Sample records for accurate highly sensitive

  1. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.

    PubMed

    Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z

    2012-06-01

    To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing

  2. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  3. A highly sensitive and accurate gene expression analysis by sequencing ("bead-seq") for a single cell.

    PubMed

    Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki

    2015-02-15

    Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Therapeutic Drug Monitoring of Phenytoin by Simple, Rapid, Accurate, Highly Sensitive and Novel Method and Its Clinical Applications.

    PubMed

    Shaikh, Abdul S; Guo, Ruichen

    2017-01-01

    Phenytoin has very challenging pharmacokinetic properties. To prevent its toxicity and ensure efficacy, continuous therapeutic monitoring is required. It is hard to get a simple, accurate, rapid, easily available, economical and highly sensitive assay in one method for therapeutic monitoring of phenytoin. The present study is directed towards establishing and validating a simpler, rapid, an accurate, highly sensitive, novel and environment friendly liquid chromatography/mass spectrometry (LC/MS) method for offering rapid and reliable TDM results of phenytoin in epileptic patients to physicians and clinicians for making immediate and rational decision. 27 epileptics patients with uncontrolled seizures or suspected of non-compliance or toxicity of phenytoin were selected and advised for TDM of phenytoin by neurologists of Qilu Hospital Jinan, China. The LC/MS assay was used for performing of therapeutic monitoring of phenytoin. The Agilent 1100 LC/MS system was used for TDM. The mixture of Ammonium acetate 5mM: Methanol at (35: 65 v/v) was used for the composition of mobile phase. The Diamonsil C18 (150mm×4.6mm, 5μm) column was used for the extraction of analytes in plasma. The samples were prepared with one step simple protein precipitation method. The technique was validated with the guidelines of International Conference on Harmonisation (ICH). The calibration curve demonstrated decent linearity within (0.2-20 µg/mL) concentration range with linearity equation, y= 0.0667855 x +0.00241785 and correlation coefficient (R2) of 0.99928. The specificity, recovery, linearity, accuracy, precision and stability results were within the accepted limits. The concentration of 0.2 µg/mL was observed as lower limit of quantitation (LLOQ), which is 12.5 times lower than the currently available enzyme-multiplied immunoassay technique (EMIT) for measurement of phenytoin in epilepsy patients. A rapid, simple, economical, precise, highly sensitive and novel LC/MS assay has been

  5. Accurate Filtering of Privacy-Sensitive Information in Raw Genomic Data.

    PubMed

    Decouchant, Jérémie; Fernandes, Maria; Völp, Marcus; Couto, Francisco M; Esteves-Veríssimo, Paulo

    2018-04-13

    Sequencing thousands of human genomes has enabled breakthroughs in many areas, among them precision medicine, the study of rare diseases, and forensics. However, mass collection of such sensitive data entails enormous risks if not protected to the highest standards. In this article, we follow the position and argue that post-alignment privacy is not enough and that data should be automatically protected as early as possible in the genomics workflow, ideally immediately after the data is produced. We show that a previous approach for filtering short reads cannot extend to long reads and present a novel filtering approach that classifies raw genomic data (i.e., whose location and content is not yet determined) into privacy-sensitive (i.e., more affected by a successful privacy attack) and non-privacy-sensitive information. Such a classification allows the fine-grained and automated adjustment of protective measures to mitigate the possible consequences of exposure, in particular when relying on public clouds. We present the first filter that can be indistinctly applied to reads of any length, i.e., making it usable with any recent or future sequencing technologies. The filter is accurate, in the sense that it detects all known sensitive nucleotides except those located in highly variable regions (less than 10 nucleotides remain undetected per genome instead of 100,000 in previous works). It has far less false positives than previously known methods (10% instead of 60%) and can detect sensitive nucleotides despite sequencing errors (86% detected instead of 56% with 2% of mutations). Finally, practical experiments demonstrate high performance, both in terms of throughput and memory consumption. Copyright © 2018. Published by Elsevier Inc.

  6. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  7. High sensitivity optical molecular imaging system

    NASA Astrophysics Data System (ADS)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  8. Fluorescence polarization immunoassays for rapid, accurate, and sensitive determination of mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...

  9. Retinal sensitivity and choroidal thickness in high myopia.

    PubMed

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  10. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  11. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  12. The Georgia Tech High Sensitivity Microwave Measurement System

    NASA Technical Reports Server (NTRS)

    Deboer, David R.; Steffes, Paul G.

    1996-01-01

    As observations and models of the planets become increasingly more accurate and sophisticated, the need for highly accurate laboratory measurements of the microwave properties of the component gases present in their atmospheres become ever more critical. This paper describes the system that has been developed at Georgia Tech to make these measurements at wavelengths ranging from 13.3 cm to 1.38 cm with a sensitivity of 0.05 dB/km at the longest wavelength and 0.6 db/km at the shortest wavelength.

  13. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  14. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    PubMed

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  15. Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice

    PubMed Central

    Liu, Yang; Jennings, Nicole L; Dart, Anthony M; Du, Xiao-Jun

    2012-01-01

    AIM: To optimize the experimental protocols for a simple, sensitive and accurate bleeding assay. METHODS: Bleeding assay was performed in mice by tail tip amputation, immersing the tail in saline at 37 °C, continuously monitoring bleeding patterns and measuring bleeding volume from changes in the body weight. Sensitivity and extent of variation of bleeding time and bleeding volume were compared in mice treated with the P2Y receptor inhibitor prasugrel at various doses or in mice deficient of FcRγ, a signaling protein of the glycoprotein VI receptor. RESULTS: We described details of the bleeding assay with the aim of standardizing this commonly used assay. The bleeding assay detailed here was simple to operate and permitted continuous monitoring of bleeding pattern and detection of re-bleeding. We also reported a simple and accurate way of quantifying bleeding volume from changes in the body weight, which correlated well with chemical assay of hemoglobin levels (r2 = 0.990, P < 0.0001). We determined by tail bleeding assay the dose-effect relation of the anti-platelet drug prasugrel from 0.015 to 5 mg/kg. Our results showed that the correlation of bleeding time and volume was unsatisfactory and that compared with the bleeding time, bleeding volume was more sensitive in detecting a partial inhibition of platelet’s haemostatic activity (P < 0.01). Similarly, in mice with genetic disruption of FcRγ as a signaling molecule of P-selectin glycoprotein ligand-1 leading to platelet dysfunction, both increased bleeding volume and repeated bleeding pattern defined the phenotype of the knockout mice better than that of a prolonged bleeding time. CONCLUSION: Determination of bleeding pattern and bleeding volume, in addition to bleeding time, improved the sensitivity and accuracy of this assay, particularly when platelet function is partially inhibited. PMID:24520531

  16. Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system

    PubMed Central

    Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.

    2014-01-01

    Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor. PMID:25338965

  17. Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.

    2014-10-01

    Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.

  18. Highly sensitive detection using microring resonator and nanopores

    NASA Astrophysics Data System (ADS)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  19. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.

    PubMed

    Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike

    2016-07-01

    High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Resonance Rayleigh scattering method for highly sensitive detection of chitosan using aniline blue as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Weiai; Ma, Caijuan; Su, Zhengquan; Bai, Yan

    2016-11-01

    This paper describes a highly sensitive and accurate approach using aniline blue (AB) (water soluble) as a probe to determine chitosan (CTS) through Resonance Rayleigh scattering (RRS). Under optimum experimental conditions, the intensities of RRS were linearly proportional to the concentration of CTS in the range from 0.01 to 3.5 μg/mL, and the limit of detection (LOD) was 6.94 ng/mL. Therefore, a new and highly sensitive method based on RRS for the determination of CTS has been developed. Furthermore, the effect of molecular weight of CTS and the effect of the degree of deacetylation of CTS on the accurate quantification of CTS was studied. The experimental data was analyzed by linear regression analysis, which indicated that the molecular weight and the degree of deacetylation of CTS had no statistical significance and this method could be used to determine CTS accurately. Meanwhile, this assay was applied for CTS determination in health products with satisfactory results.

  1. Polarization mode beating techniques for high-sensitivity intracavity sensing

    NASA Astrophysics Data System (ADS)

    Rosales-Garcia, Andrea

    Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the

  2. Remote balance weighs accurately amid high radiation

    NASA Technical Reports Server (NTRS)

    Eggenberger, D. N.; Shuck, A. B.

    1969-01-01

    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.

  3. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimi, Soufiene; Beigang, René; Klier, Jens

    2016-07-11

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wetmore » spray in the painting process.« less

  4. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  5. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species

    EPA Science Inventory

    For early detection biomonitoring of aquatic invasive species, sensitivity to rare individuals and accurate, high-resolution taxonomic classification are critical to minimize detection errors. Given the great expense and effort associated with morphological identification of many...

  6. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  7. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE PAGES

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    2018-03-09

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  8. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  9. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive.

    PubMed

    Oh, Ju Hyun; Hong, Soo Yeong; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Oh, Seung Yun; Yun, Junyeong; Lee, Hanchan; Kim, Jung Wook; Ha, Jeong Sook

    2018-02-28

    In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C -1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.

  10. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  11. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  12. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.

    PubMed

    Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju

    2017-06-01

    All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  14. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  15. Sensitive and accurate identification of protein–DNA binding events in ChIP-chip assays using higher order derivative analysis

    PubMed Central

    Barrett, Christian L.; Cho, Byung-Kwan

    2011-01-01

    Immuno-precipitation of protein–DNA complexes followed by microarray hybridization is a powerful and cost-effective technology for discovering protein–DNA binding events at the genome scale. It is still an unresolved challenge to comprehensively, accurately and sensitively extract binding event information from the produced data. We have developed a novel strategy composed of an information-preserving signal-smoothing procedure, higher order derivative analysis and application of the principle of maximum entropy to address this challenge. Importantly, our method does not require any input parameters to be specified by the user. Using genome-scale binding data of two Escherichia coli global transcription regulators for which a relatively large number of experimentally supported sites are known, we show that ∼90% of known sites were resolved to within four probes, or ∼88 bp. Over half of the sites were resolved to within two probes, or ∼38 bp. Furthermore, we demonstrate that our strategy delivers significant quantitative and qualitative performance gains over available methods. Such accurate and sensitive binding site resolution has important consequences for accurately reconstructing transcriptional regulatory networks, for motif discovery, for furthering our understanding of local and non-local factors in protein–DNA interactions and for extending the usefulness horizon of the ChIP-chip platform. PMID:21051353

  16. Radiation noise in a high sensitivity star sensor

    NASA Technical Reports Server (NTRS)

    Parkinson, J. B.; Gordon, E.

    1972-01-01

    An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds.

  17. Nano-textured high sensitivity ion sensitive field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less

  18. Near real time, accurate, and sensitive microbiological safety monitoring using an all-fibre spectroscopic fluorescence system

    NASA Astrophysics Data System (ADS)

    Vanholsbeeck, F.; Swift, S.; Cheng, M.; Bogomolny, E.

    2013-11-01

    Enumeration of microorganisms is an essential microbiological task for many industrial sectors and research fields. Various tests for detection and counting of microorganisms are used today. However most of the current methods to enumerate bacteria require either long incubation time for limited accuracy, or use complicated protocols along with bulky equipment. We have developed an accurate, all-fibre spectroscopic system to measure fluorescence signal in-situ. In this paper, we examine the potential of this setup for near real time bacteria enumeration in aquatic environment. The concept is based on a well-known phenomenon that the fluorescence quantum yields of some nucleic acid stains significantly increase upon binding with nucleic acids of microorganisms. In addition we have used GFP labeled organisms. The fluorescence signal increase can be correlated to the amount of nucleic acid present in the sample. In addition we have used GFP labeled organisms. Our results show that we are able to detect a wide range of bacteria concentrations without dilution or filtration (1-108 CFU/ml) using different optical probes we designed. This high sensitivity is due to efficient light delivery with an appropriate collection volume and in situ fluorescence detection as well as the use of a sensitive CCD spectrometer. By monitoring the laser power, we can account for laser fluctuations while measuring the fluorescence signal which improves as well the system accuracy. A synchronized laser shutter allows us to achieve a high SNR with minimal integration time, thereby reducing the photobleaching effect. In summary, we conclude that our optical setup may offer a robust method for near real time bacterial detection in aquatic environment.

  19. A sensitive and accurate method for the determination of perfluoroalkyl and polyfluoroalkyl substances in human serum using a high performance liquid chromatography-online solid phase extraction-tandem mass spectrometry.

    PubMed

    Yu, Chang Ho; Patel, Bhupendra; Palencia, Marilou; Fan, Zhihua Tina

    2017-01-13

    A selective, sensitive, and accurate analytical method for the measurement of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in human serum, utilizing LC-MS/MS (liquid chromatography-tandem mass spectrometry), was developed and validated according to the Centers for Disease Control and Prevention (CDC) guidelines for biological sample analysis. Tests were conducted to determine the optimal analytical column, mobile phase composition and pH, gradient program, and cleaning procedure. The final analytical column selected for analysis was an extra densely bonded silica-packed reverse-phase column (Agilent XDB-C 8 , 3.0×100mm, 3.5μm). Mobile phase A was an aqueous buffer solution containing 10mM ammonium acetate (pH=4.3). Mobile phase B was a mixture of methanol and acetonitrile (1:1, v/v). The gradient program was programmed by initiating a fast elution (%B, from 40 to 65%) between 1.0 and 1.5min, followed by a slow elution (%B: 65-80%) in the period of 1.5-7.5min. The cleanup procedures were augmented by cleaning with (1) various solvents (isopropyl alcohol, methanol, acetonitrile, and reverse osmosis-purified water); (2) extensive washing steps for the autosampler and solid phase extraction (SPE) cartridge; and (3) a post-analysis cleaning step for the whole system. Under the above conditions, the resolution and sensitivity were significantly improved. Twelve target PFASs were baseline-separated (2.5-7.0min) within a 10-min of acquisition time. The limits of detection (LODs) were 0.01ng/mL or lower for all of the target compounds, making this method 5 times more sensitive than previously published methods. The newly developed method was validated in the linear range of 0.01-50ng/mL, and the accuracy (recovery between 80 and 120%) and precision (RSD<20%) were acceptable at three spiked levels (0.25, 2.5, and 25ng/mL). The method development and validation results demonstrated that this method was precise, accurate, and robust, with high-throughput (∼10min

  20. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  1. High accurate time system of the Low Latitude Meridian Circle.

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Feng; Li, Zhiming

    In order to obtain the high accurate time signal for the Low Latitude Meridian Circle (LLMC), a new GPS accurate time system is developed which include GPS, 1 MC frequency source and self-made clock system. The second signal of GPS is synchronously used in the clock system and information can be collected by a computer automatically. The difficulty of the cancellation of the time keeper can be overcomed by using this system.

  2. High-accurate optical fiber liquid level sensor

    NASA Astrophysics Data System (ADS)

    Sun, Dexing; Chen, Shouliu; Pan, Chao; Jin, Henghuan

    1991-08-01

    A highly accurate optical fiber liquid level sensor is presented. The single-chip microcomputer is used to process and control the signal. This kind of sensor is characterized by self-security and is explosion-proof, so it can be applied in any liquid level detecting areas, especially in the oil and chemical industries. The theories and experiments about how to improve the measurement accuracy are described. The relative error for detecting the measurement range 10 m is up to 0.01%.

  3. A Highly Accurate Face Recognition System Using Filtering Correlation

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Sayuri; Kodate, Kashiko

    2007-09-01

    The authors previously constructed a highly accurate fast face recognition optical correlator (FARCO) [E. Watanabe and K. Kodate: Opt. Rev. 12 (2005) 460], and subsequently developed an improved, super high-speed FARCO (S-FARCO), which is able to process several hundred thousand frames per second. The principal advantage of our new system is its wide applicability to any correlation scheme. Three different configurations were proposed, each depending on correlation speed. This paper describes and evaluates a software correlation filter. The face recognition function proved highly accurate, seeing that a low-resolution facial image size (64 × 64 pixels) has been successfully implemented. An operation speed of less than 10 ms was achieved using a personal computer with a central processing unit (CPU) of 3 GHz and 2 GB memory. When we applied the software correlation filter to a high-security cellular phone face recognition system, experiments on 30 female students over a period of three months yielded low error rates: 0% false acceptance rate and 2% false rejection rate. Therefore, the filtering correlation works effectively when applied to low resolution images such as web-based images or faces captured by a monitoring camera.

  4. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    PubMed Central

    Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878

  5. High-sensitivity ESCA instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.D.; Herglotz, H.K.; Lee, J.D.

    1973-01-01

    A new electron spectroscopy for chemical analysis (ESCA) instrument has been developed to provide high sensitivity and efficient operation for laboratory analysis of composition and chemical bonding in very thin surface layers of solid samples. High sensitivity is achieved by means of the high-intensity, efficient x-ray source described by Davies and Herglotz at the 1968 Denver X-Ray Conference, in combination with the new electron energy analyzer described by Lee at the 1972 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. A sample chamber designed to provide for rapid introduction and replacement of samples has adequate facilities for various sample treatmentsmore » and conditiouing followed immediately by ESCA analysis of the sample. Examples of application are presented, demonstrating the sensitivity and resolution achievable with this instrument. Its usefulness in trace surface analysis is shown and some chemical shifts'' measured by the instrument are compared with those obtained by x-ray spectroscopy. (auth)« less

  6. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms.

  7. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  8. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean

    2017-07-01

    Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave

  9. Accurate high-speed liquid handling of very small biological samples.

    PubMed

    Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F

    1993-08-01

    Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.

  10. Robust High-Resolution Cloth Using Parallelism, History-Based Collisions and Accurate Friction

    PubMed Central

    Selle, Andrew; Su, Jonathan; Irving, Geoffrey; Fedkiw, Ronald

    2015-01-01

    In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high-resolution and high-fidelity simulations. PMID:19147895

  11. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  12. Sensitivity and accuracy of high-throughput metabarcoding methods used to describe aquatic communities for early detection of invasve fish species

    EPA Science Inventory

    For early detection biomonitoring of aquatic invasive species, sensitivity to rare individuals and accurate, high-resolution taxonomic classification are critical to minimize Type I and II detection errors. Given the great expense and effort associated with morphological identifi...

  13. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  14. High-Sensitivity GaN Microchemical Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  15. High Order Schemes in Bats-R-US for Faster and More Accurate Predictions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Gombosi, T. I.

    2014-12-01

    BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.

  16. Sensitivity study for a remotely piloted microwave-powered sailplane used as a high-altitude observation

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.

    1979-01-01

    The sensitivity of several performance characteristics of a proposed design for a microwave-powered, remotely piloted, high-altitude sailplane to changes in independently varied design parameters was investigated. Results were expressed as variations from baseline values of range, final climb altitude and onboard storage of radiated energy. Calculated range decreased with increases in either gross weight or parasite drag coefficient; it also decreased with decreases in lift coefficient, propeller efficiency, or microwave beam density. The sensitivity trends for range and final climb altitude were very similar. The sensitivity trends for stored energy were reversed from those for range, except for decreasing microwave beam density. Some study results for single parameter variations were combined to estimate the effect of the simultaneous variation of several parameters: for two parameters, this appeared to give reasonably accurate results.

  17. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  18. High-Sensitivity Spectrophotometry.

    ERIC Educational Resources Information Center

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  19. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals

    PubMed Central

    Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan

    2016-01-01

    The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight

  20. Self-diagnosis of active head lice infestation by individuals from an impoverished community: high sensitivity and specificity.

    PubMed

    Pilger, Daniel; Khakban, Adak; Heukelbach, Jorg; Feldmeier, Hermann

    2008-01-01

    To compare sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of self-diagnosis for head lice infestation with visual inspection, we conducted a study in an urban slum in Brazil. Individuals were asked about active head lice infestation (self-diagnosis); we performed visual inspection and thereafter wet combing (gold standard). Of the 175 individuals included, 77 (44%) had an active head lice infestation. For self-diagnosis, sensitivity (80.5%), specificity (91.8%), PPV (88.6%) and NPV (85.7%) were high. Sensitivity of visual inspection was 35.1%. Public health professionals can use self-diagnosis as a diagnostic tool, to estimate accurately prevalence of pediculosis in a community, and to monitor ongoing intervention strategies.

  1. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  2. Highly Sensitive and Practical Fluorescent Sandwich ELISA for Ciguatoxins.

    PubMed

    Tsumuraya, Takeshi; Sato, Takeshi; Hirama, Masahiro; Fujii, Ikuo

    2018-05-29

    Ciguatera fish poisoning (CFP) caused by the consumption of fish that have accumulated ciguatoxins (CTXs) affects more than 50000 people annually. The spread of CFP causes enormous damage to public health, fishery resources, and the economies of tropical and subtropical endemic regions. The difficulty in avoiding CFP arises from the lack of sensitive and reliable analytical methods for the detection and quantification of CTXs in contaminated fish, along with the normal appearance, smell, and taste of fish contaminated with the causative toxins. Thus, an accurate, sensitive, routine, and portable detection method for CTXs is urgently required. We have successfully developed a highly sensitive fluorescent sandwich ELISA, which can detect, differentiate, and quantify four major CTX congeners (CTX1B, CTX3C, 51-hydroxyCTX3C, and 54-deoxyCTX1B) with a detection limit of less than 1 pg/mL. The ELISA protocol, using one microtiter plate coated with two mAbs (10C9 and 3G8), and ALP-linked 8H4, can detect any of the four CTX congeners in a single operation. CTX1B spiked into fish at the FDA guidance level of 0.01 ppb CTX1B equivalent toxicity in fish from Pacific regions was also proven to be reliably detected by this ELISA. Furthermore, the efficiency of extraction/purification procedures and the matrix effect of contaminants in fish were evaluated in detail, since pretreatment and matrix effects are critical for ELISA analysis.

  3. Brief assessment of food insecurity accurately identifies high-risk US adults.

    PubMed

    Gundersen, Craig; Engelhard, Emily E; Crumbaugh, Amy S; Seligman, Hilary K

    2017-06-01

    To facilitate the introduction of food insecurity screening into clinical settings, we examined the test performance of two-item screening questions for food insecurity against the US Department of Agriculture's Core Food Security Module. We examined sensitivity, specificity and accuracy of various two-item combinations of questions assessing food insecurity in the general population and high-risk population subgroups. 2013 Current Population Survey December Supplement, a population-based US survey. All survey participants from the general population and high-risk subgroups. The test characteristics of multiple two-item combinations of questions assessing food insecurity had adequate sensitivity (>97 %) and specificity (>70 %) for widespread adoption as clinical screening measures. We recommend two specific items for clinical screening programmes based on their widespread current use and high sensitivity for detecting food insecurity. These items query how often the household 'worried whether food would run out before we got money to buy more' and how often 'the food that we bought just didn't last and we didn't have money to get more'. The recommended items have sensitivity across high-risk population subgroups of ≥97 % and a specificity of ≥74 % for food insecurity.

  4. ACCURATE CHARACTERIZATION OF HIGH-DEGREE MODES USING MDI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korzennik, S. G.; Rabello-Soares, M. C.; Schou, J.

    2013-08-01

    We present the first accurate characterization of high-degree modes, derived using the best Michelson Doppler Imager (MDI) full-disk full-resolution data set available. A 90 day long time series of full-disk 2 arcsec pixel{sup -1} resolution Dopplergrams was acquired in 2001, thanks to the high rate telemetry provided by the Deep Space Network. These Dopplergrams were spatially decomposed using our best estimate of the image scale and the known components of MDI's image distortion. A multi-taper power spectrum estimator was used to generate power spectra for all degrees and all azimuthal orders, up to l = 1000. We used a largemore » number of tapers to reduce the realization noise, since at high degrees the individual modes blend into ridges and thus there is no reason to preserve a high spectral resolution. These power spectra were fitted for all degrees and all azimuthal orders, between l = 100 and l = 1000, and for all the orders with substantial amplitude. This fitting generated in excess of 5.2 Multiplication-Sign 10{sup 6} individual estimates of ridge frequencies, line widths, amplitudes, and asymmetries (singlets), corresponding to some 5700 multiplets (l, n). Fitting at high degrees generates ridge characteristics, characteristics that do not correspond to the underlying mode characteristics. We used a sophisticated forward modeling to recover the best possible estimate of the underlying mode characteristics (mode frequencies, as well as line widths, amplitudes, and asymmetries). We describe in detail this modeling and its validation. The modeling has been extensively reviewed and refined, by including an iterative process to improve its input parameters to better match the observations. Also, the contribution of the leakage matrix on the accuracy of the procedure has been carefully assessed. We present the derived set of corrected mode characteristics, which includes not only frequencies, but line widths, asymmetries, and amplitudes. We present and

  5. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  6. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  7. The mode of sensitization and its influence on allograft outcomes in highly sensitized kidney transplant recipients.

    PubMed

    Redfield, Robert R; Scalea, Joseph R; Zens, Tiffany J; Mandelbrot, Didier A; Leverson, Glen; Kaufman, Dixon B; Djamali, Arjang

    2016-10-01

    We sought to determine whether the mode of sensitization in highly sensitized patients contributed to kidney allograft survival. An analysis of the United Network for Organ Sharing dataset involving all kidney transplants between 1997 and 2014 was undertaken. Highly sensitized adult kidney transplant recipients [panel reactive antibody (PRA) ≥98%] were compared with adult, primary non-sensitized and re-transplant recipients. Kaplan-Meier survival analyses were used to determine allograft survival rates. Cox proportional hazards regression analyses were conducted to determine the association of graft loss with key predictors. Fifty-three percent of highly sensitized patients transplanted were re-transplants. Pregnancy and transfusion were the only sensitizing event in 20 and 5%, respectively. The 10-year actuarial graft survival for highly sensitized recipients was 43.9% compared with 52.4% for non-sensitized patients, P < 0.001. The combination of being highly sensitized by either pregnancy or blood transfusion increased the risk of graft loss by 23% [hazard ratio (HR) 1.230, confidence interval (CI) 1.150-1.315, P < 0.001], and the combination of being highly sensitized from a prior transplant increased the risk of graft loss by 58.1% (HR 1.581, CI 1.473-1.698, P < 0.001). The mode of sensitization predicts graft survival in highly sensitized kidney transplant recipients (PRA ≥98%). Patients who are highly sensitized from re-transplants have inferior graft survival compared with patients who are highly sensitized from other modes of sensitization. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography.

    PubMed

    Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-07-25

    A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    PubMed Central

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-01-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept. PMID:28856047

  10. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    PubMed

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  11. COPS: A Sensitive and Accurate Tool for Detecting Somatic Copy Number Alterations Using Short-Read Sequence Data from Paired Samples

    PubMed Central

    Krishnan, Neeraja M.; Gaur, Prakhar; Chaudhary, Rakshit; Rao, Arjun A.; Panda, Binay

    2012-01-01

    Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username “cops” and password “cops”. PMID:23110103

  12. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  13. Highly sensitive quantification for human plasma-targeted metabolomics using an amine derivatization reagent.

    PubMed

    Arashida, Naoko; Nishimoto, Rumi; Harada, Masashi; Shimbo, Kazutaka; Yamada, Naoyuki

    2017-02-15

    Amino acids and their related metabolites play important roles in various physiological processes and have consequently become biomarkers for diseases. However, accurate quantification methods have only been established for major compounds, such as amino acids and a limited number of target metabolites. We previously reported a highly sensitive high-throughput method for the simultaneous quantification of amines using 3-aminopyridyl-N-succinimidyl carbamate as a derivatization reagent combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Herein, we report the successful development of a practical and accurate LC-MS/MS method to analyze low concentrations of 40 physiological amines in 19 min. Thirty-five of these amines showed good linearity, limits of quantification, accuracy, precision, and recovery characteristics in plasma, with scheduled selected reaction monitoring acquisitions. Plasma samples from 10 healthy volunteers were evaluated using our newly developed method. The results revealed that 27 amines were detected in one of the samples, and that 24 of these compounds could be quantified. Notably, this new method successfully quantified metabolites with high accuracy across three orders of magnitude, with lowest and highest averaged concentrations of 31.7 nM (for spermine) and 18.3 μM (for α-aminobutyric acid), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Highly sensitive measurement of whole blood chromium by inductively coupled plasma mass spectrometry.

    PubMed

    Cieslak, Wendy; Pap, Kathleen; Bunch, Dustin R; Reineks, Edmunds; Jackson, Raymond; Steinle, Roxanne; Wang, Sihe

    2013-02-01

    Chromium (Cr), a trace metal element, is implicated in diabetes and cardiovascular disease. A hypochromic state has been associated with poor blood glucose control and unfavorable lipid metabolism. Sensitive and accurate measurement of blood chromium is very important to assess the chromium nutritional status. However, interferents in biological matrices and contamination make the sensitive analysis challenging. The primary goal of this study was to develop a highly sensitive method for quantification of total Cr in whole blood by inductively coupled plasma mass spectrometry (ICP-MS) and to validate the reference interval in a local healthy population. This method was developed on an ICP-MS with a collision/reaction cell. Interference was minimized using both kinetic energy discrimination between the quadrupole and hexapole and a selective collision gas (helium). Reference interval was validated in whole blood samples (n=51) collected in trace element free EDTA tubes from healthy adults (12 males, 39 females), aged 19-64 years (38.8±12.6), after a minimum of 8 h fasting. Blood samples were aliquoted into cryogenic vials and stored at -70 °C until analysis. The assay linearity was 3.42 to 1446.59 nmol/L with an accuracy of 87.7 to 99.8%. The high sensitivity was achieved by minimization of interference through selective kinetic energy discrimination and selective collision using helium. The reference interval for total Cr using a non-parametric method was verified to be 3.92 to 7.48 nmol/L. This validated ICP-MS methodology is highly sensitive and selective for measuring total Cr in whole blood. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.

  15. The gastric/pancreatic amylase ratio predicts postoperative pancreatic fistula with high sensitivity and specificity.

    PubMed

    Jin, Shuo; Shi, Xiao-Ju; Sun, Xiao-Dong; Zhang, Ping; Lv, Guo-Yue; Du, Xiao-Hong; Wang, Si-Yuan; Wang, Guang-Yi

    2015-01-01

    This article aims to identify risk factors for postoperative pancreatic fistula (POPF) and evaluate the gastric/pancreatic amylase ratio (GPAR) on postoperative day (POD) 3 as a POPF predictor in patients who undergo pancreaticoduodenectomy (PD).POPF significantly contributes to mortality and morbidity in patients who undergo PD. Previously identified predictors for POPF often have low predictive accuracy. Therefore, accurate POPF predictors are needed.In this prospective cohort study, we measured the clinical and biochemical factors of 61 patients who underwent PD and diagnosed POPF according to the definition of the International Study Group of Pancreatic Fistula. We analyzed the association between POPF and various factors, identified POPF risk factors, and evaluated the predictive power of the GPAR on POD3 and the levels of serum and ascites amylase.Of the 61 patients, 21 developed POPF. The color of the pancreatic drain fluid, POD1 serum, POD1 median output of pancreatic drain fluid volume, and GPAR were significantly associated with POPF. The color of the pancreatic drain fluid and high GPAR were independent risk factors. Although serum and ascites amylase did not predict POPF accurately, the cutoff value was 1.24, and GPAR predicted POPF with high sensitivity and specificity.This is the first report demonstrating that high GPAR on POD3 is a risk factor for POPF and showing that GPAR is a more accurate predictor of POPF than the previously reported amylase markers.

  16. The Gastric/Pancreatic Amylase Ratio Predicts Postoperative Pancreatic Fistula With High Sensitivity and Specificity

    PubMed Central

    Jin, Shuo; Shi, Xiao-Ju; Sun, Xiao-Dong; Zhang, Ping; Lv, Guo-Yue; Du, Xiao-Hong; Wang, Si-Yuan; Wang, Guang-Yi

    2015-01-01

    Abstract This article aims to identify risk factors for postoperative pancreatic fistula (POPF) and evaluate the gastric/pancreatic amylase ratio (GPAR) on postoperative day (POD) 3 as a POPF predictor in patients who undergo pancreaticoduodenectomy (PD). POPF significantly contributes to mortality and morbidity in patients who undergo PD. Previously identified predictors for POPF often have low predictive accuracy. Therefore, accurate POPF predictors are needed. In this prospective cohort study, we measured the clinical and biochemical factors of 61 patients who underwent PD and diagnosed POPF according to the definition of the International Study Group of Pancreatic Fistula. We analyzed the association between POPF and various factors, identified POPF risk factors, and evaluated the predictive power of the GPAR on POD3 and the levels of serum and ascites amylase. Of the 61 patients, 21 developed POPF. The color of the pancreatic drain fluid, POD1 serum, POD1 median output of pancreatic drain fluid volume, and GPAR were significantly associated with POPF. The color of the pancreatic drain fluid and high GPAR were independent risk factors. Although serum and ascites amylase did not predict POPF accurately, the cutoff value was 1.24, and GPAR predicted POPF with high sensitivity and specificity. This is the first report demonstrating that high GPAR on POD3 is a risk factor for POPF and showing that GPAR is a more accurate predictor of POPF than the previously reported amylase markers. PMID:25621676

  17. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  18. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    ERIC Educational Resources Information Center

    Deliyski, Dimitar D.; Hillman, Robert E.; Mehta, Daryush D.

    2015-01-01

    Purpose: The authors discuss the rationale behind the term "laryngeal high-speed videoendoscopy" to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is…

  20. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  1. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks

    PubMed Central

    Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over

  2. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  3. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping.

    PubMed

    Wang, Xiandi; Zhang, Hanlu; Dong, Lin; Han, Xun; Du, Weiming; Zhai, Junyi; Pan, Caofeng; Wang, Zhong Lin

    2016-04-20

    A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  5. A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring.

    PubMed

    Yang, Tingting; Jiang, Xin; Zhong, Yujia; Zhao, Xuanliang; Lin, Shuyuan; Li, Jing; Li, Xinming; Xu, Jianlong; Li, Zhihong; Zhu, Hongwei

    2017-07-28

    Profuse medical information about cardiovascular properties can be gathered from pulse waveforms. Therefore, it is desirable to design a smart pulse monitoring device to achieve noninvasive and real-time acquisition of cardiovascular parameters. The majority of current pulse sensors are usually bulky or insufficient in sensitivity. In this work, a graphene-based skin-like sensor is explored for pulse wave sensing with features of easy use and wearing comfort. Moreover, the adjustment of the substrate stiffness and interfacial bonding accomplish the optimal balance between sensor linearity and signal sensitivity, as well as measurement of the beat-to-beat radial arterial pulse. Compared with the existing bulky and nonportable clinical instruments, this highly sensitive and soft sensing patch not only provides primary sensor interface to human skin, but also can objectively and accurately detect the subtle pulse signal variations in a real-time fashion, such as pulse waveforms with different ages, pre- and post-exercise, thus presenting a promising solution to home-based pulse monitoring.

  6. Dandelions, tulips and orchids: evidence for the existence of low-sensitive, medium-sensitive and high-sensitive individuals.

    PubMed

    Lionetti, Francesca; Aron, Arthur; Aron, Elaine N; Burns, G Leonard; Jagiellowicz, Jadzia; Pluess, Michael

    2018-01-22

    According to empirical studies and recent theories, people differ substantially in their reactivity or sensitivity to environmental influences with some being generally more affected than others. More sensitive individuals have been described as orchids and less-sensitive ones as dandelions. Applying a data-driven approach, we explored the existence of sensitivity groups in a sample of 906 adults who completed the highly sensitive person (HSP) scale. According to factor analyses, the HSP scale reflects a bifactor model with a general sensitivity factor. In contrast to prevailing theories, latent class analyses consistently suggested the existence of three rather than two groups. While we were able to identify a highly sensitive (orchids, 31%) and a low-sensitive group (dandelions, 29%), we also detected a third group (40%) characterised by medium sensitivity, which we refer to as tulips in keeping with the flower metaphor. Preliminary cut-off scores for all three groups are provided. In order to characterise the different sensitivity groups, we investigated group differences regarding the Big Five personality traits, as well as experimentally assessed emotional reactivity in an additional independent sample. According to these follow-up analyses, the three groups differed in neuroticism, extraversion and emotional reactivity to positive mood induction with orchids scoring significantly higher in neuroticism and emotional reactivity and lower in extraversion than the other two groups (dandelions also differed significantly from tulips). Findings suggest that environmental sensitivity is a continuous and normally distributed trait but that people fall into three distinct sensitive groups along a sensitivity continuum.

  7. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and

  8. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  9. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    PubMed

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  10. Highly accurate nephelometric titrimetry.

    PubMed

    Zhan, Xiancheng; Li, Chengrong; Li, Zhiyi; Yang, Xiucen; Zhong, Shuguang; Yi, Tao

    2004-02-01

    A method that accurately indicates the end-point of precipitation reactions by the measurement of the relative intensity of the scattered light in the titrate is presented. A new nephelometric titrator with an internal nephelometric sensor has been devised. The work of the titrator including the sensor and change in the turbidity of the titrate and intensity of the scattered light are described. The accuracy of the nephelometric titrimetry is discussed theoretically. The titration of NaCl with AgNO(3) serves as a model. A relative error as well as deviation is within 0.2% under the experimental conditions. The applicability of the titrimetry in pharmaceutical analyses, for example, phenytoin sodium and procaine hydrochloride, is generally illustrated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.

    PubMed

    Mann, A; Kiefer, M; Leuenberger, H

    2001-03-01

    High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.

  12. Approach to the Highly Sensitized Kidney Transplant Candidate

    PubMed Central

    Vranic, Gayle M.

    2016-01-01

    For patients with ESRD, kidney transplant offers significant survival and quality-of-life advantages compared with dialysis. But for patients seeking transplant who are highly sensitized, wait times have traditionally been long and options limited. The approach to the highly sensitized candidate for kidney transplant has changed substantially over time owing to new advances in desensitization, options for paired donor exchange (PDE), and changes to the deceased-donor allocation system. Initial evaluation should focus on determining living-donor availability because a compatible living donor is always the best option. However, for most highly sensitized candidates this scenario is unlikely. For candidates with an incompatible donor, PDE can improve the prospects of finding a compatible living donor but for many highly sensitized patients the probability of finding a match in the relatively small pools of donors in PDE programs is limited. Desensitization of a living donor/recipient pair with low levels of incompatibility is another reasonable approach. But for pairs with high levels of pathologic HLA antibodies, outcomes after desensitization for the patient and allograft are less optimal. Determining the degree of sensitization by calculated panel-reactive antibody (cPRA) is critical in counseling the highly sensitized patient on expected wait times to deceased-donor transplant. For candidates with a high likelihood of finding a compatible deceased donor in a reasonable time frame, waiting for a kidney is a good strategy. For the candidate without a living donor and with a low probability of finding a deceased-donor match, desensitization on the waiting list can be considered. The approach to the highly sensitized kidney transplant candidate must be individualized and requires careful discussion among the transplant center, patient, and referring nephrologist. PMID:26915916

  13. High-Sensitivity Microwave Optics.

    ERIC Educational Resources Information Center

    Nunn, W. M., Jr.

    1981-01-01

    Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…

  14. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors

    NASA Astrophysics Data System (ADS)

    Shen, Yanfei; Cui, Jie; Mohammadi, Saeed

    2017-05-01

    A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.

  15. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  16. High-sensitivity temperature sensor based on highly-birefringent microfiber

    NASA Astrophysics Data System (ADS)

    Sun, Li-Peng; Li, Jie; Jin, Long; Gao, Shuai; Tian, Zhuang; Ran, Yang; Guan, Bai-Ou

    2013-09-01

    We demonstrate an ultrasensitive temperature sensor by sealing a highly-birefringent microfiber into an alcoholinfiltrated copper capillary. With a Sagnac loop configuration, the interferometric spectrum is strongly dependent on the external refractive index (RI) with sensitivity of 36800nm/RIU around RI=1.356. As mainly derived from the ultrahigh RI sensitivity, the temperature response can reach as high as -14.72 nm/°C in the range of 30.9-36.9 °C. The measured response time is ~8s, as determined by the heat-conducting characteristic of the device and the diameter of the copper capillary. Our sensor is featured with low cost, easy fabrication and robustness.

  17. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Fluorescence confocal mosaicing microscopy of basal cell carcinomas ex vivo: demonstration of rapid surgical pathology with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-02-01

    Mohs surgery, for the precise removal of basal cell carcinomas (BCCs), consists of a series of excisions guided by the surgeon's examination of the frozen histology of the previous excision. The histology reveals atypical nuclear morphology, identifying cancer. The preparation of frozen histology is accurate but labor-intensive and slow. Nuclear pathology can be achieved by staining with acridine orange (1 mM, 20 s) BCCs in Mohs surgical skin excisions within 5-9 minutes, compared to 20-45 for frozen histology. For clinical utility, images must have high contrast and high resolution. We report tumor contrast of 10-100 fold over the background dermis and submicron (diffraction limited) resolution over a cm field of view. BCCs were detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0% and negative predictive value of 94.7%. The technique was therefore accurate for normal tissue as well as tumor. We conclude that fluorescence confocal mosaicing serves as a sensitive and rapid pathological tool. Beyond Mohs surgery, this technology may be extended to suit other pathological needs with the development of new contrast agents. The technique reported here accurately detects all subtypes of BCC in skin excisions, including the large nodular, small micronodular, and tiny sclerodermaform tumors. However, this technique may be applicable to imaging tissue that is larger, more irregular and of various mechanical compliances with further engineering of the tissue mounting and staging mechanisms.

  19. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens.

    PubMed

    Larson, Jeffrey S; Goodman, Laurie J; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C; Cook, Jennifer W; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D B; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J; Whitcomb, Jeannette M

    2010-06-28

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7-10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH).

  20. Rapid and accurate prediction of degradant formation rates in pharmaceutical formulations using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Darrington, Richard T; Jiao, Jim

    2004-04-01

    Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  1. High Sensitivity and Specificity of Clinical Microscopy in Rural Health Facilities in Western Kenya Under an External Quality Assurance Program

    PubMed Central

    Wafula, Rebeccah; Sang, Edna; Cheruiyot, Olympia; Aboto, Angeline; Menya, Diana; O'Meara, Wendy Prudhomme

    2014-01-01

    Microscopic diagnosis of malaria is a well-established and inexpensive technique that has the potential to provide accurate diagnosis of malaria infection. However, it requires both training and experience. Although it is considered the gold standard in research settings, the sensitivity and specificity of routine microscopy for clinical care in the primary care setting has been reported to be unacceptably low. We established a monthly external quality assurance program to monitor the performance of clinical microscopy in 17 rural health centers in western Kenya. The average sensitivity over the 12-month period was 96% and the average specificity was 88%. We identified specific contextual factors that contributed to inadequate performance. Maintaining high-quality malaria diagnosis in high-volume, resource-constrained health facilities is possible. PMID:24935953

  2. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ping; Xiao, Limin; Wang, D. N.; Jin, Wei

    2006-12-01

    A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/μɛ and a low temperature sensitivity of 3.91 pm/°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 μɛ/°C without using temperature compensation.

  3. Methylation-Sensitive High Resolution Melting (MS-HRM).

    PubMed

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  4. High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant.

    PubMed

    Patel, Parag C; Hill, Douglas A; Ayers, Colby R; Lavingia, Bhavna; Kaiser, Patricia; Dyer, Adrian K; Barnes, Aliessa P; Thibodeau, Jennifer T; Mishkin, Joseph D; Mammen, Pradeep P A; Markham, David W; Stastny, Peter; Ring, W Steves; de Lemos, James A; Drazner, Mark H

    2014-05-01

    A noninvasive biomarker that could accurately diagnose acute rejection (AR) in heart transplant recipients could obviate the need for surveillance endomyocardial biopsies. We assessed the performance metrics of a novel high-sensitivity cardiac troponin I (cTnI) assay for this purpose. Stored serum samples were retrospectively matched to endomyocardial biopsies in 98 cardiac transplant recipients, who survived ≥3 months after transplant. AR was defined as International Society for Heart and Lung Transplantation grade 2R or higher cellular rejection, acellular rejection, or allograft dysfunction of uncertain pathogenesis, leading to treatment for presumed rejection. cTnI was measured with a high-sensitivity assay (Abbott Diagnostics, Abbott Park, IL). Cross-sectional analyses determined the association of cTnI concentrations with rejection and International Society for Heart and Lung Transplantation grade and the performance metrics of cTnI for the detection of AR. Among 98 subjects, 37% had ≥1 rejection episode. cTnI was measured in 418 serum samples, including 35 paired to a rejection episode. cTnI concentrations were significantly higher in rejection versus nonrejection samples (median, 57.1 versus 10.2 ng/L; P<0.0001) and increased in a graded manner with higher biopsy scores (P(trend)<0.0001). The c-statistic to discriminate AR was 0.82 (95% confidence interval, 0.76-0.88). Using a cut point of 15 ng/L, sensitivity was 94%, specificity 60%, positive predictive value 18%, and negative predictive value 99%. A high-sensitivity cTnI assay seems useful to rule out AR in cardiac transplant recipients. If validated in prospective studies, a strategy of serial monitoring with a high-sensitivity cTnI assay may offer a low-cost noninvasive strategy for rejection surveillance. © 2014 American Heart Association, Inc.

  5. Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions

    DTIC Science & Technology

    2016-05-25

    2016 Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions A ground-penetrating radar system...the problems limiting the development and adoption of self-driving vehicles: how can a vehicle navigate to stay within its lane when bad weather ... weather conditions, but it is challenging, even impossible, for them to work when snow covers the markings and surfaces or precipitation obscures points

  6. High-sensitivity density fluctuation detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1987-01-01

    A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.

  7. Do We Know Who Will Drop out?: A Review of the Predictors of Dropping out of High School--Precision, Sensitivity, and Specificity

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Sprott, Ryan; Taff, Sherry A.

    2013-01-01

    The purpose of this study is to review the literature on the most accurate indicators of students at risk of dropping out of high school. We used Relative Operating Characteristic (ROC) analysis to compare the sensitivity and specificity of 110 dropout flags across 36 studies. Our results indicate that 1) ROC analysis provides a means to compare…

  8. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  9. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  10. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  11. High sensitivity and specificity of clinical microscopy in rural health facilities in western Kenya under an external quality assurance program.

    PubMed

    Wafula, Rebeccah; Sang, Edna; Cheruiyot, Olympia; Aboto, Angeline; Menya, Diana; O'Meara, Wendy Prudhomme

    2014-09-01

    Microscopic diagnosis of malaria is a well-established and inexpensive technique that has the potential to provide accurate diagnosis of malaria infection. However, it requires both training and experience. Although it is considered the gold standard in research settings, the sensitivity and specificity of routine microscopy for clinical care in the primary care setting has been reported to be unacceptably low. We established a monthly external quality assurance program to monitor the performance of clinical microscopy in 17 rural health centers in western Kenya. The average sensitivity over the 12-month period was 96% and the average specificity was 88%. We identified specific contextual factors that contributed to inadequate performance. Maintaining high-quality malaria diagnosis in high-volume, resource-constrained health facilities is possible. © The American Society of Tropical Medicine and Hygiene.

  12. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark®) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens

    PubMed Central

    Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.

    2010-01-01

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530

  13. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  14. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  15. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  16. A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis.

    PubMed

    Mahan, Alison E; Tedesco, Jacquelynne; Dionne, Kendall; Baruah, Kavitha; Cheng, Hao D; De Jager, Philip L; Barouch, Dan H; Suscovich, Todd; Ackerman, Margaret; Crispin, Max; Alter, Galit

    2015-02-01

    The N-glycan of the IgG constant region (Fc) plays a central role in tuning and directing multiple antibody functions in vivo, including antibody-dependent cellular cytotoxicity, complement deposition, and the regulation of inflammation, among others. However, traditional methods of N-glycan analysis, including HPLC and mass spectrometry, are technically challenging and ill suited to handle the large numbers of low concentration samples analyzed in clinical or animal studies of the N-glycosylation of polyclonal IgG. Here we describe a capillary electrophoresis-based technique to analyze plasma-derived polyclonal IgG-glycosylation quickly and accurately in a cost-effective, sensitive manner that is well suited for high-throughput analyses. Additionally, because a significant fraction of polyclonal IgG is glycosylated on both Fc and Fab domains, we developed an approach to separate and analyze domain-specific glycosylation in polyclonal human, rhesus and mouse IgGs. Overall, this protocol allows for the rapid, accurate, and sensitive analysis of Fc-specific IgG glycosylation, which is critical for population-level studies of how antibody glycosylation may vary in response to vaccination or infection, and across disease states ranging from autoimmunity to cancer in both clinical and animal studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides.

    PubMed

    Islam, S M Ashiqul; Sajed, Tanvir; Kearney, Christopher Michel; Baker, Erich J

    2015-07-05

    Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses. Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides, antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need for automated high-throughput member classification approaches that leverage their demonstrated tertiary and functional homology. We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision, accuracy and a Matthews correlation coefficient of 94.86%, 94.11%, 84.31%, 94.30% and 0.86, respectively, using 200 fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample testsets derived from PDB. PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides can greatly compress the time between peptide identification and testing structural and functional properties for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins from http://crick.ecs.baylor.edu/.

  18. High-sensitivity cardiac troponin testing in routine practice: economic and organizational advantages.

    PubMed

    Galli, Claudio; Lippi, Giuseppe

    2016-07-01

    Very seldom, if ever, a single laboratory test has provided such a paradigm shift in the managed care as cardiac troponin (cTn) testing. More than twenty years of improvements in test design and analytical features have contributed to revolutionize the clinical recommendations and guidelines, and the diagnosis of myocardial infarction (MI) is now highly dependent upon the kinetics of cTn within a suggestive clinical setting. Despite the advent of high-sensitivity cTn (HS-cTn) immunoassays has allowed a more accurate and timely diagnosis as well as a higher prognostic accuracy, the focus is now shifting on the most suitable algorithms and on a comprehensive approach to the clinical management of acute coronary syndrome (ACS). In this article we aim to discuss the implications of HS-cTn testing for ruling out and ruling in ACS. In the latter instance, main improvements are related to ACS diagnosis in women, in whom this pathology is still often underdiagnosed or misdiagnosed. A quick and accurate rule out will also regarded as a great advantage from both an organizational and economic standpoint. The advantages that will stem from this new approach have been recently assessed, and shortening of repeated testing 1 or 2 h from conventional algorithms entailing blood sampling at 3 and 6 h seems attainable. The larger benefits will definitely occur in clinical settings where the actual diagnosis rate of MI among patients with suspect ACS is lower and, consequently, the negative predictive value (NPV) of HS-cTn is the highest.

  19. Microstructured graphene arrays for highly sensitive flexible tactile sensors.

    PubMed

    Zhu, Bowen; Niu, Zhiqiang; Wang, Hong; Leow, Wan Ru; Wang, Hua; Li, Yuangang; Zheng, Liyan; Wei, Jun; Huo, Fengwei; Chen, Xiaodong

    2014-09-24

    A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Highly linear, sensitive analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Cox, J.; Finley, W. R.

    1969-01-01

    Analog-to-digital converter converts 10 volt full scale input signal into 13 bit digital output. Advantages include high sensitivity, linearity, low quantitizing error, high resistance to mechanical shock and vibration loads, and temporary data storage capabilities.

  1. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  2. Accurate high-throughput structure mapping and prediction with transition metal ion FRET

    PubMed Central

    Yu, Xiaozhen; Wu, Xiongwu; Bermejo, Guillermo A.; Brooks, Bernard R.; Taraska, Justin W.

    2013-01-01

    Mapping the landscape of a protein’s conformational space is essential to understanding its functions and regulation. The limitations of many structural methods have made this process challenging for most proteins. Here, we report that transition metal ion FRET (tmFRET) can be used in a rapid, highly parallel screen, to determine distances from multiple locations within a protein at extremely low concentrations. The distances generated through this screen for the protein Maltose Binding Protein (MBP) match distances from the crystal structure to within a few angstroms. Furthermore, energy transfer accurately detects structural changes during ligand binding. Finally, fluorescence-derived distances can be used to guide molecular simulations to find low energy states. Our results open the door to rapid, accurate mapping and prediction of protein structures at low concentrations, in large complex systems, and in living cells. PMID:23273426

  3. Development of high-sensitivity SWIR APD receivers

    NASA Astrophysics Data System (ADS)

    Bai, Xiaogang; Yuan, Ping; Chang, James; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei

    2013-06-01

    Emerging short wavelength infrared (SWIR) LIght Detection And Ranging (LIDAR) and long range laser rangefinder systems, require large optical aperture avalanche photodiodes (APDs) receivers with high sensitivity and high bandwidth. A large optical aperture is critical to increase the optical coupling efficiency and extend the LIDAR sensing range of the above systems. Both APD excess noise and transimpedance amplifier (TIA) noise need to be reduced in order to achieve high receiver sensitivity. The dark current and capacitance of large area APDs increase with APD aperture and thus limit the sensitivity and bandwidth of receivers. Spectrolab has been developing low excess noise InAlAs/InGaAs APDs with impact ionization engineering (I2E) designs for many years and has demonstrated APDs with optical gain over 100 utilizing multiple period I2E structures in the APD multiplier. These high gain I2E APDs have an excess noise factor less than 0.15. With an optical aperture of 200 μm, low excess noise multiple periods I2E APDs have capacitances about 1.7 pF. In addition, optical gains of InAlAs based APDs show very little temperature dependence and will enable APD photoreceivers without thermal electric cooling.

  4. Muver, a computational framework for accurately calling accumulated mutations.

    PubMed

    Burkholder, Adam B; Lujan, Scott A; Lavender, Christopher A; Grimm, Sara A; Kunkel, Thomas A; Fargo, David C

    2018-05-09

    Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.

  5. High sensitivity boundary layer transition detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1985-01-01

    A high sensitivity differential interferometer has been developed to locate the region where the boundary layer flow changes from laminar to turbulent. Two experimental configurations have been used to evaluate the performance of the interferometer, open shear layer configuration and wind tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of .001 the laser wavelength.

  6. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  7. Highly accurate potential energy surface for the He-H2 dimer

    NASA Astrophysics Data System (ADS)

    Bakr, Brandon W.; Smith, Daniel G. A.; Patkowski, Konrad

    2013-10-01

    A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He-H2 and 3He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture.

  8. Simple and accurate sum rules for highly relativistic systems

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2005-03-01

    In this paper, I consider the Bethe and Thomas-Reiche-Kuhn sum rules, which together form the foundation of Bethe's theory of energy loss from fast charged particles to matter. For nonrelativistic target systems, the use of closure leads directly to simple expressions for these quantities. In the case of relativistic systems, on the other hand, the calculation of sum rules is fraught with difficulties. Various perturbative approaches have been used over the years to obtain relativistic corrections, but these methods fail badly when the system in question is very strongly bound. Here, I present an approach that leads to relatively simple expressions yielding accurate sums, even for highly relativistic many-electron systems. I also offer an explanation for the difference between relativistic and nonrelativistic sum rules in terms of the Zitterbewegung of the electrons.

  9. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  10. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  11. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity.

    PubMed

    Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin

    2018-05-29

    Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10  M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7  M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10  M.

  12. Computational simulation and aerodynamic sensitivity analysis of film-cooled turbines

    NASA Astrophysics Data System (ADS)

    Massa, Luca

    A computational tool is developed for the time accurate sensitivity analysis of the stage performance of hot gas, unsteady turbine components. An existing turbomachinery internal flow solver is adapted to the high temperature environment typical of the hot section of jet engines. A real gas model and film cooling capabilities are successfully incorporated in the software. The modifications to the existing algorithm are described; both the theoretical model and the numerical implementation are validated. The accuracy of the code in evaluating turbine stage performance is tested using a turbine geometry typical of the last stage of aeronautical jet engines. The results of the performance analysis show that the predictions differ from the experimental data by less than 3%. A reliable grid generator, applicable to the domain discretization of the internal flow field of axial flow turbine is developed. A sensitivity analysis capability is added to the flow solver, by rendering it able to accurately evaluate the derivatives of the time varying output functions. The complex Taylor's series expansion (CTSE) technique is reviewed. Two of them are used to demonstrate the accuracy and time dependency of the differentiation process. The results are compared with finite differences (FD) approximations. The CTSE is more accurate than the FD, but less efficient. A "black box" differentiation of the source code, resulting from the automated application of the CTSE, generates high fidelity sensitivity algorithms, but with low computational efficiency and high memory requirements. New formulations of the CTSE are proposed and applied. Selective differentiation of the method for solving the non-linear implicit residual equation leads to sensitivity algorithms with the same accuracy but improved run time. The time dependent sensitivity derivatives are computed in run times comparable to the ones required by the FD approach.

  13. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    NASA Astrophysics Data System (ADS)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  14. Application of flowerlike MgO for highly sensitive determination of lead via matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hou, Jian; Chen, Suming; Cao, Changyan; Liu, Huihui; Xiong, Caiqiao; Zhang, Ning; He, Qing; Song, Weiguo; Nie, Zongxiu

    2016-08-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is a high-throughput method to achieve fast and accurate identification of lead (Pb) exposure, but is seldom used because of low ionization efficiency and insufficient sensitivity. Nanomaterials applied in MS are a promising technique to overcome the obstacles of MALDI. Flowerlike MgO nanostructures are applied for highly sensitive lead profiling in real samples. They can be used in two ways: (a) MgO is mixed with N-naphthylethylenediamine dihydrochloride (NEDC) as a novel matrix MgO/NEDC; (b) MgO is applied as an absorbent to enrich Pb ions in very dilute solution. The signal intensities of lead by MgO/NEDC were ten times higher than the NEDC matrix. It also shows superior anti-interference ability when analyzing 10 μmol/L Pb ions in the presence of organic substances or interfering metal ions. By applying MgO as adsorbent, the LOD of lead before enrichment is 1 nmol/L. Blood lead test can be achieved using this enrichment process. Besides, MgO can play the role of internal standard to achieve quantitative analysis. Flowerlike MgO nanostructures were applied for highly sensitive lead profiling in real samples. The method is helpful to prevent Pb contamination in a wide range. Further, the combination of MgO with MALDI MS could inspire more nanomaterials being applied in highly sensitive profiling of pollutants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Freely suspended nanocomposite membranes as highly sensitive sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V.

    2004-10-01

    Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

  16. Rituximab in highly sensitized kidney transplant recipients.

    PubMed

    Munoz, A S; Rioveros, A A; Cabanayan-Casasola, C B; Danguilan, R A; Ona, E T

    2008-09-01

    Rituximab, an anti-CD20 monoclonal antibody therapy, depletes B cells and suppresses antibody production. This study sought to describe the efficacy and safety of rituximab among seven highly sensitized kidney transplant patients. A highly sensitized patient was defined as panel-reactive antibody (PRA) >30%, more than three pregnancies, or history of positive tissue crossmatch. Demographics, immunological risk profile, and immunosuppression were collected on all highly sensitized patients transplanted from March to July 2007 and given rituximab. We noted graft function as well as clinical events posttransplantation. The seven patients included in the study showed a mean age of 39 years (range = 17-60) and a mean follow-up of 3 months (range = 1.5-5). Their average PRA was 62% with mean HLA mismatches of three. Five patients (71%) were retransplantations; one had a history of a positive crossmatch, and two had multiple pregnancies. Two had donor-specific antibody, but negative tissue crossmatches. All had living donors. Six patients received a single dose of rituximab (375 mg/m2) 1 day prior to transplantation and one received two doses after 19 sessions of plasmapheresis. All were given tacrolimus, mycophenolate, and steroids combined with induction therapy using 30 mg alemtuzumab in 33%; two doses of 20 mg basiliximab in 33%; and seven doses of 1 mg/kg/dose of daclizumab in 14%. Mean shown creatinine levels were 1.1 and 1.2 mg/dL at 1 and 6 months posttransplantation. Two recipients experienced acute humoral rejections within 1 month after transplantation. Both were given steroid pulsing, one of whom was steroid-resistant necessitating alemtuzumab therapy and plasmapheresis. Graft function of both improved with creatinine values of 1.3 mg/dL on discharge. No episodes of infection were noted. Rituximab can be safely administered and may be effective to improve outcomes among highly sensitized kidney transplant patients.

  17. The strain-rate sensitivity of high-strength high-toughness steels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate.more » Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.« less

  18. A Highly Sensitive Chemiluminometric Assay for Real-Time Detection of Biological Hydrogen Peroxide Formation.

    PubMed

    Zhu, Hong; Jia, Zhenquan; Trush, Michael A; Li, Y Robert

    2016-05-01

    Hydrogen peroxide (H 2 O 2 ) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H 2 O 2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H 2 O 2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H 2 O 2 formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H 2 O 2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H 2 O 2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H 2 O 2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.

  19. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  20. Does ultrasonography accurately diagnose acute cholecystitis? Improving diagnostic accuracy based on a review at a regional hospital

    PubMed Central

    Hwang, Hamish; Marsh, Ian; Doyle, Jason

    2014-01-01

    Background Acute cholecystitis is one of the most common diseases requiring emergency surgery. Ultrasonography is an accurate test for cholelithiasis but has a high false-negative rate for acute cholecystitis. The Murphy sign and laboratory tests performed independently are also not particularly accurate. This study was designed to review the accuracy of ultrasonography for diagnosing acute cholecystitis in a regional hospital. Methods We studied all emergency cholecystectomies performed over a 1-year period. All imaging studies were reviewed by a single radiologist, and all pathology was reviewed by a single pathologist. The reviewers were blinded to each other’s results. Results A total of 107 patients required an emergency cholecystectomy in the study period; 83 of them underwent ultrasonography. Interradiologist agreement was 92% for ultrasonography. For cholelithiasis, ultrasonography had 100% sensitivity, 18% specificity, 81% positive predictive value (PPV) and 100% negative predictive value (NPV). For acute cholecystitis, it had 54% sensitivity, 81% specificity, 85% PPV and 47% NPV. All patients had chronic cholecystitis and 67% had acute cholecystitis on histology. When combined with positive Murphy sign and elevated neutrophil count, an ultrasound showing cholelithiasis or acute cholecystitis yielded a sensitivity of 74%, specificity of 62%, PPV of 80% and NPV of 53% for the diagnosis of acute cholecystitis. Conclusion Ultrasonography alone has a high rate of false-negative studies for acute cholecystitis. However, a higher rate of accurate diagnosis can be achieved using a triad of positive Murphy sign, elevated neutrophil count and an ultrasound showing cholelithiasis or cholecystitis. PMID:24869607

  1. Highly sensitive beam steering with plasmonic antenna

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405

  2. Development of high-throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization.

    PubMed

    Gollapudi, Deepika; Wycuff, Diane L; Schwartz, Richard M; Cooper, Jonathan W; Cheng, K C

    2017-10-01

    In this paper, we describe development of a high-throughput, highly sensitive method based on Lab Chip CGE-SDS platform for purity determination and characterization of virus-like particle (VLP) vaccines. A capillary gel electrophoresis approach requiring about 41 s per sample for analysis and demonstrating sensitivity to protein initial concentrations as low as 20 μg/mL, this method has been used previously to evaluate monoclonal antibodies, but this application for lot release assay of VLPs using this platform is unique. The method was qualified and shown to be accurate for the quantitation of VLP purity. Assay repeatability was confirmed to be less than 2% relative standard deviation of the mean (% RSD) with interday precision less than 2% RSD. The assay can evaluate purified VLPs in a concentration range of 20-249 μg/mL for VEE and 20-250 μg/mL for EEE and WEE VLPs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Wiese, Lm; Fedchak, Ja; Lawler, Je

    2000-06-01

    The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.

  4. High-sensitivity sucrose erbium-doped fiber ring laser sensor

    NASA Astrophysics Data System (ADS)

    Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.

    2017-02-01

    We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.

  5. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions.

    PubMed

    Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri

    2015-11-01

    Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.

  6. Moderate sensitivity and high specificity of emergency department administrative data for transient ischemic attacks.

    PubMed

    Yu, Amy Y X; Quan, Hude; McRae, Andrew; Wagner, Gabrielle O; Hill, Michael D; Coutts, Shelagh B

    2017-09-18

    Validation of administrative data case definitions is key for accurate passive surveillance of disease. Transient ischemic attack (TIA) is a condition primarily managed in the emergency department. However, prior validation studies have focused on data after inpatient hospitalization. We aimed to determine the validity of the Canadian 10th International Classification of Diseases (ICD-10-CA) codes for TIA in the national ambulatory administrative database. We performed a diagnostic accuracy study of four ICD-10-CA case definition algorithms for TIA in the emergency department setting. The study population was obtained from two ongoing studies on the diagnosis of TIA and minor stroke versus stroke mimic using serum biomarkers and neuroimaging. Two reference standards were used 1) the emergency department clinical diagnosis determined by chart abstractors and 2) the 90-day final diagnosis, both obtained by stroke neurologists, to calculate the sensitivity, specificity, positive and negative predictive values (PPV and NPV) of the ICD-10-CA algorithms for TIA. Among 417 patients, emergency department adjudication showed 163 (39.1%) TIA, 155 (37.2%) ischemic strokes, and 99 (23.7%) stroke mimics. The most restrictive algorithm, defined as a TIA code in the main position had the lowest sensitivity (36.8%), but highest specificity (92.5%) and PPV (76.0%). The most inclusive algorithm, defined as a TIA code in any position with and without query prefix had the highest sensitivity (63.8%), but lowest specificity (81.5%) and PPV (68.9%). Sensitivity, specificity, PPV, and NPV were overall lower when using the 90-day diagnosis as reference standard. Emergency department administrative data reflect diagnosis of suspected TIA with high specificity, but underestimate the burden of disease. Future studies are necessary to understand the reasons for the low to moderate sensitivity.

  7. Genotype-based dosage of acenocoumarol in highly-sensitive geriatric patients.

    PubMed

    Lozano, Roberto; Franco, María-Esther; López, Luis; Moneva, Juan-José; Carrasco, Vicente; Pérez-Layo, Maria-Angeles

    2015-03-01

    Our aim was to determinate the acenocoumarol dose requirement in highly sensitive geriatric patients, based on a minimum of genotype (VKORC1 and CYP2C9) data. We used a Gaussian kernel density estimation test to identify patients highly sensitive to the drug and PHARMACHIP®-Cuma test (Progenika Biopharma, SA, Grifols, Spain) to determine the CYP2C9 and VKORC1 genotype. All highly sensitive geriatric patients were taking ≤5.6 mg/week of acenocoumarol (AC), and 86% of these patients presented the following genotypes: CYP2C9*1/*3 or CYP2C9*1/*2 plus VKORC1 A/G, CYP2C9*3/*3, or VKORC1 A/A. VKORC1 A and CYP2C9*2 and/or *3 allelic variants extremely influence on AC dose requirement of highly sensitive geriatric patients. These patients display acenocoumarol dose requirement of ≤5.6 mg/week.

  8. High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures.

    PubMed

    Boyer, Anne E; Gallegos-Candela, Maribel; Quinn, Conrad P; Woolfitt, Adrian R; Brumlow, Judith O; Isbell, Katherine; Hoffmaster, Alex R; Lins, Renato C; Barr, John R

    2015-04-01

    Inhalation anthrax has a rapid progression and high fatality rate. Pathology and death from inhalation of Bacillus anthracis spores are attributed to the actions of secreted protein toxins. Protective antigen (PA) binds and imports the catalytic component lethal factor (LF), a zinc endoprotease, and edema factor (EF), an adenylyl cyclase, into susceptible cells. PA-LF is termed lethal toxin (LTx) and PA-EF, edema toxin. As the universal transporter for both toxins, PA is an important target for vaccination and immunotherapeutic intervention. However, its quantification has been limited to methods of relatively low analytic sensitivity. Quantification of LTx may be more clinically relevant than LF or PA alone because LTx is the toxic form that acts on cells. A method was developed for LTx-specific quantification in plasma using anti-PA IgG magnetic immunoprecipitation of PA and quantification of LF activity that co-purified with PA. The method was fast (<4 h total time to detection), sensitive at 0.033 ng/mL LTx in plasma for the fast analysis (0.0075 ng/mL LTx in plasma for an 18 h reaction), precise (6.3-9.9% coefficient of variation), and accurate (0.1-12.7%error; n ≥ 25). Diagnostic sensitivity was 100% (n = 27 animal/clinical cases). Diagnostic specificity was 100% (n = 141). LTx was detected post-antibiotic treatment in 6/6 treated rhesus macaques and 3/3 clinical cases of inhalation anthrax and as long as 8 days post-treatment. Over the course of infection in two rhesus macaques, LTx was first detected at 0.101 and 0.237 ng/mL at 36 h post-exposure and increased to 1147 and 12,107 ng/mL in late-stage anthrax. This demonstrated the importance of LTx as a diagnostic and therapeutic target. This method provides a sensitive, accurate tool for anthrax toxin detection and evaluation of PA-directed therapeutics.

  9. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  10. High-sensitivity DPSK receiver for high-bandwidth free-space optical communication links.

    PubMed

    Juarez, Juan C; Young, David W; Sluz, Joseph E; Stotts, Larry B

    2011-05-23

    A high-sensitivity modem and high-dynamic range optical automatic gain controller (OAGC) have been developed to provide maximum link margin and to overcome the dynamic nature of free-space optical links. A sensitivity of -48.9 dBm (10 photons per bit) at 10 Gbps was achieved employing a return-to-zero differential phase shift keying based modem and a commercial Reed-Solomon forward error correction system. Low-noise optical gain was provided by an OAGC with a noise figure of 4.1 dB (including system required input loses) and a dynamic range of greater than 60 dB.

  11. Fiber specklegram sensors sensitivities at high temperatures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  12. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  13. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles

    PubMed Central

    Zheng, Yun; Ji, Bo; Song, Renhua; Wang, Shengpeng; Li, Ting; Zhang, Xiaotuo; Chen, Kun; Li, Tianqing; Li, Jinyan

    2016-01-01

    Various types of mutation and editing (M/E) events in microRNAs (miRNAs) can change the stabilities of pre-miRNAs and/or complementarities between miRNAs and their targets. Small RNA (sRNA) high-throughput sequencing (HTS) profiles can contain many mutated and edited miRNAs. Systematic detection of miRNA mutation and editing sites from the huge volume of sRNA HTS profiles is computationally difficult, as high sensitivity and low false positive rate (FPR) are both required. We propose a novel method (named MiRME) for an accurate and fast detection of miRNA M/E sites using a progressive sequence alignment approach which refines sensitivity and improves FPR step-by-step. From 70 sRNA HTS profiles with over 1.3 billion reads, MiRME has detected thousands of statistically significant M/E sites, including 3′-editing sites, 57 A-to-I editing sites (of which 32 are novel), as well as some putative non-canonical editing sites. We demonstrated that a few non-canonical editing sites were not resulted from mutations in genome by integrating the analysis of genome HTS profiles of two human cell lines, suggesting the existence of new editing types to further diversify the functions of miRNAs. Compared with six existing studies or methods, MiRME has shown much superior performance for the identification and visualization of the M/E sites of miRNAs from the ever-increasing sRNA HTS profiles. PMID:27229138

  14. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.

    PubMed

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-05-12

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  15. Single photon detector with high polarization sensitivity.

    PubMed

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  16. Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents

    PubMed Central

    Jiang, Weina; Lumata, Lloyd; Chen, Wei; Zhang, Shanrong; Kovacs, Zoltan; Sherry, A. Dean; Khemtong, Chalermchai

    2015-01-01

    Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (Δδ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values. PMID:25774436

  17. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina

    2006-01-06

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe,more » and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.« less

  18. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  19. Interoceptive threat leads to defensive mobilization in highly anxiety sensitive persons.

    PubMed

    Melzig, Christiane A; Holtz, Katharina; Michalowski, Jaroslaw M; Hamm, Alfons O

    2011-06-01

    To study defensive mobilization elicited by the exposure to interoceptive arousal sensations, we exposed highly anxiety sensitive students to a symptom provocation task. Symptom reports, autonomic arousal, and the startle eyeblink response were monitored during guided hyperventilation and a recovery period in 26 highly anxiety sensitive persons and 22 controls. Normoventilation was used as a non-provocative comparison condition. Hyperventilation led to autonomic arousal and a marked increase in somatic symptoms. While high and low anxiety sensitive persons did not differ in their defensive activation during hyperventilation, group differences were detected during early recovery. Highly anxiety sensitive students exhibited a potentiation of startle response magnitudes and increased autonomic arousal after hyper- as compared to after normoventilation, indicating defensive mobilization evoked by the prolonged presence of feared somatic sensations. Copyright © 2010 Society for Psychophysiological Research.

  20. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  1. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor.

    PubMed

    Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-10-11

    The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.

  2. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  3. Performance of terahertz metamaterials as high-sensitivity sensor

    NASA Astrophysics Data System (ADS)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  4. Shape design sensitivity analysis using domain information

    NASA Technical Reports Server (NTRS)

    Seong, Hwal-Gyeong; Choi, Kyung K.

    1985-01-01

    A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.

  5. Anticipation of interoceptive threat in highly anxiety sensitive persons.

    PubMed

    Melzig, Christiane A; Michalowski, Jaroslaw M; Holtz, Katharina; Hamm, Alfons O

    2008-10-01

    Anticipatory anxiety plays a major role in the etiology of panic disorder. Although anticipatory anxiety elicited by expectation of interoceptive cues is specifically relevant for panic patients, it has rarely been studied. Using a population analogue in high fear of such interoceptive arousal sensations (highly anxiety sensitive persons) we evaluated a new experimental paradigm to assess anticipatory anxiety during anticipation of interoceptive (somatic sensations evoked by hyperventilation) and exteroceptive (electric shock) threat. Symptom reports, autonomic arousal, and defensive response mobilization (startle eyeblink response) were monitored during threat and matched safe conditions in 26 highly anxiety sensitive persons and 22 controls. The anticipation of exteroceptive threat led to a defensive and autonomic mobilization as indexed by a potentiation of the startle response and an increase in skin conductance level in both experimental groups. During interoceptive threat, however, only highly anxiety sensitive persons but not the controls exhibited a startle response potentiation as well as autonomic activation. The anticipation of a hyperventilation procedure thus seems a valid paradigm to investigate anticipatory anxiety elicited by interoceptive cues in the clinical context.

  6. High-sensitivity microfluidic calorimeters for biological and chemical applications.

    PubMed

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L

    2009-09-08

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.

  7. High-accurate optical vector analysis based on optical single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  8. High surface plasmon resonance sensitivity enabled by optical disks.

    PubMed

    Dou, Xuan; Phillips, Blayne M; Chung, Pei-Yu; Jiang, Peng

    2012-09-01

    We report a systematic, experimental, and theoretical investigation on the surface plasmon resonance (SPR) sensing using optical disks with different track pitches, including Blu-ray disk (BD), digital versatile disk (DVD), and compact disk (CD). Optical reflection measurements indicate that CD and DVD exhibit much higher SPR sensitivity than BD. Both experiments and finite-difference time-domain simulations reveal that the SPR sensitivity is significantly affected by the diffraction order of the SPR peaks and higher diffraction order results in lower sensitivity. Numerical simulations also show that very high sensitivity (∼1600  nm per refractive index unit) is achievable by CDs.

  9. High-Z Sensitized Plastic Scintillators: A Review.

    PubMed

    Hajagos, Tibor Jacob; Liu, Chao; Cherepy, Nerine J; Pei, Qibing

    2018-05-07

    The need for affordable and reliable radiation detectors has prompted significant investment in new radiation detector materials, due to concerns about national security and nuclear nonproliferation. Plastic scintillators provide an affordable approach to large volume detectors, yet their performance for high-energy gamma radiation is severely limited by the small radiation stopping power inherent to their low atomic number. Although some sensitization attempts with organometallics were made in the 1950s to 1960s, the concomitant decrease in light yield has limited the usefulness of these sensitized detectors. Recently, with new knowledge gained during the rapid development of organic optoelectronics and nanotechnology, there has been a revived interest in the field of heavy element sensitized plastic scintillators. Here, the recent efforts on sensitized plastic scintillators are summarized. Basic scintillator physics is first reviewed. The discussion then focuses on two major thrusts in the field: sensitization with: (1) organometallics and (2) oxide and fluoride nanoparticles. The design rationales and major results are examined in detail, with existing limitations and possible future pathways discussed. Special attention is paid to the underlying energy deposition and transfer processes, as these determine the key performance metrics such as light yield and radioluminescence decay lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    PubMed Central

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-01-01

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372

  11. Photonic crystal nanofiber air-mode cavity with high Q-factor and high sensitivity for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan

    2018-01-01

    Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).

  12. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  13. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  14. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  15. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    NASA Astrophysics Data System (ADS)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  16. High-sensitivity detection of TNT

    PubMed Central

    Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325

  17. Histamine quantification in human plasma using high resolution accurate mass LC-MS technology.

    PubMed

    Laurichesse, Mathieu; Gicquel, Thomas; Moreau, Caroline; Tribut, Olivier; Tarte, Karin; Morel, Isabelle; Bendavid, Claude; Amé-Thomas, Patricia

    2016-01-01

    Histamine (HA) is a small amine playing an important role in anaphylactic reactions. In order to identify and quantify HA in plasma matrix, different methods have been developed but present several disadvantages. Here, we developed an alternative method using liquid chromatography coupled with an ultra-high resolution and accurate mass instrument, Q Exactive™ (Thermo Fisher) (LCHRMS). The method includes a protein precipitation of plasma samples spiked with HA-d4 as internal standard (IS). LC separation was performed on a C18 Accucore column (100∗2.1mm, 2.6μm) using a mobile phase containing nonafluoropentanoic acid (3nM) and acetonitrile with 0.1% (v/v) formic acid on gradient mode. Separation of analytes was obtained within 10min. Analysis was performed from full scan mode and targeted MS2 mode using a 5ppm mass window. Ion transitions monitored for targeted MS2 mode were 112.0869>95.0607m/z for HA and 116.1120>99.0855m/z for HA-d4. Calibration curves were obtained by adding standard calibration dilution at 1 to 180nM in TrisBSA. Elution of HA and IS occurred at 4.1min. The method was validated over a range of concentrations from 1nM to 100nM. The intra- and inter-run precisions were <15% for quality controls. Human plasma samples from 30 patients were analyzed by LCHRMS, and the results were highly correlated with those obtained using the gold standard radioimmunoassay (RIA) method. Overall, we demonstrate here that LCHRMS is a sensitive method for histamine quantification in biological human plasmas, suitable for routine use in medical laboratories. In addition, LCHRMS is less time-consuming than RIA, avoids the use of radioactivity, and could then be considered as an alternative quantitative method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  19. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole

  20. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  1. Highly Flexible and Sensitive Wearable E-Skin Based on Graphite Nanoplatelet and Polyurethane Nanocomposite Films in Mass Industry Production Available.

    PubMed

    Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong

    2017-11-08

    Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.

  2. Highly Sensitive Electro-Optic Modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less

  3. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  4. High resolution modeling in urban hydrology: comparison between two modeling approaches and their sensitivity to high rainfall variability

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Bompard, Philippe; Schertzer, Daniel

    2015-04-01

    Urban water management is becoming increasingly complex, due to the rapid increase of impervious areas, and the potential effects of climate change. The large amount of water generated in a very short period of time and the limited capacity of sewer systems increase the vulnerability of urban environments to flooding risk and make it necessary to implement specific devices in order to handle the volume of water generated. This complex situation in urban environments makes the use of hydrological models as well as the implementation of more accurate and reliable tools for flow and rainfall measurements essential for a good pluvial network management, the use of decision support tools such as real-time radar forecasting system, the developpement of general public communication and warning systems, and the implementation of management strategy participate on limiting the flood damages. The very high spatial variability characteristic of urban environments makes it necessary to integrate the variability of physical properties and precipitation at fine scales in modeling processes, suggesting a high resolution modeling approach. In this paper we suggest a comparison between two modeling approaches and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The first model used in this study is CANOE, which is a semi-distributed model widely used in France by practitioners for urban hydrology and urban water management. Two configurations of this model are be used in this study, the first one integrate 9 sub-catchments with sizes range from (1ha to 76ha), in the second configuration, the spatial resolution of this model has been improved with 45 sub-catchments with sizes range from (1ha to 14ha), the aim is to see how the semi-distributed model resolution affects it sensitivity to rainfall variability. The second model is Multi-Hydro fully distributed model developed at the Ecole

  5. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    PubMed Central

    Deliyski, Dimitar D.; Hillman, Robert E.

    2015-01-01

    Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398

  6. Temperament, character and anxiety sensitivity in panic disorder: a high-risk study.

    PubMed

    Perna, Giampaolo; di Pasquale, Danila; Grassi, Massimiliano; Vanni, Giovanna; Bellodi, Laura; Caldirola, Daniela

    2012-01-01

    Adult patients with panic disorder (PD) show high levels of harm avoidance and anxiety sensitivity. Peculiar temperament profiles and high anxiety sensitivity have been proposed as developmental risk factors for PD in adult age. Since familial-genetic influences play a role both in PD and in anxiety sensitivity and temperament profiles, this study aims to investigate the possible association between family history of PD and peculiar temperament-character profiles or high anxiety sensitivity in offspring of patients with PD. Thirty-four children of patients with PD with/without agoraphobia and 30 children of healthy subjects were compared. Temperament and character dimensions and anxiety sensitivity levels of children were obtained by the Junior Temperament and Character Inventory and the Childhood Anxiety Sensitivity Index. Children of patients with PD and children of healthy subjects differed neither in temperament and character dimensions nor in anxiety sensitivity levels. Our results show that family history of PD is not associated with peculiar temperament and character profiles or high anxiety sensitivity in children, suggesting that these factors may not be early expressions of familial vulnerability to PD. Since the sample is small and the study has a cross-sectional design, longitudinal studies in larger samples are warranted to confirm these findings and to clarify the role of anxiety sensitivity and temperament-character dimensions in the development of PD. Copyright © 2012 S. Karger AG, Basel.

  7. Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis?

    PubMed

    Mahdiani, Shadi; Jeyhani, Vala; Peltokangas, Mikko; Vehkaoja, Antti

    2015-01-01

    With the worldwide growth of mobile wireless technologies, healthcare services can be provided at anytime and anywhere. Usage of wearable wireless physiological monitoring system has been extensively increasing during the last decade. These mobile devices can continuously measure e.g. the heart activity and wirelessly transfer the data to the mobile phone of the patient. One of the significant restrictions for these devices is usage of energy, which leads to requiring low sampling rate. This article is presented in order to investigate the lowest adequate sampling frequency of ECG signal, for achieving accurate enough time domain heart rate variability (HRV) parameters. For this purpose the ECG signals originally measured with high 5 kHz sampling rate were down-sampled to simulate the measurement with lower sampling rate. Down-sampling loses information, decreases temporal accuracy, which was then restored by interpolating the signals to their original sampling rates. The HRV parameters obtained from the ECG signals with lower sampling rates were compared. The results represent that even when the sampling rate of ECG signal is equal to 50 Hz, the HRV parameters are almost accurate with a reasonable error.

  8. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  9. Development and validation of a highly sensitive urine-based test to identify patients with colonic adenomatous polyps.

    PubMed

    Wang, Haili; Tso, Victor; Wong, Clarence; Sadowski, Dan; Fedorak, Richard N

    2014-03-20

    Adenomatous polyps are precursors of colorectal cancer; their detection and removal is the goal of colon cancer screening programs. However, fecal-based methods identify patients with adenomatous polyps with low levels of sensitivity. The aim or this study was to develop a highly accurate, prototypic, proof-of-concept, spot urine-based diagnostic test using metabolomic technology to distinguish persons with adenomatous polyps from those without polyps. Prospective urine and stool samples were collected from 876 participants undergoing colonoscopy examination in a colon cancer screening program, from April 2008 to October 2009 at the University of Alberta. Colonoscopy reference standard identified 633 participants with no colonic polyps and 243 with colonic adenomatous polyps. One-dimensional nuclear magnetic resonance spectra of urine metabolites were analyzed to define a diagnostic metabolomic profile for colonic adenomas. A urine metabolomic diagnostic test for colonic adenomatous polyps was established using 67% of the samples (un-blinded training set) and validated using the other 33% of the samples (blinded testing set). The urine metabolomic diagnostic test's specificity and sensitivity were compared with those of fecal-based tests. Using a two-component, orthogonal, partial least-squares model of the metabolomic profile, the un-blinded training set identified patients with colonic adenomatous polyps with 88.9% sensitivity and 50.2% specificity. Validation using the blinded testing set confirmed sensitivity and specificity values of 82.7% and 51.2%, respectively. Sensitivities of fecal-based tests to identify colonic adenomas ranged from 2.5 to 11.9%. We describe a proof-of-concept spot urine-based metabolomic diagnostic test that identifies patients with colonic adenomatous polyps with a greater level of sensitivity (83%) than fecal-based tests.

  10. A highly sensitive search strategy for clinical trials in Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS) was developed.

    PubMed

    Manríquez, Juan J

    2008-04-01

    Systematic reviews should include as many articles as possible. However, many systematic reviews use only databases with high English language content as sources of trials. Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS) is an underused source of trials, and there is not a validated strategy for searching clinical trials to be used in this database. The objective of this study was to develop a sensitive search strategy for clinical trials in LILACS. An analytical survey was performed. Several single and multiple-term search strategies were tested for their ability to retrieve clinical trials in LILACS. Sensitivity, specificity, and accuracy of each single and multiple-term strategy were calculated using the results of a hand-search of 44 Chilean journals as gold standard. After combining the most sensitive, specific, and accurate single and multiple-term search strategy, a strategy with a sensitivity of 97.75% (95% confidence interval [CI]=95.98-99.53) and a specificity of 61.85 (95% CI=61.19-62.51) was obtained. LILACS is a source of trials that could improve systematic reviews. A new highly sensitive search strategy for clinical trials in LILACS has been developed. It is hoped this search strategy will improve and increase the utilization of LILACS in future systematic reviews.

  11. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  12. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Highly accurate symplectic element based on two variational principles

    NASA Astrophysics Data System (ADS)

    Qing, Guanghui; Tian, Jia

    2018-02-01

    For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.

  14. Primer Modification Improves Rapid and Sensitive In Vitro and Field-Deployable Assays for Detection of High Plains Virus Variants

    PubMed Central

    Arif, M.; Aguilar-Moreno, G. S.; Wayadande, A.; Fletcher, J.

    2014-01-01

    A high consequence pathogen, High plains virus (HPV) causes considerable damage to wheat if the crop is infected during early stages of development. Methods for the early, accurate, and sensitive detection of HPV in plant tissues are needed for the management of disease outbreaks and reservoir hosts. In this study, the effectiveness of five methods—real-time SYBR green and TaqMan reverse transcription-quantitative PCR (RT-qPCR), endpoint RT-PCR, RT-helicase dependent amplification (RT-HDA) and the Razor Ex BioDetection System (Razor Ex)—for the broad-range detection of HPV variants was evaluated. Specific PCR primer sets and probes were designed to target the HPV nucleoprotein gene. Primer set HPV6F and HPV4R, which amplifies a product of 96 bp, was validated in silico against published sequences and in vitro against an inclusivity panel of infected plant samples and an exclusivity panel of near-neighbor viruses. The primers were modified by adding a customized 22 nucleotide long tail at the 5′ terminus, raising the primers' melting temperature (Tm; ca. 10°C) to make them compatible with RT-HDA (required optimal Tm = 68°C), in which the use of primers lacking such tails gave no amplification. All of the methods allowed the detection of as little as 1 fg of either plasmid DNA carrying the target gene sequence or of infected plant samples. The described in vitro and in-field assays are accurate, rapid, sensitive, and useful for pathogen detection and disease diagnosis, microbial quantification, and certification and breeding programs, as well as for biosecurity and microbial forensics applications. PMID:24162574

  15. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    PubMed

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Photodetector having high speed and sensitivity

    DOEpatents

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  17. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  18. [Psychological Well-being of Highly-sensitive Persons in Transition to Parenthood - A Cross-sectional Study].

    PubMed

    Schmückle, M; Lindert, J; Schmolz, G

    2017-12-01

    Well-being of highly sensitive people in the transformation period to parenthood is of increasing concern. This study examines whether the transformation period to parenthood has a higher effect on the psychological well-being (PWB) of highly sensitive people than on not highly sensitive people. A cross-sectional study was undertaken of parents (n=614), highly sensitive (n=440) and not highly sensitive (n=174), at the transition to parenthood. Instruments were the Ryff psychological well-being scale. Independent variables and well-being were examined by descriptive and bivariate methods. Well-being of highly sensitive parents is associated with transition to parenthood (b=-10,129; p<0.05) compared to the control group (7.3% of highly sensitive <50% of PWB; 0.6% of not highly sensitive <50% of PWB). As one of the first studies, this examination looks into the data of highly sensitive parents. It can be stated that there is an urgent need for research in this area. Because with a prevalence of 10-20% highly sensitive people within the population, it can be assumed that highly sensitive mostly young parents, could be an important target group of health promotion. © Georg Thieme Verlag KG Stuttgart · New York.

  19. High-sensitivity acoustic sensors from nanofibre webs.

    PubMed

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-23

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  20. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  1. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  2. Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments

    NASA Astrophysics Data System (ADS)

    Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete

    2002-04-01

    New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.

  3. Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity.

    PubMed

    Broman-Fulks, Joshua J; Storey, Katelyn M

    2008-04-01

    Anxiety sensitivity, or the belief that anxiety-related sensations can have negative consequences, has been shown to play an important role in the etiology and maintenance of panic disorder and other anxiety-related pathology. Aerobic exercise involves exposure to physiological cues similar to those experienced during anxiety reactions. The present study sought to investigate the efficacy of a brief aerobic exercise intervention for high anxiety sensitivity. Accordingly, 24 participants with high anxiety sensitivity scores (Anxiety Sensitivity Index-Revised scores >28) were randomly assigned to complete either six 20-minute sessions of aerobic exercise or a no-exercise control condition. The results indicated that individuals assigned to the aerobic exercise condition reported significantly less anxiety sensitivity subsequent to exercise, whereas anxiety sensitivity scores among non-exercisers did not significantly change. The clinical research and public health implications of these findings are discussed, and several potential directions for additional research are recommended.

  4. A fit-for-purpose approach to analytical sensitivity applied to a cardiac troponin assay: time to escape the 'highly-sensitive' trap.

    PubMed

    Ungerer, Jacobus P J; Pretorius, Carel J

    2014-04-01

    Highly-sensitive cardiac troponin (cTn) assays are being introduced into the market. In this study we argue that the classification of cTn assays into sensitive and highly-sensitive is flawed and recommend a more appropriate way to characterize analytical sensitivity of cTn assays. The raw data of 2252 cardiac troponin I (cTnI) tests done in duplicate with a 'sensitive' assay was extracted and used to calculate the cTnI levels in all, including those below the 'limit of detection' (LoD) that were censored. Duplicate results were used to determine analytical imprecision. We show that cTnI can be quantified in all samples including those with levels below the LoD and that the actual margins of error decrease as concentrations approach zero. The dichotomous classification of cTn assays into sensitive and highly-sensitive is theoretically flawed and characterizing analytical sensitivity as a continuous variable based on imprecision at 0 and the 99th percentile cut-off would be more appropriate.

  5. Development of high sensitivity and high speed large size blank inspection system LBIS

    NASA Astrophysics Data System (ADS)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  6. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.

    PubMed

    Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F

    2017-03-23

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.

  7. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    PubMed

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  8. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  9. Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions

    NASA Astrophysics Data System (ADS)

    Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk

    2015-06-01

    Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.

  10. The Sensitivity of Adolescent Hearing Screens Significantly Improves by Adding High Frequencies.

    PubMed

    Sekhar, Deepa L; Zalewski, Thomas R; Beiler, Jessica S; Czarnecki, Beth; Barr, Ashley L; King, Tonya S; Paul, Ian M

    2016-09-01

    One in 6 US adolescents has high-frequency hearing loss, often related to hazardous noise. Yet, the American Academy of Pediatrics (AAP) hearing screen (500, 1,000, 2,000, 4,000 Hertz) primarily includes low frequencies (<3,000 Hertz). Study objectives were to determine (1) sensitivity and specificity of the AAP hearing screen for adolescent hearing loss and (2) if adding high frequencies increases sensitivity, while repeat screening of initial referrals reduces false positive results (maintaining acceptable specificity). Eleventh graders (n = 134) participated in hearing screening (2013-2014) including "gold-standard" sound-treated booth testing to calculate sensitivity and specificity. Of the 43 referrals, 27 (63%) had high-frequency hearing loss. AAP screen sensitivity and specificity were 58.1% (95% confidence interval 42.1%-73.0%) and 91.2% (95% confidence interval 83.4-96.1), respectively. Adding high frequencies (6,000, 8,000 Hertz) significantly increased sensitivity to 79.1% (64.0%-90.0%; p = .003). Specificity with repeat screening was 81.3% (71.8%-88.7%; p = .003). Adolescent hearing screen sensitivity improves with high frequencies. Repeat testing maintains acceptable specificity. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  11. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    NASA Astrophysics Data System (ADS)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  12. Combined determination of highly sensitive troponin T and copeptin for early exclusion of acute myocardial infarction: first experience in an emergency department of a general hospital.

    PubMed

    Lotze, Ulrich; Lemm, Holger; Heyer, Anke; Müller, Karin

    2011-01-01

    The purpose of this observational study was to test the diagnostic performance of the Elecsys® troponin T high-sensitive system combined with copeptin measurement for early exclusion of acute myocardial infarction (MI) in clinical practice. Troponin T high-sensitive (diagnostic cutoff: <14 pg/mL) and copeptin (diagnostic cutoff: <14 pmol/L) levels were determined at admission in addition to other routine laboratory parameters in patients with suspected acute MI presenting to the emergency department of a general hospital over a period of five months. Data from 142 consecutive patients (mean age 71.2 ± 13.5 years, 76 men) were analyzed. Final diagnoses were acute MI in 13 patients (nine ST elevation MI, four non-ST elevation MI, 9.2%) unstable angina pectoris in three (2.1%), cardiac symptoms not primarily associated with myocardial ischemia in 79 (55.6%), and noncardiac disease in 47 patients (33.1%). The patients with acute MI were younger and had higher troponin T high-sensitive and copeptin values than patients without acute MI. Seventeen patients had very high copeptin values (>150 pmol/L), one of whom had a level of >700 pmol/L and died of pulmonary embolism. A troponin T high-sensitive level of <14 pg/mL in combination with copeptin <14 pmol/L at initial presentation ruled out acute MI in 45 of the 142 patients (31.7%), each with a sensitivity and negative predictive value of 100%. According to this early experience, a single determination of troponin T high-sensitive and copeptin may enable early and accurate exclusion of acute MI in one third of patients, even in an emergency department of a general hospital.

  13. Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore.

    PubMed

    Hu, Zheng-Li; Li, Zi-Yuan; Ying, Yi-Lun; Zhang, Junji; Cao, Chan; Long, Yi-Tao; Tian, He

    2018-04-03

    Identification of the configuration for the photoresponsive oligonucleotide plays an important role in the ingenious design of DNA nanomolecules and nanodevices. Due to the limited resolution and sensitivity of present methods, it remains a challenge to determine the accurate configuration of photoresponsive oligonucleotides, much less a precise description of their photoconversion process. Here, we used an aerolysin (AeL) nanopore-based confined space for real-time determination and quantification of the absolute cis/ trans configuration of each azobenzene-modified oligonucleotide (Azo-ODN) with a single molecule resolution. The two completely separated current distributions with narrow peak widths at half height (<0.62 pA) are assigned to cis/ trans-Azo-ODN isomers, respectively. Due to the high current sensitivity, each isomer of Azo-ODN could be undoubtedly identified, which gives the accurate photostationary conversion values of 82.7% for trans-to- cis under UV irradiation and 82.5% for cis-to- trans under vis irradiation. Further real-time kinetic evaluation reveals that the photoresponsive rate constants of Azo-ODN from trans-to- cis and cis-to -trans are 0.43 and 0.20 min -1 , respectively. This study will promote the sophisticated design of photoresponsive ODN to achieve an efficient and applicable photocontrollable process.

  14. High-sensitivity silicon nanowire phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Dan, Yaping

    2014-08-01

    Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.

  15. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  16. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    PubMed Central

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  17. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    NASA Astrophysics Data System (ADS)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  18. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Highly Sensitive and Validated Spectrophotometric Technique for the Assay of Some Antidepressant Drugs

    NASA Astrophysics Data System (ADS)

    Deepakumari, H. N.; Prashanth, M. K.; Kumar, B. C. Vasantha; Revanasiddappa, H. D.

    2015-01-01

    The present paper describes a simple, rapid, reproducible, and highly sensitive spectrophotometric method for the determination of the tricyclic antidepressant drugs: amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMH), clomipramine hydrochloride (CPH) and desipramine hydrochloride (DPH) in pure and in pharmaceutical preparations. The method is based on the bromination of the above drugs with known excess of bromine. The unreacted bromine is determined based on its ability to bleach the dye methyl red quantitatively at 520 nm. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration range 0.0-2.5, 0-1.4, 0-1.4, and 0-1.0 μg/ml for AMT, IMH, CPH, and DPH, respectively. The molar absorptivity values were found to be 0.65 × 105, 1.41 × 105, 1.93 × 105, and 2.96 × 105l/mol/cm, with the corresponding Sandell's sensitivity values were 0.0048, 0.0022, 0.0018, and 0.0010 μg/cm2 for AMT, IMH, CPH, and DPH, respectively. The limits of detection (LOD) and quantification (LOQ) are also reported for the developed method. Intra- and inter-day accuracy and precision was established according to the current ICH guidelines. Application of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the proposed method was confirmed by applying the standard addition technique, and the results obtained are in good agreement with those obtained by the official method.

  20. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    NASA Astrophysics Data System (ADS)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  1. A biolayer interferometry-based enzyme-linked aptamer sorbent assay for real-time and highly sensitive detection of PDGF-BB.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Wu, Jihong

    2018-04-15

    Accurate, fast and sensitive detection of disease-specific protein biomarkers, especially in blood, urine, or other bodily fluids, is an important approach to achieve early disease diagnosis. Platelet-derived growth factor-BB (PDGF-BB), a widely used biomarker, is involved in a substantial number of serious diseases, such as hepatic fibrosis, atherosclerosis, age-related macular degeneration and diabetic eye disease and is often over-expressed in human malignant tumors. Therefore, the development of sensitive and specific detection methods for PDGF-BB is of great importance for the early diagnosis of disease and assessments of patient recovery. In the current study, a biolayer interferometry-based enzyme-linked aptamer sorbent assay (BLI-ELASA) was successfully established for rapid (20-25min), high-throughput (8 or 16 samples) and real-time monitoring of PDGF-BB in clinical samples. The method exhibited a broad detection range from 0.5 to 1000ng/mL of PDGF-BB (good linear range from 0.5 to 10ng/mL), with a low detection limit of 0.08ng/mL. Moreover, BLI-ELASA was applied to the detection of PDGF-BB in spiked serum and urine samples and showed a high degree of selectivity for PDGF-BB, good reproducibility, and stability. We believe that the methodology in this work can be easily adapted to detect other biomolecules in clinical samples, including viruses, pathogens and toxins, in a rapid, sensitive, high-throughput and real-time manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.

    PubMed

    Liu, Dongkui; Lu, Xing; Yang, Yiwen; Zhai, Yunyun; Zhang, Jian; Li, Lei

    2018-05-04

    Acute myocardial infarction (AMI) is one of the leading risks to global health. Thus, the rapid, accurate early diagnosis of AMI is highly critical. Human cardiac troponin I (cTnI) has been regarded as a golden biomarker for AMI due to its excellent selectivity. In this work, a novel fluorescent aptasensor based on a graphene oxide (GO) platform was developed for the highly sensitive and selective detection of cTnI. GO binds to the fluorescent anti-cTnI aptamer and quenches its fluorescence. In the presence of cTnI, the fluorescent anti-cTnI aptamer leaves the surface of GO, combines with cTnI because of the powerful affinity of the fluorescent anti-cTnI aptamer and cTnI, and then restores the fluorescence of the fluorescent anti-cTnI aptamer. Fluorescence-enhanced detection is highly sensitive and selective to cTnI. The method exhibited good analytical performance with a reasonable dynamic linearity at the concentration range of 0.10-6.0 ng/mL and a low detection limit of 0.07 ng/mL (S/N = 3). The fluorescent aptasensor also exhibited high selectivity toward cTnI compared with other interference proteins. The proposed method may be a potentially useful tool for cTnI determination in human serum. Graphical abstract A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.

  3. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart

  4. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  5. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  6. Analytical Glycobiology at High Sensitivity: Current Approaches and Directions

    PubMed Central

    Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.

    2013-01-01

    This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852

  7. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  8. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    PubMed

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. High-sensitivity Cardiac Troponin Elevation after Electroconvulsive Therapy: A Prospective, Observational Cohort Study.

    PubMed

    Duma, Andreas; Pal, Swatilika; Johnston, Joshua; Helwani, Mohammad A; Bhat, Adithya; Gill, Bali; Rosenkvist, Jessica; Cartmill, Christopher; Brown, Frank; Miller, J Philip; Scott, Mitchell G; Sanchez-Conde, Francisco; Jarvis, Michael; Farber, Nuri B; Zorumski, Charles F; Conway, Charles; Nagele, Peter

    2017-04-01

    While electroconvulsive therapy is widely regarded as a lifesaving and safe procedure, evidence regarding its effects on myocardial cell injury is sparse. The objective of this investigation was to determine the incidence and magnitude of new cardiac troponin elevation after electroconvulsive therapy using a novel high-sensitivity cardiac troponin I assay. This was a prospective cohort study in adult patients undergoing electroconvulsive therapy in a single academic center (up to three electroconvulsive therapy treatments per patient). The primary outcome was new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy, defined as an increase of high-sensitivity cardiac troponin I greater than 100% after electroconvulsive therapy compared to baseline with at least one value above the limit of quantification (10 ng/l). Twelve-lead electrocardiogram and high-sensitivity cardiac troponin I values were obtained before and 15 to 30 min after electroconvulsive therapy; in a subset of patients, an additional 2-h high-sensitivity cardiac troponin I value was obtained. The final study population was 100 patients and a total of 245 electroconvulsive therapy treatment sessions. Eight patients (8 of 100; 8%) experienced new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy with a cumulative incidence of 3.7% (9 of 245 treatments; one patient had two high-sensitivity cardiac troponin I elevations), two of whom had a non-ST-elevation myocardial infarction (incidence 2 of 245; 0.8%). Median high-sensitivity cardiac troponin I concentrations did not increase significantly after electroconvulsive therapy. Tachycardia and/or elevated systolic blood pressure developed after approximately two thirds of electroconvulsive therapy treatments. Electroconvulsive therapy appears safe from a cardiac standpoint in a large majority of patients. A small subset of patients with preexisting cardiovascular risk factors, however, may develop new

  10. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the

  11. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  12. A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel-Oxide-based Dye-Sensitized Solar Cells.

    PubMed

    Farré, Yoann; Raissi, Mahfoudh; Fihey, Arnaud; Pellegrin, Yann; Blart, Errol; Jacquemin, Denis; Odobel, Fabrice

    2017-06-22

    We prepared a series of four new diketopyrrolopyrroles (DPPs)-based sensitizers that exhibit high-molar extinction coefficients, extended absorption into the long wavelengths, and well-suited photoredox properties to act as sensitizers in p-type dye-sensitized solar cells (p-DSSCs). These new DPP dyes, composed of a thienyl DPP core, are substituted on one end either by a thiophene carboxylic (Th) or a 4,4'-[(phenyl)aza]dibenzoic acid as anchoring group and, on the other extremity, either by a proton or a naphthalene diimide (NDI) moiety. These new dyes were completely characterized by absorption and emission spectroscopy along with electrochemistry and they were modeled by time-dependent DFT (TD-DFT) quantum chemical calculations. The photovoltaic study in p-DSSC with iodine-based electrolyte reveals that the Th-DPP-NDI dye is particularly efficient (J sc =7.38 mA cm -2 ; V oc =147 mV; FF=0.32; η=0.35 %) and quite active in the low-energy region of the solar spectrum (above 700 nm), where only a few NiO dyes are effective. To illustrate the potential of DPP dyes in photocathodes, we designed a highly efficient tandem DSSC composed of a TiO 2 photoanode sensitized by the dye D35 and a NiO photocathode sensitized by Th-DPP-NDI. This tandem DSSC gives the highest performances ever reported (J sc =6.73 mA cm -2 ; V oc =910 mV; η=4.1 %) and, importantly, the tandem cell outcompetes with the sub-cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.

    PubMed

    Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar

    2018-05-02

    Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.

  14. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  15. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    PubMed

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible

  16. Highly Accurate Quantitative Analysis Of Enantiomeric Mixtures from Spatially Frequency Encoded 1H NMR Spectra.

    PubMed

    Plainchont, Bertrand; Pitoux, Daisy; Cyrille, Mathieu; Giraud, Nicolas

    2018-02-06

    We propose an original concept to measure accurately enantiomeric excesses on proton NMR spectra, which combines high-resolution techniques based on a spatial encoding of the sample, with the use of optically active weakly orienting solvents. We show that it is possible to simulate accurately dipolar edited spectra of enantiomers dissolved in a chiral liquid crystalline phase, and to use these simulations to calibrate integrations that can be measured on experimental data, in order to perform a quantitative chiral analysis. This approach is demonstrated on a chemical intermediate for which optical purity is an essential criterion. We find that there is a very good correlation between the experimental and calculated integration ratios extracted from G-SERF spectra, which paves the way to a general method of determination of enantiomeric excesses based on the observation of 1 H nuclei.

  17. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  18. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry

    NASA Astrophysics Data System (ADS)

    He, Shengbin; Hong, Xinyi; Huang, Tianxun; Zhang, Wenqiang; Zhou, Yingxing; Wu, Lina; Yan, Xiaomei

    2017-06-01

    A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.

  19. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    PubMed

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  20. CBT for high anxiety sensitivity: alcohol outcomes.

    PubMed

    Olthuis, Janine V; Watt, Margo C; Mackinnon, Sean P; Stewart, Sherry H

    2015-07-01

    High anxiety sensitivity (AS) has been associated with greater alcohol consumption and alcohol-related problems as well as greater sensitivity to the anxiety-reducing effects of alcohol and greater risky negative reinforcement motives for drinking. The present study reported on the alcohol-related outcomes of a telephone-delivered cognitive behavioral treatment (CBT) designed to reduce high AS. Eighty individuals with high AS (M age=36 years; 79% women; 76% Caucasian) seeking treatment for their AS-related concerns participated in the study and were randomly assigned to an eight week telephone CBT program or a waiting list control. Participants completed measures of drinking motives and problem drinking at pre- and post-treatment. Multilevel modeling showed that the treatment was successful in reducing AS. The treatment also resulted in specific reductions in drinking to cope with anxiety motives as well as physical alcohol-related problems. Mediated moderation analyses showed treatment-related changes in AS mediated changes in drinking to cope with anxiety motives. Changes in drinking to cope with anxiety motives mediated changes in physical alcohol-related problems. Results of the present study suggest that an AS-targeted intervention may have implications for reducing risky alcohol use cognitions and behaviors. Further research is needed in a sample of problem drinkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  2. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  4. Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Mason, B. H.; Walsh, J. L.

    2001-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.

  5. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    PubMed

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Variable sensitivity of US maize yield to high temperatures across developmental stages

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Huybers, P. J.

    2013-12-01

    The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.

  7. Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection

    PubMed Central

    Bale, Shyam Sundhar; Bhushan, Abhinav; Shen, Keyue; Seker, Erkin; Polyak, Boris

    2014-01-01

    There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the “lab-on-a-chip” concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms. PMID:25378716

  8. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  9. Low Cost, Low Power, High Sensitivity Magnetometer

    DTIC Science & Technology

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  10. Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.

    PubMed

    Nagatsu, T; Oka, K; Kato, T

    1979-07-21

    A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.

  11. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  12. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  13. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  14. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret.

    PubMed

    Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun

    2017-07-19

    Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.

  15. Elucidating the Complex Lineshapes Resulting from the Highly Sensitive, Ion Selective, Technique Nice-Ohvms

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Siller, Brian; McCall, Benjamin J.

    2015-06-01

    The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS, has been used to great effect to precisely and accurately measure a variety of molecular ion transitions from species such as H_3^+, CH_5^+, HeH^+, and HCO^+, achieving MHz or in some cases sub-MHz uncertainty. It is a powerful technique, but a complete theoretical understanding of the complex NICE-OHVMS lineshape is needed to fully unlock its potential. NICE-OHVMS is the direct result of the combination of the highly sensitive spectroscopic technique Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy(NICE-OHMS) with Velocity Modulation Spectroscopy(VMS), applying the most sensitive optical detection method with ion species selectivity. The theoretical underpinnings of NICE-OHMS lineshapes are well established, as are those of VMS. This presentation is the logical extension of those two preceding bodies of work. Simulations of NICE-OHVMS lineshapes under a variety of conditions and fits of experimental data to the model are presented. The significance and accuracy of the various inferred parameters, along with the prospect of using them to extract additional information from observed transitions, are discussed. J.~N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201. A.~J. Perry, et al. J. Chem. Phys. (2014), 141, 101101. K.~N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6. F.~M. Schmidt, et al. J. Opt. Soc. Amer. A (2008), 24, 1392--1405. J.~W. Farley, J. Chem. Phys. (1991), 95, 5590--5602.

  16. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  17. Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Le, Trung-Thanh

    2017-12-01

    We propose a new kind of microring resonators (MRR) based on 4 × 4 multimode interference (MMI) couplers for multichannel and highly sensitive chemical and biological sensors. The proposed sensor structure has advantages of compactness and high sensitivity compared with the reported sensing structures. By using the transfer matrix method (TMM) and numerical simulations, the designs of the sensor based on silicon waveguides are optimized and demonstrated in detail. We apply our structure to detect glucose and ethanol concentrations simultaneously. A high sensitivity of 9000 nm/RIU, detection limit of 2 × 10‒4 for glucose sensing and sensitivity of 6000 nm/RIU, detection limit of 1.3 × 10‒5 for ethanol sensing are achieved.

  18. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  19. Review of high-sensitivity Radon studies

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  20. Recent trends in high spin sensitivity magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  1. An Accurate Temperature Correction Model for Thermocouple Hygrometers 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred; de Jager, James M.

    1982-01-01

    Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241

  2. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  3. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  4. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors.

    PubMed

    March, Carmen; García, José V; Sánchez, Ángel; Arnau, Antonio; Jiménez, Yolanda; García, Pablo; Manclús, Juan J; Montoya, Ángel

    2015-03-15

    In spite of being widely used for in liquid biosensing applications, sensitivity improvement of conventional (5-20MHz) quartz crystal microbalance (QCM) sensors remains an unsolved challenging task. With the help of a new electronic characterization approach based on phase change measurements at a constant fixed frequency, a highly sensitive and versatile high fundamental frequency (HFF) QCM immunosensor has successfully been developed and tested for its use in pesticide (carbaryl and thiabendazole) analysis. The analytical performance of several immunosensors was compared in competitive immunoassays taking carbaryl insecticide as the model analyte. The highest sensitivity was exhibited by the 100MHz HFF-QCM carbaryl immunosensor. When results were compared with those reported for 9MHz QCM, analytical parameters clearly showed an improvement of one order of magnitude for sensitivity (estimated as the I50 value) and two orders of magnitude for the limit of detection (LOD): 30μgl(-1) vs 0.66μgL(-1)I50 value and 11μgL(-1) vs 0.14μgL(-1) LOD, for 9 and 100MHz, respectively. For the fungicide thiabendazole, I50 value was roughly the same as that previously reported for SPR under the same biochemical conditions, whereas LOD improved by a factor of 2. The analytical performance achieved by high frequency QCM immunosensors surpassed those of conventional QCM and SPR, closely approaching the most sensitive ELISAs. The developed 100MHz QCM immunosensor strongly improves sensitivity in biosensing, and therefore can be considered as a very promising new analytical tool for in liquid applications where highly sensitive detection is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Accurate masking technology for high-resolution powder blasting

    NASA Astrophysics Data System (ADS)

    Pawlowski, Anne-Gabrielle; Sayah, Abdeljalil; Gijs, Martin A. M.

    2005-07-01

    We have combined eroding 10 µm diameter Al2O3 particles with a new masking technology to realize the smallest and most accurate possible structures by powder blasting. Our masking technology is based on the sequential combination of two polymers:(i) the brittle epoxy resin SU8 for its photosensitivity and (ii) the elastic and thermocurable poly-dimethylsiloxane for its large erosion resistance. We have micropatterned various types of structures with a minimum width of 20 µm for test structures with an aspect ratio of 1, and 50 µm for test structures with an aspect ratio of 2.

  6. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  7. High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion.

    PubMed

    Shiratori, Hiromi; Feinweber, Carmen; Knothe, Claudia; Lötsch, Jörn; Thomas, Dominique; Geisslinger, Gerd; Parnham, Michael J; Resch, Eduard

    2016-01-01

    DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50-80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.

  8. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease?

    PubMed Central

    Visser, P; Scheltens, P; Verhey, F

    2005-01-01

    Background: Drugs effective in Alzheimer-type dementia have been tested in subjects with mild cognitive impairment (MCI) because these are supposed to have Alzheimer's disease in the predementia stage. Objectives: To investigate whether MCI criteria used in these drug trials can accurately diagnose subjects with predementia Alzheimer's disease. Methods: MCI criteria of the Gal-Int 11 study, InDDEx study, ADCS memory impairment study, ampakine CX 516 study, piracetam study, and Merck rofecoxib study were applied retrospectively in a cohort of 150 non-demented subjects from a memory clinic. Forty two had progressed to Alzheimer type dementia during a five year follow up period and were considered to have predementia Alzheimer's disease at baseline. Outcome measures were the odds ratio, sensitivity, specificity, and positive and negative predictive value. Results: The odds ratio of the MCI criteria for predementia Alzheimer's disease varied between 0.84 and 11. Sensitivity varied between 0.46 and 0.83 and positive predictive value between 0.43 and 0.76. None of the criteria combined a high sensitivity with a high positive predictive value. Exclusion criteria for depression led to an increase in positive predictive value and specificity at the cost of sensitivity. In subjects older than 65 years the positive predictive value was higher than in younger subjects. Conclusions: The diagnostic accuracy of MCI criteria used in trials for predementia Alzheimer's disease is low to moderate. Their use may lead to inclusion of many patients who do not have predementia Alzheimer's disease or to exclusion of many who do. Subjects with moderately severe depression should not be excluded from trials in order not to reduce the sensitivity. PMID:16170074

  9. OPTIMA: sensitive and accurate whole-genome alignment of error-prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.

    PubMed

    Verzotto, Davide; M Teo, Audrey S; Hillmer, Axel M; Nagarajan, Niranjan

    2016-01-01

    Resolution of complex repeat structures and rearrangements in the assembly and analysis of large eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping technologies (for example, optical restriction mapping). In particular, mapping technologies can generate sparse maps of large DNA fragments (150 kilo base pairs (kbp) to 2 Mbp) and thus provide a unique source of information for disambiguating complex rearrangements in cancer genomes. Despite their utility, combining high-throughput sequencing and mapping technologies has been challenging because of the lack of efficient and sensitive map-alignment algorithms for robustly aligning error-prone maps to sequences. We introduce a novel seed-and-extend glocal (short for global-local) alignment method, OPTIMA (and a sliding-window extension for overlap alignment, OPTIMA-Overlap), which is the first to create indexes for continuous-valued mapping data while accounting for mapping errors. We also present a novel statistical model, agnostic with respect to technology-dependent error rates, for conservatively evaluating the significance of alignments without relying on expensive permutation-based tests. We show that OPTIMA and OPTIMA-Overlap outperform other state-of-the-art approaches (1.6-2 times more sensitive) and are more efficient (170-200 %) and precise in their alignments (nearly 99 % precision). These advantages are independent of the quality of the data, suggesting that our indexing approach and statistical evaluation are robust, provide improved sensitivity and guarantee high precision.

  10. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  11. Sensitivity to apomorphine-induced yawning and hypothermia in rats eating standard or high-fat chow.

    PubMed

    Baladi, Michelle G; Thomas, Yvonne M; France, Charles P

    2012-07-01

    Feeding conditions modify sensitivity to indirect- and direct-acting dopamine receptor agonists as well as the development of sensitization to these drugs. This study examined whether feeding condition affects acute sensitivity to apomorphine-induced yawning or changes in sensitivity that occur over repeated drug administration. Quinpirole-induced yawning was also evaluated to see whether sensitization to apomorphine confers cross-sensitization to quinpirole. Drug-induced yawning was measured in different groups of male Sprague Dawley rats (n = 6/group) eating high (34.3%) fat or standard (5.7% fat) chow. Five weeks of eating high-fat chow rendered otherwise drug-naïve rats more sensitive to apomorphine- (0.01-1.0 mg/kg, i.p.) and quinpirole- (0.0032-0.32 mg/kg, i.p.) induced yawning, compared with rats eating standard chow. In other rats, tested weekly with apomorphine, sensitivity to apomorphine-induced yawning increased (sensitization) similarly in rats with free access to standard or high-fat chow; conditioning to the testing environment appeared to contribute to increased yawning in both groups of rats. Food restriction decreased sensitivity to apomorphine-induced yawning across five weekly tests. Rats with free access to standard or high-fat chow and sensitized to apomorphine were cross-sensitized to quinpirole-induced yawning. The hypothermic effects of apomorphine and quinpirole were not different regardless of drug history or feeding condition. Eating high-fat chow or restricting access to food alters sensitivity to direct-acting dopamine receptor agonists (apomorphine, quinpirole), although the relative contribution of drug history and dietary conditions to sensitivity changes appears to vary among agonists.

  12. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  13. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841

  14. Insulin sensitivity is reduced in children with high body-fat regardless of BMI.

    PubMed

    Fairchild, Timothy J; Klakk, Heidi; Heidemann, Malene; Grøntved, Anders; Wedderkopp, Niels

    2018-02-23

    To examine the association between insulin sensitivity and adiposity in children stratified according to their body mass index (BMI: normal weight, NW; overweight or obese, OW/OB) and body-fat percentage (BF%: adipose or NonAdipose), and determine whether cardiorespiratory fitness (CRF) ameliorates any deleterious associations. This prospective cohort study comprises a cross-sectional and longitudinal analyses of data collected at baseline and 2 years later on children (7.7-13.4 years) attending public school in Denmark. Levels of CRF were measured using the Andersen test, whereas BF% was measured by dual-energy X-ray absorptiometry (DXA). Fasting plasma glucose and insulin concentrations were measured and the homoeostatic model assessment of insulin resistance (HOMA-IR) used to assess insulin sensitivity. Approximately 8% of children classified as normal weight by BMI had high BF% (NW + Adipose). Children with high BF% had significantly higher insulin (NW + adipose: 32.3%; OW/OB + Adipose: 52.2%) and HOMA-IR scores (NW + Adipose: 32.3%; OW/OB + Adipose: 55.3%) than children classified as NW without high BF% (reference group; NW + NonAdipose). Adjusting for CRF reduced this difference, but did not completely ameliorate these associations. Longitudinally, children with high BF% (OW/OB + Adipose or NW + Adipose) had significantly worse insulin sensitivity 2 years later than NW + NonAdipose children (All p < 0.001). The few children (n = 14) who improved their BMI or BF% during the 2 years follow-up, no longer had significantly worse insulin sensitivity than children with NW + NonAdipose. High BF% in children is associated with significantly lower insulin sensitivity even when BMI is considered NW. Longitudinally, insulin sensitivity is lower in children with high BF% with or without high BMI. The CRF was a significant covariate in these models, but CRF did not completely ameliorate the effects of high BF% on

  15. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction.

    PubMed

    Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping

    2018-02-07

    Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.

  16. Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats

    PubMed Central

    McGuire, Blaine A.; Baladi, Michelle G.; France, Charles P.

    2011-01-01

    Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1–10 mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. PMID:21371470

  17. Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats.

    PubMed

    McGuire, Blaine A; Baladi, Michelle G; France, Charles P

    2011-05-11

    Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1-10mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A High Sensitivity Bio Photosensor for Detecting a Luciferase Bioluminescence

    NASA Astrophysics Data System (ADS)

    Kameda, Seiji; Moriyama, Yusuke; Noda, Kenichi; Iwata, Atsushi

    A high sensitivity CMOS bio photosensor applicable to a bioluminescent assay was developed with a 0.18µm CMOS image sensor (CIS) process. The bio photosensor consisting of a photosensor and a PWM 20bit A/D converter achieved high sensitivity for detecting a extremely low bioluminescence due to a large photodiode area, a long exposure time and the other noise reduction techniques. The bio photosensor chip has a 2×4 sensor array on a 2.45×2.45mm2 die. Experimental results with the bioluminescence showed the chip can detect below 10-5lux luminescence at room temperature and the power consumption is 32µW.

  19. Utility of high-resolution accurate MS to eliminate interferences in the bioanalysis of ribavirin and its phosphate metabolites.

    PubMed

    Wei, Cong; Grace, James E; Zvyaga, Tatyana A; Drexler, Dieter M

    2012-08-01

    The polar nucleoside drug ribavirin (RBV) combined with IFN-α is a front-line treatment for chronic hepatitis C virus infection. RBV acts as a prodrug and exerts its broad antiviral activity primarily through its active phosphorylated metabolite ribavirin 5´-triphosphate (RTP), and also possibly through ribavirin 5´-monophosphate (RMP). To study RBV transport, diffusion, metabolic clearance and its impact on drug-metabolizing enzymes, a LC-MS method is needed to simultaneously quantify RBV and its phosphorylated metabolites (RTP, ribavirin 5´-diphosphate and RMP). In a recombinant human UGT1A1 assay, the assay buffer components uridine and its phosphorylated derivatives are isobaric with RBV and its phosphorylated metabolites, leading to significant interference when analyzed by LC-MS with the nominal mass resolution mode. Presented here is a LC-MS method employing LC coupled with full-scan high-resolution accurate MS analysis for the simultaneous quantitative determination of RBV, RMP, ribavirin 5´-diphosphate and RTP by differentiating RBV and its phosphorylated metabolites from uridine and its phosphorylated derivatives by accurate mass, thus avoiding interference. The developed LC-high-resolution accurate MS method allows for quantitation of RBV and its phosphorylated metabolites, eliminating the interferences from uridine and its phosphorylated derivatives in recombinant human UGT1A1 assays.

  20. Birth weight, current anthropometric markers, and high sensitivity C-reactive protein in Brazilian school children.

    PubMed

    Boscaini, Camile; Pellanda, Lucia Campos

    2015-01-01

    Studies have shown associations of birth weight with increased concentrations of high sensitivity C-reactive protein. This study assessed the relationship between birth weight, anthropometric and metabolic parameters during childhood, and high sensitivity C-reactive protein. A total of 612 Brazilian school children aged 5-13 years were included in the study. High sensitivity C-reactive protein was measured by particle-enhanced immunonephelometry. Nutritional status was assessed by body mass index, waist circumference, and skinfolds. Total cholesterol and fractions, triglycerides, and glucose were measured by enzymatic methods. Insulin sensitivity was determined by the homeostasis model assessment method. Statistical analysis included chi-square test, General Linear Model, and General Linear Model for Gamma Distribution. Body mass index, waist circumference, and skinfolds were directly associated with birth weight (P < 0.001, P = 0.001, and P = 0.015, resp.). Large for gestational age children showed higher high sensitivity C-reactive protein levels (P < 0.001) than small for gestational age. High birth weight is associated with higher levels of high sensitivity C-reactive protein, body mass index, waist circumference, and skinfolds. Large for gestational age altered high sensitivity C-reactive protein and promoted additional risk factor for atherosclerosis in these school children, independent of current nutritional status.

  1. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  2. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  3. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    PubMed

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  4. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    PubMed Central

    Filošević, Ana; Al-samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to

  5. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  6. High-sensitivity, high-selectivity detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Michael B.; Webber, Michael E.; Macdonald, Tyson; Patel, C. Kumar N.

    2006-01-01

    We report high-sensitivity detection of chemical warfare agents (nerve gases) with very low probability of false positives (PFP). We demonstrate a detection threshold of 1.2ppb (7.7μg/m3 equivalent of Sarin) with a PFP of <1:106 in the presence of many interfering gases present in an urban environment through the detection of diisopropyl methylphosphonate, an accepted relatively harmless surrogate for the nerve agents. For the current measurement time of ˜60s, a PFP of 1:106 corresponds to one false alarm approximately every 23months. The demonstrated performance satisfies most current homeland and military security requirements.

  7. Rapid and sensitive detection of mink circovirus by recombinase polymerase amplification.

    PubMed

    Ge, Junwei; Shi, Yunjia; Cui, Xingyang; Gu, Shanshan; Zhao, Lili; Chen, Hongyan

    2018-06-01

    To date, the pathogenic role of mink circovirus (MiCV) remains unclear, and its prevalence and economic importance are unknown. Therefore, a rapid and sensitive molecular diagnosis is necessary for disease management and epidemiological surveillance. However, only PCR methods can identify MiCV infection at present. In this study, we developed a nested PCR and established a novel recombinase polymerase amplification (RPA) assay for MiCV detection. Sensitivity analysis showed that the detection limit of nested PCR and RPA assay was 10 1 copies/reaction, and these methods were more sensitive than conventional PCR, which has a detection limit of 10 5 copies/reaction. The RPA assay had no cross-reactivity with other related viral pathogens, and amplification was completed in less than 20 min with a simple device. Further assessment of clinical samples showed that the two assays were accurate in identifying positive and negative conventional PCR samples. The detection rate of MiCV by the RPA assay in clinical samples was 38.09%, which was 97% consistent with that by the nested PCR. The developed nested PCR is a highly sensitive tool for practical use, and the RPA assay is a simple, sensitive, and potential alternative method for rapid and accurate MiCV diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Henry, H; Marmy Conus, N; Steenhout, P; Béguin, A; Boulat, O

    2012-04-01

    D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic™ R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  10. Accurate and sensitive liquid chromatography/tandem mass spectrometry simultaneous assay of seven steroids in monkey brain.

    PubMed

    Bertin, Jonathan; Dury, Alain Y; Ke, Yuyong; Ouellet, Johanne; Labrie, Fernand

    2015-06-01

    Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Validation of a novel high-sensitivity radioimmunoassay procedure for measurement of total thyroxine concentration in psittacine birds and snakes.

    PubMed

    Greenacre, C B; Young, D W; Behrend, E N; Wilson, G H

    2001-11-01

    To validate a novel high-sensitivity radioimmunoassay (RIA) procedure developed to accurately measure the relatively low serum total thyroxine (T4) concentrations of birds and reptiles and to establish initial reference ranges forT4 concentration in selected species of psittacine birds and snakes. 56 healthy nonmolting adult psittacine birds representing 6 species and 42 captive snakes representing 4 species. A solid-phase RIA designed to measure free T4 concentrations in dialysates of human serum samples was used without dialysis to evaluate total T4 concentration in treated samples obtained from birds and reptiles. Serum T4 binding components were removed to allow assay of undialyzed samples. Assay validation was assessed by determining recovery of expected amounts of T4 in treated samples that were serially diluted or to which T4 was added. Intra- and interassay coefficient of variation (CV) was determined. Mean recovery of T4 added at 4 concentrations ranged from 84.9 to 115.0% and 95.8 to 119.4% in snakes and birds, respectively. Intra- and interassay CV was 3.8 and 11.3%, respectively. Serum total T4 concentrations for 5 species of birds ranged from 2.02 to 768 nmol/L but ranged from 3.17 to 142 nmol/L for blue-fronted Amazon parrots; concentrations ranged from 0.21 to 6.06 nmol/L for the 4 species of snakes. This new RIA method provides a commercially available, accurate, and sensitive method for measurement of the relatively low serum T4 concentrations of birds and snakes. Initial ranges for the species evaluated were established.

  12. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System

    PubMed Central

    Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570

  13. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    PubMed

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  14. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  15. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    PubMed

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  16. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    PubMed

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  17. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  18. Direct detection of falciparum and non-falciparum malaria DNA from a drop of blood with high sensitivity by the dried-LAMP system.

    PubMed

    Hayashida, Kyoko; Kajino, Kiichi; Simukoko, Humphrey; Simuunza, Martin; Ndebe, Joseph; Chota, Amos; Namangala, Boniface; Sugimoto, Chihiro

    2017-01-13

    Because of the low sensitivity of conventional rapid diagnostic tests (RDTs) for malaria infections, the actual prevalence of the diseases, especially those caused by non-Plasmodium falciparum (non-Pf) species, in asymptomatic populations remain less defined in countries lacking in well-equipped facilities for accurate diagnoses. Our direct blood dry LAMP system (CZC-LAMP) was applied to the diagnosis of malaria as simple, rapid and highly sensitive method as an alternative for conventional RDTs in malaria endemic areas where laboratory resources are limited. LAMP primer sets for mitochondria DNAs of Plasmodium falciparum (Pf) and human-infective species other than Pf (non-Pf; P. vivax, P. ovale, P. malariae) were designed and tested by using human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested PCR and nucleotide sequencing of its product. The dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μl of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4, 25.3 and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia. We have developed new field-applicable malaria diagnostic tests. The malaria CZC-LAMPs showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new

  19. Robust Emergent Climate Phenomena Associated with the High-Sensitivity Tail

    NASA Astrophysics Data System (ADS)

    Boslough, M.; Levy, M.; Backus, G.

    2010-12-01

    Because the potential effects of climate change are more severe than had previously been thought, increasing focus on uncertainty quantification is required for risk assessment needed by policy makers. Current scientific efforts focus almost exclusively on establishing best estimates of future climate change. However, the greatest consequences occur in the extreme tail of the probability density functions for climate sensitivity (the “high-sensitivity tail”). To this end, we are exploring the impacts of newly postulated, highly uncertain, but high-consequence physical mechanisms to better establish the climate change risk. We define consequence in terms of dramatic change in physical conditions and in the resulting socioeconomic impact (hence, risk) on populations. Although we are developing generally applicable risk assessment methods, we have focused our initial efforts on uncertainty and risk analyses for the Arctic region. Instead of focusing on best estimates, requiring many years of model parameterization development and evaluation, we are focusing on robust emergent phenomena (those that are not necessarily intuitive and are insensitive to assumptions, subgrid-parameterizations, and tunings). For many physical systems, under-resolved models fail to generate such phenomena, which only develop when model resolution is sufficiently high. Our ultimate goal is to discover the patterns of emergent climate precursors (those that cannot be predicted with lower-resolution models) that can be used as a "sensitivity fingerprint" and make recommendations for a climate early warning system that would use satellites and sensor arrays to look for the various predicted high-sensitivity signatures. Our initial simulations are focused on the Arctic region, where underpredicted phenomena such as rapid loss of sea ice are already emerging, and because of major geopolitical implications associated with increasing Arctic accessibility to natural resources, shipping routes

  20. Centrifuge: rapid and sensitive classification of metagenomic sequences

    PubMed Central

    Song, Li; Breitwieser, Florian P.

    2016-01-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649

  1. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    PubMed

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  2. High symptom reporters are less interoceptively accurate in a symptom-related context.

    PubMed

    Bogaerts, Katleen; Millen, An; Li, Wan; De Peuter, Steven; Van Diest, Ilse; Vlemincx, Elke; Fannes, Stien; Van den Bergh, Omer

    2008-11-01

    We investigated the role of a symptom interpretation frame on the accuracy of interoception and on retrospective symptom reporting in nonclinical high and low reporters of medically unexplained symptoms. All participants (N=74) went through two subsequent trials of the Rebreathing Test, inducing altered respiration and other physical sensations as a result of a gradually increasing pCO(2) level in the blood. Each trial consisted of a baseline (60 s), a rebreathing phase (150 s), and a recovery phase (150 s). In one trial, the sensations were framed in a neutral way ("the gas mixture might alter breathing behavior and induce respiratory sensations"). In the other trial, a symptom frame was induced ("the gas mixture might alter breathing behavior and induce respiratory symptoms"). Breathing behavior was continuously monitored, subjective sensations were rated every 10 s, and after each trial, participants filled out a symptom checklist. Within-subject correlations between the subjective rating and its physiological referent were calculated for the rebreathing phase and recovery phase of each trial separately. High symptom reporters had more (retrospective) complaints than low symptom reporters, especially in the symptom trial. Only in the symptom frame were high symptom reporters less accurate than low symptom reporters. The reduction in interoceptive accuracy (IA) in high symptom reporters was most striking in the recovery phase of the symptom frame trial. A contextual cue, such as a reference to symptoms, reduced IA in high symptom reporters and this was more so during recovery from the symptom induction.

  3. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  4. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  5. Accurate dipole moment curve and non-adiabatic effects on the high resolution spectroscopic properties of the LiH molecule

    NASA Astrophysics Data System (ADS)

    Diniz, Leonardo G.; Kirnosov, Nikita; Alijah, Alexander; Mohallem, José R.; Adamowicz, Ludwik

    2016-04-01

    A very accurate dipole moment curve (DMC) for the ground X1Σ+ electronic state of the 7LiH molecule is reported. It is calculated with the use of all-particle explicitly correlated Gaussian functions with shifted centers. The DMC - the most accurate to our knowledge - and the corresponding highly accurate potential energy curve are used to calculate the transition energies, the transition dipole moments, and the Einstein coefficients for the rovibrational transitions with ΔJ = - 1 and Δv ⩽ 5 . The importance of the non-adiabatic effects in determining these properties is evaluated using the model of a vibrational R-dependent effective reduced mass in the rovibrational calculations introduced earlier (Diniz et al., 2015). The results of the present calculations are used to assess the quality of the two complete linelists of 7LiH available in the literature.

  6. Value of high-sensitivity C-reactive protein assays in predicting atrial fibrillation recurrence: a systematic review and meta-analysis.

    PubMed

    Yo, Chia-Hung; Lee, Si-Huei; Chang, Shy-Shin; Lee, Matthew Chien-Hung; Lee, Chien-Chang

    2014-02-20

    We performed a systematic review and meta-analysis of studies on high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are predictive of atrial fibrillation (AF) recurrence after cardioversion. Systematic review and meta-analysis. PubMed, EMBASE and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. This review selected observational studies in which the measurements of serum CRP were used to predict AF recurrence. An hs-CRP assay was defined as any CRP test capable of measuring serum CRP to below 0.6 mg/dL. We summarised test performance characteristics with the use of forest plots, hierarchical summary receiver operating characteristic curves and bivariate random effects models. Meta-regression analysis was performed to explore the source of heterogeneity. We included nine qualifying studies comprising a total of 347 patients with AF recurrence and 335 controls. A CRP level higher than the optimal cut-off point was an independent predictor of AF recurrence after cardioversion (summary adjusted OR: 3.33; 95% CI 2.10 to 5.28). The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% CI 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cut-off point of 1.9 mg/L to predict long-term AF recurrence (77% sensitivity, 65% specificity), and 3 mg/L to predict short-term AF recurrence (73% sensitivity, 71% specificity). hs-CRP assays are moderately accurate in predicting AF recurrence after successful cardioversion.

  7. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  8. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    PubMed Central

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-01-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future. PMID:25655666

  9. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  10. The Relationship between Ethical Sensitivity, High Ability and Gender in Higher Education Students

    ERIC Educational Resources Information Center

    Schutte, Ingrid; Wolfensberger, Marca; Tirri, Kirsi

    2014-01-01

    This study examined the ethical sensitivity of high-ability undergraduate students (n=731) in the Netherlands who completed the 28-item Ethical Sensitivity Scale Questionnaire (ESSQ) developed by Tirri & Nokelainen (2007; 2011). The ESSQ is based on Narvaez' (2001) operationalization of ethical sensitivity in seven dimensions. The following…

  11. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering

    PubMed Central

    Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu

    2009-01-01

    Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124

  12. Sensitivity of the High Altitude Water Cherenkov Experiment to observe Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    González, M. M.

    Ground based telescopes have marginally observed very high energy emission (>100GeV) from gamma-ray bursts(GRB). For instance, Milagrito observed GRB970417a with a significance of 3.7 sigmas over the background. Milagro have not yet observed TeV emission from a GRB with its triggered and untriggered searches or GeV emission with a triggered search using its scalers. These results suggest the need of new observatories with higher sensitivity to transient sources. The HAWC (High Altitute Water Cherenkov) observatory is proposed as a combination of the Milagro tecnology with a very high altitude (>4000m over see level) site. The expected HAWC sensitivity for GRBs is at least >10 times the Milagro sensitivity. In this work HAWC sensitivity for GRBs is discussed for different detector configurations such as altitude, distance between PMTs, depth under water of PMTs, number of PMTs required for a trigger, etc.

  13. Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel

    2009-05-01

    We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.

  14. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  15. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation.

    PubMed

    Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D

    2017-08-01

    We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.

  16. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  17. Does mesenteric venous imaging assessment accurately predict pathologic invasion in localized pancreatic ductal adenocarcinoma?

    PubMed

    Clanton, Jesse; Oh, Stephen; Kaplan, Stephen J; Johnson, Emily; Ross, Andrew; Kozarek, Richard; Alseidi, Adnan; Biehl, Thomas; Picozzi, Vincent J; Helton, William S; Coy, David; Dorer, Russell; Rocha, Flavio G

    2018-05-09

    Accurate prediction of mesenteric venous involvement in pancreatic ductal adenocarcinoma (PDAC) is necessary for adequate staging and treatment. A retrospective cohort study was conducted in PDAC patients at a single institution. All patients with resected PDAC and staging CT and EUS between 2003 and 2014 were included and sub-divided into "upfront resected" and "neoadjuvant chemotherapy (NAC)" groups. Independent imaging re-review was correlated to venous resection and venous invasion. Sensitivity, specificity, positive and negative predictive values were then calculated. A total of 109 patients underwent analysis, 60 received upfront resection, and 49 NAC. Venous resection (30%) and vein invasion (13%) was less common in patients resected upfront than those who received NAC (53% and 16%, respectively). Both CT and EUS had poor sensitivity (14-44%) but high specificity (75-95%) for detecting venous resection and vein invasion in patients resected upfront, whereas sensitivity was high (84-100%) and specificity was low (27-44%) after NAC. Preoperative CT and EUS in PDAC have similar efficacy but different predictive capacity in assessing mesenteric venous involvement depending on whether patients are resected upfront or received NAC. Both modalities appear to significantly overestimate true vascular involvement and should be interpreted in the appropriate clinical context. Copyright © 2018 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  18. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  19. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  20. Development of the "Highly Sensitive Dog" questionnaire to evaluate the personality dimension "Sensory Processing Sensitivity" in dogs.

    PubMed

    Braem, Maya; Asher, Lucy; Furrer, Sibylle; Lechner, Isabel; Würbel, Hanno; Melotti, Luca

    2017-01-01

    In humans, the personality dimension 'sensory processing sensitivity (SPS)', also referred to as "high sensitivity", involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the "highly sensitive dog score" (HSD-s) was developed based on the "highly sensitive person" (HSP) questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, "demographic" (e.g. dog sex, age, weight; age at adoption, etc.) and "human" factors (e.g. owner age, sex, profession, communication style, etc.), and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447) and inter-rater (N = 120) reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter-rater reliability

  1. Some More Sensitive Measures of Sensitivity and Response Bias

    NASA Technical Reports Server (NTRS)

    Balakrishnan, J. D.

    1998-01-01

    In this article, the author proposes a new pair of sensitivity and response bias indices and compares them to other measures currently available, including d' and Beta of signal detection theory. Unlike d' and Beta, these new performance measures do not depend on specific distributional assumptions or assumptions about the transformation from stimulus information to a discrimination judgment with simulated and empirical data, the new sensitivity index is shown to be more accurate than d' and 16 other indices when these measures are used to compare the sensitivity levels of 2 experimental conditions. Results from a perceptual discrimination experiment demonstrate the feasibility of the new distribution-free bias index and suggest that biases of the type defined within the signal detection theory framework (i.e., the placement of a decision criterion) do not exist, even under an asymmetric payoff manipulation.

  2. High-sensitivity bend angle measurements using optical fiber gratings.

    PubMed

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  3. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  4. Highly sensitive and unbiased approach for elucidating antibody repertoires

    PubMed Central

    Lin, Sherry G.; Ba, Zhaoqing; Du, Zhou; Zhang, Yu; Hu, Jiazhi; Alt, Frederick W.

    2016-01-01

    Developing B lymphocytes undergo V(D)J recombination to assemble germ-line V, D, and J gene segments into exons that encode the antigen-binding variable region of Ig heavy (H) and light (L) chains. IgH and IgL chains associate to form the B-cell receptor (BCR), which, upon antigen binding, activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. The ability of V(D)J recombination to generate vast primary B-cell repertoires results from a combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B-cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as high-throughput genome-wide translocation sequencing-adapted repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or nonproductive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions, and also for following antibody affinity maturation processes. PMID:27354528

  5. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  6. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  7. Improved sensitivity of vaginal self-collection and high-risk human papillomavirus testing.

    PubMed

    Belinson, Jerome L; Du, Hui; Yang, Bin; Wu, Ruifang; Belinson, Suzanne E; Qu, Xinfeng; Pretorius, Robert G; Yi, Xin; Castle, Philip E

    2012-04-15

    Self-collected vaginal specimens tested for high-risk human papillomavirus (HR-HPV) have been shown to be less sensitive for the detection of cervical intraepithelial neoplasia or cancer (≥CIN 3) than physician-collected endocervical specimens. To increase the sensitivity of self-collected specimens, we studied a self-sampling device designed to obtain a larger specimen from the upper vagina (POI/NIH self-sampler) and a more sensitive polymerase chain reaction (PCR)-based HR-HPV assay. Women (10,000) were screened with cervical cytology and HR-HPV testing of vaginal self-collected and endocervical physician-collected specimens. Women were randomly assigned to use either a novel self-collection device (POI/NIH self-sampler) or conical-shaped brush (Qiagen). The self-collected and clinician-collected specimens were assayed by Cervista (Hologic) and the research only PCR-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Women with any abnormal screening test underwent colposcopy and biopsy. Women (8,556), mean age of 38.9, had complete data; 1.6% had ≥ CIN 3. For either HR-HPV assay, the sensitivity was similar for the two self-collection devices. Tested with Cervista, the sensitivity for ≥CIN 3 of self-collected specimens was 70.9% and for endocervical specimens was 95.0% (p = 0.0001). Tested with MALDI-TOF, the sensitivity for ≥CIN 3 of self-collected specimens was 94.3% and for endocervical specimens was also 94.3% (p = 1.0). A self-collected sample using a PCR-based assay with the capability of very high throughput has similar sensitivity as a direct endocervical specimen obtained by a physician. Large population-based screening "events" in low-resource settings could be achieved by promoting self-collection and centralized high-throughput, low-cost testing by PCR-based MALDI-TOF. Copyright © 2011 UICC.

  8. Gene expression analysis using a highly sensitive DNA microarray for colorectal cancer screening.

    PubMed

    Koga, Yoshikatsu; Yamazaki, Nobuyoshi; Takizawa, Satoko; Kawauchi, Junpei; Nomura, Osamu; Yamamoto, Seiichiro; Saito, Norio; Kakugawa, Yasuo; Otake, Yosuke; Matsumoto, Minori; Matsumura, Yasuhiro

    2014-01-01

    Half of all patients with small, right-sided, non-metastatic colorectal cancer (CRC) have negative results for the fecal occult blood test (FOBT). In the present study, the usefulness of CRC screening with a highly sensitive DNA microarray was evaluated in comparison with that by FOBT using fecal samples. A total of 53 patients with CRC and 61 healthy controls were divided into "training" and "validation sets". For the gene profiling, total RNA extracted from 0.5 g of feces was hybridized to a highly sensitive DNA chip. The expressions of 43 genes were significantly higher in the patients with CRC than in healthy controls (p<0.05). In the training set, the sensitivity and specificity of the DNA chip assay using six genes were 85.4% and 85.2%, respectively. On the other hand, in the validation set, the sensitivity and specificity of the DNA chip assay were 85.2% and 85.7%, respectively. The sensitivities of the DNA chip assay were higher than those of FOBT in cases of the small, right-sided, early-CRC, tumor invading up to the muscularis propria (i.e. surface tumor) subgroups. In particular, the sensitivities of the DNA chip assay in the surface tumor and early-CRC subgroups were significantly higher than those of FOBT (p=0.023 and 0.019, respectively.). Gene profiling assay using a highly sensitive DNA chip was more effective than FOBT at detecting patients with small, right-sided, surface tumor, and early-stage CRC.

  9. Interpersonal sensitivity and functioning impairment in youth at ultra-high risk for psychosis.

    PubMed

    Masillo, A; Valmaggia, L R; Saba, R; Brandizzi, M; Lindau, J F; Solfanelli, A; Curto, M; Narilli, F; Telesforo, L; Kotzalidis, G D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P

    2016-01-01

    A personality trait that often elicits poor and uneasy interpersonal relationships is interpersonal sensitivity. The aim of the present study was to explore the relationship between interpersonal sensitivity and psychosocial functioning in individuals at ultra-high risk for psychosis as compared to help-seeking individuals who screened negative for an ultra-high risk of psychosis. A total sample of 147 adolescents and young adult who were help seeking for emerging mental health problems participated in the study. The sample was divided into two groups: 39 individuals who met criteria for an ultra-high-risk mental state (UHR), and 108 (NS). The whole sample completed the Interpersonal Sensitivity Measure (IPSM) and the Global Functioning: Social and Role Scale (GF:SS; GF:RS). Mediation analysis was used to explore whether attenuated negative symptoms mediated the relationship between interpersonal sensitivity and social functioning. Individuals with UHR state showed higher IPSM scores and lower GF:SS and GF:RS scores than NS participants. A statistically negative significant correlation between two IPSM subscales (Interpersonal Awareness and Timidity) and GF:SS was found in both groups. Our results also suggest that the relationship between the aforementioned aspects of interpersonal sensitivity and social functioning was not mediated by negative prodromal symptoms. This study suggests that some aspects of interpersonal sensitivity were associated with low level of social functioning. Assessing and treating interpersonal sensitivity may be a promising therapeutic target to improve social functioning in young help-seeking individuals.

  10. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  11. Highly efficient monolithic dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated.

  12. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  13. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  14. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, T.; Jensen, R.; Christensen, M. K.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less

  15. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  16. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    PubMed

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).

  17. Angle-selective optical filter for highly sensitive reflection photoplethysmogram

    PubMed Central

    Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun

    2017-01-01

    We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070

  18. Broad screening of illicit ingredients in cosmetics using ultra-high-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry with customized accurate-mass database and mass spectral library.

    PubMed

    Meng, Xianshuang; Bai, Hua; Guo, Teng; Niu, Zengyuan; Ma, Qiang

    2017-12-15

    Comprehensive identification and quantitation of 100 multi-class regulated ingredients in cosmetics was achieved using ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). A simple, efficient, and inexpensive sample pretreatment protocol was developed using ultrasound-assisted extraction (UAE), followed by dispersive solid-phase extraction (dSPE). The cosmetic samples were analyzed by UHPLC-Q-Orbitrap HRMS under synchronous full-scan MS and data-dependent MS/MS (full-scan MS 1 /dd-MS 2 ) acquisition mode. The mass resolution was set to 70,000 FWHM (full width at half maximum) for full-scan MS 1 and 17,500 FWHM for dd-MS 2 stage with the experimentally measured mass deviations of less than 2ppm (parts per million) for quasi-molecular ions and 5ppm for characteristic fragment ions for each individual analyte. An accurate-mass database and a mass spectral library were built in house for searching the 100 target compounds. Broad screening was conducted by comparing the experimentally measured exact mass of precursor and fragment ions, retention time, isotopic pattern, and ionic ratio with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The developed methodology was evaluated and validated in terms of limits of detection (LODs), limits of quantitation (LOQs), linearity, stability, accuracy, and matrix effect. The UHPLC-Q-Orbitrap HRMS approach was applied for the analysis of 100 target illicit ingredients in 123 genuine cosmetic samples, and exhibited great potential for high-throughput, sensitive, and reliable screening of multi-class illicit compounds in cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging

    PubMed Central

    Godoy, Sebastián E.; Hayat, Majeed M.; Ramirez, David A.; Myers, Stephen A.; Padilla, R. Steven; Krishna, Sanjay

    2017-01-01

    Skin cancer is the most common cancer in the United States with over 3.5M annual cases. Presently, visual inspection by a dermatologist has good sensitivity (> 90%) but poor specificity (< 10%), especially for melanoma, which leads to a high number of unnecessary biopsies. Here we use dynamic thermal imaging (DTI) to demonstrate a rapid, accurate and non-invasive imaging system for detection of skin cancer. In DTI, the lesion is cooled down and the thermal recovery is recorded using infrared imaging. The thermal recovery curves of the suspected lesions are then utilized in the context of continuous-time detection theory in order to define an optimal statistical decision rule such that the sensitivity of the algorithm is guaranteed to be at a maximum for every prescribed false-alarm probability. The proposed methodology was tested in a pilot study including 140 human subjects demonstrating a sensitivity in excess of 99% for a prescribed specificity in excess of 99% for detection of skin cancer. To the best of our knowledge, this is the highest reported accuracy for any non-invasive skin cancer diagnosis method. PMID:28736673

  20. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  1. Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure

    NASA Astrophysics Data System (ADS)

    Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde

    2017-12-01

    A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.

  2. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  3. Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography.

    PubMed

    Viguet-Carrin, S; Gineyts, E; Bertholon, C; Delmas, P D

    2009-01-01

    A rapid high performance liquid chromatographic method was developed including an internal standard for the measurement of mature and senescent crosslinks concentration in non-demineralized bone hydrolysates. To avoid the demineralization which is a tedious step, we developed a method based on the use of a solid-phase extraction procedure to clean-up the samples. It resulted in sensitive and accurate measurements: the detection limits as low as 0.2 pmol for the pyridimium crosslinks and 0.02 pmol for the pentosidine. The inter- and intra-assay coefficients of variation were as low as 5% and 2%, respectively, for all crosslinks.

  4. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Cao, Guangtao; Yang, Hui

    2018-02-01

    Actively tunable sharp asymmetric line shape and high-sensitivity sensor with high figure of merit (FOM) are analytically and numerically demonstrated in plasmonic coupled cavities. The Fano resonance, originating from the interference between different light pathways, is realized and effectively tuned in on-chip nanostructure composed of metal-dielectric-metal (MDM) waveguide and a pair of cavities. To investigate in detail the Fano line shape, the coupled cavities are taken as a composite cavity, and a dynamic theory is proposed, which agrees well with the numerical simulations. Subsequently, the sensing performances of the plasmonic structure is discussed and its detection sensitivity reaches 1.103 × 108. Moreover, the FOM of the plasmonic sensor can approach 2.33 × 104. These discoveries hold potential applications for on-chip nano-sensors in highly integrated photonic devices.

  5. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    PubMed Central

    Savukov, Igor; Boshier, Malcolm G.

    2016-01-01

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications. PMID:27754358

  6. Eight-Channel AC Magnetosusceptometer of Magnetic Nanoparticles for High-Throughput and Ultra-High-Sensitivity Immunoassay

    PubMed Central

    Chieh, Jen-Jie; Wei, Wen-Chun; Chen, Hsin-Hsein; Lee, Yen-Fu; Lin, Feng-Chun; Chiang, Ming-Hsien; Chiu, Ming-Jang; Horng, Herng-Er; Yang, Shieh-Yueh

    2018-01-01

    An alternating-current magnetosusceptometer of antibody-functionalized magnetic nanoparticles (MNPs) was developed for immunomagnetic reduction (IMR). A high-sensitivity, high-critical-temperature superconducting quantum interference device was used in the magnetosusceptometer. Minute levels of biomarkers of early-stage neurodegeneration diseases were detectable in serum, but measuring each biomarker required approximately 4 h. Hence, an eight-channel platform was developed in this study to fit minimal screening requirements for Alzheimer’s disease. Two consistent results were measured for three biomarkers, namely Aβ40, Aβ42, and tau protein, per human specimen. This paper presents the instrument configuration as well as critical characteristics, such as the low noise level variations among channels, a high signal-to-noise ratio, and the coefficient of variation for the biomarkers’ IMR values. The instrument’s ultrahigh sensitivity levels for the three biomarkers and the substantially shorter total measurement time in comparison with the previous single- and four-channels platforms were also demonstrated in this study. Thus, the eight-channel instrument may serve as a powerful tool for clinical high-throughput screening of Alzheimer’s disease. PMID:29601532

  7. Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization.

    PubMed

    Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-07

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO 2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  8. Cardiac vagal flexibility and accurate personality impressions: Examining a physiological correlate of the good judge.

    PubMed

    Human, Lauren J; Mendes, Wendy Berry

    2018-02-23

    Research has long sought to identify which individuals are best at accurately perceiving others' personalities or are good judges, yet consistent predictors of this ability have been difficult to find. In the current studies, we revisit this question by examining a novel physiological correlate of social sensitivity, cardiac vagal flexibility, which reflects dynamic modulation of cardiac vagal control. We examined whether greater cardiac vagal flexibility was associated with forming more accurate personality impressions, defined as viewing targets more in line with their distinctive self-reported profile of traits, in two studies, including a thin-slice video perceptions study (N = 109) and a dyadic interaction study (N = 175). Across studies, we found that individuals higher in vagal flexibility formed significantly more accurate first impressions of others' more observable personality traits (e.g., extraversion, creativity, warmth). These associations held while including a range of relevant covariates, including cardiac vagal tone, sympathetic activation, and gender. In sum, social sensitivity as indexed by cardiac vagal flexibility is linked to forming more accurate impressions of others' observable traits, shedding light on a characteristic that may help to identify the elusive good judge and providing insight into its neurobiological underpinnings. © 2018 Wiley Periodicals, Inc.

  9. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors.

    PubMed

    Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong

    2018-05-30

    In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.

  10. Reward Sensitivity and Substance Abuse in Middle School and High School Students

    ERIC Educational Resources Information Center

    Genovese, Jeremy E. C.; Wallace, Deborah

    2007-01-01

    In this study, the authors investigated the relation between reward and punishment sensitivity and adolescent substance use. The sample (N = 216; 130 girls, 85 boys) was drawn from high school and middle school students enrolled in a Midwestern suburban school district. Participants completed a substance use questionnaire and the Sensitivity to…

  11. High Sensitivity, One-Sided X-Ray Inspection System.

    DTIC Science & Technology

    1985-07-01

    8217. X-Ray Imaging Quantitative NDT One-Sided Inspection Backs cat ter De laminat ions .. Nondestructive Testing (NDT) Rocket Motor Case NDT ’j 20...epoxy composites and other low atomic number materials have been detected. Wall thick nesses up to 7 cm thick have been interrogated. The results show...fiber composite rocket motor pressure vessels, the anticipated backscatter x-ray instrument will offer high sensitivity (contact delaminations have

  12. Interoceptive sensitivity predicts sensitivity to the emotions of others.

    PubMed

    Terasawa, Yuri; Moriguchi, Yoshiya; Tochizawa, Saiko; Umeda, Satoshi

    2014-01-01

    Some theories of emotion emphasise a close relationship between interoception and subjective experiences of emotion. In this study, we used facial expressions to examine whether interoceptive sensibility modulated emotional experience in a social context. Interoceptive sensibility was measured using the heartbeat detection task. To estimate individual emotional sensitivity, we made morphed photos that ranged between a neutral and an emotional facial expression (i.e., anger, sadness, disgust and happy). Recognition rates of particular emotions from these photos were calculated and considered as emotional sensitivity thresholds. Our results indicate that participants with accurate interoceptive awareness are sensitive to the emotions of others, especially for expressions of sadness and happy. We also found that false responses to sad faces were closely related with an individual's degree of social anxiety. These results suggest that interoceptive awareness modulates the intensity of the subjective experience of emotion and affects individual traits related to emotion processing.

  13. Ferritin-Triggered Redox Cycling for Highly Sensitive Electrochemical Immunosensing of Protein.

    PubMed

    Akanda, Md Rajibul; Ju, Huangxian

    2018-06-04

    Electrochemical immunoassay amplified with redox cycling has become a challenging topic in highly sensitive analysis of biomarkers. Here a ferritin-triggered redox cycling is reported by using a highly outersphere reaction-philic (OSR-philic) redox mediator ruthenium hexamine (Ru(NH3)63+) to perform the OSR-philic/innersphere reaction-philic (ISR-philic) controlled signal amplification. The screened mediator can meet the needs of lower E0 than ferritin, low reactivity with ISR-philic species, and quick electron exchange with ferritin redox couple. The ferritin-labeled antibody is firstly bounded to immunosensor surface by recognizing the target antigen capured by the immobilized primary antibody. The ferritin then mediates OSR-philic/ISR-philic transfer from Ru(NH3)63+/2+/immunosensor to ferritin-H2O2 redox system. The fast mediation and excellent resistant of highly OSR-philic Ru(NH3)63+ against radical oxygen species lead to highly sensitive electrochemical readout and high signal-to-background ratio. The proposed redox cycling greatly enhances the readout signal and the sensitivity of traditional ferritin-labelled sandwich immunoassay. Using Enteropathogenic Coli (E. Coli) antigen as a model analyte, the developed method shows excellent linearity over the concentration range from 10.0 pg/mL to 0.1 µg/mL and a detection limit of 10.0 fg/mL. The acceptable accuracy, good reproducibility and selectivity of the proposed immunoassay method in real samples indicate the superior practicability of the ferritin-triggered redox cycling.

  14. Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Glenar, David A.; Jennings, Donald E.; Nadler, Shacher

    1990-01-01

    A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

  15. High-sensitivity explosives detection using dual-excitation-wavelength resonance-Raman detector

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; McCormick, William B.; Wu, Hai-Shan; Sluch, Mikhail; Martin, Robert; Ice, Robert V.; Lemoff, Brian

    2014-05-01

    A key challenge for standoff explosive sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To meet this challenge a sensor needs to exhibit high specificity and high sensitivity in detection at low signal-to-noise ratio levels. We had proposed a Dual-Excitation- Wavelength Resonance-Raman Detector (DEWRRED) to address this need. In our previous work, we discussed various components designed at WVHTCF for a DEWRRED sensor. In this work, we show a completely assembled laboratory prototype of a DEWRRED sensor and utilize it to detect explosives from two standoff distances. The sensor system includes two novel, compact CW deep-Ultraviolet (DUV) lasers, a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. We choose DUV excitation because Raman intensities from explosive traces are enhanced and fluorescence and solar background are not present. The DEWRRED technique exploits the excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show measurements from >10 explosives/pre-cursor materials at different standoff distances. The sensor showed high sensitivity in explosive detection even when the signalto- noise ratio was close to one (~1.6). We measured receiver-operating-characteristics, which show a clear benefit in using the dual-excitation-wavelength technique as compared to a single-excitation-wavelength technique. Our measurements also show improved specificity using the amplitude variation information in the dual-excitation spectra.

  16. New and highly sensitive assay for L-5-hydroxytryptophan decarboxylase activity by high-performance liquid chromatography-voltammetry.

    PubMed

    Rahman, M K; Nagatsu, T; Kato, T

    1980-12-12

    This paper describes a new, inexpensive and highly sensitive assay for aromatic L-amino acid decarboxylase (AADC) activity, using L-5-hydroxytryptophan (L-5-HTP) as substrate, in rat and human brains and serum by high-performance liquid chromatography (HPLC) with voltammetric detection. L-5-HTP was used as substrate and D-5-HTP for the blank. After isolating serotonin (5-HT) formed enzymatically from L-5-HTP on a small Amberlite CG-50 column, the 5-HT was eluted with hydrochloric acid and assayed by HPLC with a voltammetric detector. N-Methyldopamine was added to each incubation mixture as an internal standard. This method is sensitive enough to measure 5-HT, formed by the enzyme, 100 fmol to 140 pmol or more. An advantage of this method is that one can incubate the enzyme for longer time (up to 150 min), as compared with AADC assay using L-DOPA as substrate, resulting in a very high sensitivity. By using this new method, AADC activity was discovered in rat serum.

  17. Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias

    2018-05-01

    Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a

  18. Phosphatidylglycerol and Chilling Sensitivity in Plants

    PubMed Central

    Roughan, P. Grattan

    1985-01-01

    The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127

  19. A new spinner magnetometer using high sensitivity magneto-impedance sensor

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2016-04-01

    A sensitive spinner magnetometer was developed using a pair of high-resolution Magneto-Impedance sensors. The MI sensor generally utilizes the MI effect of amorphous wire whose impedance changes by the application of a small magnetic field. Various kinds of MI sensors are currently used in many electric devices, for example, a magnetic compass chip built-in smart phones and car navigations. The MI sensor employed in this study is a pico-Tesla MI sensor, an especially sensitive MI sensor originally manufactured for industrial use to detect contamination of small magnetic particles in industrial materials such as fabrics. To detect weak magnetic signals from natural samples and avoid DC drift, a gradiometer system was employed that consists of a pair of the MI sensors and the electronics with analog filter and pre-amplification circuit. This MI gradiometer system was equipped to a commercial spinner magnetometer (SMD-88, Natsuhara Giken, Osaka) with the spinning rate of 5 Hz. It is demonstrated that this new spinner magnetometer is capable of measuring weak magnetic samples of 10-6 mAm2, with the highest resolution being 10-8 mAm2, approximately two orders of magnitude better than the previous one using a ring-core flux-gate sensor. One of the advantages of the MI spinner magnetometer is that it can be easily modified to accommodate samples of any shape and size. Moreover the slow-rotating speed (5 Hz) allows to measure samples for archeomagnetic studies that are usually irregular and fragile. Because the irregularity of shape increases errors in measuring the dipole component of the total magnetization, it is necessary to increase the distance between the sample and sensor, resulting in poorer sensitivity. The high-sensitivity MI sensor enables to measure the NRM of such irregular-shaped samples from an appropriate distance to the sample, with no significant loss of sensitivity.

  20. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    PubMed

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores

  1. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  2. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Wu, Xinghui; Liu, Bing; Li, Bing; Zhang, Xingtang; Du, Zuliang

    2011-11-01

    ZnO nanowire (NW) ultraviolet (UV) photodetectors have high sensitivity, while the long recovery time is an important limitation for its applications. In this paper, we demonstrate the promising applications of ZnO NW Schottky barrier as high performance UV photodetector with high sensitivity and fast recovery speed. The on/off ratio, sensitivity, and photocurrent gain are 4 × 105, 2.6 × 103 A/W, and 8.5 × 103, respectively. The recovery time is 0.28 s when photocurrent decreases by 3 orders of magnitude, and the corresponding time constant is as short as 46 ms. The physical mechanisms of the fast recovery properties have also been discussed.

  3. High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based tool.

    PubMed

    Henriques, Dora; Browne, Keith A; Barnett, Mark W; Parejo, Melanie; Kryger, Per; Freeman, Tom C; Muñoz, Irene; Garnery, Lionel; Highet, Fiona; Jonhston, J Spencer; McCormack, Grace P; Pinto, M Alice

    2018-06-04

    The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.

  4. Value of high-sensitivity C-reactive protein assays in predicting atrial fibrillation recurrence: a systematic review and meta-analysis

    PubMed Central

    Yo, Chia-Hung; Lee, Si-Huei; Chang, Shy-Shin; Lee, Matthew Chien-Hung; Lee, Chien-Chang

    2014-01-01

    Objectives We performed a systematic review and meta-analysis of studies on high-sensitivity C-reactive protein (hs-CRP) assays to see whether these tests are predictive of atrial fibrillation (AF) recurrence after cardioversion. Design Systematic review and meta-analysis. Data sources PubMed, EMBASE and Cochrane databases as well as a hand search of the reference lists in the retrieved articles from inception to December 2013. Study eligibility criteria This review selected observational studies in which the measurements of serum CRP were used to predict AF recurrence. An hs-CRP assay was defined as any CRP test capable of measuring serum CRP to below 0.6 mg/dL. Primary and secondary outcome measures We summarised test performance characteristics with the use of forest plots, hierarchical summary receiver operating characteristic curves and bivariate random effects models. Meta-regression analysis was performed to explore the source of heterogeneity. Results We included nine qualifying studies comprising a total of 347 patients with AF recurrence and 335 controls. A CRP level higher than the optimal cut-off point was an independent predictor of AF recurrence after cardioversion (summary adjusted OR: 3.33; 95% CI 2.10 to 5.28). The estimated pooled sensitivity and specificity for hs-CRP was 71.0% (95% CI 63% to 78%) and 72.0% (61% to 81%), respectively. Most studies used a CRP cut-off point of 1.9 mg/L to predict long-term AF recurrence (77% sensitivity, 65% specificity), and 3 mg/L to predict short-term AF recurrence (73% sensitivity, 71% specificity). Conclusions hs-CRP assays are moderately accurate in predicting AF recurrence after successful cardioversion. PMID:24556243

  5. Seismic waveform sensitivity to global boundary topography

    NASA Astrophysics Data System (ADS)

    Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico

    2012-09-01

    We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.

  6. A new technique for high sensitive detection of rotational motion in optical tweezers by a differential measurement of backscattered intensity

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Bera, Sudipta K.; Mondal, Argha; Banerjee, Ayan

    2014-09-01

    Asymmetric particles, such as biological cells, often experience torque under optical tweezers due to birefringence or unbalanced scattering forces, which makes precise determination of the torque crucial for calibration and control of the particles. The estimate of torque relies on the accurate measurement of rotational motion, which has been achieved by various techniques such as measuring the intensity fluctuations of the forward scattered light, or the polarization component orthogonal to the trapping light polarization in plasmonic nanoparticles and vaterite crystals. Here we present a simple yet high sensitive technique to measure rotation of such an asymmetric trapped particle by detecting the light backscattered onto a quadrant photodiode, and subtracting the signals along the two diagonals of the quadrants. This automatically suppresses the common mode translational signal obtained by taking the difference signal of the adjacent quadrants, while amplifying the rotational signal. Using this technique, we obtain a S/N of 200 for angular displacement of a trapped micro-rod by 5 degrees, which implies a sensitivity of 50 mdeg with S/N of 2. The technique is thus independent of birefringence and polarization properties of the asymmetric particle and depends only on the scattering cross-section.

  7. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Performance of the high-sensitivity troponin assay in diagnosing acute myocardial infarction: systematic review and meta-analysis

    PubMed Central

    Al-Saleh, Ayman; Alazzoni, Ashraf; Al Shalash, Saleh; Ye, Chenglin; Mbuagbaw, Lawrence; Thabane, Lehana; Jolly, Sanjit S.

    2014-01-01

    Background High-sensitivity cardiac troponin assays have been adopted by many clinical centres worldwide; however, clinicians are uncertain how to interpret the results. We sought to assess the utility of these assays in diagnosing acute myocardial infarction (MI). Methods We carried out a systematic review and meta-analysis of studies comparing high-sensitivity with conventional assays of cardiac troponin levels among adults with suspected acute MI in the emergency department. We searched MEDLINE, EMBASE and Cochrane databases up to April 2013 and used bivariable random-effects modelling to obtain summary parameters for diagnostic accuracy. Results We identified 9 studies that assessed the use of high-sensitivity troponin T assays (n = 9186 patients). The summary sensitivity of these tests in diagnosing acute MI at presentation to the emergency department was estimated to be 0.94 (95% confidence interval [CI] 0.89–0.97); for conventional tests, it was 0.72 (95% CI 0.63–0.79). The summary specificity was 0.73 (95% CI 0.64–0.81) for the high-sensitivity assay compared with 0.95 (95% CI 0.93–0.97) for the conventional assay. The differences in estimates of the summary sensitivity and specificity between the high-sensitivity and conventional assays were statistically significant (p < 0.01). The area under the curve was similar for both tests carried out 3–6 hours after presentation. Three studies assessed the use of high-sensitivity troponin I assays and showed similar results. Interpretation Used at presentation to the emergency department, the high-sensitivity cardiac troponin assay has improved sensitivity, but reduced specificity, compared with the conventional troponin assay. With repeated measurements over 6 hours, the area under the curve is similar for both tests, indicating that the major advantage of the high-sensitivity test is early diagnosis. PMID:25295240

  9. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor.

    PubMed

    Rifat, Ahmmed A; Haider, Firoz; Ahmed, Rajib; Mahdiraji, Ghafour Amouzad; Mahamd Adikan, F R; Miroshnichenko, Andrey E

    2018-02-15

    Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420  RIU -1 , respectively. It also shows the maximum sensor resolutions of 9.1×10 -6 and 7×10 -6   RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33-1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.

  10. A high-sensitivity tunable two-beam fiber-coupled high-density magnetometer with laser heating

    DOE PAGES

    Savukov, Igor Mykhaylovich; Boshier, Malcolm Geoffrey

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz 1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. Here, this magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the applicationmore » of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz 1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.« less

  11. Highly accurate quantitative spectroscopy of massive stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nieva, María-Fernanda; Przybilla, Norbert

    2017-11-01

    Achieving high accuracy and precision in stellar parameter and chemical composition determinations is challenging in massive star spectroscopy. On one hand, the target selection for an unbiased sample build-up is complicated by several types of peculiarities that can occur in individual objects. On the other hand, composite spectra are often not recognized as such even at medium-high spectral resolution and typical signal-to-noise ratios, despite multiplicity among massive stars is widespread. In particular, surveys that produce large amounts of automatically reduced data are prone to oversight of details that turn hazardous for the analysis with techniques that have been developed for a set of standard assumptions applicable to a spectrum of a single star. Much larger systematic errors than anticipated may therefore result because of the unrecognized true nature of the investigated objects, or much smaller sample sizes of objects for the analysis than initially planned, if recognized. More factors to be taken care of are the multiple steps from the choice of instrument over the details of the data reduction chain to the choice of modelling code, input data, analysis technique and the selection of the spectral lines to be analyzed. Only when avoiding all the possible pitfalls, a precise and accurate characterization of the stars in terms of fundamental parameters and chemical fingerprints can be achieved that form the basis for further investigations regarding e.g. stellar structure and evolution or the chemical evolution of the Galaxy. The scope of the present work is to provide the massive star and also other astrophysical communities with criteria to evaluate the quality of spectroscopic investigations of massive stars before interpreting them in a broader context. The discussion is guided by our experiences made in the course of over a decade of studies of massive star spectroscopy ranging from the simplest single objects to multiple systems.

  12. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  13. Sensitive high frequency hearing in earless and partially eared harlequin frogs (Atelopus).

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Hoke, Kim L

    2018-04-19

    Harlequin frogs, genus Atelopus , communicate at high frequencies despite most species lacking a complete tympanic middle ear that facilitates high frequency hearing in most anurans and other tetrapods. Here we test whether Atelopus are better at sensing high frequency acoustic sound compared to other eared and earless species in the Bufonidae family, determine whether middle ear variation within Atelopus affects hearing sensitivity, and test potential hearing mechanisms in Atelopus We determine that at high frequencies (2000-4000 Hz) Atelopus are 10-34 dB more sensitive than other earless bufonids but are relatively insensitive to mid-range frequencies (900-1500 Hz) compared to eared bufonids. Hearing among Atelopus species is fairly consistent, evidence that the partial middle ears present in a subset of Atelopus species do not convey a substantial hearing advantage. We further demonstrate that Atelopus hearing is not likely facilitated by vibration of the skin overlying the normal tympanic membrane region or the body lung wall, leaving the extratympanic hearing pathways in Atelopus enigmatic. Together these results show Atelopus have sensitive high frequency hearing without the aid of a tympanic middle ear and prompt further study of extratympanic hearing mechanisms in anurans. © 2018. Published by The Company of Biologists Ltd.

  14. Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    NASA Technical Reports Server (NTRS)

    Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)

    2014-01-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  15. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    DOEpatents

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  16. Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.

    PubMed

    Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong

    2018-05-30

    Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.

  17. High hunger state increases olfactory sensitivity to neutral but not food odors.

    PubMed

    Stafford, Lorenzo D; Welbeck, Kimberley

    2011-01-01

    Understanding how hunger state relates to olfactory sensitivity has become more urgent due to their possible role in obesity. In 2 studies (within-subjects: n = 24, between-subjects: n = 40), participants were provided with lunch before (satiated state) or after (nonsatiated state) testing and completed a standardized olfactory threshold test to a neutral odor (Experiments 1 and 2) and discrimination test to a food odor (Experiment 2). Experiment 1 revealed that olfactory sensitivity was greater in the nonsatiated versus satiated state, with additionally increased sensitivity for the low body mass index (BMI) compared with high BMI group. Experiment 2 replicated this effect for neutral odors, but in the case of food odors, those in a satiated state had greater acuity. Additionally, whereas the high BMI group had higher acuity to food odors in the satiated versus nonsatiated state, no such differences were found for the low BMI group. The research here is the first to demonstrate how olfactory acuity changes as a function of hunger state and relatedness of odor to food and that BMI can predict differences in olfactory sensitivity.

  18. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network

    PubMed Central

    Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2011-01-01

    Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681

  19. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  20. Nickel-copper oxide nanowires for highly sensitive sensing of glucose

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofang; Chen, Wei; Song, Yanfang; Zhang, Jiazhou; Ge, Ruipeng; Wei, Wei; Jiao, Zheng; Sun, Yuhan

    2017-10-01

    Accurate determination of glucose is of considerable importance in diverse fields such as clinical diagnostics, biotechnology, and food industry. A low-cost and easy to scale-up approach has been developed for the preparation of nickel-copper oxide nanowires (Ni-CuO NWs) with hierarchical structures comprising porous NiO substrate and CuO nanowires. The successfully prepared Ni-CuO NWs were exploited as non-enzymatic electrochemical sensing probes for the reliable detection of glucose. Electrochemical measurements such as cyclic voltammetry (CV) and chronoamperometry (CA) illustrated that the Ni-CuO NWs exhibited excellent electrochemical performance toward glucose oxidation with a superior sensitivity of 5610.6 μA mM-1 cm-2, a low detection limit of 0.07 μM, a wide linear range from 0.2 to 3.0 mM, and a good selectivity. This was attributed to the synergetic effect of the hierarchical structures and active Ni(OH)2 surface species in Ni-CuO NWs. The rational design of the metal oxide composites provided an efficient strategy for the fabrication of electrochemical non-enzymatic sensors.

  1. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    NASA Astrophysics Data System (ADS)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  2. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes

    PubMed Central

    Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung

    2013-01-01

    New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838

  3. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor

    PubMed Central

    Meng, Xiawei; Zhao, Yulong

    2016-01-01

    A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. PMID:27005627

  4. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-01

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.

  5. Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering

    PubMed Central

    Ding, Yufeng; Yin, Hongjun; Meng, Qingyun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun

    2017-01-01

    We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics. PMID:29261161

  6. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  7. Sensitive bridge circuit measures conductance of low-conductivity electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Schmidt, K.

    1967-01-01

    Compact bridge circuit measures sensitive and accurate conductance of low-conductivity electrolyte solutions. The bridge utilizes a phase sensitive detector to obtain a linear deflection of the null indicator relative to the measured conductance.

  8. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhancemore » cell efficiency.« less

  9. High-sensitivity and large-dynamic-range refractive index sensors employing weak composite Fabry-Perot cavities.

    PubMed

    Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate

    2017-08-15

    Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.

  10. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clevenson, Hannah, E-mail: hannahac@mit.edu; Desjardins, Pierre; Gan, Xuetao

    2014-06-16

    We present high-sensitivity, multi-use optical gas sensors based on a one-dimensional photonic crystal cavity. These devices are implemented in versatile, flexible polymer materials which swell when in contact with a target gas, causing a measurable cavity length change. This change causes a shift in the cavity resonance, allowing precision measurements of gas concentration. We demonstrate suspended polymer nanocavity sensors and the recovery of sensors after the removal of stimulant gas from the system. With a measured quality factor exceeding 10{sup 4}, we show measurements of gas concentration as low as 600 parts per million (ppm) and an experimental sensitivity ofmore » 10 ppm; furthermore, we predict detection levels in the parts-per-billion range for a variety of gases.« less

  11. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    PubMed

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  12. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction

    PubMed Central

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-01-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems. PMID:21979831

  13. Highly sensitive and selective liquid crystal optical sensor for detection of ammonia.

    PubMed

    Niu, Xiaofang; Zhong, Yuanbo; Chen, Rui; Wang, Fei; Luo, Dan

    2017-06-12

    Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH 3 ) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu 2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.

  14. Highly Sensitive Measurements of 222Rn Diffusion and Emanation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuzel, Grzegorz

    Highly sensitive techniques for determination of the 222Rn emanation from solids and diffusion through different membranes are presented. 222Rn and its daughters are measured via the alpha decays in special proportional counters at the absolute sensitivity of {approx}30 {mu}Bq. Radon diffusion can be measured at the level of {approx}10-13 cm2/s. Several samples were examined, e.g. stainless steel, teflon, various gaskets (emanation and diffusion measurements) and tanks. A combination of measurements of the 222Rn diffusion and emanation of thin nylon foils (used in the Borexino experiment) allowed the determination of 226Ra in the materials of interest at the level of {approx}10-12more » g/g 238U-equivalent.« less

  15. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xuejiang; Tang, Keqi

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers wouldmore » ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM

  16. Sensitive high-throughput screening for the detection of reducing sugars.

    PubMed

    Mellitzer, Andrea; Glieder, Anton; Weis, Roland; Reisinger, Christoph; Flicker, Karlheinz

    2012-01-01

    The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    PubMed

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE PAGES

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  19. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  20. A novel high sensitivity HPLC assay for topiramate, using 4-chloro-7-nitrobenzofurazan as pre-column fluorescence derivatizing agent.

    PubMed

    Bahrami, Gholamreza; Mohammadi, Bahareh

    2007-05-01

    A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%.

  1. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    PubMed

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Highly Sensitive Method for Quantitative Determination of Abscisic Acid 1

    PubMed Central

    Michler, Charles H.; Lineberger, R. Daniel; Chism, Grady W.

    1986-01-01

    An abscisic acid derivative was formed by reaction with pentafluorobenzyl bromide which allowed highly sensitive detection by gas-liquid chromatography with electron capture detection. In comparison to the methyl ester derivative, the pentafluorobenzyl derivative of abscisic acid was four times more sensitive to electron capture detection and was stable at room temperature in the presence of ultraviolet light. Derivatization was rapid and the molecular weight of the new compound was confirmed by gas-liquid chromatography-mass spectrometry. PMID:16665076

  3. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhao; Gao, Kun; Chen, Jian

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using themore » error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.« less

  4. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    PubMed

    Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine

    2011-01-01

    The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.

  5. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.

    PubMed

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-22

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  6. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    NASA Astrophysics Data System (ADS)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  7. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  8. High IgE sensitization to maize and rice pollen in the highlands of Madagascar

    PubMed Central

    Ramavovololona; Sénéchal, Hélène; Andrianarisoa, Ange; Rakotoarimanana, Vololona; Godfrin, Dominique; Peltre, Gabriel; Poncet, Pascal; Sutra, Jean-Pierre

    2014-01-01

    Introduction Maize and rice are two crops constituting the main food supply in many under-developed and developing countries. Despite the large area devoted to the culture, the sensitization to the pollen from these plants is reported to be low and often considered as an occupational allergy. Methods Sixty five Malagasy pollen allergic patients were clinically and immunochemically investigated with regard to maize and rice pollen allergens. Pollen extracts were electrophoretically separated in 1 and 2 dimensions and IgE and IgG reactivities detected upon immunoblotting. Results When exploring the sensitization profile of Malagasy allergic patients to maize and rice pollen, it appears that a high proportion of these patients consulting during grass pollinating season were sensitized to both pollen as revealed by skin prick testing (62 vs. 59%) and IgE immunoblotting (85 vs. 40%). Several clinically relevant allergens were recognized by patients’ serum IgE in maize and rice pollen extracts. Conclusion The high levels of maize and rice pollen sensitization should be related, in this tropical region, to a specific environmental exposure including i) a proximity of the population to the allergenic sources and ii) a putative exacerbating effect of a highly polluted urban atmosphere on pollen allergenicity. Cross-reactivities between wild and cultivated grasses and also between rice and maize pollen are involved as well as some specific maize sensitizations. The presence of dense urban and peri-urban agriculture, in various African regions and worldwide, could be a high environmental risk factor for people sensitive to maize pollen. PMID:25870739

  9. Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor.

    PubMed

    Haffert, S Y

    2016-08-22

    Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.

  10. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  11. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing

    2018-07-01

    A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.

  12. Highly sensitive Europium doped SrSO4 OSL nanophosphor for radiation dosimetry applications

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2015-10-01

    Highly sensitive Europium doped SrSO4 optically stimulated luminescent (OSL) phosphor was developed by synthesizing a nano phosphor which is treated at 1000 °C. Excellent OSL properties are observed in the developed phosphor and the sensitivity is found to be 1.26 times to that of the commercial Al2O3:C (Landauer Inc.) phosphor based on area integration method. The sample showed a single TL glow peak around 230 °C which is found to reduce by 47% after the OSL readout. Sublinear dose response with the saturation around 100 mGy is observed in this sample which suggests that it is extremely sensitive and hence will be suitable in detecting very low dose levels. Minimum measurable dose on the used set up is estimated to be 1.42 μGy. Practically no fading is observed for first ten days and the phosphor has excellent reusability. High sensitivity, low fading, excellent reusability will make this phosphor suitable for radiation dosimetry applications using OSL.

  13. Highly sensitive silicon microreactor for catalyst testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriksen, Toke R.; Hansen, Ole; Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality

    2009-12-15

    A novel microfabricated chemical reactor for highly sensitive measurements of catalytic activity and surface kinetics is presented. The reactor is fabricated in a silicon chip and is intended for gas-phase reactions at pressures ranging from 0.1 to 5.0 bar. A high sensitivity is obtained by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model catalysts which canmore » only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally. A corresponding theoretical model is presented, and the gas flow through an on-chip flow-limiting capillary is predicted to be in the intermediate regime. The experimental data for the gas flow are found to be in good agreement with the theoretical model. At typical experimental conditions, the total gas flow through the reaction zone is around 3x10{sup 14} molecules s{sup -1}, corresponding to a gas residence time in the reaction zone of about 11 s. To demonstrate the operation of the microreactor, CO oxidation on low-area platinum thin film circles is employed as a test reaction. Using temperature ramping, it is found that platinum catalysts with areas as small as 15 {mu}m{sup 2} are conveniently characterized with the device.« less

  14. Reference-dependent risk sensitivity as rational inference.

    PubMed

    Denrell, Jerker C

    2015-07-01

    Existing explanations of reference-dependent risk sensitivity attribute it to cognitive imperfections and heuristic choice processes. This article shows that behavior consistent with an S-shaped value function could be an implication of rational inferences about the expected values of alternatives. Theoretically, I demonstrate that even a risk-neutral Bayesian decision maker, who is uncertain about the reliability of observations, should use variability in observed outcomes as a predictor of low expected value for outcomes above a reference level, and as a predictor of high expected value for outcomes below a reference level. Empirically, I show that combining past outcomes using an S-shaped value function leads to accurate predictions about future values. The theory also offers a rationale for why risk sensitivity consistent with an inverse S-shaped value function should occur in experiments on decisions from experience with binary payoff distributions. (c) 2015 APA, all rights reserved).

  15. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  16. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqing

    2017-05-01

    A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.

  17. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    PubMed Central

    Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  18. Development of a highly sensitive three-dimensional gel electrophoresis method for characterization of monoclonal protein heterogeneity.

    PubMed

    Nakano, Keiichi; Tamura, Shogo; Otuka, Kohei; Niizeki, Noriyasu; Shigemura, Masahiko; Shimizu, Chikara; Matsuno, Kazuhiko; Kobayashi, Seiichi; Moriyama, Takanori

    2013-07-15

    Three-dimensional gel electrophoresis (3-DE), which combines agarose gel electrophoresis and isoelectric focusing/SDS-PAGE, was developed to characterize monoclonal proteins (M-proteins). However, the original 3-DE method has not been optimized and its specificity has not been demonstrated. The main goal of this study was to optimize the 3-DE procedure and then compare it with 2-DE. We developed a highly sensitive 3-DE method in which M-proteins are extracted from a first-dimension agarose gel, by diffusing into 150 mM NaCl, and the recovery of M-proteins was 90.6%. To validate the utility of the highly sensitive 3-DE, we compared it with the original 3-DE method. We found that highly sensitive 3-DE provided for greater M-protein recovery and was more effective in terms of detecting spots on SDS-PAGE gels than the original 3-DE. Moreover, highly sensitive 3-DE separates residual normal IgG from M-proteins, which could not be done by 2-DE. Applying the highly sensitive 3-DE to clinical samples, we found that the characteristics of M-proteins vary tremendously between individuals. We believe that our highly sensitive 3-DE method described here will prove useful in further studies of the heterogeneity of M-proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. High-Sensitivity Measurement of Density by Magnetic Levitation.

    PubMed

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10(-4) g/cm(3) for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  20. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tingting; Zhao, Jing, E-mail: zhaojing-8239@jlu.edu.cn; Peter Grünberg Institute

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2more » fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.« less

  1. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring

    PubMed Central

    Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen

    2018-01-01

    Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851

  2. High sensitivity of tidewater outlet glacier dynamics to shape

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Howat, I. M.; Vieli, A.

    2013-02-01

    Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e. bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.

  3. High sensitivity of tidewater outlet glacier dynamics to shape

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Howat, I. M.; Vieli, A.

    2013-06-01

    Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.

  4. Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong

    2017-02-01

    Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.

  5. Tau-independent Phase Analysis: A Novel Method for Accurately Determining Phase Shifts.

    PubMed

    Tackenberg, Michael C; Jones, Jeff R; Page, Terry L; Hughey, Jacob J

    2018-06-01

    Estimations of period and phase are essential in circadian biology. While many techniques exist for estimating period, comparatively few methods are available for estimating phase. Current approaches to analyzing phase often vary between studies and are sensitive to coincident changes in period and the stage of the circadian cycle at which the stimulus occurs. Here we propose a new technique, tau-independent phase analysis (TIPA), for quantifying phase shifts in multiple types of circadian time-course data. Through comprehensive simulations, we show that TIPA is both more accurate and more precise than the standard actogram approach. TIPA is computationally simple and therefore will enable accurate and reproducible quantification of phase shifts across multiple subfields of chronobiology.

  6. A high-sensitivity search for extraterrestrial intelligence at lambda 18 cm

    NASA Technical Reports Server (NTRS)

    Tarter, J.; Cuzzi, J.; Black, D.; Clark, T.

    1980-01-01

    A targeted high-sensitivity search for narrow-band signals near a wavelength of 18 cm has been conducted using the 91-m radiotelescope of the National Radio Astronomy Observatory. The search included 201 nearby solar-type stars and achieved a frequency resolution of 5.5 Hz over a 1.4-MHz bandwidth. This high spectral resolution was obtained through a non-real-time reduction procedure using a Mark I VLBI recording terminal in conjunction with the CDC 7600 computational facility at the NASA-Ames Research Center. This is the first high-resolution search for narrow-band signals in this wavelength regime. To date it is the most sensitive search per unit observing time of any search strategy which does not postulate a unique magic frequency. Data show no evidence for narrow-band signals due to extraterrestrial intelligence at a 12-standard-deviation upper limit on signal strength of 1.1 x 10 to the -23rd W/sq m.

  7. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Beqa, Lule; Singh, Anant Kumar; Fan, Zheng; Senapati, Dulal; Ray, Paresh Chandra

    2011-08-01

    Surface-enhanced Raman spectroscopy (SERS) has been shown as one of the most powerful analytical tool with high sensitivity. In this manuscript, we report the chemical design of SERS substrate, based on gold nanoparticles of different shapes-decorated with carbon nanotube with an enhancement factor of 7.5 × 1010. Shape dependent result shows that popcorn shape gold nanoparticle decorated SWCNT is the best choice for SERS substrate due to the existence of 'lightning rod effect' through several sharp edges or corners. Our results provide a good approach to develop highly sensitive SERS substrates and can help to improve the fundamental understanding of SERS phenomena.

  9. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  10. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  11. A high sensitivity ultralow temperature RF conductance and noise measurement setup.

    PubMed

    Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G

    2011-01-01

    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.

  12. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  13. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  14. Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface

    NASA Astrophysics Data System (ADS)

    Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong

    2017-05-01

    Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.

  15. The highly sensitive brain: an fMRI study of sensory processing sensitivity and response to others' emotions.

    PubMed

    Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L

    2014-07-01

    Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits.

  16. The highly sensitive brain: an fMRI study of sensory processing sensitivity and response to others' emotions

    PubMed Central

    Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L

    2014-01-01

    Background Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. Methods This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Results Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). Conclusions As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits. PMID:25161824

  17. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  18. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  19. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    ERIC Educational Resources Information Center

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  20. Hollow glass microsphere-structured Fabry-Perot interferometric sensor for highly sensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2017-04-01

    We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.

  1. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and

  2. Environmental Sensitivity in Children: Development of the Highly Sensitive Child Scale and Identification of Sensitivity Groups

    ERIC Educational Resources Information Center

    Pluess, Michael; Assary, Elham; Lionetti, Francesca; Lester, Kathryn J.; Krapohl, Eva; Aron, Elaine N.; Aron, Arthur

    2018-01-01

    A large number of studies document that children differ in the degree they are shaped by their developmental context with some being more sensitive to environmental influences than others. Multiple theories suggest that "Environmental Sensitivity" is a common trait predicting the response to negative as well as positive exposures.…

  3. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  4. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  6. Ethical sensitivity, burnout, and job satisfaction in emergency nurses.

    PubMed

    Palazoğlu, Cansu Atmaca; Koç, Zeliha

    2017-01-01

    Rising levels of burnout and decreasing job satisfaction can inhibit healthcare professionals from providing high-quality care due to a corresponding decrease in their ethical sensitivity. This study aimed to determine the relationship between the level of ethical sensitivity in emergency service nurses and their levels of burnout and job satisfaction. This research employed a descriptive and cross-sectional design. Participants and research context: This study was conducted with a sample of 236 nurses, all of whom worked in emergency service between 24 July 2015 and 28 April 2016. Data were collected using the Moral Sensitivity Questionnaire, Maslach Burnout Inventory, and Minnesota Job Satisfaction Scale. Ethical considerations: This study was approved by the Institutional Ethics Review Board of Ondokuz Mayıs University. There was a weak and negative correlation (r = -0.158, p = 0.015) between Moral Sensitivity Questionnaire and Maslach Burnout Inventory scores. There was also a weak and negative correlation (r = -0.335, p < 0.001) between the Maslach Burnout Inventory and Minnesota Job Satisfaction Scale scores. Decreased job satisfaction and increased burnout levels among emergency service nurses might result in them indulging in improper practices, frequently facing ethical problems, and a decrease in the overall quality of service in hospitals. In order for emergency service nurses to recognize ethical problems and make the most accurate decisions, a high level of ethical sensitivity is critical. In this respect, it is suggested that continuing education after graduation and training programs should be organized.

  7. Field test investigation of high sensitivity fiber optic seismic geophone

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  8. A case of high noise sensitivity

    NASA Astrophysics Data System (ADS)

    Murata, M.; Sakamoto, H.

    1995-10-01

    A case of noise sensitivity with a five-year follow-up period is reported. The patient was a 34-year-old single man who was diagnosed as having psychosomatic disorder triggered by two stressful life events in rapid succession with secondary hypersensitivity to noise. Hypersensitivity to light and cold also developed later in the clinical course. The auditory threshold was within the normal range. The discomfort threshold as a measure of the noise sensitivity secondary to mental illness was measured repeatedly using test tone of audiometry. The discomfort threshold varied depending upon his mental status, ranging from 40-50 dB in the comparatively poorer mental state to 70-95 dB in the relatively good mental state. The features of noise sensitivity, including that secondary to mental illness, are discussed.

  9. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing

    NASA Astrophysics Data System (ADS)

    Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei

    2018-06-01

    We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.

  10. High sensitivity field asymmetric ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  11. High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.

    PubMed

    Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun

    2017-05-15

    We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l) -1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO 2 . The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen.

    PubMed

    Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju

    2016-12-01

    Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  14. Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes.

    PubMed

    Wilhelm, C J; Mitchell, S H

    2008-10-01

    Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be because of factors that predate drug exposure (e.g. genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol-naive rats selectively bred based on their high [high alcohol drinking (HAD)] or low [low alcohol drinking (LAD)] consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess 'choice' impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. High alcohol drinking rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically predisposed individuals.

  15. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  16. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  17. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-08-15

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.

  18. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  19. Respiratory muscle tension as symptom generator in individuals with high anxiety sensitivity.

    PubMed

    Ritz, Thomas; Meuret, Alicia E; Bhaskara, Lavanya; Petersen, Sibylle

    2013-02-01

    Anxiety and panic are associated with the experience of a range of bodily symptoms, in particular unpleasant breathing sensations (dyspnea). Respiratory theories of panic disorder have focused on disturbances in blood gas regulation, but respiratory muscle tension as a source of dyspnea has not been considered. We therefore examined the potential of intercostal muscle tension to elicit dyspnea in individuals with high anxiety sensitivity, a risk factor for developing panic disorder. Individuals high and low in anxiety sensitivity (total N=62) completed four tasks: electromyogram biofeedback for tensing intercostal muscle, electromyogram biofeedback for tensing leg muscles, paced breathing at three different speeds, and a fine motor task. Global dyspnea, individual respiratory sensations, nonrespiratory sensations, and discomfort were assessed after each task, whereas respiratory pattern (respiratory inductance plethysmography) and end-tidal carbon dioxide (capnography) were measured continuously. In individuals with high compared to low anxiety sensitivity, intercostal muscle tension elicited a particularly strong report of obstruction (M=5.1, SD=3.6 versus M=2.5, SD=3.0), air hunger (M=1.9, SD=2.1 versus M=0.4, SD=0.8), hyperventilation symptoms (M=0.6, SD=0.6 versus M=0.1, SD=0.1), and discomfort (M=5.1, SD=3.2 versus M=2.2, SD=2.1) (all p values<.05). This effect was not explained by site-unspecific muscle tension, voluntary manipulation of respiration, or sustained task-related attention. Nonrespiratory control sensations were not significantly affected by tasks (F<1), and respiratory variables did not reflect any specific responding of high-Anxiety Sensitivity Index participants to intercostal muscle tension. Respiratory muscle tension may contribute to the respiratory sensations experienced by panic-prone individuals. Theories and treatments for panic disorder should consider this potential source of symptoms.

  20. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Daquan; State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

    We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.

  1. Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements

    NASA Astrophysics Data System (ADS)

    Kuzmin, L. S.

    2012-01-01

    A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.

  2. Rapid and accurate peripheral nerve detection using multipoint Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yasuaki; Minamikawa, Takeo; Kawamura, Akinori; Matsumura, Junichi; Tsuda, Yuichiro; Ukon, Juichiro; Harada, Yoshinori; Tanaka, Hideo; Takamatsu, Tetsuro

    2017-02-01

    Nerve-sparing surgery is essential to avoid functional deficits of the limbs and organs. Raman scattering, a label-free, minimally invasive, and accurate modality, is one of the best candidate technologies to detect nerves for nerve-sparing surgery. However, Raman scattering imaging is too time-consuming to be employed in surgery. Here we present a rapid and accurate nerve visualization method using a multipoint Raman imaging technique that has enabled simultaneous spectra measurement from different locations (n=32) of a sample. Five sec is sufficient for measuring n=32 spectra with good S/N from a given tissue. Principal component regression discriminant analysis discriminated spectra obtained from peripheral nerves (n=863 from n=161 myelinated nerves) and connective tissue (n=828 from n=121 tendons) with sensitivity and specificity of 88.3% and 94.8%, respectively. To compensate the spatial information of a multipoint-Raman-derived tissue discrimination image that is too sparse to visualize nerve arrangement, we used morphological information obtained from a bright-field image. When merged with the sparse tissue discrimination image, a morphological image of a sample shows what portion of Raman measurement points in arbitrary structure is determined as nerve. Setting a nerve detection criterion on the portion of "nerve" points in the structure as 40% or more, myelinated nerves (n=161) and tendons (n=121) were discriminated with sensitivity and specificity of 97.5%. The presented technique utilizing a sparse multipoint Raman image and a bright-field image has enabled rapid, safe, and accurate detection of peripheral nerves.

  3. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  4. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure.

    PubMed

    Pascual-Figal, Domingo A; Casas, Teresa; Ordonez-Llanos, Jordi; Manzano-Fernández, Sergio; Bonaque, Juan C; Boronat, Miguel; Muñoz-Esparza, Carmen; Valdés, Mariano; Januzzi, James L

    2012-06-01

    A highly sensitive assay for troponin T (hsTnT) has been recently developed, which allows for the detection of even minor myocardial necrosis with high precision. It remains unexplored whether hsTnT provides incremental prognostic accuracy beyond conventional (c)TnT in patients with acutely decompensated heart failure (ADHF). A total of 202 consecutive patients admitted with ADHF and without criteria for acute myocardial infarction were studied. Troponin T was measured using the highly sensitive assay and compared with the conventional method. Patients were clinically followed up at a median of 406 days, with a primary outcome measure of all-cause mortality. The high-sensitive assay detected measurable TnT in 98% of patients vs 56% for cTnT; 81% had an hsTnT above the 99th percentile for a healthy reference population, and it reclassified 60% of those with undetectable cTnT. Both TnT methods predicted the risk of death in adjusted multivariable Cox regression analyses, without a superiority of hsTnT over cTnT in the entire population (area under the curve 0.67 vs 0.71, P = .2). Among patients with a cTnT below 0.03 ng/mL (the lowest cut-point with <10% imprecision; n = 134), solely hsTnT improved the prediction of death over clinical risk factors (relative integrated discrimination improvement +36%, P = .01) and hsTnT above 20 pg/mL identified a significant higher risk of death (hazard ratio 4.7, 95% CI 1.6-13.8, P = .005). Among patients with ADHF, myocardial necrosis (as detected with the hsTnT assay) was nearly ubiquitous. The highly sensitive assay for TnT provides comparable prognostic information to cTnT overall, but among those in whom the cTnT method was less precise or frankly negative, the hsTnT assay provided prognostic information. Copyright © 2012 Mosby, Inc. All rights reserved.

  5. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  6. Highly sensitive and selective sugar detection by terahertz nano-antennas

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah

    2015-10-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.

  7. Highly sensitive and selective sugar detection by terahertz nano-antennas

    PubMed Central

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203

  8. A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC-MS/MS method for methoxypyrazine analysis in wine.

    PubMed

    Hjelmeland, Anna K; Wylie, Philip L; Ebeler, Susan E

    2016-02-01

    Methoxypyrazines are volatile compounds found in plants, microbes, and insects that have potent vegetal and earthy aromas. With sensory detection thresholds in the low ng L(-1) range, modest concentrations of these compounds can profoundly impact the aroma quality of foods and beverages, and high levels can lead to consumer rejection. The wine industry routinely analyzes the most prevalent methoxypyrazine, 2-isobutyl-3-methoxypyrazine (IBMP), to aid in harvest decisions, since concentrations decrease during berry ripening. In addition to IBMP, three other methoxypyrazines IPMP (2-isopropyl-3-methoxypyrazine), SBMP (2-sec-butyl-3-methoxypyrazine), and EMP (2-ethyl-3-methoxypyrazine) have been identified in grapes and/or wine and can impact aroma quality. Despite their routine analysis in the wine industry (mostly IBMP), accurate methoxypyrazine quantitation is hindered by two major challenges: sensitivity and resolution. With extremely low sensory detection thresholds (~8-15 ng L(-1) in wine for IBMP), highly sensitive analytical methods to quantify methoxypyrazines at trace levels are necessary. Here we were able to achieve resolution of IBMP as well as IPMP, EMP, and SBMP from co-eluting compounds using one-dimensional chromatography coupled to positive chemical ionization tandem mass spectrometry. Three extraction techniques HS-SPME (headspace-solid phase microextraction), SBSE (stirbar sorptive extraction), and HSSE (headspace sorptive extraction) were validated and compared. A 30 min extraction time was used for HS-SPME and SBSE extraction techniques, while 120 min was necessary to achieve sufficient sensitivity for HSSE extractions. All extraction methods have limits of quantitation (LOQ) at or below 1 ng L(-1) for all four methoxypyrazines analyzed, i.e., LOQ's at or below reported sensory detection limits in wine. The method is high throughput, with resolution of all compounds possible with a relatively rapid 27 min GC oven program. Copyright © 2015

  9. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    NASA Astrophysics Data System (ADS)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  10. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  11. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.

    PubMed

    Eitrich, T; Kless, A; Druska, C; Meyer, W; Grotendorst, J

    2007-01-01

    In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from annotated public data and calculated physicochemical properties with chemoinformatics methods. On top of this data, we have built classifiers based on machine learning methods. Data sets with different class distributions lead to the effect that conventional machine learning methods are biased toward the larger class. To overcome this problem and to obtain sensitive but also accurate classifiers we combine machine learning and feature selection methods with techniques addressing the problem of unbalanced classification, such as oversampling and threshold moving. We have used our own implementation of a support vector machine algorithm as well as the maximum entropy method. Our feature selection is based on the unsupervised McCabe method. The classification results from our test set are compared structurally with compounds from the training set. We show that the applied algorithms enable the effective high throughput in silico classification of potential drug candidates.

  12. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  13. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel

    2014-01-01

    A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771

  14. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  15. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  16. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio *

    PubMed Central

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B.; Schriemer, David C.

    2016-01-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae. Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. PMID:27412762

  17. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio.

    PubMed

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B; Schriemer, David C

    2016-09-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

  19. Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Ran, Qincui; Wei, Dapeng; Sun, Tai; Yu, Leyong; Song, Xuefen; Pu, Lichun; Shi, Haofei; Du, Chunlei

    2017-03-01

    We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.

  20. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    PubMed

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  2. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases

    PubMed Central

    Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.

    2016-01-01

    In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386

  3. Implicit time accurate simulation of unsteady flow

    NASA Astrophysics Data System (ADS)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  4. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    NASA Astrophysics Data System (ADS)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  5. Elucidation of high sensitivity of δ-HMX: New insight from first principles simulations

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Sharia, Onise

    2017-01-01

    Understanding of a significant difference in sensitivities of β and δ phases of cyclotetramethylene-tetranitramine (HMX) has been long one of the challenges in the field of high energy density materials. Despite many experimental and theoretical efforts to explain the high sensitivity of the δ phase, convincing reasons behind the HMX behavior remained unclear. We established that the presence of a polar surface in δ-HMX has fundamental implications for stability and overall chemical behavior of the material. A comparative quantum-chemical analysis of decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a considerable difference in dominating dissociation reactions, activation barriers, and reaction rates. The polarization-induced charge transfer offered a logical explanation for different sensitivity of β-HMX and δ-HMX polymorphs to detonation initiation. Our conclusions also removed long-standing contradictions and explained a large range of experimental data on thermal decomposition of HMX.

  6. Turning a low Q fiber resonator into a high-sensitivity displacement sensor using slow light concepts

    NASA Astrophysics Data System (ADS)

    Bravo, Mikel; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Lopez-Amo, Manuel; Gonzalez-Herraez, Miguel

    2013-05-01

    High-Q resonators have been widely used for sensing purposes. High Q factors normally lead to sharp spectral peaks which accordingly provide a strong sensitivity in spectral interrogation methods. In this work we employ a low-Q ring resonator to develop a high sensitivity sub-micrometric resolution displacement sensor. We use the slow-light effects occurring close to the critical coupling regime to achieve high sensitivity in the device. By tuning the losses in the cavity close to the critical coupling, extremely high group delay variations can be achieved, which in turn introduce strong enhancements of the absorption of the structure. We first validate the concept using an Optical Vector Analyzer (OVA) and then we propose a simple functional scheme for achieving a low-cost interrogation of this kind of sensors.

  7. Determination of aerodynamic sensitivity coefficients for wings in transonic flow

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.; El-Banna, Hesham M.

    1992-01-01

    The quasianalytical approach is applied to the 3-D full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. The quasianalytical approach is believed to be reasonably accurate and computationally efficient for 3-D problems.

  8. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  9. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

    NASA Astrophysics Data System (ADS)

    Safaei, S.; Haghnegahdar, A.; Razavi, S.

    2016-12-01

    Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

  10. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Jung, H; Kim, M

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulatedmore » dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.« less

  11. Use of a highly sensitive strand-specific quantitative PCR to identify abortive replication in the mouse model of respiratory syncytial virus disease

    PubMed Central

    2010-01-01

    Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795

  12. Predicting individual contrast sensitivity functions from acuity and letter contrast sensitivity measurements

    PubMed Central

    Thurman, Steven M.; Davey, Pinakin Gunvant; McCray, Kaydee Lynn; Paronian, Violeta; Seitz, Aaron R.

    2016-01-01

    Contrast sensitivity (CS) is widely used as a measure of visual function in both basic research and clinical evaluation. There is conflicting evidence on the extent to which measuring the full contrast sensitivity function (CSF) offers more functionally relevant information than a single measurement from an optotype CS test, such as the Pelli–Robson chart. Here we examine the relationship between functional CSF parameters and other measures of visual function, and establish a framework for predicting individual CSFs with effectively a zero-parameter model that shifts a standard-shaped template CSF horizontally and vertically according to independent measurements of high contrast acuity and letter CS, respectively. This method was evaluated for three different CSF tests: a chart test (CSV-1000), a computerized sine-wave test (M&S Sine Test), and a recently developed adaptive test (quick CSF). Subjects were 43 individuals with healthy vision or impairment too mild to be considered low vision (acuity range of −0.3 to 0.34 logMAR). While each test demands a slightly different normative template, results show that individual subject CSFs can be predicted with roughly the same precision as test–retest repeatability, confirming that individuals predominantly differ in terms of peak CS and peak spatial frequency. In fact, these parameters were sufficiently related to empirical measurements of acuity and letter CS to permit accurate estimation of the entire CSF of any individual with a deterministic model (zero free parameters). These results demonstrate that in many cases, measuring the full CSF may provide little additional information beyond letter acuity and contrast sensitivity. PMID:28006065

  13. Highly sensitive force sensor based on balloon-like interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng

    2018-07-01

    An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.

  14. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA

  15. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  16. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  17. Accurate documentation in cultural heritage by merging TLS and high-resolution photogrammetric data

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, Pierre; Alby, Emmanuel; Assali, Pierre; Poitevin, Valentin; Hullo, Jean-François; Smigiel, Eddie

    2011-07-01

    Several recording techniques are used together in Cultural Heritage Documentation projects. The main purpose of the documentation and conservation works is usually to generate geometric and photorealistic 3D models for both accurate reconstruction and visualization purposes. The recording approach discussed in this paper is based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons, and criteria as geometry, texture, accuracy, resolution, recording and processing time are often compared. TLS techniques (time of flight or phase shift systems) are often used for the recording of large and complex objects or sites. Point cloud generation from images by dense stereo or multi-image matching can be used as an alternative or a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one as the acquisition system is limited to a digital camera and a few accessories only. Indeed, the stereo matching process offers a cheap, flexible and accurate solution to get 3D point clouds and textured models. The calibration of the camera allows the processing of distortion free images, accurate orientation of the images, and matching at the subpixel level. The main advantage of this photogrammetric methodology is to get at the same time a point cloud (the resolution depends on the size of the pixel on the object), and therefore an accurate meshed object with its texture. After the matching and processing steps, we can use the resulting data in much the same way as a TLS point cloud, but with really better raster information for textures. The paper will address the automation of recording and processing steps, the assessment of the results, and the deliverables (e.g. PDF-3D files). Visualization aspects of the final 3D models are presented. Two case studies with merged photogrammetric and TLS data are finally presented: - The Gallo-roman Theatre of Mandeure, France); - The

  18. A high-sensitivity push-pull magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breschi, E.; Grujić, Z. D.; Knowles, P.

    2014-01-13

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/√(Hz), using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/√(Hz)

  19. The nature and nurture of high IQ: an extended sensitive period for intellectual development.

    PubMed

    Brant, Angela M; Munakata, Yuko; Boomsma, Dorret I; Defries, John C; Haworth, Claire M A; Keller, Matthew C; Martin, Nicholas G; McGue, Matthew; Petrill, Stephen A; Plomin, Robert; Wadsworth, Sally J; Wright, Margaret J; Hewitt, John K

    2013-08-01

    IQ predicts many measures of life success, as well as trajectories of brain development. Prolonged cortical thickening observed in individuals with high IQ might reflect an extended period of synaptogenesis and high environmental sensitivity or plasticity. We tested this hypothesis by examining the timing of changes in the magnitude of genetic and environmental influences on IQ as a function of IQ score. We found that individuals with high IQ show high environmental influence on IQ into adolescence (resembling younger children), whereas individuals with low IQ show high heritability of IQ in adolescence (resembling adults), a pattern consistent with an extended sensitive period for intellectual development in more-intelligent individuals. The pattern held across a cross-sectional sample of almost 11,000 twin pairs and a longitudinal sample of twins, biological siblings, and adoptive siblings.

  20. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.