consistent with real data sets. The cases of uniform and spatially varying Te are examined. The topography and gravity anomaly data consist of 2000x2000 km grids sampled at 8 km interval. The bias in the Te estimate is assessed from the difference between the true Te value and the mean from analyzing 100 overlapping windows within the 2000x2000 km data grids. For the case in which Te is uniform, the bias and variance decrease with window size and increase with increasing true Te value. In the case of a spatially varying Te, however, there is a trade-off between spatial resolution and variance. With increasing window size the variance of the Te estimate decreases, but the spatial changes in Te are smeared out. We find that for a Te distribution consisting of a strong central circular region of Te=50 km (radius 600 km) and progressively smaller Te towards its edges, the 800x800 and 1000x1000 km window gave the best compromise between spatial resolution and variance. Our studies demonstrate that assumed stationarity of the relationship between gravity and topography data yields good results even in
Verification of unfold error estimates in the UFO code
Fehl, D.L.; Biggs, F.
1996-07-01
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.
Accurate feature detection and estimation using nonlinear and multiresolution analysis
NASA Astrophysics Data System (ADS)
Rudin, Leonid; Osher, Stanley
1994-11-01
A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.
Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters
ERIC Educational Resources Information Center
Hoshino, Takahiro; Shigemasu, Kazuo
2008-01-01
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions
NASA Astrophysics Data System (ADS)
Toth, Elena
2016-06-01
In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often 2 years, which may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever the function form, such models are generally parameterised by minimising the mean square error, which assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, which penalises the overpredictions more. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the country of Italy. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.
Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions
NASA Astrophysics Data System (ADS)
Toth, E.
2015-06-01
In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often the 2-year one, that may be associated with the bankfull discharge). At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally-derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever is the function form, such models are generally parameterised by minimising the mean square error, that assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms) generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms), the present work proposes to parameterise the regression model through an asymmetric error function, that penalises more the overpredictions. The estimates by models (feedforward neural networks) with increasing degree of asymmetry are compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the Italian country. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.
Accurate tempo estimation based on harmonic + noise decomposition
NASA Astrophysics Data System (ADS)
Alonso, Miguel; Richard, Gael; David, Bertrand
2006-12-01
We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.
Richardson Extrapolation Based Error Estimation for Stochastic Kinetic Plasma Simulations
NASA Astrophysics Data System (ADS)
Cartwright, Keigh
2014-10-01
To have a high degree of confidence in simulations one needs code verification, validation, solution verification and uncertainty qualification. This talk will focus on numerical error estimation for stochastic kinetic plasma simulations using the Particle-In-Cell (PIC) method and how it impacts the code verification and validation. A technique Is developed to determine the full converged solution with error bounds from the stochastic output of a Particle-In-Cell code with multiple convergence parameters (e.g. ?t, ?x, and macro particle weight). The core of this method is a multi parameter regression based on a second-order error convergence model with arbitrary convergence rates. Stochastic uncertainties in the data set are propagated through the model usin gstandard bootstrapping on a redundant data sets, while a suite of nine regression models introduces uncertainties in the fitting process. These techniques are demonstrated on Flasov-Poisson Child-Langmuir diode, relaxation of an electro distribution to a Maxwellian due to collisions and undriven sheaths and pre-sheaths. Sandia National Laboratories is a multie-program laboratory managed and operated by Sandia Corporation, a wholly owned subisidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y
2015-06-01
A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level. PMID:26470273
Bioaccessibility tests accurately estimate bioavailability of lead to quail
Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John
2016-01-01
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.
Kunin, Victor; Engelbrektson, Anna; Ochman, Howard; Hugenholtz, Philip
2009-08-01
Massively parallel pyrosequencing of the small subunit (16S) ribosomal RNA gene has revealed that the extent of rare microbial populations in several environments, the 'rare biosphere', is orders of magnitude higher than previously thought. One important caveat with this method is that sequencing error could artificially inflate diversity estimates. Although the per-base error of 16S rDNA amplicon pyrosequencing has been shown to be as good as or lower than Sanger sequencing, no direct assessments of pyrosequencing errors on diversity estimates have been reported. Using only Escherichia coli MG1655 as a reference template, we find that 16S rDNA diversity is grossly overestimated unless relatively stringent read quality filtering and low clustering thresholds are applied. In particular, the common practice of removing reads with unresolved bases and anomalous read lengths is insufficient to ensure accurate estimates of microbial diversity. Furthermore, common and reproducible homopolymer length errors can result in relatively abundant spurious phylotypes further confounding data interpretation. We suggest that stringent quality-based trimming of 16S pyrotags and clustering thresholds no greater than 97% identity should be used to avoid overestimates of the rare biosphere.
NASA Astrophysics Data System (ADS)
Xie, J.; Zhu, J.; Yan, C.
2006-07-01
The Array for Real-time Geostrophic Oceanography (ARGO) project creates a unique opportunity to estimate the absolute velocity at mid-depths of the global oceans. However, the estimation can only be made based on float surface trajectories. The diving and resurfacing positions of the float are not available in its trajectory file. This surface drifting effect makes it difficult to estimate mid-depth current. Moreover, the vertical shear during decent or ascent between parking depth and the surface is another major error source. In this presentation, we first quantify the contributions of the two major error sources using the current estimates from Estimating the Climate and Circulation of the Ocean (ECCO) and find that the surface drifting is a primary error source. Then, a sequential surface trajectory prediction/estimation scheme based on Kalman Filter is introduced and implemented to reduce the surface drifting error in the Pacific during November 2001 to October 2004. On average, the error of the estimated velocities is greatly reduced from 2.7 to 0.2 cm s if neglecting the vertical shear. These velocities with relative error less than 25% are analyzed and compared with previous studies on mid-depth currents. The current system derived from ARGO floats in Pacific at 1000 and 2000 dB is comparable to other measured by ADCP (Reid, 1997; Firing et al., 1998). This presentation is based on two submitted manuscripts of the same authors (Xie and Zhu, 2006; Zhu et al., 2006). More detailed results can be found in the two manuscripts.
Bioaccessibility tests accurately estimate bioavailability of lead to quail.
Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S
2016-09-01
Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of
Models and error analyses in urban air quality estimation
NASA Technical Reports Server (NTRS)
Englar, T., Jr.; Diamante, J. M.; Jazwinski, A. H.
1976-01-01
Estimation theory has been applied to a wide range of aerospace problems. Application of this expertise outside the aerospace field has been extremely limited, however. This paper describes the use of covariance error analysis techniques in evaluating the accuracy of pollution estimates obtained from a variety of concentration measuring devices. It is shown how existing software developed for aerospace applications can be applied to the estimation of pollution through the processing of measurement types involving a range of spatial and temporal responses. The modeling of pollutant concentration by meandering Gaussian plumes is described in some detail. Time averaged measurements are associated with a model of the average plume, using some of the same state parameters and thus avoiding the problem of state memory. The covariance analysis has been implemented using existing batch estimation software. This usually involves problems in handling dynamic noise; however, the white dynamic noise has been replaced by a band-limited process which can be easily accommodated by the software.
A new geometric-based model to accurately estimate arm and leg inertial estimates.
Wicke, Jason; Dumas, Geneviève A
2014-06-01
Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. PMID:24735506
Close-range radar rainfall estimation and error analysis
NASA Astrophysics Data System (ADS)
van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.
2012-04-01
It is well-known that quantitative precipitation estimation (QPE) is affected by many sources of error. The most important of these are 1) radar calibration, 2) wet radome attenuation, 3) rain attenuation, 4) vertical profile of reflectivity, 5) variations in drop size distribution, and 6) sampling effects. The study presented here is an attempt to separate and quantify these sources of error. For this purpose, QPE is performed very close to the radar (~1-2 km) so that 3), 4), and 6) will only play a minor role. Error source 5) can be corrected for because of the availability of two disdrometers (instruments that measure the drop size distribution). A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm in De Bilt, The Netherlands is analyzed. Radar, rain gauge, and disdrometer data from De Bilt are used for this. It is clear from the analyses that without any corrections, the radar severely underestimates the total rain amount (only 25 mm). To investigate the effect of wet radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation up to ~4 dB. The calibration of the radar is checked by looking at received power from the sun. This turns out to cause another 1 dB of underestimation. The effect of variability of drop size distributions is shown to cause further underestimation. Correcting for all of these effects yields a good match between radar QPE and gauge measurements.
Can student health professionals accurately estimate alcohol content in commonly occurring drinks?
Sinclair, Julia; Searle, Emma
2016-01-01
Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344
Ultrasound Fetal Weight Estimation: How Accurate Are We Now Under Emergency Conditions?
Dimassi, Kaouther; Douik, Fatma; Ajroudi, Mariem; Triki, Amel; Gara, Mohamed Faouzi
2015-10-01
The primary aim of this study was to evaluate the accuracy of sonographic estimation of fetal weight when performed at due date by first-line sonographers. This was a prospective study including 500 singleton pregnancies. Ultrasound examinations were performed by residents on delivery day. Estimated fetal weights (EFWs) were calculated and compared with the corresponding birth weights. The median absolute difference between EFW and birth weight was 200 g (100-330). This difference was within ±10% in 75.2% of the cases. The median absolute percentage error was 5.53% (2.70%-10.03%). Linear regression analysis revealed a good correlation between EFW and birth weight (r = 0.79, p < 0.0001). According to Bland-Altman analysis, bias was -85.06 g (95% limits of agreement: -663.33 to 494.21). In conclusion, EFWs calculated by residents were as accurate as those calculated by experienced sonographers. Nevertheless, predictive performance remains limited, with a low sensitivity in the diagnosis of macrosomia. PMID:26164286
Research on Parameter Estimation Methods for Alpha Stable Noise in a Laser Gyroscope’s Random Error
Wang, Xueyun; Li, Kui; Gao, Pengyu; Meng, Suxia
2015-01-01
Alpha stable noise, determined by four parameters, has been found in the random error of a laser gyroscope. Accurate estimation of the four parameters is the key process for analyzing the properties of alpha stable noise. Three widely used estimation methods—quantile, empirical characteristic function (ECF) and logarithmic moment method—are analyzed in contrast with Monte Carlo simulation in this paper. The estimation accuracy and the application conditions of all methods, as well as the causes of poor estimation accuracy, are illustrated. Finally, the highest precision method, ECF, is applied to 27 groups of experimental data to estimate the parameters of alpha stable noise in a laser gyroscope’s random error. The cumulative probability density curve of the experimental data fitted by an alpha stable distribution is better than that by a Gaussian distribution, which verifies the existence of alpha stable noise in a laser gyroscope’s random error. PMID:26230698
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
Effects of measurement error on horizontal hydraulic gradient estimates.
Devlin, J F; McElwee, C D
2007-01-01
During the design of a natural gradient tracer experiment, it was noticed that the hydraulic gradient was too small to measure reliably on an approximately 500-m(2) site. Additional wells were installed to increase the monitored area to 26,500 m(2), and wells were instrumented with pressure transducers. The resulting monitoring system was capable of measuring heads with a precision of +/-1.3 x 10(-2) m. This measurement error was incorporated into Monte Carlo calculations, in which only hydraulic head values were varied between realizations. The standard deviation in the estimated gradient and the flow direction angle from the x-axis (east direction) were calculated. The data yielded an average hydraulic gradient of 4.5 x 10(-4)+/-25% with a flow direction of 56 degrees southeast +/-18 degrees, with the variations representing 1 standard deviation. Further Monte Carlo calculations investigated the effects of number of wells, aspect ratio of the monitored area, and the size of the monitored area on the previously mentioned uncertainties. The exercise showed that monitored areas must exceed a size determined by the magnitude of the measurement error if meaningful gradient estimates and flow directions are to be obtained. The aspect ratio of the monitored zone should be as close to 1 as possible, although departures as great as 0.5 to 2 did not degrade the quality of the data unduly. Numbers of wells beyond three to five provided little advantage. These conclusions were supported for the general case with a preliminary theoretical analysis. PMID:17257340
Model Error Estimation for the CPTEC Eta Model
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; daSilva, Arlindo
1999-01-01
Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.
Error analysis of leaf area estimates made from allometric regression models
NASA Technical Reports Server (NTRS)
Feiveson, A. H.; Chhikara, R. S.
1986-01-01
Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).
Zhu, Fangqiang; Hummer, Gerhard
2012-01-01
The weighted histogram analysis method (WHAM) has become the standard technique for the analysis of umbrella sampling simulations. In this paper, we address the challenges (1) of obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible systematic errors, and (4) of optimal allocation of the computational resources. Traditionally, the WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence and possible numerical inaccuracies in the solutions. Here we instead solve the mathematically equivalent problem of maximizing a target likelihood function, by using superlinear numerical optimization algorithms with a significantly faster convergence rate. To estimate the statistical errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be approximated by a coarse-grained free energy obtained by integrating the mean restraining forces. The statistical errors of the coarse-grained free energies can be estimated straightforwardly and then used for the WHAM results. A generalization to multidimensional WHAM is described. We also propose two simple statistical criteria to test the consistency between the histograms of adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the efficient allocation of computational resources in free energy simulations. PMID:22109354
Detecting Positioning Errors and Estimating Correct Positions by Moving Window
Song, Ha Yoon; Lee, Jun Seok
2015-01-01
In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282
Errors of Remapping of Radar Estimates onto Cartesian Coordinates
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Ogden, F. L.
2014-12-01
Recent upgrades to operational radar rainfall products in terms of quality and resolution call for re-examination of the factors that contribute to the uncertainty of radar rainfall estimation. Remapping or gridding of radar polar observations onto Cartesian coordinates is implemented using various methods, and is often applied when radar estimates are compared against rain gauge observations, in hydrologic applications, or for merging data from different radars. However, assuming perfect radar observations, many of the widely used remapping methodologies do not conserve mass for the rainfall rate field. Research has suggested that optimal remapping should select all polar bins falling within or intersecting a Cartesian grid and assign them weights based on the proportion of each individual bin's area falling within the grid. However, to reduce computational demand practitioners use a variety of approximate remapping approaches. The most popular approximate approaches used are those based on extracting information from radar bins whose centers fall within a certain distance from the center of the Cartesian grid. This paper introduces a mass-conserving method for remapping, which we call "precise remapping", and evaluates it by comparing against two other commonly used remapping methods based on areal weighting and distance. Results show that the choice of the remapping method can lead to large errors in grid-averaged rainfall accumulations.
Detecting Positioning Errors and Estimating Correct Positions by Moving Window.
Song, Ha Yoon; Lee, Jun Seok
2015-01-01
In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282
Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo
2014-01-01
Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402
Techniques for accurate estimation of net discharge in a tidal channel
Simpson, Michael R.; Bland, Roger
1999-01-01
An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. The relative magnitude of equipment errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second. Typical maximum flow rates during the data-collection period averaged 750 cubic meters per second.
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie
2008-03-28
Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982
Highnam, Gareth; Franck, Christopher; Martin, Andy; Stephens, Calvin; Puthige, Ashwin; Mittelman, David
2013-01-01
Repetitive sequences are biologically and clinically important because they can influence traits and disease, but repeats are challenging to analyse using short-read sequencing technology. We present a tool for genotyping microsatellite repeats called RepeatSeq, which uses Bayesian model selection guided by an empirically derived error model that incorporates sequence and read properties. Next, we apply RepeatSeq to high-coverage genomes from the 1000 Genomes Project to evaluate performance and accuracy. The software uses common formats, such as VCF, for compatibility with existing genome analysis pipelines. Source code and binaries are available at http://github.com/adaptivegenome/repeatseq. PMID:23090981
CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes
NASA Technical Reports Server (NTRS)
Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.
2012-01-01
Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
NASA Astrophysics Data System (ADS)
Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon
2016-03-01
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors.
Carlson, Joel N K; Park, Jong Min; Park, So-Yeon; Park, Jong In; Choi, Yunseok; Ye, Sung-Joon
2016-03-21
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be
A Posteriori Error Estimation for a Nodal Method in Neutron Transport Calculations
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-11-03
An a posteriori error analysis of the spatial approximation is developed for the one-dimensional Arbitrarily High Order Transport-Nodal method. The error estimator preserves the order of convergence of the method when the mesh size tends to zero with respect to the L{sup 2} norm. It is based on the difference between two discrete solutions that are available from the analysis. The proposed estimator is decomposed into error indicators to allow the quantification of local errors. Some test problems with isotropic scattering are solved to compare the behavior of the true error to that of the estimated error.
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains
NASA Technical Reports Server (NTRS)
Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang
2013-01-01
Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.
Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report
2016-01-01
This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.
Estimation of line-based target registration error
NASA Astrophysics Data System (ADS)
Ma, Burton; Peters, Terry M.; Chen, Elvis C. S.
2016-03-01
We present a novel method for estimating target registration error (TRE) in point-to-line registration. We develop a spatial stiffness model of the registration problem and derive the stiffness matrix of the model which leads to an analytic expression for predicting the root-mean-square (RMS) TRE. Under the assumption of isotropic localization noise, we show that the stiffness matrix for line-based registration is equal to the difference of the stiffness matrices for fiducial registration and surface-based registration. The expression for TRE is validated in the context of freehand ultrasound calibration performed using a tracked line fiducial as a calibration phantom. Measurements taken during calibration of a tracked linear ultrasound probe were used in simulations to assess TRE of point-to-line registration and the results were compared to the values predicted by the analytic expression. The difference between predicted and simulated RMS TRE magnitude for targets near the centroid of the registration points was less than 5% of the simulated magnitude when using more than 6 registration points. The difference between predicted and simulated RMS TRE magnitude for targets over the entire ultrasound image was almost always less than 10% of the simulated magnitude when using more than 10 registration points. TRE magnitude was minimized near the centroid of the registration points and the isocontours of TRE were elliptic in shape.
Differential-equation-based representation of truncation errors for accurate numerical simulation
NASA Astrophysics Data System (ADS)
MacKinnon, Robert J.; Johnson, Richard W.
1991-09-01
High-order compact finite difference schemes for 2D convection-diffusion-type differential equations with constant and variable convection coefficients are derived. The governing equations are employed to represent leading truncation terms, including cross-derivatives, making the overall O(h super 4) schemes conform to a 3 x 3 stencil. It is shown that the two-dimensional constant coefficient scheme collapses to the optimal scheme for the one-dimensional case wherein the finite difference equation yields nodally exact results. The two-dimensional schemes are tested against standard model problems, including a Navier-Stokes application. Results show that the two schemes are generally more accurate, on comparable grids, than O(h super 2) centered differencing and commonly used O(h) and O(h super 3) upwinding schemes.
Complex phase error and motion estimation in synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Soumekh, M.; Yang, H.
1991-06-01
Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.
NASA Astrophysics Data System (ADS)
Li, Y.; Ryu, D.; Western, A. W.; Wang, Q.; Robertson, D.; Crow, W. T.
2013-12-01
significantly. The EnKS streamflow forecasts are more accurate and reliable than the EnKF for the synthetic scenario. They also alleviate instability in the EnKF due to overcorrection of current state variables. For the operational forecasting case, the forecasts benefit less from state updating and the difference between the EnKS and EnKF becomes less significant. This is because the uncertainty in the NWP rainfall forecasts becomes dominant with increasing lead time. Forecast discharge in 2010. Solid curves are observations and gray areas indicate 95% of probabilistic forecasts. (a) openloop ensemble spread based on the error parameters estimated by the MAP; (b) 60-h lead time forecasts based on the EnKS.
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2012-01-01
Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…
Evaluating concentration estimation errors in ELISA microarray experiments
Daly, Don S.; White, Amanda M.; Varnum, Susan M.; Anderson, Kevin K.; Zangar, Richard C.
2005-01-26
Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Although propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.
Estimating Equating Error in Observed-Score Equating. Research Report.
ERIC Educational Resources Information Center
van der Linden, Wim J.
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and in the population of examinees. This definition underlies, for example, the well-known approximation to the standard error of equating by Lord (1982).…
Cook, Andrea J.; Elmore, Joann G.; Zhu, Weiwei; Jackson, Sara L.; Carney, Patricia A.; Flowers, Chris; Onega, Tracy; Geller, Berta; Rosenberg, Robert D.; Miglioretti, Diana L.
2013-01-01
Objective To determine if U.S. radiologists accurately estimate their own interpretive performance of screening mammography and how they compare their performance to their peers’. Materials and Methods 174 radiologists from six Breast Cancer Surveillance Consortium (BCSC) registries completed a mailed survey between 2005 and 2006. Radiologists’ estimated and actual recall, false positive, and cancer detection rates and positive predictive value of biopsy recommendation (PPV2) for screening mammography were compared. Radiologists’ ratings of their performance as lower, similar, or higher than their peers were compared to their actual performance. Associations with radiologist characteristics were estimated using weighted generalized linear models. The study was approved by the institutional review boards of the participating sites, informed consent was obtained from radiologists, and procedures were HIPAA compliant. Results While most radiologists accurately estimated their cancer detection and recall rates (74% and 78% of radiologists), fewer accurately estimated their false positive rate and PPV2 (19% and 26%). Radiologists reported having similar (43%) or lower (31%) recall rates and similar (52%) or lower (33%) false positive rates compared to their peers, and similar (72%) or higher (23%) cancer detection rates and similar (72%) or higher (38%) PPV2. Estimation accuracy did not differ by radiologists’ characteristics except radiologists who interpret ≤1,000 mammograms annually were less accurate at estimating their recall rates. Conclusion Radiologists perceive their performance to be better than it actually is and at least as good as their peers. Radiologists have particular difficulty estimating their false positive rates and PPV2. PMID:22915414
Improved atmospheric soundings and error estimates from analysis of AIRS/AMSU data
NASA Astrophysics Data System (ADS)
Susskind, Joel
2007-09-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.
Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2007-01-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Impact of the Born approximation on the estimation error in 2D inverse scattering
NASA Astrophysics Data System (ADS)
Diong, M. L.; Roueff, A.; Lasaygues, P.; Litman, A.
2016-06-01
The aim is to quantify the impact of the Born approximation on the estimation error for a simple inverse scattering problem, while taking into account the noise measurement features. The proposed method consists of comparing two estimation errors: the error obtained with the Born approximation and the error obtained without it. The first error is characterized by the mean and variance of the maximum likelihood estimator, which are straightforward to compute with the Born approximation because the corresponding estimator is linear. The second error is evaluated with the Cramer–Rao bound (CRB). The CRB is a lower bound on the variance of unbiased estimators and thus does not depend on the choice of the estimation method. Beyond the conclusions that will be established under the Born approximation, this study lays out a general methodology that can be generalized to any other approximation.
Butt, Nathalie; Slade, Eleanor; Thompson, Jill; Malhi, Yadvinder; Riutta, Terhi
2013-06-01
A typical way to quantify aboveground carbon in forests is to measure tree diameters and use species-specific allometric equations to estimate biomass and carbon stocks. Using "citizen scientists" to collect data that are usually time-consuming and labor-intensive can play a valuable role in ecological research. However, data validation, such as establishing the sampling error in volunteer measurements, is a crucial, but little studied, part of utilizing citizen science data. The aims of this study were to (1) evaluate the quality of tree diameter and height measurements carried out by volunteers compared to expert scientists and (2) estimate how sensitive carbon stock estimates are to these measurement sampling errors. Using all diameter data measured with a diameter tape, the volunteer mean sampling error (difference between repeated measurements of the same stem) was 9.9 mm, and the expert sampling error was 1.8 mm. Excluding those sampling errors > 1 cm, the mean sampling errors were 2.3 mm (volunteers) and 1.4 mm (experts) (this excluded 14% [volunteer] and 3% [expert] of the data). The sampling error in diameter measurements had a small effect on the biomass estimates of the plots: a volunteer (expert) diameter sampling error of 2.3 mm (1.4 mm) translated into 1.7% (0.9%) change in the biomass estimates calculated from species-specific allometric equations based upon diameter. Height sampling error had a dependent relationship with tree height. Including height measurements in biomass calculations compounded the sampling error markedly; the impact of volunteer sampling error on biomass estimates was +/- 15%, and the expert range was +/- 9%. Using dendrometer bands, used to measure growth rates, we calculated that the volunteer (vs. expert) sampling error was 0.6 mm (vs. 0.3 mm), which is equivalent to a difference in carbon storage of +/- 0.011 kg C/yr (vs. +/- 0.002 kg C/yr) per stem. Using a citizen science model for monitoring carbon stocks not only has
NASA Astrophysics Data System (ADS)
Tinkham, W. T.; Hoffman, C. M.; Falkowski, M. J.; Smith, A. M.; Link, T. E.; Marshall, H.
2011-12-01
Light Detection and Ranging (LiDAR) has become one of the most effective and reliable means of characterizing surface topography and vegetation structure. Most LiDAR-derived estimates such as vegetation height, snow depth, and floodplain boundaries rely on the accurate creation of digital terrain models (DTM). As a result of the importance of an accurate DTM in using LiDAR data to estimate snow depth, it is necessary to understand the variables that influence the DTM accuracy in order to assess snow depth error. A series of 4 x 4 m plots that were surveyed at 0.5 m spacing in a semi-arid catchment were used for training the Random Forests algorithm along with a series of 35 variables in order to spatially predict vertical error within a LiDAR derived DTM. The final model was utilized to predict the combined error resulting from snow volume and snow water equivalent estimates derived from a snow-free LiDAR DTM and a snow-on LiDAR acquisition of the same site. The methodology allows for a statistical quantification of the spatially-distributed error patterns that are incorporated into the estimation of snow volume and snow water equivalents from LiDAR.
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a
Quasi-Monte Carlo, quasi-random numbers and quasi-error estimates
NASA Astrophysics Data System (ADS)
Kleiss, Ronald
We discuss quasi-random number sequences as a basis for numerical integration with potentially better convergence properties than standard Monte Carlo. The importance of the discrepancy as both a measure of smoothness of distribution and an ingredient in the error estimate is reviewed. It is argued that the classical Koksma-Hlawka inequality is not relevant for error estimates in realistic cases, and a new class of error estimates is presented, based on a generalization of the Woźniakowski lemma.
Ju, Lili; Tian, Li; Wang, Desheng
2009-01-01
In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.
Aerial measurement error with a dot planimeter: Some experimental estimates
NASA Technical Reports Server (NTRS)
Yuill, R. S.
1971-01-01
A shape analysis is presented which utilizes a computer to simulate a multiplicity of dot grids mathematically. Results indicate that the number of dots placed over an area to be measured provides the entire correlation with accuracy of measurement, the indices of shape being of little significance. Equations and graphs are provided from which the average expected error, and the maximum range of error, for various numbers of dot points can be read.
NASA Astrophysics Data System (ADS)
Cecinati, Francesca; Moreno Ródenas, Antonio Manuel; Rico-Ramirez, Miguel Angel; ten Veldhuis, Marie-claire; Han, Dawei
2016-04-01
In many research studies rain gauges are used as a reference point measurement for rainfall, because they can reach very good accuracy, especially compared to radar or microwave links, and their use is very widespread. In some applications rain gauge uncertainty is assumed to be small enough to be neglected. This can be done when rain gauges are accurate and their data is correctly managed. Unfortunately, in many operational networks the importance of accurate rainfall data and of data quality control can be underestimated; budget and best practice knowledge can be limiting factors in a correct rain gauge network management. In these cases, the accuracy of rain gauges can drastically drop and the uncertainty associated with the measurements cannot be neglected. This work proposes an approach based on three different kriging methods to integrate rain gauge measurement errors in the overall rainfall uncertainty estimation. In particular, rainfall products of different complexity are derived through 1) block kriging on a single rain gauge 2) ordinary kriging on a network of different rain gauges 3) kriging with external drift to integrate all the available rain gauges with radar rainfall information. The study area is the Eindhoven catchment, contributing to the river Dommel, in the southern part of the Netherlands. The area, 590 km2, is covered by high quality rain gauge measurements by the Royal Netherlands Meteorological Institute (KNMI), which has one rain gauge inside the study area and six around it, and by lower quality rain gauge measurements by the Dommel Water Board and by the Eindhoven Municipality (six rain gauges in total). The integration of the rain gauge measurement error is accomplished in all the cases increasing the nugget of the semivariogram proportionally to the estimated error. Using different semivariogram models for the different networks allows for the separate characterisation of higher and lower quality rain gauges. For the kriging with
Browning, Sharon R.; Browning, Brian L.
2015-01-01
Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365
Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan
2014-01-01
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880
Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan
2013-01-01
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.
Racimo, Fernando; Renaud, Gabriel; Slatkin, Montgomery
2016-04-01
When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965
Estimating model and observation error covariance information for land data assimilation systems
Technology Transfer Automated Retrieval System (TEKTRAN)
In order to operate efficiently, data assimilation systems require accurate assumptions concerning the statistical magnitude and cross-correlation structure of error in model forecasts and assimilated observations. Such information is seldom available for the operational implementation of land data ...
Fragment-based error estimation in biomolecular modeling
Faver, John C.; Merz, Kenneth M.
2013-01-01
Computer simulations are becoming an increasingly more important component of drug discovery. Computational models are now often able to reproduce and sometimes even predict outcomes of experiments. Still, potential energy models such as force fields contain significant amounts of bias and imprecision. We have shown how even small uncertainties in potential energy models can propagate to yield large errors, and have devised some general error-handling protocols for biomolecular modeling with imprecise energy functions. Herein we discuss those protocols within the contexts of protein–ligand binding and protein folding. PMID:23993915
A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system
Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob
2013-01-01
Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541
Estimation of coherent error sources from stabilizer measurements
NASA Astrophysics Data System (ADS)
Orsucci, Davide; Tiersch, Markus; Briegel, Hans J.
2016-04-01
In the context of measurement-based quantum computation a way of maintaining the coherence of a graph state is to measure its stabilizer operators. Aside from performing quantum error correction, it is possible to exploit the information gained from these measurements to characterize and then counteract a coherent source of errors; that is, to determine all the parameters of an error channel that applies a fixed—but unknown—unitary operation to the physical qubits. Such a channel is generated, e.g., by local stray fields that act on the qubits. We study the case in which each qubit of a given graph state may see a different error channel and we focus on channels given by a rotation on the Bloch sphere around either the x ̂, the y ̂, or the z ̂ axis, for which analytical results can be given in a compact form. The possibility of reconstructing the channels at all qubits depends nontrivially on the topology of the graph state. We prove via perturbation methods that the reconstruction process is robust and supplement the analytic results with numerical evidence.
Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors
NASA Astrophysics Data System (ADS)
Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.
2012-12-01
Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.
Nonlinear and multiresolution error covariance estimation in ensemble data assimilation
NASA Astrophysics Data System (ADS)
Rainwater, Sabrina
Ensemble Kalman Filters perform data assimilation by forming a background covariance matrix from an ensemble forecast. The spread of the ensemble is intended to represent the algorithm's uncertainty about the state of the physical system that produces the data. Usually the ensemble members are evolved with the same model. The first part of my dissertation presents and tests a modified Local Ensemble Transform Kalman Filter (LETKF) that takes its background covariance from a combination of a high resolution ensemble and a low resolution ensemble. The computational time and the accuracy of this mixed-resolution LETKF are explored and compared to the standard LETKF on a high resolution ensemble, using simulated observation experiments with the Lorenz Models II and III (more complex versions of the Lorenz 96 model). The results show that, for the same computation time, mixed resolution ensemble analysis achieves higher accuracy than standard ensemble analysis. The second part of my dissertation demonstrates that it can be fruitful to rescale the ensemble spread prior to the forecast and then reverse this rescaling after the forecast. This technique, denoted “forecast spread adjustment'' provides a tunable parameter that is complementary to covariance inflation, which cumulatively increases the ensemble spread to compensate for underestimation of uncertainty. As the adjustable parameter approaches zero, the filter approaches the Extended Kalman Filter when the ensemble size is sufficiently large. The improvement provided by forecast spread adjustment depends on ensemble size, observation error, and model error. The results indicate that it is most effective for smaller ensembles, smaller observation errors, and larger model error, though the effectiveness depends significantly on the type of model error.
NASA Astrophysics Data System (ADS)
Vizireanu, D. N.; Halunga, S. V.
2012-04-01
A simple, fast and accurate amplitude estimation algorithm of sinusoidal signals for DSP based instrumentation is proposed. It is shown that eight samples, used in two steps, are sufficient. A practical analytical formula for amplitude estimation is obtained. Numerical results are presented. Simulations have been performed when the sampled signal is affected by white Gaussian noise and when the samples are quantized on a given number of bits.
Triple collocation: beyond three estimates and separation of structural/non-structural errors
Technology Transfer Automated Retrieval System (TEKTRAN)
This study extends the popular triple collocation method for error assessment from three source estimates to an arbitrary number of source estimates, i.e., to solve the “multiple” collocation problem. The error assessment problem is solved through Pythagorean constraints in Hilbert space, which is s...
Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
ERIC Educational Resources Information Center
Jennrich, Robert I.
2008-01-01
The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…
ERIC Educational Resources Information Center
Kim, ChangHwan; Tamborini, Christopher R.
2012-01-01
Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…
Punjabi, Alkesh; Ali, Halima
2011-02-15
Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the
Anderson, K.K.
1994-05-01
Measurement error modeling is a statistical approach to the estimation of unknown model parameters which takes into account the measurement errors in all of the data. Approaches which ignore the measurement errors in so-called independent variables may yield inferior estimates of unknown model parameters. At the same time, experiment-wide variables (such as physical constants) are often treated as known without error, when in fact they were produced from prior experiments. Realistic assessments of the associated uncertainties in the experiment-wide variables can be utilized to improve the estimation of unknown model parameters. A maximum likelihood approach to incorporate measurements of experiment-wide variables and their associated uncertainties is presented here. An iterative algorithm is presented which yields estimates of unknown model parameters and their estimated covariance matrix. Further, the algorithm can be used to assess the sensitivity of the estimates and their estimated covariance matrix to the given experiment-wide variables and their associated uncertainties.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
NASA Astrophysics Data System (ADS)
Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.
2015-03-01
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
2011-01-01
Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645
Robust estimation of error covariance functions in GRACE gravity field determination
NASA Astrophysics Data System (ADS)
Behzadpour, Saniya; Mayer-Gürr, Torsten; Flury, Jakob
2016-04-01
The accurate modelling of the stochastic behaviour of the GRACE mission observations is an important task in the time variable gravity field determination. After fitting a model in the least-squares sense, it is necessary to determine whether all the necessary model assumptions, i.e., independence, normality, and homoscedasticity of the residuals, are valid before performing inference. Checking the model assumptions for the range rate residuals, it has been concluded that one of the major problems in the range rate observations is the outliers in the data. One way to deal with this problem is to implement a robust estimation procedure to dampen the effect of observations that would be highly influential if least squares were used. In addition to insensitivity to outliers, such a procedure tends to leave the residuals associated with outliers large, therefore making the identification of outliers much easier. Implementation of this procedure using robust error covariance functions, comparison of different robust estimators, e.g., Huber's and Tukey's estimators, and assessing the detected outliers with respect to temporal and spatial patterns are discussed.
On the accurate estimation of gap fraction during daytime with digital cover photography
NASA Astrophysics Data System (ADS)
Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.
2015-12-01
Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.
NASA Astrophysics Data System (ADS)
Pan, M.; Zhan, W.; Fisher, C. K.; Crow, W. T.; Wood, E. F.
2014-12-01
This study extends the popular triple collocation method for error assessment from three source estimates to an arbitrary number of source estimates, i.e., to solve the multiple collocation problem. The error assessment problem is solved through Pythagorean constraints in Hilbert space, which is slightly different from the original inner product solution but easier to extend to multiple collocation cases. The Pythagorean solution is fully equivalent to the original inner product solution for the triple collocation case. The multiple collocation turns out to be an over-constrained problem and a least squared solution is presented. As the most critical assumption of uncorrelated errors will almost for sure fail in multiple collocation problems, we propose to divide the source estimates into structural categories and treat the structural and non-structural errors separately. Such error separation allows the source estimates to have their structural errors fully correlated within the same structural category, which is much more realistic than the original assumption. A new error assessment procedure is developed which performs the collocation twice, each for one type of errors, and then sums up the two types of errors. The new procedure is also fully backward compatible with the original triple collocation. Error assessment experiments are carried out for surface soil moisture data from multiple remote sensing models, land surface models, and in situ measurements.
NASA Astrophysics Data System (ADS)
Wang, Wei-Chung; Hwang, Chi Hung; Chen, Yung-Hsiang; Chuang, Tzu-Hung
2013-06-01
The digital image correlation (DIC) method has been well recognized as a simple, accurate and efficient method for mechanical behavior evaluation. However, very few researches have concentrated on the relationship between the characteristics of the camera lens and the measurement error of the DIC method. The modulation transfer function (MTF) has commonly used for evaluation of the resolution capability of camera lens. In practice, when the DIC method is used, it is possible that the captured images become too blur to analyze when the object is out of the focus of the camera lens or the object deviates from the line-of-view of the camera. In this paper, the traditional MTF calibration specimen was replaced by a pre-arranged speckle pattern on the specimen. For DIC images grabbed from several selected locations both approaching and departing from the focus of the camera lens, corresponding MTF curves were obtained from the pre-arranged speckle pattern. The displacement measurement errors of the DIC method were then estimated by those obtained MTF curves.
Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters
NASA Astrophysics Data System (ADS)
Köhlinger, F.; Hoekstra, H.; Eriksen, M.
2015-11-01
Upcoming and ongoing large area weak lensing surveys will also discover large samples of galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for cosmology, for example, in establishing well-calibrated observational halo mass functions for comparison with cosmological predictions. We investigate the level of statistical uncertainties and sources of systematic errors expected for weak lensing mass estimates. Future surveys that will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide the largest weak lensing cluster samples with the lowest level of statistical noise regarding ensembles of galaxy clusters. However, the expected low level of statistical uncertainties requires us to scrutinize various sources of systematic errors. In particular, we investigate the bias due to cluster member galaxies which are erroneously treated as background source galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e. the displacement between any observationally defined cluster centre and the true minimum of its gravitational potential. The impact of this bias might be significant with respect to the statistical uncertainties. However, complementary future missions such as eROSITA will allow us to define stringent priors on miscentring parameters which will mitigate this bias significantly.
Multiclass Bayes error estimation by a feature space sampling technique
NASA Technical Reports Server (NTRS)
Mobasseri, B. G.; Mcgillem, C. D.
1979-01-01
A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
ERIC Educational Resources Information Center
Shoemaker, David M.
Described and listed herein with concomitant sample input and output is the Fortran IV program which estimates parameters and standard errors of estimate per parameters for parameters estimated through multiple matrix sampling. The specific program is an improved and expanded version of an earlier version. (Author/BJG)
Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.
Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro
2016-01-12
The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy. PMID:26605696
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1985-01-01
Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.
Error Estimates Derived from the Data for Least-Squares Spline Fitting
Jerome Blair
2007-06-25
The use of least-squares fitting by cubic splines for the purpose of noise reduction in measured data is studied. Splines with variable mesh size are considered. The error, the difference between the input signal and its estimate, is divided into two sources: the R-error, which depends only on the noise and increases with decreasing mesh size, and the Ferror, which depends only on the signal and decreases with decreasing mesh size. The estimation of both errors as a function of time is demonstrated. The R-error estimation requires knowledge of the statistics of the noise and uses well-known methods. The primary contribution of the paper is a method for estimating the F-error that requires no prior knowledge of the signal except that it has four derivatives. It is calculated from the difference between two different spline fits to the data and is illustrated with Monte Carlo simulations and with an example.
Space-Time Error Representation and Estimation in Navier-Stokes Calculations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2006-01-01
The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.