Sample records for accurate force field

  1. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    NASA Astrophysics Data System (ADS)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert; GDML Collaboration

    Efficient and accurate access to the Born-Oppenheimer potential energy surface (PES) is essential for long time scale molecular dynamics (MD) simulations. Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio MD trajectories (AIMD). The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/Å for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, malonaldehyde, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative MD simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  2. Machine learning of accurate energy-conserving molecular force fields.

    PubMed

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  3. Machine learning of accurate energy-conserving molecular force fields

    PubMed Central

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  4. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. How accurately do force fields represent protein side chain ensembles?

    PubMed

    Petrović, Dušan; Wang, Xue; Strodel, Birgit

    2018-05-23

    Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  6. Accurate interatomic force fields via machine learning with covariant kernels

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro

    2017-06-01

    We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.

  7. An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.

    1995-01-01

    A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.

  8. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  9. Accurate force field for molybdenum by machine learning large materials data

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping

    2017-09-01

    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  10. Accurate ab initio quartic force fields for the ions HCO(+) and HOC(+)

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Taylor, Peter R.; Lee, Timothy J.

    1993-01-01

    The quartic force fields of HCO(+) and HOC(+) have been computed using augmented coupled cluster methods and basis sets of spdf and spdfg quality. Calculations on HCN, CO, and N2 have been performed to assist in calibrating the computed results. Going from an spdf to an spdfg basis shortens triple bonds by about 0.004 A, and increases the corresponding harmonic frequency by 10-20/cm, leaving bond distances about 0.003 A too long and triple bond stretching frequencies about 5/cm too low. Accurate estimates for the bond distances, fundamental frequencies, and thermochemical quantities are given. HOC(+) lies 37.8 +/- 0.5 kcal/mol (0 K) above HCO(+); the classical barrier height for proton exchange is 76.7 +/- 1.0 kcal/mol.

  11. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  12. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Preface: Special Topic: From Quantum Mechanics to Force Fields.

    PubMed

    Piquemal, Jean-Philip; Jordan, Kenneth D

    2017-10-28

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  14. Preface: Special Topic: From Quantum Mechanics to Force Fields

    NASA Astrophysics Data System (ADS)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  15. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    PubMed Central

    Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele

    2016-01-01

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently

  16. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-08-02

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently

  17. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  18. Accurate fluid force measurement based on control surface integration

    NASA Astrophysics Data System (ADS)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  19. Comparing Molecular Dynamics Force Fields in the Essential Subspace

    PubMed Central

    Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their “unbalanced” counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178

  20. An accurate ab initio quartic force field for ammonia

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.

    1992-01-01

    The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.

  1. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2004-03-01

    Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever. In this letter we address this problem and present simple yet accurate formulas that enable the interaction force and energy to be determined directly from the measured frequency shift. These formulas are valid for any oscillation amplitude and interaction force, and are therefore of widespread applicability in frequency modulation dynamic force spectroscopy.

  2. Developing a molecular dynamics force field for both folded and disordered protein states.

    PubMed

    Robustelli, Paul; Piana, Stefano; Shaw, David E

    2018-05-07

    Molecular dynamics (MD) simulation is a valuable tool for characterizing the structural dynamics of folded proteins and should be similarly applicable to disordered proteins and proteins with both folded and disordered regions. It has been unclear, however, whether any physical model (force field) used in MD simulations accurately describes both folded and disordered proteins. Here, we select a benchmark set of 21 systems, including folded and disordered proteins, simulate these systems with six state-of-the-art force fields, and compare the results to over 9,000 available experimental data points. We find that none of the tested force fields simultaneously provided accurate descriptions of folded proteins, of the dimensions of disordered proteins, and of the secondary structure propensities of disordered proteins. Guided by simulation results on a subset of our benchmark, however, we modified parameters of one force field, achieving excellent agreement with experiment for disordered proteins, while maintaining state-of-the-art accuracy for folded proteins. The resulting force field, a99SB- disp , should thus greatly expand the range of biological systems amenable to MD simulation. A similar approach could be taken to improve other force fields. Copyright © 2018 the Author(s). Published by PNAS.

  3. Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste; Pedersen, Lee G.; Darden, Thomas A.

    2004-01-01

    The accurate simulation of biologically active macromolecules faces serious limitations that originate in the treatment of electrostatics in the empirical force fields. The current use of "partial charges" is a significant source of errors, since these vary widely with different conformations. By contrast, the molecular electrostatic potential (MEP) obtained through the use of a distributed multipole moment description, has been shown to converge to the quantum MEP outside the van der Waals surface, when higher order multipoles are used. However, in spite of the considerable improvement to the representation of the electronic cloud, higher order multipoles are not part of current classical biomolecular force fields due to the excessive computational cost. In this paper we present an efficient formalism for the treatment of higher order multipoles in Cartesian tensor formalism. The Ewald "direct sum" is evaluated through a McMurchie-Davidson formalism [L. McMurchie and E. Davidson, J. Comput. Phys. 26, 218 (1978)]. The "reciprocal sum" has been implemented in three different ways: using an Ewald scheme, a particle mesh Ewald (PME) method, and a multigrid-based approach. We find that even though the use of the McMurchie-Davidson formalism considerably reduces the cost of the calculation with respect to the standard matrix implementation of multipole interactions, the calculation in direct space remains expensive. When most of the calculation is moved to reciprocal space via the PME method, the cost of a calculation where all multipolar interactions (up to hexadecapole-hexadecapole) are included is only about 8.5 times more expensive than a regular AMBER 7 [D. A. Pearlman et al., Comput. Phys. Commun. 91, 1 (1995)] implementation with only charge-charge interactions. The multigrid implementation is slower but shows very promising results for parallelization. It provides a natural way to interface with continuous, Gaussian-based electrostatics in the future. It is

  4. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields

    PubMed Central

    Karniel, Amir; Nisky, Ilana

    2015-01-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155

  5. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    PubMed

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  6. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  7. Alternating Magnetic Field Forces for Satellite Formation Flying

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.

    2012-01-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.

  8. DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids

    PubMed Central

    Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin

    2003-01-01

    The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851

  9. Intrinsically Disordered Protein Specific Force Field CHARMM36IDPSFF.

    PubMed

    Liu, Hao; Song, Dong; Lu, Hui; Luo, Ray; Chen, Hai-Feng

    2018-05-28

    Intrinsically disordered proteins (IDPs) are closely related to various human diseases. Because IDPs lack certain tertiary structure, it is difficult to use X-ray and NMR methods to measure their structures. Therefore, molecular dynamics simulation is a useful tool to study the conformer distribution of IDPs. However, most generic protein force fields were found to be insufficient in simulations of IDPs. Here we report our development for the CHARMM community. Our residue-specific IDP force field (CHARMM36IDPSFF) was developed based on the base generic force field with CMAP corrections of for all 20 naturally occurring amino acids. Multiple tests show that the simulated chemical shifts with the newly developed force field are in quantitative agreement with NMR experiment and are more accurate than the base generic force field. Comparison of J-couplings with previous work shows that CHARMM36IDPSFF and its corresponding base generic force field have their own advantages. In addition, CHARMM36IDPSFF simulations also agree with experiment for SAXS profiles and radii of gyration of IDPs. Detailed analysis shows that CHARMM36IDPSFF can sample more diverse and disordered conformers. These findings confirm that the newly developed force field can improve the balance of accuracy and efficiency for the conformer sampling of IDPs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  11. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  12. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  13. Systematic Validation of Protein Force Fields against Experimental Data

    PubMed Central

    Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157

  14. Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments?

    PubMed Central

    Petrov, Drazen; Zagrovic, Bojan

    2014-01-01

    The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the

  15. Force field development with GOMC, a fast new Monte Carlo molecular simulation code

    NASA Astrophysics Data System (ADS)

    Mick, Jason Richard

    In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable of reproducing pure fluid behavior and binary mixture behavior to a high degree of accuracy.

  16. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  17. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  18. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  19. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  20. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  1. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  2. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  3. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields

    NASA Astrophysics Data System (ADS)

    Steffen, Julien; Hartke, Bernd

    2017-10-01

    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  4. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene

    PubMed Central

    Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  5. Reliable and accurate extraction of Hamaker constants from surface force measurements.

    PubMed

    Miklavcic, S J

    2018-08-15

    A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The harmonic force field of benzene. A local density functional study

    NASA Astrophysics Data System (ADS)

    Bérces, Attila; Ziegler, Tom

    1993-03-01

    The harmonic force field of benzene has been calculated by a method based on local density functional theory (LDF). The calculations were carried out employing a triple zeta basis set with triple polarization on hydrogen and double polarization on carbon. The LDF force field was compared to the empirical field due to Ozkabak, Goodman, and Thakur [A. G. Ozkabak, L. Goodman, and S. N. Thakur, J. Phys. Chem. 95, 9044 (1991)], which has served as a benchmark for theoretical calculations as well as the theoretical field based on scaled Hartree-Fock ab initio calculation due to Pulay, Fogarasi, and Boggs [P. Pulay, G. Fogarasi, and J. E. Boggs, J. Chem. Phys. 74, 3999 (1981)]. The calculated LDF force field is in excellent qualitative and very good quantitative agreement with the theoretical field proposed by Pulay, Fogarasi, and Boggs as well as the empirical field due to Ozkabak, Goodman, and Thakur. The LDF field is closest to the values of Pulay and co-workers in those cases where the force constants due to Pulay, Fogarasi, and Boggs and to Ozkabak, Goodman, and Thakur differ in sign or magnitude. The accuracy of the LDF force field was investigated by evaluating a number of eigenvalue and eigenfunction dependent quantities from the the LDF force constants. The quantities under investigation include vibrational frequencies of seven isotopomers, isotopic shifts, as well as absorption intensities. The calculations were performed at both theoretical optimized and approximate equilibrium reference geometries. The predicted frequencies are usually within 1%-2% compared to the empirical harmonic frequencies. The least accurate frequency deviates by 5% from the experimental value. The average deviations from the empirical harmonic frequencies of C6H6 and C6D6 are 16.7 cm-1 (1.5%) and 15.2 cm-1 (1.7%), respectively, not including CH stretching frequencies, in the case where a theoretical reference geometry was used. The accuracy of the out-of-plane force field is especially

  7. Systematic Parameterization of Lignin for the CHARMM Force Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization formore » emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ

  8. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.

    PubMed

    Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique

    2015-05-15

    QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  10. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  11. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2015-05-01

    Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions

    PubMed Central

    2015-01-01

    We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical quantum mechanical/molecular mechanical methods. It is shown that the molecular mechanical force field significantly and consistently reproduces the benchmark results with greater accuracy than the semiempirical models and our mDC model produces errors twice as small as the molecular mechanical force field. The comparisons between the methods are extended to the docking of drug candidates to the Cyclin-Dependent Kinase 2 protein receptor. We correlate the protein–ligand binding energies to their experimental inhibition constants and find that the mDC produces the best correlation. Condensed phase simulation of mDC water is performed and shown to produce O–O radial distribution functions similar to TIP4P-EW. PMID:24803856

  13. Rapid parameterization of small molecules using the Force Field Toolkit.

    PubMed

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  14. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  15. Perspective: Ab initio force field methods derived from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  16. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  17. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  18. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    PubMed

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  19. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  20. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    PubMed

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-06-12

    Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.

  1. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  2. Calculating forces on thin flat plates with incomplete vorticity-field data

    NASA Astrophysics Data System (ADS)

    Limacher, Eric; Morton, Chris; Wood, David

    2016-11-01

    Optical experimental techniques such as particle image velocimetry (PIV) permit detailed quantification of velocities in the wakes of bluff bodies. Patterns in the wake development are significant to force generation, but it is not trivial to quantitatively relate changes in the wake to changes in measured forces. Key difficulties in this regard include: (i) accurate quantification of velocities close to the body, and (ii) the effect of missing velocity or vorticity data in regions where optical access is obscured. In the present work, we consider force formulations based on the vorticity field, wherein mathematical manipulation eliminates the need for accurate near-body velocity information. Attention is restricted to nominally two dimensional problems, namely (i) a linearly accelerating flat plate, investigated using PIV in a water tunnel, and (ii) a pitching plate in a freestream flow, as investigated numerically by Wang & Eldredge (2013). The effect of missing vorticity data on the pressure side of the plate has a significant impact on the calculation of force for the pitching plate test case. Fortunately, if the vorticity on the pressure side remains confined to a thin boundary layer, simple corrections can be applied to recover a force estimate.

  3. Representation of Ion–Protein Interactions Using the Drude Polarizable Force-Field

    PubMed Central

    2016-01-01

    Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K+, Na+, Ca2+, and Cl–) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca2+ binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354

  4. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  5. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  6. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  7. Learning a force field for the martensitic phase transformation in Zr

    NASA Astrophysics Data System (ADS)

    Zong, Hongxiang; Pilania, Ghanshyam; Ramprasad, Rampi; Lookman, Turab

    Atomic simulations provide an effective means to understand the underlying physics of martensitic transformations under extreme conditions. However, this is still a challenge for certain phase transforming metals due to the lack of an accurate classical force field. Quantum molecular dynamics (QMD) simulations are accurate but expensive. During the course of QMD simulations, similar configurations are constantly visited and revisited. Machine Learning can effectively learn from past visits and, therefore, eliminate such redundancies. In this talk, we will discuss the development of a hybrid ML-QMD method in which on-demand, on-the-fly quantum mechanical (QM) calculations are performed to accelerate calculations of interatomic forces at much lower computational costs. Using Zirconium as a model system for which accurate atomisctic potentials are currently unvailable we will demonstrate the feasibility and effectiveness of our approach. Specifically, the computed structural phase transformation behavior within the ML-QMD approach will be compared with available experimental results. Furthermore, results on phonons, stacking fault energies, and activation barriers for the homogeneous martensitic transformation in Zr will be presented.

  8. A universal strategy for the creation of machine learning-based atomistic force fields

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi

    2017-09-01

    Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.

  9. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  10. Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3(+)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.

    2011-01-01

    High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.

  11. Weber's gravitational force as static weak field approximation

    NASA Astrophysics Data System (ADS)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  12. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    2015-01-01

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  13. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-01

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  14. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    PubMed

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  15. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko

    2014-11-01

    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  16. Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...

    2016-06-23

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less

  17. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NASA Astrophysics Data System (ADS)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-12-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  18. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    PubMed

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  20. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  1. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de; Kibies, Patrick

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatmentmore » of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.« less

  2. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  3. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  4. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  5. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accurate forced-choice recognition without awareness of memory retrieval.

    PubMed

    Voss, Joel L; Baym, Carol L; Paller, Ken A

    2008-06-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.

  7. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  8. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  9. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  10. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  11. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  12. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  13. Force Field for Water Based on Neural Network.

    PubMed

    Wang, Hao; Yang, Weitao

    2018-05-18

    We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.

  14. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  15. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.

  16. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  17. Recent Developments and Applications of the CHARMM force fields

    PubMed Central

    Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.

    2011-01-01

    Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428

  18. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  19. Equifinality and its violations in a redundant system: multifinger accurate force production.

    PubMed

    Wilhelm, Luke; Zatsiorsky, Vladimir M; Latash, Mark L

    2013-10-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The "inverse piano" device was used to lift and lower one of the fingers smoothly. The subjects were instructed "not to intervene voluntarily" with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis.

  20. Equifinality and its violations in a redundant system: multifinger accurate force production

    PubMed Central

    Wilhelm, Luke; Zatsiorsky, Vladimir M.

    2013-01-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The “inverse piano” device was used to lift and lower one of the fingers smoothly. The subjects were instructed “not to intervene voluntarily” with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497

  1. Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength.

    PubMed

    Zhang, Chao; Raugei, Simone; Eisenberg, Bob; Carloni, Paolo

    2010-07-13

    The monovalent ions Na(+) and K(+) and Cl(-) are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA-protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl(-) ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.

  2. Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields.

    PubMed

    Paranahewage, S Shanaka; Gierhart, Cassidy S; Fennell, Christopher J

    2016-11-01

    Alchemical transformation of solutes using classical fixed-charge force fields is a popular strategy for assessing the free energy of transfer in different environments. Accurate estimations of transfer between phases with significantly different polarities can be difficult because of the static nature of the force fields. Here, we report on an application of such calculations in the SAMPL5 experiment that also involves an effort in balancing solute and solvent interactions via their expected static dielectric constants. This strategy performs well with respect to predictive accuracy and correlation with unknown experimental values. We follow this by performing a series of retrospective investigations which highlight the potential importance of proper balancing in these systems, and we use a null hypothesis analysis to explore potential biases in the comparisons with experiment. The collective findings indicate that considerations of force field compatibility through dielectric behavior is a potential strategy for future improvements in transfer processes between disparate environments.

  3. Rigorous force field optimization principles based on statistical distance minimization

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2015-10-12

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. Here we exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of themore » approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.« less

  4. Force field refinement from NMR scalar couplings

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Meuwly, Markus

    2012-03-01

    NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants hJ reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined hJ couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed hJ couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  5. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    PubMed

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  6. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    PubMed

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Reparametrization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations.

    PubMed

    Miller, Mark S; Lay, Wesley K; Li, Shuxiang; Hacker, William C; An, Jiadi; Ren, Jianlan; Elcock, Adrian H

    2017-04-11

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparametrize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications-some previously reported by others and some that are new to this study-are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parametrization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields' descriptions of solute-solute interactions and further demonstrates that modifications to van der Waals

  8. How well do force fields capture the strength of salt bridges in proteins?

    PubMed Central

    Ahmed, Mustapha Carab; Papaleo, Elena

    2018-01-01

    Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  9. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  10. Reparameterization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.; Li, Shuxiang; Hacker, William C.; An, Jiadi; Ren, Jianlan; Elcock, Adrian H.

    2017-01-01

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparameterize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications – some previously reported by others and some that are new to this study – are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parameterization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields’ descriptions of solute-solute interactions, and further demonstrates that modifications to

  11. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  12. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  13. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  14. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  15. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  16. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  17. Hierarchical atom type definitions and extensible all-atom force fields.

    PubMed

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  19. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  20. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    PubMed

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  1. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  2. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap

  3. Force field dependent solution properties of glycine oligomers

    PubMed Central

    Drake, Justin A.

    2015-01-01

    Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all-atom, microsecond MD simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g. end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623

  4. Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?

    PubMed Central

    Siwy, Christopher M.

    2017-01-01

    differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. PMID:28085875

  5. Accurate formula for dissipative interaction in frequency modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuhiro; Matsushige, Kazumi; Yamada, Hirofumi

    2014-12-08

    Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve.more » Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.« less

  6. Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data

    PubMed Central

    Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos

    2009-01-01

    Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043

  7. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  8. Validating empirical force fields for molecular-level simulation of cellulose dissolution

    USDA-ARS?s Scientific Manuscript database

    The calculations presented here, which include dynamics simulations using analytical force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of thes...

  9. Brief: Field measurements of casing tension forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, M.S.; Lewis, D.B.; Boswell, R.S.

    1995-02-01

    Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less

  10. Improved treatment of nucleosides and nucleotides in the OPLS-AA force field

    NASA Astrophysics Data System (ADS)

    Robertson, Michael J.; Tirado-Rives, Julian; Jorgensen, William L.

    2017-09-01

    DFT calculations have been used to develop improved descriptions of the torsional energetics for nucleosides and nucleotides in the OPLS-AA force field. Scans of nucleotide dihedral angles (γ, χ, and β) and methyl phosphates provided the bases for the new torsional parameters. In addition, the angle-bending parameters of phosphodiesters and ribose were updated, and adjustments were made to existing carbohydrate torsions to better capture the sugar puckering landscape of ribose. MD simulations of nucleosides with the new parameters demonstrate a significant improvement in the ribose sugar puckering and χ angle distributions. Additionally, energy-minimization of protein-nucleotide crystal structures with the new parameters produced accurate poses.

  11. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  12. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  13. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    DTIC Science & Technology

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  14. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  15. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    PubMed

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and

  16. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  17. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  18. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  19. Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field

    PubMed Central

    Mohamed, Noor Asidah; Bradshaw, Richard T.

    2016-01-01

    The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise‐additive force field. Although AMOEBA results give mean errors close to “chemical accuracy,” GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non‐potential‐specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27757978

  20. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    PubMed

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-05-08

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  2. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  3. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  4. Scrutinizing Molecular Mechanics Force Fields on the Submicrosecond Timescale with NMR Data

    PubMed Central

    Lange, Oliver F.; van der Spoel, David; de Groot, Bert L.

    2010-01-01

    Abstract Protein dynamics on the atomic level and on the microsecond timescale has recently become accessible from both computation and experiment. To validate molecular dynamics (MD) at the submicrosecond timescale against experiment we present microsecond MD simulations in 10 different force-field configurations for two globular proteins, ubiquitin and the gb3 domain of protein G, for which extensive NMR data is available. We find that the reproduction of the measured NMR data strongly depends on the chosen force field and electrostatics treatment. Generally, particle-mesh Ewald outperforms cut-off and reaction-field approaches. A comparison to measured J-couplings across hydrogen bonds suggests that there is room for improvement in the force-field description of hydrogen bonds in most modern force fields. Our results show that with current force fields, simulations beyond hundreds of nanoseconds run an increased risk of undergoing transitions to nonnative conformational states or will persist within states of high free energy for too long, thus skewing the obtained population frequencies. Only for the AMBER99sb force field have such transitions not been observed. Thus, our results have significance for the interpretation of data obtained with long MD simulations, for the selection of force fields for MD studies and for force-field development. We hope that this comprehensive benchmark based on NMR data applied to many popular MD force fields will serve as a useful resource to the MD community. Finally, we find that for gb3, the force-field AMBER99sb reaches comparable accuracy in back-calculated residual dipolar couplings and J-couplings across hydrogen bonds to ensembles obtained by refinement against NMR data. PMID:20643085

  5. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  6. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-01

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  7. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  8. The Introduction of Fields in Relation to Force

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2012-01-01

    The introduction of force at age 14-16 years is considered, starting with elementary student experiments using magnetic force fields. The meaningless use of terms such as "action" and "reaction", or "agent" and "receiver" is discussed. (Contains 6 figures.)

  9. Flows, Fields, and Forces in the Mars-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.

    2017-11-01

    We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.

  10. The Energetics of Motivated Cognition: A Force-Field Analysis

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  11. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  12. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  14. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  15. Molecular dynamics simulations of methane hydrate using polarizable force fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-06-14

    Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are foundmore » between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl« less

  16. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  17. A Maximum-Likelihood Approach to Force-Field Calibration.

    PubMed

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2

  18. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.

    PubMed

    Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M

    2017-01-01

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  19. Potassium bromide, KBr/ ε: New Force Field

    NASA Astrophysics Data System (ADS)

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C.

    2018-02-01

    We propose a new force field for the Potassium Bromide, the KBr/ ε. The crystal density and structure, as well as, the density, the viscosity and the dielectric constant of the solution in water were computed and compared with the experiments and other atomistic models. Next, the transferability of the KBr/ ε and of the NaCl/ ε models is verified by creating the KCl/ ε and the NaBr/ ε models. The strategy was to employ the same parameters obtained for the NaCl/ ε and for the KBr/ ε force fields for the building up of the KCl/ ε and the NaBr/ ε models . The thermodynamic and dynamic properties of these two new models were compared with the experimental

  20. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  1. Operational Art in I Field Force, 1965 to 1967

    DTIC Science & Technology

    2012-10-17

    Approved for Public Release; Distribution is Unlimited Operational Art in I Field Force, 1965 to 1967 A Monograph by MAJ John E. Turner...Monograph 3. DATES COVERED (From - To) JAN 2012 – DEC 2012 4. TITLE AND SUBTITLE Operational Art in I Field Force, 1965-1967 5a. CONTRACT NUMBER...operational art from 1965 through 1967 under the leadership of LTG Stanley Larsen in the II Corps Tactical Zone (II CORPS). This accomplishment is

  2. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parametersmore » which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.« less

  3. Spinmotive force due to domain wall motion in high field regime

    NASA Astrophysics Data System (ADS)

    Ieda, Jun'ichi; Yamane, Yuta; Maekawa, Sadamichi

    2012-02-01

    Spinmotive force associated with a moving vortex domain wall is investigated numerically. Dynamics of magnetization textures such as a domain wall exerts a non-conservative spin-force on conduction electrons [1], offering a new concept of magnetic devices [2]. This spinmotive force in permalloy nanowires has been detected by voltage measurement [3] where magnitude of the signal is limited less than 500 nV. Theoretically it is suggested that the spinmotive force signal increases as a function of external magnetic fields. At higher magnetic fields, however, the wall propagation mode becomes rather chaotic involving transformations of the wall structure and it remains to be seen how the spinmotive force appears. Numerical simulations show that the spinmotive force scales with the field even in a field range where the wall motion is no longer associated coherent precession. This feature has been tested in a recent experiment [4]. Further enhancement of the spinmotive force is explored by designing ferromagnetic nanostructures [5] and materials. [1] S. Barnes and S. Maekawa, PRL (2007). [2] S. Barnes, J. Ieda, and S. Maekawa, APL (2006). [3] S. A. Yang et al., PRL (2009). [4] M. Hayashi, J. Ieda et al., submitted. [5] Y. Yamane, J. Ieda et al., APEX (2011).

  4. Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Arntsen, Christopher; Voth, Gregory A.

    2017-10-01

    Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

  5. Combining configurational energies and forces for molecular force field optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  6. Combining configurational energies and forces for molecular force field optimization

    DOE PAGES

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    2017-07-21

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  7. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    PubMed

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  8. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me)4+ Interactions.

    PubMed

    Khan, Hanif M; Grauffel, Cédric; Broer, Ria; MacKerell, Alexander D; Havenith, Remco W A; Reuter, Nathalie

    2016-11-08

    Cation-π interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH 3 ) 3 ) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of explicit polarization or charge transfer effects in molecular mechanics force fields raises questions about the reliability of the representation of these interactions in biomolecular simulations. Here, we investigate the nature of phenol-tetramethylammonium (TMA) interactions using quantum mechanical (QM) calculations, which we also use to evaluate the accuracy of the additive CHARMM36 and Drude polarizable force fields in modeling tyrosine-choline interactions. We show that the potential energy surface (PES) obtained using SAPT2+/aug-cc-pVDZ compares well with the large basis-set CCSD(T) PES when TMA approaches the phenol ring perpendicularly. Furthermore, the SAPT energy decomposition reveals comparable contributions from electrostatics and dispersion in phenol-TMA interactions. We then compared the SAPT2+/aug-cc-pVDZ PES obtained along various approach directions to the corresponding PES obtained with CHARMM, and we show that the force field accurately reproduces the minimum distances while the interaction energies are underestimated. The use of the Drude polarizable force field significantly improves the interaction energies but decreases the agreement on distances at energy minima. The best agreement between force field and QM PES is obtained by modifying the Lennard-Jones terms for atom pairs involved in the phenol-TMA cation-π interactions. This is further shown to improve the correlation between the occupancy of tyrosine-choline cation-π interactions obtained from molecular dynamics simulations of a bilayer-bound bacterial phospholipase and experimental affinity data of the wild-type protein and selected mutants.

  9. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less

  10. Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field

    PubMed Central

    2015-01-01

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework. PMID:25691830

  11. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  12. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field

    PubMed Central

    Hou, Jiateng; Sun, Yingfei; Sun, Lixin; Pan, Bingyu; Huang, Zhipei; Wu, Jiankang; Zhang, Zhiqiang

    2016-01-01

    This paper proposes a neuromusculoskeletal (NMS) model to predict individual muscle force during elbow flexion and extension. Four male subjects were asked to do voluntary elbow flexion and extension. An inertial sensor and surface electromyography (sEMG) sensors were attached to subject's forearm. Joint angle calculated by fusion of acceleration and angular rate using an extended Kalman filter (EKF) and muscle activations obtained from the sEMG signals were taken as the inputs of the proposed NMS model to determine individual muscle force. The result shows that our NMS model can predict individual muscle force accurately, with the ability to reflect subject-specific joint dynamics and neural control solutions. Our method incorporates sEMG and motion data, making it possible to get a deeper understanding of neurological, physiological, and anatomical characteristics of human dynamic movement. We demonstrate the potential of the proposed NMS model for evaluating the function of upper limb movements in the field of neurorehabilitation. PMID:27916853

  13. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    PubMed

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  14. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE PAGES

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...

    2018-03-15

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  15. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  16. Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field.

    PubMed

    Robertson, Michael J; Tirado-Rives, Julian; Jorgensen, William L

    2015-07-14

    The development and validation of new peptide dihedral parameters are reported for the OPLS-AA force field. High accuracy quantum chemical methods were used to scan φ, ψ, χ1, and χ2 potential energy surfaces for blocked dipeptides. New Fourier coefficients for the dihedral angle terms of the OPLS-AA force field were fit to these surfaces, utilizing a Boltzmann-weighted error function and systematically examining the effects of weighting temperature. To prevent overfitting to the available data, a minimal number of new residue-specific and peptide-specific torsion terms were developed. Extensive experimental solution-phase and quantum chemical gas-phase benchmarks were used to assess the quality of the new parameters, named OPLS-AA/M, demonstrating significant improvement over previous OPLS-AA force fields. A Boltzmann weighting temperature of 2000 K was determined to be optimal for fitting the new Fourier coefficients for dihedral angle parameters. Conclusions are drawn from the results for best practices for developing new torsion parameters for protein force fields.

  17. Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).

    PubMed

    Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R

    2016-03-14

    We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.

  18. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  19. Mapping the force field of a hydrogen-bonded assembly

    NASA Astrophysics Data System (ADS)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  20. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-09

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.

  1. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Anne Myers

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less

  2. Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.; Halawa, Mohamed A.

    1990-04-01

    The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.

  3. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  4. Topological and statistical properties of nonlinear force-free fields

    NASA Astrophysics Data System (ADS)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  5. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    PubMed

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  6. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  7. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  8. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.

    PubMed

    Sandoval-Perez, Angelica; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-05-09

    Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.

  9. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  10. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  11. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field.

    PubMed

    He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A

    2009-10-01

    We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.

  13. A new force field including charge directionality for TMAO in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasingmore » TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.« less

  14. An implicit divalent counterion force field for RNA molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less

  15. Development of Field Excavator with Embedded Force Measurement

    NASA Technical Reports Server (NTRS)

    Johnson, K.; Creager, C.; Izadnegahdar, A.; Bauman, S.; Gallo, C.; Abel, P.

    2012-01-01

    A semi-intelligent excavation mechanism was developed for use with the NASA-built Centaur 2 rover prototype. The excavator features a continuously rotatable large bucket supported between two parallel arms, both of which share a single pivot axis near the excavator base attached to the rover. The excavator is designed to simulate the collection of regolith, such as on the Moon, and to dump the collected soil into a hopper up to one meter tall for processing to extract oxygen. Because the vehicle can be autonomous and the terrain is generally unknown, there is risk of damaging equipment or using excessive power when attempting to extract soil from dense or rocky terrain. To minimize these risks, it is critical for the rover to sense the digging forces and adjust accordingly. It is also important to understand the digging capabilities and limitations of the excavator. This paper discusses the implementation of multiple strain gages as an embedded force measurement system in the excavator's arms. These strain gages can accurately measure and resolve multi-axial forces on the excavator. In order to validate these sensors and characterize the load capabilities, a series of controlled excavation tests were performed at Glenn Research Center with the excavator at various depths and cut angles while supported by a six axis load cell. The results of these tests are both compared to a force estimation model and used for calibration of the embedded strain gages. In addition, excavation forces generated using two different types of bucket edge (straight vs. with teeth) were compared.

  16. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  17. Validity and reliability of the abdominal test and evaluation systems tool (ABTEST) to accurately measure abdominal force.

    PubMed

    Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A

    2015-07-01

    Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; p<0.001). Mean electromyographic activity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, p<0.001). Data indicate the ABTEST can accurately measure rectus-abdominus force isolated from hip-flexor involvement. Negligible activation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  19. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    PubMed

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  20. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.

    PubMed

    Arnautova, Yelena A; Abagyan, Ruben; Totrov, Maxim

    2015-05-12

    the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.

  1. TET Offensive II Field Force Vietnam After Action Report 31 January - 18 February 1968

    DTIC Science & Technology

    1968-03-01

    and the 5th VC Division. V During this same period of time there were no majur shifts in ARVN forces . However III Corps shifted three...8217-".•: ’ ’SSIFJED U.S. ARMY. VIETNAM. II FIELD FORCE . TET OFFENSIVE II FIELD FORCE VIETNAM AFTER ACTION REPORT, 31 JANUARY-18 FEB- RUARY 1968...H FIELD FORCE VIETNAM AFTER ACTION REPORT 31 January-18 February 1968 RECORD K0- ! FlSjl fi-.-A-,>-•: it tT*\\ : *si h s» -wP Mr-, £< St

  2. Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.

    PubMed

    Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J

    2018-05-03

    that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    PubMed

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  4. Secondary Structure of Rat and Human Amylin across Force Fields

    PubMed Central

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-cheng; de Pablo, Juan J.

    2015-01-01

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable

  5. Secondary structure of rat and human amylin across force fields

    DOE PAGES

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; ...

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states

  6. Hamiltonian of Mean Force and Dissipative Scalar Field Theory

    NASA Astrophysics Data System (ADS)

    Jafari, Marjan; Kheirandish, Fardin

    2018-04-01

    Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.

  7. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

    NASA Astrophysics Data System (ADS)

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  8. Extension of coarse-grained UNRES force field to treat carbon nanotubes.

    PubMed

    Sieradzan, Adam K; Mozolewska, Magdalena A

    2018-04-26

    Carbon nanotubes (CNTs) have recently received considerable attention because of their possible applications in various branches of nanotechnology. For their cogent application, knowledge of their interactions with biological macromolecules, especially proteins, is essential and computer simulations are very useful for such studies. Classical all-atom force fields limit simulation time scale and size of the systems significantly. Therefore, in this work, we implemented CNTs into the coarse-grained UNited RESidue (UNRES) force field. A CNT is represented as a rigid infinite-length cylinder which interacts with a protein through the Kihara potential. Energy conservation in microcanonical coarse-grained molecular dynamics simulations and temperature conservation in canonical simulations with UNRES containing the CNT component have been verified. Subsequently, studies of three proteins, bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTs, were performed to examine the influence of CNTs on the structure and dynamics of these proteins. It was found that nanotubes bind to these proteins and influence their structure. Our results show that the UNRES force field can be used for further studies of CNT-protein systems with 3-4 order of magnitude larger timescale than using regular all-atom force fields. Graphical abstract Bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTsᅟ.

  9. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  10. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  11. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    NASA Astrophysics Data System (ADS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-07-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  12. U.S. Field Artillery after World War I: Modernizing the Force While Downsizing

    DTIC Science & Technology

    2014-06-13

    weapons, and tactics. It convened several boards to assess the requirements for an effective field artillery force, studying the materiel and......weapons, and tactics. It convened several boards to assess the requirements for an effective field artillery force, studying the materiel and

  13. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  14. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  15. Mapping the Drude polarizable force field onto a multipole and induced dipole model

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; MacKerell, Alexander D.; Brooks, Bernard R.

    2017-10-01

    The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.

  16. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.

    PubMed

    Frembgen-Kesner, Tamara; Andrews, Casey T; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A; Jain, Aakash; Olayiwola, Oluwatoni J; Weishaar, Mitch R; Elcock, Adrian H

    2015-05-12

    Recently, we reported the parametrization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral, and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral, and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downward in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multidomain proteins connected by flexible linkers.

  17. Parameterization of backbone flexibility in a coarse-grained force field for proteins (COFFDROP) derived from all-atom explicit-solvent molecular dynamics simulations of all possible two-residue peptides

    PubMed Central

    Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.

    2015-01-01

    Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429

  18. Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.

    PubMed

    Soo, Heino; Dean, David S; Krüger, Matthias

    2017-01-01

    We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.

  19. Accurate computation of gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    We developed an accurate method to compute the gravitational field of a tesseroid. The method numerically integrates a surface integral representation of the gravitational potential of the tesseroid by conditionally splitting its line integration intervals and by using the double exponential quadrature rule. Then, it evaluates the gravitational acceleration vector and the gravity gradient tensor by numerically differentiating the numerically integrated potential. The numerical differentiation is conducted by appropriately switching the central and the single-sided second-order difference formulas with a suitable choice of the test argument displacement. If necessary, the new method is extended to the case of a general tesseroid with the variable density profile, the variable surface height functions, and/or the variable intervals in longitude or in latitude. The new method is capable of computing the gravitational field of the tesseroid independently on the location of the evaluation point, namely whether outside, near the surface of, on the surface of, or inside the tesseroid. The achievable precision is 14-15 digits for the potential, 9-11 digits for the acceleration vector, and 6-8 digits for the gradient tensor in the double precision environment. The correct digits are roughly doubled if employing the quadruple precision computation. The new method provides a reliable procedure to compute the topographic gravitational field, especially that near, on, and below the surface. Also, it could potentially serve as a sure reference to complement and elaborate the existing approaches using the Gauss-Legendre quadrature or other standard methods of numerical integration.

  20. Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields

    PubMed Central

    2017-01-01

    The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687

  1. Validation and Application of the ReaxFF Reactive Force Field to Hydrocarbon Oxidation Kinetics

    DTIC Science & Technology

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0278 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics Adrianus Van Duin...application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0355 5c.  PROGRAM...Chenoweth Dec14 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics DISTRIBUTION A: Distribution approved for

  2. The calculation of force-free fields from discrete flux distributions. [for chromospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Harvey, J. W.

    1975-01-01

    This paper presents particularly simple mathematical formulas for the calculation of force-free fields of constant alpha from the distribution of discrete sources on a flat surface. The advantage of these formulas lies in their physical simplicity and the fact that they can be easily used in practice to calculate the fields. The disadvantage is that they are limited to fields of 'sufficiently small alpha'. These formulas may be useful in the study of chromospheric magnetic fields by the comparison of high-resolution H-alpha photographs and photospheric magnetograms.

  3. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    PubMed

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  4. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    NASA Astrophysics Data System (ADS)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  5. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    PubMed

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    overestimated distance between terminal carbonyl groups. In order to more accurately account for the experimental data, we changed the distribution parameters based on results recently obtained for the alanine-based tripeptides. The final model, which satisfactorily reproduced amide I' profiles, J-coupling constant, and the end-to-end distance of A(5)W, reinforces alanine's high structural preference for polyproline II. Our results suggest that distributions obtained from MD simulations suggesting a statistical coil-like distribution for alanine are still based on insufficiently accurate force fields.

  6. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livermore, P. W.; Hughes, D. W.; Tobias, S. M.

    2010-03-15

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less

  7. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  8. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weimin; Niu, Haitao; Lin, Tong

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less

  9. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  10. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  11. Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Mainberger, Sebastian; Kindlein, Moritz; Bezold, Franziska; Elts, Ekaterina; Minceva, Mirjana; Briesen, Heiko

    2017-06-01

    Deep eutectic solvents (DES) have gained a reputation as inexpensive and easy to handle ionic liquid analogues. This work employs molecular dynamics (MD) to simulate a variety of DES. The hydrogen bond acceptor (HBA) choline chloride was paired with the hydrogen bond donors (HBD) glycerol, 1,4-butanediol, and levulinic acid. Levulinic acid was also paired with the zwitterionic HBA betaine. In order to evaluate the reliability of data MD simulations can provide for DES, two force fields were compared: the Merck Molecular Force Field and the General Amber Force Field with two different sets of partial charges for the latter. The force fields were evaluated by comparing available experimental thermodynamic and transport properties against simulated values. Structural analysis was performed on the eutectic systems and compared to non-eutectic compositions. All force fields could be validated against certain experimental properties, but performance varied depending on the system and property in question. While extensive hydrogen bonding was found for all systems, details about the contribution of individual groups strongly varied among force fields. Interaction potentials revealed that HBA-HBA interactions weaken linearly with increasing HBD ratio, while HBD-HBD interactions grew disproportionally in magnitude, which might hint at the eutectic composition of a system.

  12. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  13. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less

  14. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  15. An improved DNA force field for ssDNA interactions with gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiankai; Huai, Ping; Fan, Chunhai

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones “protecting” hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thusmore » the “protection” by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.« less

  16. An improved DNA force field for ssDNA interactions with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo

    2014-06-01

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.

  17. An improved DNA force field for ssDNA interactions with gold nanoparticles.

    PubMed

    Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo

    2014-06-21

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.

  18. Direct folding simulation of helical proteins using an effective polarizable bond force field.

    PubMed

    Duan, Lili; Zhu, Tong; Ji, Changge; Zhang, Qinggang; Zhang, John Z H

    2017-06-14

    We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. Cluster analysis has also verified that these folded structures with the highest population are in good agreement with their corresponding native structures for these proteins. In addition, the free energy landscape of seven proteins in the two dimensional space comprised of RMSD and radius of gyration proved that these folded structures are indeed of the lowest energy conformations. However, when the corresponding simulations were performed using the standard (nonpolarizable) AMBER force fields, no stable folded structures were observed for these proteins. Comparison of the simulation results based on a polarizable EPB force field and a nonpolarizable AMBER force field clearly demonstrates the importance of polarization in the folding of stable helical structures.

  19. Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field.

    PubMed

    Abella, Jayvee R; Cheng, Sara Y; Wang, Qiantao; Yang, Wei; Ren, Pengyu

    2014-07-08

    The orthogonal space random walk (OSRW) method has shown enhanced sampling efficiency in free energy calculations from previous studies. In this study, the implementation of OSRW in accordance with the polarizable AMOEBA force field in TINKER molecular modeling software package is discussed and subsequently applied to the hydration free energy calculation of 20 small organic molecules, among which 15 are positively charged and five are neutral. The calculated hydration free energies of these molecules are compared with the results obtained from the Bennett acceptance ratio method using the same force field, and overall an excellent agreement is obtained. The convergence and the efficiency of the OSRW are also discussed and compared with BAR. Combining enhanced sampling techniques such as OSRW with polarizable force fields is very promising for achieving both accuracy and efficiency in general free energy calculations.

  20. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  1. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  2. The variance needed to accurately describe jump height from vertical ground reaction force data.

    PubMed

    Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran

    2014-12-01

    In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.

  3. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.

    2013-12-01

    One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field

  4. The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.

    PubMed

    Martín Pendás, A; Hernández-Trujillo, J

    2012-10-07

    The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.

  5. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  6. Balancing Force Field Protein–Lipid Interactions To Capture Transmembrane Helix–Helix Association

    PubMed Central

    2018-01-01

    Atomistic simulations have recently been shown to be sufficiently accurate to reversibly fold globular proteins and have provided insights into folding mechanisms. Gaining similar understanding from simulations of membrane protein folding and association would be of great medical interest. All-atom simulations of the folding and assembly of transmembrane protein domains are much more challenging, not least due to very slow diffusion within the lipid bilayer membrane. Here, we focus on a simple and well-characterized prototype of membrane protein folding and assembly, namely the dimerization of glycophorin A, a homodimer of single transmembrane helices. We have determined the free energy landscape for association of the dimer using the CHARMM36 force field. We find that the native structure is a metastable state, but not stable as expected from experimental estimates of the dissociation constant and numerous experimental structures obtained under a variety of conditions. We explore two straightforward approaches to address this problem and demonstrate that they result in stable dimers with dissociation constants consistent with experimental data. PMID:29424543

  7. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.

    PubMed

    Jasiński, Maciej; Feig, Michael; Trylska, Joanna

    2018-06-06

    Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.

  8. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  9. Management of change through force field analysis.

    PubMed

    Baulcomb, Jean Sandra

    2003-07-01

    Today's NHS is rapidly changing, placing more emphasis on the managerial responsibilities of ward managers. Managing change is seen as being skilled at creating, acquiring and transferring knowledge to reflect new knowledge and insights. Defining core concepts is often difficult and requires the drawing on models/theories of change for guidance. Guidance from Lewin's (1951) force field analysis demonstrates the complexities of the change process and how driving and resisting forces were incorporated within the planning and implementation phases. Findings outline the benefits of a small scale change for staff, patients and the organization when successfully used to introduce a change of shift pattern within a progressively busy haematology day unit, in order to meet service demands without additional funding. Conclusions have been drawn in relation to the process and recommendations for practice made to further enhance care delivery within the unit.

  10. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerche, I.; Low, B. C.

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship betweenmore » the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  11. ff14IDPs Force Field Improving the Conformation Sampling of Intrinsically Disordered Proteins

    PubMed Central

    Song, Dong; Wang, Wei; Ye, Wei; Ji, Dingjue; Luo, Ray; Chen, Hai-Feng

    2017-01-01

    Intrinsically disordered proteins (IDPs) are proteins which lack of specific tertiary structure and unable to fold spontaneously without the partner binding. These IDPs are found to associate with various diseases, such as diabetes, cancer, and neurodegenerative diseases. However, current widely used force fields, such as ff99SB, ff14SB, OPLS/AA, and Charmm27 are insufficient in sampling the conformational characters of IDPs. In this study, the CMAP method was used to correct the φ/ψ distributions of disorder-promoting amino acids. The simulation results show that the force filed parameters (ff14IDPs) can improve the φ/ψ distributions of the disorder-promoting amino acids, with RMSD less than 0.10% relative to the benchmark data of IDPs. Further test suggests that the calculated secondary chemical shifts under ff14IDPs force field are in quantitative agreement with the data of NMR experiment for five tested systems. In addition, the simulation results show that ff14IDPs can still be used to model structural proteins, such as tested lysozyme and ubiquitin, with better performance in coil regions than the original general Amber force field ff14SB. These findings confirm that the newly developed Amber ff14IDPs force field is a robust model for improving the conformation sampling of IDPs. PMID:27484738

  12. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  13. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  14. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    NASA Astrophysics Data System (ADS)

    Yoon, Myung-Hwan; Choi, Yun-Yong; Hong, Jung-Pyo

    2017-05-01

    Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  15. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.

    PubMed

    Trnka, Tomáš; Tvaroška, Igor; Koča, Jaroslav

    2018-01-09

    Computational studies of the reaction mechanisms of various enzymes are nowadays based almost exclusively on hybrid QM/MM models. Unfortunately, the success of this approach strongly depends on the selection of the QM region, and computational cost is a crucial limiting factor. An interesting alternative is offered by empirical reactive molecular force fields, especially the ReaxFF potential developed by van Duin and co-workers. However, even though an initial parametrization of ReaxFF for biomolecules already exists, it does not provide the desired level of accuracy. We have conducted a thorough refitting of the ReaxFF force field to improve the description of reaction energetics. To minimize the human effort required, we propose a fully automated approach to generate an extensive training set comprised of thousands of different geometries and molecular fragments starting from a few model molecules. Electrostatic parameters were optimized with QM electrostatic potentials as the main target quantity, avoiding excessive dependence on the choice of reference atomic charges and improving robustness and transferability. The remaining force field parameters were optimized using the VD-CMA-ES variant of the CMA-ES optimization algorithm. This method is able to optimize hundreds of parameters simultaneously with unprecedented speed and reliability. The resulting force field was validated on a real enzymatic system, ppGalNAcT2 glycosyltransferase. The new force field offers excellent qualitative agreement with the reference QM/MM reaction energy profile, matches the relative energies of intermediate and product minima almost exactly, and reduces the overestimation of transition state energies by 27-48% compared with the previous parametrization.

  16. Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    PubMed Central

    KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.

    2014-01-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421

  17. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.

    PubMed

    Mannfors, Berit; Palmo, Kim; Krimm, Samuel

    2008-12-11

    Our ab initio transformed spectroscopically determined force field (SDFF) methodology emphasizes, in addition to accurate structure and energy performance, comparable prediction of vibrational properties in order to improve reproduction of interaction forces. It is now applied to the determination of a molecular mechanics (MM) force field for the water monomer and dimer as an initial step in developing a more physically based treatment of the hydrogen bonding that not only underlies condensed-phase water but also must be important in molecular-level protein-water interactions. Essential electrical components of the SDFF for monomer water are found to be the following: an off-plane charge distribution, this distribution consisting of four off-atom charge sites in traditional lone pair (LP) but also in inverted lone pair (ILP) positions; allowance for a diffuse size to these off-atom sites; and the incorporation of charge fluxes (i.e., the change in charge with change in internal coordinate). Parametrization of such an LP/ILP model together with the SDFF analytically transformed valence force field results in essentially exact agreement with ab initio (in this case MP2/6-31++G(d,p)) structure, electrical, and vibrational properties. Although we demonstrate that the properties of this monomer electrical model together with its van der Waals and polarization interactions are transferable to the dimer, this is not sufficient in reproducing comparable dimer properties, most notably the huge increase in infrared intensity of a donor OH stretch mode. This deficiency, which can be eliminated by a large dipole-derivative-determined change in the effective charge flux of the donor hydrogen-bonded OH bond, is not accounted for by the charge flux change in this bond due to the induction effects of the acceptor electric field alone, and can only be fully removed by an added bond flux associated with the extent of overlap of the wave functions of the two molecules. We show that

  18. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  19. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    NASA Astrophysics Data System (ADS)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-02-01

    A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.

  20. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE PAGES

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...

    2017-02-01

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  1. Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids

    NASA Astrophysics Data System (ADS)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui

    2018-04-01

    A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.

  2. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  3. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    PubMed

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  4. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    PubMed

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  5. Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.

    PubMed

    Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong

    2006-10-18

    Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.

  6. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.

    PubMed

    Kim, Seonghoon; Lee, Jumin; Jo, Sunhwan; Brooks, Charles L; Lee, Hui Sun; Im, Wonpil

    2017-06-05

    Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. The stability properties of cylindrical force-free fields - Effect of an external potential field

    NASA Technical Reports Server (NTRS)

    Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.

    1980-01-01

    A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.

  8. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  9. Links between the charge model and bonded parameter force constants in biomolecular force fields

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  10. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  11. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

    2001-01-01

    A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

  12. Accurate segmentation of lung fields on chest radiographs using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory

    2017-02-01

    Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.

  13. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  14. ATK-ForceField: a new generation molecular dynamics software package

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  15. The influence of centrifugal forces on the B field structure of an axially symmetric equilibrium magnetosphere

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Voigt, Gerd-Hannes

    1989-01-01

    A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.

  16. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  17. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  18. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  19. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing

    PubMed Central

    Vanommeslaeghe, K.; MacKerell, A. D.

    2012-01-01

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088

  20. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  1. Electromagnetic Contact-Force Sensing Electrophysiological Catheters: How Accurate is the Technology?

    PubMed

    Bourier, Felix; Hessling, Gabriele; Ammar-Busch, Sonia; Kottmaier, Marc; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Semmler, Verena; Lennerz, Carsten; Schneider, Christine; Kolb, Christof; Deisenhofer, Isabel; Reents, Tilko

    2016-03-01

    Contact-force (CF) sensing catheters are increasingly used in clinical electrophysiological practice due to their efficacy and safety profile. As data about the accuracy of this technology are scarce, we sought to quantify accuracy based on in vitro experiments. A custom-made force sensor was constructed that allowed exact force reference measurements registered via a flexible membrane. A Smarttouch Surround Flow (ST SF) ablation catheter (Biosense Webster, Diamond Bar, CA, USA) was brought in contact with the membrane of the force sensor in order to compare the ST SF force measurements to force sensor reference measurements. ST SF force sensing technology is based on deflection registration between the distal and proximal catheter tip. The experiment was repeated for n = 10 ST SF catheters, which showed no significant difference in accuracy levels. A series of measurements (n = 1200) was carried out for different angles of force acting to the catheter tip (0°/perpendicular contact, 30°, 60°, 90°/parallel contact). The mean absolute differences between reference and ST SF measurements were 1.7 ± 1.8 g (0°), 1.6 ± 1.2 g (30°), 1.4 ± 1.3 g (60°), and 6.6 ± 5.9 g (90°). Measurement accuracy was significantly higher in non-parallel contact when compared with parallel contact (P < 0.01). Catheter force measurements using the ST SF catheters show a high level of accuracy regarding differences to reference measurements and reproducibility. The reduced accuracy in measurements of 90° acting forces (parallel contact) might be clinically important when creating, for example, linear lesions. © 2015 Wiley Periodicals, Inc.

  2. The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; Francois, Jean-Pierre; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the C-12 isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals could be reproduced to better than 10 per centimeter, except for three cases of severe Fermi type 1 resonance. The problem with these three bands is identified as a systematic overestimate of the Kiij Fermi resonance constants by a factor of two or more; if this is corrected for, the predicted fundamentals come into excellent agreement with experiment. No such systematic overestimate is seen for Fermi type 2 resonances. Our computed harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the v8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper.

  3. Computational ligand-based rational design: Role of conformational sampling and force fields in model development.

    PubMed

    Shim, Jihyun; Mackerell, Alexander D

    2011-05-01

    A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more

  4. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  6. A reactive force field study of Li/C systems for electrical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  7. A reactive force field study of Li/C systems for electrical energy storage

    DOE PAGES

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.; ...

    2015-04-02

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  8. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  9. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    PubMed Central

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  10. Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.

    PubMed

    Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu

    2016-11-09

    Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.

  11. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  12. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    NASA Astrophysics Data System (ADS)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  13. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  14. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.

    PubMed

    Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip

    2014-09-04

    We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar

  15. Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: application to organic crystals.

    PubMed

    Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J

    2016-11-09

    First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.

  16. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  17. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  18. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    PubMed

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  19. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  20. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  1. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  2. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  3. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Treesearch

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  4. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.

    PubMed

    Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L

    2018-06-25

    Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.

  5. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  6. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  7. Electromagnetic unification of matter and force fields

    NASA Astrophysics Data System (ADS)

    John, Sarah

    2004-05-01

    Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.

  8. Force field inside the void in complex plasmas under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  9. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  10. A Generic Force Field for Protein Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    Gu, Junfeng; Bai, Fang; Li, Honglin; Wang, Xicheng

    2012-01-01

    Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled. PMID:23203075

  11. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  12. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  13. Accurate ab Initio Quartic Force Fields, Vibrational Frequencies, and Heats of Formation for FCN, FNC, ClCN, and ClNC

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Dateo, Christopher E.; Taylor, Peter R.

    1995-01-01

    The XCN and XNC (X = F, Cl) isomers have been investigated using the CCSD(T) method in conjunction with correlation consistent basis sets. Equilibrium geometries, harmonic frequencies, anharmonic constants, fundamental frequencies, and heats of formation have been evaluated. Agreement with experiment for the fundamental frequencies is very good, even for nu(sub 2), for CICN, which is subject to a strong Fermi resonance with 2nu(sub 3). It is also shown that a second-order perturbation theory approach to solving the nuclear Schroedinger equation gives results in excellent agreement with essentially exact variational calculations. This is true even for nu(sub 2) of ClCN, provided that near-singular terms are eliminated from the perturbation theory formulas and the appropriate Fermi interaction energy matrix is then diagonalized. A band at 615/cm, tentatively assigned as the Cl-N stretch in ClNC in matrix isolation experiments, is shown not to be due to ClNC. Accurate atomization energies are determined and are used to evaluate accurate heats of formation (3.1 +/- 1.5, 33.2 +/- 1.5, 72.6 +/- 1.5, and 75.9 +/- 1.5 kcal/mol for FCN, ClCN, FNC, and ClNC, respectively). It is expected that the theoretical heats of formation for FCN, FNC, and ClNC are the most accurate available.

  14. Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Padhy, Punnag; Hansen, Paul C.; Hesselink, Lambertus

    2018-02-01

    The non-conservative nature of the force field generated by a near-field optical trap is analyzed. A plasmonic C-shaped engraving on a gold film is considered as the trap. The force field is calculated using the Maxwell stress tensor method. The Helmholtz-Hodge decomposition is used to extract the conservative and the non-conservative component of the force. Due to the non-negligible non-conservative component, it is found that the conventional approach of extracting the potential by direct integration of the force is not accurate. Despite the non-conservative nature of the force field, it is found that the statistical properties of a trapped nanoparticle can be estimated from the conservative component of the force field alone. Experimental and numerical results are presented to support the claims.

  15. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

    PubMed

    Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A

    2011-10-14

    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

  16. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    PubMed

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  17. Comparison of different force fields for the study of disaccharides

    USDA-ARS?s Scientific Manuscript database

    Eighteen empirical force fields and the semi-empirical quantum method PM3CARB-1 were compared for studying ß-cellobiose, a-maltose, and a-galabiose [a-D-Galp-(1'4)-a-D-Galp]. For each disaccharide, the energies of 54 conformers with differing hydroxymethyl, hydroxyl and glycosidic linkage orientatio...

  18. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC

    PubMed Central

    2017-01-01

    We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.132 kBT (0.37 kJ/mol). PAC-MAC shows a RMSE of 0.151 kBT with a calculation speed being potentially 1.0 × 104 times greater than TI. OPLS-AA force field parameters are optimized using PAC-MAC based on vapor–liquid equilibrium data, instead of enthalpies of vaporization or densities. The RMSE of PAC-MAC is reduced to 0.099 kBT by optimizing 50 force field parameters. The resulting OPLS-PM force field has a comparable accuracy as the OPLS-AA force field in the calculation of mixing free energies using TI. PMID:28418655

  19. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field

    PubMed Central

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B 2007, 111, 1416–1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala10) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala10 which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field. PMID:20011673

  20. Observations on the ponderomotive force

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Cairns, R. A.; Ersfeld, B.; Noble, A.; Yoffe, S.; Jaroszynski, D. A.

    2017-05-01

    The ponderomotive force is an important concept in plasma physics and, in particular, plays an important role in many aspects of the theory of laser plasma interactions including current concerns like wakefield acceleration and Raman amplification. The most familiar form of this gives a force on a charged particle that is proportional to the slowly varying gradient of the intensity of a high frequency electromagnetic field and directed down the intensity gradiant. For a field amplitude simply oscillating in time there is a simple derivation of this formula, but in the more general case of a travelling wave the problem is more difficult. Over the years there has been much work on this using Hamiltonian or Lagrangian averaging techniques, but little or no investigation of how well these theories work. Here we look at the very basic problem of a particle entering a region with a monotonically increasing electrostatic field amplitude and being reflected. We show that the equation of motion derived from a widely quoted ponderomotive potential only agrees with the numerically computed orbit within a restricted parameter range and that outside this range it shows features which are inconsistent with any ponderomotive potential quadratic in the field amplitude. Since the ponderomotive force plays a fundamental role in a variety of problems in plasma physics we think that it is important to point out that even in the simplest of configurations standard theories may not be accurate.

  1. NONLINEAR FORCE-FREE FIELD MODELING OF A SOLAR ACTIVE REGION USING SDO/HMI AND SOLIS/VSM DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, J. K.; Wiegelmann, T.; Pietarila, A.

    2012-08-15

    We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique, into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure, and the vertically integrated current density. Though the longitudinal and transversemore » magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial, and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compare to each other.« less

  2. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  3. BIOREMEDIATION FIELD EVALUATION: EIELSON AIR FORCE BASE, ALASKA (EPA/540/R-95/533)

    EPA Science Inventory

    This publication, one of a series presenting the findings of the Bioremediation Field Initiatives bioremediation field evaluations, provides a detailed summary of the evaluation conducted at the Eielson Air Force Base (AFB) Superfund site in Fairbanks, Alaska. At this site, the ...

  4. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.

    PubMed

    Li, Min; Liu, Fengjiao; Zhang, John Z H

    2016-12-13

    Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.

  5. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  6. Commensurability effects in the critical forces of a superconducting film with Kagomé pinning array at submatching fields

    NASA Astrophysics Data System (ADS)

    Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.

    2017-09-01

    Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.

  7. Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: Application to heat capacities

    NASA Astrophysics Data System (ADS)

    Smith, William R.; Jirsák, Jan; Nezbeda, Ivo; Qi, Weikai

    2017-07-01

    The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients, and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms. The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. We describe the correct methodology required to perform such calculations and illustrate it in this paper for the case of the internal energy and the enthalpy and their corresponding molar heat capacities. We provide numerical results for cP, one of the most important caloric properties. We also consider approximations to the correct calculation procedure previously used in the literature and illustrate their consequences for the examples of the relatively simple molecule 2-propanol, CH3CH(OH)CH3, and for the more complex molecule monoethanolamine, HO(CH2)2NH2, an important fluid used in carbon capture.

  8. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    PubMed

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  9. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  10. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.

    PubMed

    Henriques, João; Cragnell, Carolina; Skepö, Marie

    2015-07-14

    An increasing number of studies using molecular dynamics (MD) simulations of unfolded and intrinsically disordered proteins (IDPs) suggest that current force fields sample conformations that are overly collapsed. Here, we study the applicability of several state-of-the-art MD force fields, of the AMBER and GROMOS variety, for the simulation of Histatin 5, a short (24 residues) cationic salivary IDP with antimicrobial and antifungal properties. The quality of the simulations is assessed in three complementary analyses: (i) protein shape and size comparison with recent experimental small-angle X-ray scattering data; (ii) secondary structure prediction; (iii) energy landscape exploration and conformational class analysis. Our results show that, indeed, standard force fields sample conformations that are too compact, being systematically unable to reproduce experimental evidence such as the scattering function, the shape of the protein as compared with the Kratky plot, and intrapeptide distances obtained through the pair distance distribution function, p(r). The consistency of this deviation suggests that the problem is not mainly due to protein-protein or water-water interactions, whose parametrization varies the most between force fields and water models. In fact, as originally proposed in [ Best et al. J. Chem. Theory Comput. 2014, 10, 5113 - 5124.], balanced protein-water interactions may be the key to solving this problem. Our simulations using this approach produce results in very good agreement with experiment.

  11. On the far-field computation of acoustic radiation forces.

    PubMed

    Martin, P A

    2017-10-01

    It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic waves can be calculated by evaluating certain integrals of velocity potentials over a sphere surrounding the scatterer. The goal is to evaluate these integrals using far-field approximations and appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections are made to textbook derivations of optical theorems.

  12. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges, and Lennard-Jones interactions) be pre...and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was performed manually to obtain dihedral... critical that a reliable approach is available to guide experimental efforts and design. In addition, the automation of force field development will

  13. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  14. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  15. A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation

    NASA Astrophysics Data System (ADS)

    Saez, David Adrian; Vöhringer-Martinez, Esteban

    2015-10-01

    S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

  16. Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines

    NASA Technical Reports Server (NTRS)

    Qiu, Y. J.; Martinezsanchez, M.

    1985-01-01

    The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes.

  17. Probing the Importance of Charge Flux in Force Field Modeling.

    PubMed

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  18. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  19. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  20. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    PubMed

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  1. Benchmark of ReaxFF force field for subcritical and supercritical water.

    PubMed

    Manzano, Hegoi; Zhang, Weiwei; Raju, Muralikrishna; Dolado, Jorge S; López-Arbeloa, Iñigo; van Duin, Adri C T

    2018-06-21

    Water in the subcritical and supercritical states has remarkable properties that make it an excellent solvent for oxidation of hazardous chemicals, waste separation, and green synthesis. Molecular simulations are a valuable complement to experiments in order to understand and improve the relevant sub- and super-critical reaction mechanisms. Since water molecules under these conditions can act not only as a solvent but also as a reactant, dissociative force fields are especially interesting to investigate these processes. In this work, we evaluate the capacity of the ReaxFF force field to reproduce the microstructure, hydrogen bonding, dielectric constant, diffusion, and proton transfer of sub- and super-critical water. Our results indicate that ReaxFF is able to simulate water properties in these states in very good quantitative agreement with the existing experimental data, with the exception of the static dielectric constant that is reproduced only qualitatively.

  2. Rigorous derivation of electromagnetic self-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.

    2009-07-15

    During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account 'self-force' effects due to the particle's own electromagnetic field. We analyze the issue of 'particle motion' in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density J{sup a}({lambda}) and stress-energy tensor T{sub ab}({lambda}) scale to zero size in an asymptotically self-similar manner about a worldline {gamma} as {lambda}{yields}0. In thismore » limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field F{sub ab}({lambda}) is assumed to be the retarded solution associated with J{sup a}({lambda}) plus a homogeneous solution (the 'external field') that varies smoothly with {lambda}. We prove that the worldline {gamma} must be a solution to the Lorentz force equations of motion in the external field F{sub ab}({lambda}=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the 'reduction of order' procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no

  3. Parallel alignment of bacteria using near-field optical force array for cell sorting

    NASA Astrophysics Data System (ADS)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

  4. Host and adsorbate dynamics in silicates with flexible frameworks: Empirical force field simulation of water in silicalite

    NASA Astrophysics Data System (ADS)

    Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross

    2010-03-01

    Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.

  5. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  6. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  7. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  8. CAST: a new program package for the accurate characterization of large and flexible molecular systems.

    PubMed

    Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd

    2014-09-15

    The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.

  9. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  10. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  11. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, A A; Rubinov, A N; Gaida, L S

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  12. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.

    PubMed

    Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K

    2018-06-13

    The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for

  13. Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.

    PubMed

    Bradshaw, Richard T; Essex, Jonathan W

    2016-08-09

    Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.

  14. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  15. Accurate Vibrational-Rotational Parameters and Infrared Intensities of 1-Bromo-1-fluoroethene: A Joint Experimental Analysis and Ab Initio Study.

    PubMed

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi; Bloino, Julien; Tasinato, Nicola; Carnimeo, Ivan; Biczysko, Malgorzata; Puzzarini, Cristina

    2017-05-04

    The medium-resolution gas-phase infrared (IR) spectra of 1-bromo-1-fluoroethene (BrFC═CH 2 , 1,1-C 2 H 2 BrF) were investigated in the range 300-6500 cm -1 , and the vibrational analysis led to the assignment of all fundamentals as well as many overtone and combination bands up to three quanta, thus giving an accurate description of its vibrational structure. Integrated band intensity data were determined with high precision from the measurements of their corresponding absorption cross sections. The vibrational analysis was supported by high-level ab initio investigations. CCSD(T) computations accounting for extrapolation to the complete basis set and core correlation effects were employed to accurately determine the molecular structure and harmonic force field. The latter was then coupled to B2PLYP and MP2 computations in order to account for mechanical and electrical anharmonicities. Second-order perturbative vibrational theory was then applied to the thus obtained hybrid force fields to support the experimental assignment of the IR spectra.

  16. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.

    PubMed

    Prampolini, Giacomo; Campetella, Marco; De Mitri, Nicola; Livotto, Paolo Roberto; Cacelli, Ivo

    2016-11-08

    A robust and automated protocol for the derivation of sound force field parameters, suitable for condensed-phase classical simulations, is here tested and validated on several halogenated hydrocarbons, a class of compounds for which standard force fields have often been reported to deliver rather inaccurate performances. The major strength of the proposed protocol is that all of the parameters are derived only from first principles because all of the information required is retrieved from quantum mechanical data, purposely computed for the investigated molecule. This a priori parametrization is carried out separately for the intra- and intermolecular contributions to the force fields, respectively exploiting the Joyce and Picky programs, previously developed in our group. To avoid high computational costs, all quantum mechanical calculations were performed exploiting the density functional theory. Because the choice of the functional is known to be crucial for the description of the intermolecular interactions, a specific procedure is proposed, which allows for a reliable benchmark of different functionals against higher-level data. The intramolecular and intermolecular contribution are eventually joined together, and the resulting quantum mechanically derived force field is thereafter employed in lengthy molecular dynamics simulations to compute several thermodynamic properties that characterize the resulting bulk phase. The accuracy of the proposed parametrization protocol is finally validated by comparing the computed macroscopic observables with the available experimental counterparts. It is found that, on average, the proposed approach is capable of yielding a consistent description of the investigated set, often outperforming the literature standard force fields, or at least delivering results of similar accuracy.

  17. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements

    PubMed Central

    Zhou, Rui; Maisuradze, Gia G.; Suñol, David; Todorovski, Toni; Macias, Maria J.; Xiao, Yi; Scheraga, Harold A.; Czaplewski, Cezary; Liwo, Adam

    2014-01-01

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding. PMID:25489078

  18. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.

    PubMed

    Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam

    2014-12-23

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.

  19. Quantitative Assessment of Force Fields on Both Low-Energy Conformational Basins and Transition-State Regions of the (ϕ-ψ) Space.

    PubMed

    Liu, Zhiwei; Ensing, Bernd; Moore, Preston B

    2011-02-08

    The free energy surfaces (FESs) of alanine dipeptide are studied to illustrate a new strategy to assess the performance of classical molecular mechanics force field on the full range of the (ϕ-ψ) conformational space. The FES is obtained from metadynamics simulations with five commonly used force fields and from ab initio density functional theory calculations in both gas phase and aqueous solution. The FESs obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) level of theory are validated by comparison with previously reported MP2 and LMP2 results as well as with experimentally obtained probability distribution between the C5-β (or β-PPII) and αR states. A quantitative assessment is made for each force field in three conformational basins, LeRI (C5-β-C7eq), LeRII (β2-αR), and LeRIII(αL-C7ax-αD) as well as three transition-state regions linking the above conformational basins. The performance of each force field is evaluated in terms of the average free energy of each region in comparison with that of the ab initio results. We quantify how well a force field FES matches the ab initio FES through the calculation of the standard deviation of a free energy difference map between the two FESs. The results indicate that the performance varies largely from region to region or from force field to force field. Although not one force field is able to outperform all others in all conformational areas, the OPLSAA/L force field gives the best performance overall, followed by OPLSAA and AMBER03. For the three top performers, the average free energies differ from the corresponding ab initio values from within the error range (<0.4 kcal/mol) to ∼1.5 kcal/mol for the low-energy regions and up to ∼2.0 kcal/mol for the transition-state regions. The strategy presented and the results obtained here should be useful for improving the parametrization of force fields targeting both accuracy in the energies of conformers and the transition-state barriers.

  20. Discrete sensors distribution for accurate plantar pressure analyses.

    PubMed

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  2. Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach.

    PubMed

    Stroet, Martin; Koziara, Katarzyna B; Malde, Alpeshkumar K; Mark, Alan E

    2017-12-12

    A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space mapping). The consideration of surfaces in parameter space as opposed to local values or gradients leads to a better understanding of the relationships between the parameters being optimized and a given set of target data. This in turn enables for a range of target data from multiple molecules to be combined in a robust manner and for the optimal region of parameter space to be trivially identified. The effectiveness of the approach is illustrated by using the method to refine the chlorine 6-12 Lennard-Jones parameters against experimental solvation free enthalpies in water and hexane as well as the density and heat of vaporization of the liquid at atmospheric pressure for a set of 10 aromatic-chloro compounds simultaneously. Single-step perturbation is used to efficiently calculate solvation free enthalpies for a wide range of parameter combinations. The capacity of this approach to parametrize accurate and transferrable force fields is discussed.

  3. Management of Social Incentives in Air Force Technical Training: A Field Experiment. Final Report.

    ERIC Educational Resources Information Center

    Hakel, Milton D.; And Others

    The report is a study of the utility of social reinforcement for improving Air Force training. It was conducted through a field evaluation of social incentive instructional systems which would serve to improve student motivation, classroom performance, and attitudes. The participants included a total of 300 trainees from two Air Force bases; 25…

  4. Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1994-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.

  5. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  6. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    2017-12-21

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  7. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  8. Force-field parametrization and molecular dynamics simulations of Congo red

    NASA Astrophysics Data System (ADS)

    Król, Marcin; Borowski, Tomasz; Roterman, Irena; Piekarska, Barbara; Stopa, Barbara; Rybarska, Joanna; Konieczny, Leszek

    2004-01-01

    Congo red, a diazo dye widely used in medical diagnosis, is known to form supramolecular systems in solution. Such a supramolecular system may interact with various proteins. In order to examine the nature of such complexes empirical force field parameters for the Congo red molecule were developed. The parametrization of bonding terms closely followed the methodology used in the development of the charmm22 force field, except for the calculation of charges. Point charges were calculated from a fit to a quantum mechanically derived electrostatic potential using the CHELP-BOW method. Obtained parameters were tested in a series of molecular dynamics simulations of both a single molecule and a micelle composed of Congo red molecules. It is shown that newly developed parameters define a stable minimum on the hypersurface of the potential energy and crystal and ab initio geometries and rotational barriers are well reproduced. Furthermore, rotations around C-N bonds are similar to torsional vibrations observed in crystals of diphenyl-diazene, which confirms that the flexibility of the molecule is correct. Comparison of results obtained from micelles molecular dynamics simulations with experimental data shows that the thermal dependence of micelle creation is well reproduced.

  9. Nanophotonic force microscopy: Characterizing particle–surface interactions using near-field photonics

    DOE PAGES

    Schein, Perry; Kang, Pilgyu; O’Dell, Dakota; ...

    2015-01-27

    Direct measurements of particle–surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. In this paper, we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scatteredmore » by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. Finally, as shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less

  10. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  11. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    PubMed

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  12. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  13. The fast multipole method and point dipole moment polarizable force fields.

    PubMed

    Coles, Jonathan P; Masella, Michel

    2015-01-14

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  14. Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.

    2006-03-01

    A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.

  15. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  16. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  17. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.

    PubMed

    Raabe, Gabriele; Maginn, Edward J

    2010-08-12

    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.

  18. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  19. Effects of laparoscopic instrument and finger on force perception: a first step towards laparoscopic force-skills training.

    PubMed

    Raghu Prasad, M S; Manivannan, M; Chandramohan, S M

    2015-07-01

    In laparoscopic surgery, no external feedback on the magnitude of the force exerted is available. Hence, surgeons and residents tend to exert excessive force, which leads to tissue trauma. Ability of surgeons and residents to perceive their own force output without external feedback is a critical factor in laparoscopic force-skills training. Additionally, existing methods of laparoscopic training do not effectively train residents and novices on force-skills. Hence, there is growing need for the development of force-based training curriculum. As a first step towards force-based laparoscopic skills training, this study analysed force perception difference between laparoscopic instrument and finger in contralateral bimanual passive probing task. The study compared the isometric force matching performance of novices, residents and surgeons with finger and laparoscopic instrument. Contralateral force matching paradigm was employed to analyse the force perception capability in terms of relative (accuracy), and constant errors in force matching. Force perception of experts was found to be better than novices and residents. Interestingly, laparoscopic instrument was more accurate in discriminating the forces than finger. The dominant hand attempted to match the forces accurately, whereas non-dominant hand (NH) overestimated the forces. Further, the NH of experts was found to be most accurate. Furthermore, excessive forces were applied at lower force levels and at very high force levels. Due to misperception of force, novices and residents applied excessive forces. However, experts had good control over force with both dominant and NHs. These findings suggest that force-based training curricula should not only have proprioception tasks, but should also include bimanual force-skills training exercises in order to improve force perception ability and hand skills of novices and residents. The results can be used as a performance metric in both box and virtual reality

  20. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  1. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  2. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  3. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2010-09-30

    Experimental NMR verification of MD simulations using 12 different force fields (AMBER, CHARMM, GROMOS, and OPLS-AA) and 5 different water models has been undertaken to identify reliable MD protocols for structure and dynamics elucidations of small open chain peptides containing Gly and Pro. A conformationally flexible tetrapeptide Gly-Pro-Gly-Gly was selected for NMR (3)J-coupling, chemical shift, and internuclear distance measurements, followed by their calculations using 2 μs long MD simulations in water. In addition, Ramachandran population maps for Pro-2 and Gly-3 residues of GPGG obtained from MD simulations were used for detailed comparisons with similar maps from the protein data bank (PDB) for large number of Gly and Pro residues in proteins. The MD simulations revealed strong dependence of the populations and geometries of preferred backbone and side chain conformations, as well as the time scales of the peptide torsional transitions on the force field used. On the basis of the analysis of the measured and calculated data, AMBER99SB is identified as the most reliable force field for reproducing NMR measured parameters, which are dependent on the peptide backbone and the Pro side chain geometries and dynamics. Ramachandran maps showing the dependence of conformational populations as a function of backbone ϕ/ψ angles for Pro-2 and Gly-3 residues of GPGG from MD simulations using AMBER99SB, AMBER03, and CHARMM were found to resemble similar maps for Gly and Pro residues from the PDB survey. Three force fields (AMBER99, AMBER99ϕ, and AMBER94) showed the least satisfactory agreement with both the solution NMR and the PDB survey data. The poor performance of these force fields is attributed to their propensity to overstabilize helical peptide backbone conformations at the Pro-2 and Gly-3 residues. On the basis of the similarity of the MD and PDB Ramachandran plots, the following sequence of transitions is suggested for the Gly backbone conformation: α(L)

  6. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    PubMed

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  7. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.

    PubMed

    Kundu, Sangeeta

    2018-02-01

    The hallmark of Parkinson's disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35-56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.

  8. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  9. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  10. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  11. Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ureña-López, L. Arturo; Gonzalez-Morales, Alma X., E-mail: lurena@ugto.mx, E-mail: alma.gonzalez@fisica.ugto.mx

    2016-07-01

    As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eases their analytic and numerical analysis at the background and at the linear order of perturbations. The new method makes use of appropriate angular variables that simplify the writing of the equations of motion, and which also show that the usual field variables play a secondary role in the cosmological dynamics. We apply the method to a scalar fieldmore » endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is confirmed that there exists a Jeans wavenumber k {sub J} , directly related to the suppression of linear perturbations at wavenumbers k > k {sub J} , and which is verified to be k {sub J} = a √ mH . We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction of cosmological observables from scalar field dark matter models.« less

  12. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  13. Classical force field for hydrofluorocarbon molecular simulations. Application to the study of gas solubility in poly(vinylidene fluoride).

    PubMed

    Lachet, V; Teuler, J-M; Rousseau, B

    2015-01-08

    A classical all-atoms force field for molecular simulations of hydrofluorocarbons (HFCs) has been developed. Lennard-Jones force centers plus point charges are used to represent dispersion-repulsion and electrostatic interactions. Parametrization of this force field has been performed iteratively using three target properties of pentafluorobutane: the quantum energy of an isolated molecule, the dielectric constant in the liquid phase, and the compressed liquid density. The accuracy and transferability of this new force field has been demonstrated through the simulation of different thermophysical properties of several fluorinated compounds, showing significant improvements compared to existing models. This new force field has been applied to study solubilities of several gases in poly(vinylidene fluoride) (PVDF) above the melting temperature of this polymer. The solubility of CH4, CO2, H2S, H2, N2, O2, and H2O at infinite dilution has been computed using test particle insertions in the course of a NpT hybrid Monte Carlo simulation. For CH4, CO2, and their mixtures, some calculations beyond the Henry regime have also been performed using hybrid Monte Carlo simulations in the osmotic ensemble, allowing both swelling and solubility determination. An ideal mixing behavior is observed, with identical solubility coefficients in the mixtures and in pure gas systems.

  14. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  15. Air Force Officer Accession Planning: Addressing Key Gaps in Meeting Career Field Academic Degree Requirements for Nonrated Officers

    DTIC Science & Technology

    2016-06-09

    C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...various Air Force missions in particular career fields. Key to this goal for nonrated officers is establishing and enforcing academic degree...35 Developing Accession Targets by Academic Degree Type

  16. R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries

    PubMed Central

    Dupradeau, François-Yves; Cézard, Christine; Lelong, Rodolphe; Stanislawiak, Élodie; Pêcher, Julien; Delepine, Jean Charles; Cieplak, Piotr

    2008-01-01

    The web-based RESP ESP charge DataBase (R.E.DD.B., http://q4md-forcefieldtools.org/REDDB) is a free and new source of RESP and ESP atomic charge values and force field libraries for model systems and/or small molecules. R.E.DD.B. stores highly effective and reproducible charge values and molecular structures in the Tripos mol2 file format, information about the charge derivation procedure, scripts to integrate the charges and molecular topology in the most common molecular dynamics packages. Moreover, R.E.DD.B. allows users to freely store and distribute RESP or ESP charges and force field libraries to the scientific community, via a web interface. The first version of R.E.DD.B., released in January 2006, contains force field libraries for molecules as well as molecular fragments for standard residues and their analogs (amino acids, monosaccharides, nucleotides and ligands), hence covering a vast area of relevant biological applications. PMID:17962302

  17. Interfacial Force Field Characterization in a Constrained Vapor Bubble Thermosyphon

    NASA Technical Reports Server (NTRS)

    DasGupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    Isothermal profiles of the extended meniscus in a quartz cuvette were measured in the earth's gravitational field using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. These profiles are a function of the stress field. Experimentally, the augmented Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces for heptane and pentane menisci on quartz and tetradecane on SFL6. The effects of refractive indices of the solid and liquid on the measurement techniques were demonstrated. Experimentally obtained values of the disjoining pressure and dispersion constants were compared to those predicted from the Dzyaloshinskii - Lifshitz - Pilaevskii theory for an ideal surface and reasonable agreements were obtained. A parameter introduced gives a quantitative measurement of the closeness of the system to equilibrium. The nonequilibrium behavior of this parameter is also presented

  18. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.

    PubMed

    Mercadante, Davide; Milles, Sigrid; Fuertes, Gustavo; Svergun, Dmitri I; Lemke, Edward A; Gräter, Frauke

    2015-06-25

    Understanding the function of intrinsically disordered proteins is intimately related to our capacity to correctly sample their conformational dynamics. So far, a gap between experimentally and computationally derived ensembles exists, as simulations show overcompacted conformers. Increasing evidence suggests that the solvent plays a crucial role in shaping the ensembles of intrinsically disordered proteins and has led to several attempts to modify water parameters and thereby favor protein-water over protein-protein interactions. This study tackles the problem from a different perspective, which is the use of the Kirkwood-Buff theory of solutions to reproduce the correct conformational ensemble of intrinsically disordered proteins (IDPs). A protein force field recently developed on such a basis was found to be highly effective in reproducing ensembles for a fragment from the FG-rich nucleoporin 153, with dimensions matching experimental values obtained from small-angle X-ray scattering and single molecule FRET experiments. Kirkwood-Buff theory presents a complementary and fundamentally different approach to the recently developed four-site TIP4P-D water model, both of which can rescue the overcollapse observed in IDPs with canonical protein force fields. As such, our study provides a new route for tackling the deficiencies of current protein force fields in describing protein solvation.

  19. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    NASA Astrophysics Data System (ADS)

    Karam, R.; Kneubil, F. B.; Robilotta, M. R.

    2017-09-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.

  20. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  1. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    PubMed

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  2. Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans

    PubMed Central

    Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter

    2016-01-01

    The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces. DOI: http://dx.doi.org/10.7554/eLife.19089.001 PMID:27855780

  3. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  4. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie

    2015-08-06

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less

  5. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  6. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  7. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  8. Free-energy landscape of the villin headpiece in an all-atom force field.

    PubMed

    Herges, Thomas; Wenzel, Wolfgang

    2005-04-01

    We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.

  9. Current state of the art in small mass and force metrology within the International System of Units

    NASA Astrophysics Data System (ADS)

    Shaw, Gordon A.

    2018-07-01

    This review article summarizes new scientific trends in research for metrology of small mass (1 mg and lower) and small force (10 micronewtons and lower). After a brief introduction to the field, this paper provides an overview of recent developments in methods that demonstrate traceability to the International System of Units (SI) with emphasis on the implications of redefining the kilogram in terms of Planck’s constant. Specific research applications include new metrology facilities, calibration of small mass and force references such as milligram to submilligram masses or atomic force microscope (AFM) cantilevers, and laser power measurement using radiation pressure forces. Also discussed are recent scientific developments that may impact the field moving forward in the study of ultrasmall forces present in trapped and cooled quantum mechanical systems, resonant micro- and nanomechanical mass sensors, and other areas that are potentially well suited for SI metrology. The work reviewed is not intended as a comprehensive review of all research in which small forces are measured, but rather as an overview of a field in which the accurate measurement of small mass and force with quantified uncertainty is the primary goal.

  10. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  11. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    PubMed

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  12. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    PubMed

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  13. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations

    PubMed Central

    Dijkstra, Maurits J. J.; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-01-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a ‘tube model’ approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the ‘CamTube’ force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost. PMID:26505754

  14. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  15. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  16. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  17. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).

    PubMed

    Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu

    2018-06-04

    Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.

  18. Trial-by-trial adaptation of movements during mental practice under force field.

    PubMed

    Anwar, Muhammad Nabeel; Khan, Salman Hameed

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  19. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    PubMed Central

    Neumann, Marcus A.

    2017-01-01

    Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956

  20. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues

    NASA Astrophysics Data System (ADS)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-01

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  1. The accurate particle tracer code

    NASA Astrophysics Data System (ADS)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  2. The accurate particle tracer code

    DOE PAGES

    Wang, Yulei; Liu, Jian; Qin, Hong; ...

    2017-07-20

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  3. The accurate particle tracer code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian; Qin, Hong

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  4. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  5. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  6. Polarizable Force Fields for CO2 and CH4 Adsorption in M-MOF-74

    PubMed Central

    2017-01-01

    The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption capacity. The chemical environment of the adsorbate molecule in M-MOF-74 can be tuned by exchanging the metal ion incorporated in the structure. To optimize materials for a given separation process, insights into how the choice of the metal ion affects the interaction strength with adsorbate molecules and how to model these interactions are essential. Here, we quantitatively highlight the importance of polarization by comparing the proposed polarizable force field to orbital interaction energies from DFT calculations. Adsorption isotherms and heats of adsorption are computed for CO2, CH4, and their mixtures in M-MOF-74 with all 10 metal ions. The results are compared to experimental data, and to previous simulation results using nonpolarizable force fields derived from quantum mechanics. To the best of our knowledge, the developed polarizable force field is the only one so far trying to cover such a large set of possible metal ions. For the majority of metal ions, our simulations are in good agreement with experiments, demonstrating the effectiveness of our polarizable potential and the transferability of the adopted approach. PMID:28286598

  7. Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks.

    PubMed

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-03-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of "modes," hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis.

  8. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    ERIC Educational Resources Information Center

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  9. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  10. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Hickstein, Daniel D.; Galloway, Benjamin R.; Durfee, Charles G.; Kapteyn, Henry C.; Murnane, Margaret M.; Ivanov, Misha

    2018-05-01

    The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range, to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and its parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation as well as elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high harmonic generation using currently available light sources.

  11. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    PubMed Central

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  12. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr; Schnell, Benoît

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining levelmore » on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.« less

  13. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    PubMed

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  14. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  15. Tests and applications of nonlinear force-free field extrapolations in spherical geometry

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.

    2013-07-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.

  16. A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates

    NASA Astrophysics Data System (ADS)

    Palkovic, Steven D.; Yip, Sidney; Büyüköztürk, Oral

    2017-12-01

    Calcium-silicate-hydrate (C-S-H) gel is a cohesive-frictional material that exhibits strength asymmetry in compression and tension and normal-stress dependency of the maximum shear strength. Experiments suggest the basic structural component of C-S-H is a colloidal particle with an internal layered structure. These colloids form heterogeneous assemblies with a complex pore network at the mesoscale. We propose a cohesive-frictional force field (CFFF) to describe the interactions in colloidal C-S-H materials that incorporates the strength anisotropy fundamental to the C-S-H molecular structure that has been omitted from recent mesoscale models. We parameterize the CFFF from reactive force field simulations of an internal interface that controls mechanical performance, describing the behavior of thousands of atoms through a single effective pair interaction. We apply the CFFF to study the mesoscale elastic and Mohr-Coulomb strength properties of C-S-H with varying polydispersity and packing density. Our results show that the consideration of cohesive-frictional interactions lead to an increase in stiffness, shear strength, and normal-stress dependency, while also changing the nature of local deformation processes. The CFFF and our coarse-graining approach provide an essential connection between nanoscale molecular interactions and macroscale continuum behavior for hydrated cementitious materials.

  17. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  18. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    PubMed

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  19. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model

    DTIC Science & Technology

    1987-07-01

    Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H

  20. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics

    NASA Astrophysics Data System (ADS)

    Pineda, M.; Stamatakis, M.

    2017-07-01

    Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.

  1. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  2. Thermophoretic force and velocity of nanoparticles in the free molecule regime.

    PubMed

    Li, Zhigang; Wang, Hai

    2004-08-01

    We extend our previous gas-kinetic theory analysis of drag force in a uniform temperature field [Li and Wang, Phys. Rev. E. 68, 061206 (2003); 68, 061207 (2003)] to particle transport in fluids with nonuniform temperature. Formulations for drag and thermophoretic forces are proposed for nanoparticle transport in low-density gases. We specifically consider the influence of nonrigid body collision due to van der Waals or other forces between the particle and gas molecules and find that these forces play a notable role for particles a few nanometers in size. It is shown that the present formulations can be easily reduced to the classical result of Waldmann [Z. Naturforsch. A 14a, 589 (1959)] by assuming rigid body collision. From the force formulations we also obtain the equation governing the thermophoretic velocity. This velocity is found to be highly sensitive to the potential energy of interactions between gas molecules and particle, and as such Waldmann's thermophoretic velocity is not expected to be accurate for nanosized particles.

  3. Enslaving in a serial chain: Interactions between grip force and hand force in isometric tasks

    PubMed Central

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative co-variation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of “modes”, hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force co-variation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force co-variation) can be naturally interpreted within the referent configuration hypothesis. PMID:24309747

  4. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  5. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    PubMed

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  6. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant

    PubMed Central

    2011-01-01

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  7. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  8. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.

    PubMed

    Duan, Yong; Wu, Chun; Chowdhury, Shibasish; Lee, Mathew C; Xiong, Guoming; Zhang, Wei; Yang, Rong; Cieplak, Piotr; Luo, Ray; Lee, Taisung; Caldwell, James; Wang, Junmei; Kollman, Peter

    2003-12-01

    Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999-2012, 2003

  9. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments.

    PubMed

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-07-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs.

  10. An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soules, T F; Gilmer, G H; Matthews, M J

    2010-10-21

    We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important tomore » laser mitigation experiments.« less

  11. Tackling force-field bias in protein folding simulations: folding of Villin HP35 and Pin WW domains in explicit water.

    PubMed

    Mittal, Jeetain; Best, Robert B

    2010-08-04

    The ability to fold proteins on a computer has highlighted the fact that existing force fields tend to be biased toward a particular type of secondary structure. Consequently, force fields for folding simulations are often chosen according to the native structure, implying that they are not truly "transferable." Here we show that, while the AMBER ff03 potential is known to favor helical structures, a simple correction to the backbone potential (ff03( *)) results in an unbiased energy function. We take as examples the 35-residue alpha-helical Villin HP35 and 37 residue beta-sheet Pin WW domains, which had not previously been folded with the same force field. Starting from unfolded configurations, simulations of both proteins in Amber ff03( *) in explicit solvent fold to within 2.0 A RMSD of the experimental structures. This demonstrates that a simple backbone correction results in a more transferable force field, an important requirement if simulations are to be used to interpret folding mechanism. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Magnetic domain structure imaging near sample surface with alternating magnetic force microscopy by using AC magnetic field modulated superparamagnetic tip.

    PubMed

    Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-03

    For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.

  13. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions

    PubMed Central

    Huang, Qian; Lee, Joon; Arce, Fernando Teran; Yoon, Ilsun; Angsantikul, Pavimol; Liu, Justin; Shi, Yuesong; Villanueva, Josh; Thamphiwatana, Soracha; Ma, Xuanyi; Zhang, Liangfang; Chen, Shaochen; Lal, Ratnesh; Sirbuly, Donald J.

    2018-01-01

    Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1–4 and optical and magnetic tweezers5–8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14–16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon–dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution. PMID:29576804

  14. Accurate temperature measurement by temperature field analysis in diamond anvil cell for thermal transport study of matter under high pressures

    NASA Astrophysics Data System (ADS)

    Yue, Donghui; Ji, Tingting; Qin, Tianru; Wang, Jia; Liu, Cailong; Jiao, Hui; Zhao, Lin; Han, Yonghao; Gao, Chunxiao

    2018-02-01

    The study on the thermal transport properties of matter under high pressure is important but is hard to fulfill in a diamond anvil cell (DAC) because the accurate measurement of the temperature gradient within the sample of DAC is very difficult. In most cases, the sample temperature can be read accurately from the thermocouples that are directly attached to the lateral edges of diamond anvils because both the sample and diamond anvils can be uniformly heated up to a given temperature. But for the thermal transport property studies in DAC, an artificial temperature distribution along the compression axis is a prerequisite. Obviously, the temperature of the top or bottom surface of the sample cannot be substituted by that of diamond anvils although diamond anvils can be considered as a good medium for heat conduction. With temperature field simulation by finite element analysis, it is found that big measurement errors can occur and are fatal to the correct analysis of thermal transport properties of materials. Thus, a method of combining both the four-thermocouple configuration and temperature field analysis is presented for the accurate temperature distribution measurement in DAC, which is based on the single-function relationship between temperature distribution and sample thermal conductivity.

  15. From Wardens Air Force to Boyds Air Force

    DTIC Science & Technology

    2016-04-01

    changing events.8 In this respect, armed forces can be viewed more accurately as perpetually evolving ecosystems than the unresponsive closed...large-scale full- motion video (FMV) exploitation. In the near-term, the service is already exploring emerging technology that can scan video for

  16. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-09-21

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V({phi}) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology.

  17. Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and ARROW polarizable force fields.

    PubMed

    Kamath, Ganesh; Kurnikov, Igor; Fain, Boris; Leontyev, Igor; Illarionov, Alexey; Butin, Oleg; Olevanov, Michael; Pereyaslavets, Leonid

    2016-11-01

    We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest. We find that when we had time to parametrize the functional groups with care (batch 0), the polarizable force-fields outperformed the non-polarizable one. Conversely, on the full set of 53 compounds, GAFF performed better than both QMPFF3 and ARROW. We also describe the torsion-restrain method we used to improve sampling of molecular conformational space and thus the overall accuracy of prediction. The SAMPL5 challenge highlighted several drawbacks of our force-fields, such as our significant systematic over-estimation of hydrophobic interactions, specifically for alkanes and aromatic rings.

  18. Inflatable bladder provides accurate calibration of pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J.

    1965-01-01

    Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.

  19. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  20. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  1. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation.

    PubMed

    Kim, Eunae; Jang, Soonmin; Pak, Youngshang

    2007-10-14

    We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.

  2. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  3. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  4. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    PubMed

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  6. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  7. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble.

    PubMed

    Gross, Markus; Gambassi, Andrea; Dietrich, S

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  8. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Gross, Markus; Gambassi, Andrea; Dietrich, S.

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ɛ =4 -d , where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ɛ and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two

  9. Ab Initio Calculation of Accurate Vibrational Frequencies for Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within +/- 8 cm(sup -1) on average, and molecular bond distances are accurate to within +/- 0.001-0.003 A, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as rovibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy win be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  10. Three dimensional radiation fields in free electron lasers using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, L.R.; Gallardo, J.

    1981-10-28

    In a free electron laser a relativistic electron beam is bunched under the action of the ponderomotive potential and is forced to radiate in close phase with the input wave. Until recently, most theories of the FEL have dealt solely with electron beams of infinite transverse dimension radiating only one-dimensional E.M. waves (plane waves). Although these theories describe accurately the dynamics of the electrons during the FEL interaction process, neither the three dimensional nature of the radiated fields nor its non-monochromatic features can be properly studied by them. As a result of this, very important practical issues such as themore » gain per gaussian-spherical optical mode in a free electron laser have not been well addressed, except through a one dimensional field model in which a filling factor describes crudely the coupling of the FEL induced field to the input field.« less

  11. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  12. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  13. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    PubMed Central

    Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz

    2012-01-01

    Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669

  14. Active control and synchronization chaotic satellite via the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia

    2016-07-01

    The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.

  15. DelPhiForce web server: electrostatic forces and energy calculations and visualization.

    PubMed

    Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil

    2017-11-15

    Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. IR technology for enhanced force protection by AIM

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  17. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.

    PubMed

    Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong

    2013-04-04

    With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.

  18. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of themore » method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).« less

  19. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  20. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences.

    PubMed

    Best, Robert B; Mittal, Jeetain

    2011-04-01

    Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two-state folder, the GB1 hairpin. We use extensive replica-exchange molecular dynamics simulations to characterize the free-energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data.

  1. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  2. Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization

    NASA Astrophysics Data System (ADS)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin; Chen, Ze-Peng; Luo, Wen-Feng

    2018-01-01

    Moving force identification (MFI) is an important inverse problem in the field of bridge structural health monitoring (SHM). Reasonable signal structures of moving forces are rarely considered in the existing MFI methods. Interaction forces are complex because they contain both slowly-varying harmonic and impact signals due to bridge vibration and bumps on a bridge deck, respectively. Therefore, the interaction forces are usually hard to be expressed completely and sparsely by using a single basis function set. Based on the redundant concatenated dictionary and weighted l1-norm regularization method, a hybrid method is proposed for MFI in this study. The redundant dictionary consists of both trigonometric functions and rectangular functions used for matching the harmonic and impact signal features of unknown moving forces. The weighted l1-norm regularization method is introduced for formulation of MFI equation, so that the signal features of moving forces can be accurately extracted. The fast iterative shrinkage-thresholding algorithm (FISTA) is used for solving the MFI problem. The optimal regularization parameter is appropriately chosen by the Bayesian information criterion (BIC) method. In order to assess the accuracy and the feasibility of the proposed method, a simply-supported beam bridge subjected to a moving force is taken as an example for numerical simulations. Finally, a series of experimental studies on MFI of a steel beam are performed in laboratory. Both numerical and experimental results show that the proposed method can accurately identify the moving forces with a strong robustness, and it has a better performance than the Tikhonov regularization method. Some related issues are discussed as well.

  3. Mapping the global football field: a sociological model of transnational forces within the world game.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  4. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint onmore » the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking

  5. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  6. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    PubMed Central

    Zgarbová, Marie; Luque, F. Javier; Šponer, Jiří; Cheatham, Thomas E.; Otyepka, Michal; Jurečka, Petr

    2013-01-01

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations. PMID:24058302

  7. Removing systematic errors in interionic potentials of mean force computed in molecular simulations using reaction-field-based electrostatics

    PubMed Central

    Baumketner, Andrij

    2009-01-01

    The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media. PMID:19292522

  8. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  9. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  10. Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Yomogita, Takahiro; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Akiya, Takahiro; Hioki, Keiko; Hattori, Atsushi

    2018-02-01

    First-order reversal curve (FORC) diagram has been previously adopted for the analyses of magnetization reversal process and/or quantitative evaluation of coercivity and interaction field dispersions in various magnetic samples. Although these kinds of information are valuable for permanent magnets, previously reported FORC diagrams of sintered Nd-Fe-B magnets exhibit very complicated patterns. In this paper, we have studied the FORC diagrams of hot-deformed Nd-Fe-B magnets under various conditions. Contrary to the previous reports on sintered Nd-Fe-B magnets, the FORC diagram of the hot-deformed Nd-Fe-B magnet exhibits a very simple pattern consisting of a strong spot and a weak line. From this FORC diagram pattern, it is revealed that the coercivity dispersion of the hot-deformed Nd-Fe-B magnets is surprisingly small. Moreover, this feature of the FORC diagram pattern is very robust and unaffected by changes in various conditions such as grain boundary diffusion process, temperature, and field direction, whereas these conditions significantly change the coercivity and the shape of magnetization curve. This fact indicates that the magnetization reversal process of the hot-deformed Nd-Fe-B magnets is almost unchanged against these conditions.

  11. A new cation-exchange method for accurate field speciation of hexavalent chromium

    USGS Publications Warehouse

    Ball, J.W.; McCleskey, R. Blaine

    2003-01-01

    A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.

  12. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides

    PubMed Central

    Jana, Madhurima; MacKerell, Alexander D.

    2015-01-01

    An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, while for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules. PMID:26018564

  13. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  14. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  15. Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.

    PubMed

    Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei

    2016-10-01

    Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. © 2016 Wiley Periodicals, Inc.

  16. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  17. Force Field for Peptides and Proteins based on the Classical Drude Oscillator

    PubMed Central

    Lopes, Pedro E.M.; Huang, Jing; Shim, Jihyun; Luo, Yun; Li, Hui; Roux, Benoît; MacKerell, Alexander D.

    2013-01-01

    Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics (MD) simulation studies of peptides and proteins. Building upon parameters for model compounds representative of the functional groups in proteins, the development of the force field focused on the optimization of the parameters for the polypeptide backbone and the connectivity between the backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum mechanical conformational energies, interactions with water, molecular dipole moments and polarizabilities and experimental condensed phase data for short polypeptides such as (Ala)5. Additional optimization of the backbone φ, ψ conformational preferences included adjustments of the tabulated two-dimensional spline function through the CMAP term. Validation of the model included simulations of a collection of peptides and proteins. This 1st generation polarizable model is shown to maintain the folded state of the studied systems on the 100 ns timescale in explicit solvent MD simulations. The Drude model typically yields larger RMS differences as compared to the additive CHARMM36 force field (C36) and shows additional flexibility as compared to the additive model. Comparison with NMR chemical shift data shows a small degradation of the polarizable model with respect to the additive, though the level of agreement may be considered satisfactory, while for residues shown to have significantly underestimated S2 order parameters in the additive model, improvements are calculated with the polarizable model. Analysis of dipole moments associated with the peptide backbone and tryptophan side chains show the Drude model to have significantly larger values than those present in C36, with the dipole moments of the peptide backbone enhanced to a greater extent in sheets versus helices and the dipoles of individual

  18. Bottled SAFT: A Web App Providing SAFT-γ Mie Force Field Parameters for Thousands of Molecular Fluids.

    PubMed

    Ervik, Åsmund; Mejía, Andrés; Müller, Erich A

    2016-09-26

    Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.

  19. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms

    PubMed Central

    Cunnington, Ross; Mattingley, Jason B.; Riek, Stephan; Carroll, Timothy J.

    2016-01-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153–167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. PMID:27582293

  20. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.

    PubMed

    Reuter, Eva-Maria; Cunnington, Ross; Mattingley, Jason B; Riek, Stephan; Carroll, Timothy J

    2016-11-01

    There are well-documented differences in the way that people typically perform identical motor tasks with their dominant and the nondominant arms. According to Yadav and Sainburg's (Neuroscience 196: 153-167, 2011) hybrid-control model, this is because the two arms rely to different degrees on impedance control versus predictive control processes. Here, we assessed whether differences in limb control mechanisms influence the rate of feedforward compensation to a novel dynamic environment. Seventy-five healthy, right-handed participants, divided into four subsamples depending on the arm (left, right) and direction of the force field (ipsilateral, contralateral), reached to central targets in velocity-dependent curl force fields. We assessed the rate at which participants developed predictive compensation for the force field using intermittent error-clamp trials and assessed both kinematic errors and initial aiming angles in the field trials. Participants who were exposed to fields that pushed the limb toward ipsilateral space reduced kinematic errors more slowly, built up less predictive field compensation, and relied more on strategic reaiming than those exposed to contralateral fields. However, there were no significant differences in predictive field compensation or kinematic errors between limbs, suggesting that participants using either the left or the right arm could adapt equally well to novel dynamics. It therefore appears that the distinct preferences in control mechanisms typically observed for the dominant and nondominant arms reflect a default mode that is based on habitual functional requirements rather than an absolute limit in capacity to access the controller specialized for the opposite limb. Copyright © 2016 the American Physiological Society.