Sample records for accurate minor isotope

  1. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  2. AMS of the Minor Plutonium Isotopes

    NASA Astrophysics Data System (ADS)

    Steier, P.; Hrnecek, E.; Priller, A.; Quinto, F.; Srncik, M.; Wallner, A.; Wallner, G.; Winkler, S.

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure 239Pu, 240Pu, 241Pu, 242Pu and 244Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of 244Pu/239Pu = (5.7 ± 1.0) × 10-5 based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the 242Pu/240Pu ratio as an estimate of the initial 241Pu/239Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  3. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits.

    PubMed

    Guo, Qi; Wei, Hai-Zhen; Jiang, Shao-Yong; Hohl, Simon; Lin, Yi-Bo; Wang, Yi-Jing; Li, Yin-Chuan

    2017-12-19

    Except for extensive studies in core formation and volatile-element depletion processes using radiogenic Ag isotopes (i.e., the Pd-Ag chronometer), recent research has revealed that the mass fractionation of silver isotopes is in principle controlled by physicochemical processes (e.g., evaporation, diffusion, chemical exchange, etc.) during magmatic emplacement and hydrothermal alteration. As these geologic processes only produce very minor variations of δ 109 Ag from -0.5 to +1.1‰, more accurate and precise measurements are required. In this work, a robust linear relationship between instrumental mass discrimination of Ag and Pd isotopes was obtained at the Ag/Pd molar ratio of 1:20. In Au-Ag ore deposits, silver minerals have complex paragenetic relationships with other minerals (e.g., chalcopyrite, sphalerite, galena, pyrite, etc.). It is difficult to remove such abundant impurities completely because the other metals are tens to thousands of times richer than silver. Both quantitative evaluation of matrix effects and modification of chemical chromatography were carried out to deal with the problems. Isobaric inferences (e.g., 65 Cu 40 Ar + to 105 Pd, 208 Pb 2+ to 104 Pd, and 67 Zn 40 Ar + to 107 Ag + ) and space charge effects dramatically shift the measured δ 109 Ag values. The selection of alternative Pd isotope pairs is effective in eliminating spectral matrix effects so as to ensure accurate analysis under the largest possible ranges for metal impurities, which are Cu/Ag ≤ 50:1, Fe/Ag ≤ 600:1, Pb/Ag ≤ 10:1, and Zn/Ag ≤ 1:1, respectively. With the modified procedure, we reported silver isotope compositions (δ 109 Ag) in geological standard materials and typical Au-Ag ore deposit samples varying from -0.029 to +0.689 ‰ with external reproducibility of ±0.009-0.084 ‰. A systemic survey of δ 109 Ag (or ε 109 Ag) variations in rocks, ore deposits, and environmental materials in nature is discussed.

  4. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  5. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  6. Increasing the Accuracy in the Measurement of the Minor Isotopes of Uranium: Care in Selection of Reference Materials, Baselines and Detector Calibration

    NASA Astrophysics Data System (ADS)

    Poths, J.; Koepf, A.; Boulyga, S. F.

    2008-12-01

    The minor isotopes of uranium (U-233, U-234, U-236) are increasingly useful for tracing a variety of processes: movement of anthropogenic nuclides in the environment (ref 1), sources of uranium ores (ref 2), and nuclear material attribution (ref 3). We report on improved accuracy for U-234/238 and U-236/238 by supplementing total evaporation protocol TIMS measurement on Faraday detectors (ref 4)with multiplier measurement for the minor isotopes. Measurement of small signals on Faraday detectors alone is limited by noise floors of the amplifiers and accurate measurement of the baseline offsets. The combined detector approach improves the reproducibility to better than ±1% (relative) for the U-234/238 at natural abundance, and yields a detection limit for U-236/U-238 of <0.2 ppm. We have quantified contribution of different factors to the uncertainties associated with these peak jumping measurement on a single detector, with an aim of further improvement. The uncertainties in the certified values for U-234 and U-236 in the uranium standard NBS U005, if used for mass bias correction, dominates the uncertainty in their isotopic ratio measurements. Software limitations in baseline measurement drives the detection limit for the U-236/U-238 ratio. This is a topic for discussion with the instrument manufacturers. Finally, deviation from linearity of the response of the electron multiplier with count rate limits the accuracy and reproducibility of these minor isotope measurements. References: (1) P. Steier et al(2008) Nuc Inst Meth(B), 266, 2246-2250. (2) E. Keegan et al (2008) Appl Geochem 23, 765-777. (3) K. Mayer et al (1998) IAEA-CN-98/11, in Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics. (4) S. Richter and S. Goldberg(2003) Int J Mass Spectrom, 229, 181-197.

  7. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    NASA Astrophysics Data System (ADS)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  8. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples.

    PubMed

    Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.

  9. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    NASA Astrophysics Data System (ADS)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  10. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples

    DOE PAGES

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; ...

    2016-03-31

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10 -6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-knownmore » plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less

  11. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE PAGES

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  12. Method to make accurate concentration and isotopic measurements for small gas samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  13. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  14. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that aremore » present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.« less

  15. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    NASA Astrophysics Data System (ADS)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  16. Development and Deployment of a Portable Water Isotope Analyzer for Accurate, Continuous and High-Frequency Oxygen and Hydrogen Isotope Measurements in Water Vapor and Liquid Water

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Stable isotopes of water in liquid and vapor samples are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of del_18O and del_2H are critical to advance the understanding of water cycle dynamics around the globe. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent laboratory development and field deployment of a novel Water Vapor Isotope Analyzer (WVIA), based on cavity enhanced laser absorption spectroscopy, capable of simultaneous in-situ measurements of del_18O and del_2H and water mixing ratio with high precision and high frequency (up to 10 Hz measurement rate). In addition, to ensure the accuracy of the water vapor isotope measurements, a novel Water Vapor Isotope Standard Source (WVISS), based on the instantaneous evaporation of micro-droplets of liquid water (with known isotope composition), has been developed to provide the reference water vapor with widely adjustable mixing ratio (500-30,000 ppmv) for real-time calibration of the WVIA. The comprehensive system that includes the WVIA and WVISS has been validated in extensive laboratory and field studies to be insensitive to ambient temperature changes (5-40 C) and to changes in water mixing ratio over a wide range of mixing ratios. In addition, by operating in the dual inlet mode, measurement drift has essentially been eliminated. The system (WVIA+WVISS) has also been deployed for long-term unattended continuous measurements in the field. In addition to water vapor isotope measurements, the new Water Vapor Isotopic Standard Source (WVISS) may be combined with the WVIA to provide continuous isotopic measurements of liquid water samples at rapid data rate. The availability of

  17. Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators.

    PubMed

    Faye, Serigne; Maloszewski, Piotr; Stichler, Willibald; Trimborn, Peter; Cissé Faye, Seynabou; Bécaye Gaye, Cheikh

    2005-05-01

    The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7-650 microg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.

  18. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  19. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    NASA Astrophysics Data System (ADS)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  20. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  1. Trace, Minor Elements, and Stable Isotopes in Montastraea faveolata as an Indicator of Stress

    NASA Astrophysics Data System (ADS)

    Holmes, C. W.; Buster, N. A.; Hudson, J. H.

    2004-12-01

    Coral cores were obtained along the fore reef from Looe Key Reef, Florida Keys, and analyzed for minor and trace elements by laser ablation ICP-MS and stable oxygen and carbon isotopes. Sample locations within the corals were chosen based on the location of annual bands as determined by x-radiographs. The LA-ICP-MS data were obtained along the corallite wall. Boron, magnesium, and phosphorous concentrations can be correlated among the corals analyzed. The highest elemental concentrations and the carbon and oxygen isotopic records in the Looe Key Montastraea faveolata were linked to times of reported bleaching. Boron, a common element in sea water, exists as two species, B(OH)3 below a pH of 8.0 and B(OH)4- above a pH of 8. Hemming and others (1998) determined that boron varied positively with 13C, both being coincident with high-density bands. They proposed that photosynthetic activity of zooxanthellae is the driving process, causing the shift in pH. During periods of stress, energy that would be used for normal coral activity (reproduction and growth) is diverted for tissue repair, food gathering, and waste removal. At extreme stress, these activities are reduced. As a result of decreased zooxanthellate activity, the chemistry at the organic-inorganic boundary may change as follows. 1. The pH rises, increasing the boron levels in the carbonate skeleton. 2. Phosphorous, expelled during normal growth activity, is retained, inhibiting the precipitation of "normal" aragonite. 3. The Mg/Ca ratio changes as calcium is being used preferentially. In the Looe Key Reef corals, boron, magnesium, and phosphorous all were elevated during times of reported bleaching. Within the same time intervals, the δ 13C, which displayed values of between -2 % and -3 % in the "normal" light-density portion of the skeleton, approached a δ 13C of 0 % in the stressed, high-density portion of the skeleton. Thus, the combination of high magnesium, boron, and phosphorous concentrations, coupled

  2. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  3. Assessment Strategies for Minority Groups.

    ERIC Educational Resources Information Center

    Sharma, Sarla

    1986-01-01

    Far-reaching ramifications for minority children of psychological assessment warrants that it be accurate, fair, and valid. This article addresses: (1) problems inherent in standardized testing; (2) a moratorium on intelligence testing; (3) alternate approaches to testing; and (4) guidelines for assessing ethnic minority groups. (LHW)

  4. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  5. Tellurium Stable Isotope Fractionation in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Fehr, M. A.; Hammond, S. J.; Parkinson, I. J.

    2014-09-01

    New Te double spike procedures were set up to obtain high-precision accurate Te stable isotope data. Tellurium stable isotope data for 16 chondrite falls are presented, providing evidence for significant Te stable isotope fractionation.

  6. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  7. Joint profiling of greenhouse gases, isotopes, thermodynamic variables, and wind from space by combined microwave and IR laser occultation: the ACCURATE concept

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schweitzer, S.

    2008-12-01

    The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 μm band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of

  8. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this

  9. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.

  10. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis

    USGS Publications Warehouse

    Pfaff, Katharina; Koenig, Alan; Wenzel, Thomas; Ridley, Ian; Hildebrandt, Ludwig H.; Leach, David L.; Markl, Gregor

    2011-01-01

    Various models have been proposed to explain the formation mechanism of colloform sphalerite, but the origin is still under debate. In order to decipher influences on trace element incorporation and sulfur isotope composition, crystalline and colloform sphalerite from the carbonate-hosted Mississippi-Valley Type (MVT) deposit near Wiesloch, SW Germany, were investigated and compared to sphalerite samples from 52 hydrothermal vein-type deposits in the Schwarzwald ore district, SW Germany to study the influence of different host rocks, formation mechanisms and fluid origin on trace element incorporation. Trace and minor element incorporation in sphalerite shows some correlation to their host rock and/or origin of fluid, gangue, paragenetic minerals and precipitation mechanisms (e.g., diagenetic processes, fluid cooling or fluid mixing). Furthermore, crystalline sphalerite is generally enriched in elements like Cd, Cu, Sb and Ag compared to colloform sphalerite that mainly incorporates elements like As, Pb and Tl. In addition, sulfur isotopes are characterized by positive values for crystalline and strongly negative values for colloform sphalerite. The combination of trace element contents, typical minerals associated with colloform sphalerite from Wiesloch, sulfur isotopes and thermodynamic considerations helped to evaluate the involvement of sulfate-reducing bacteria in water-filled karst cavities. Sulfate-reducing bacteria cause a sulfide-rich environment that leads in case of a metal-rich fluid supply to a sudden oversaturation of the fluid with respect to galena, sphalerite and pyrite. This, however, exactly coincides with the observed crystallization sequence of samples involving colloform sphalerite from the Wiesloch MVT deposit.

  11. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  12. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    PubMed

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  13. Ultrahigh thermal conductivity of isotopically enriched silicon

    NASA Astrophysics Data System (ADS)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  14. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    PubMed

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.

    2015-12-01

    This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between  -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO  =  630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be  <1 μK.

  16. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  17. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  18. Isomeric and Isotopic Effects on the Electronic Spectrum of {{\\rm{C}}}_{60}^{+}–He: Consequences for Astronomical Observations of {{\\rm{C}}}_{60}^{+}

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2018-05-01

    Laboratory measurements are reported that enable a more accurate determination of the characteristics of the near-infrared absorptions of {{{C}}}60+ below 10 K. These data were obtained by photofragmentation of {{{C}}}60+{--}{He} complexes in a cryogenic trap. Asymmetry in the profiles of the observed 9577 and 9632 Å absorption bands of {{{C}}}60+{--}{He} is caused by the attachment of the weakly bound helium atom to hexagonal or pentagonal faces of {{{C}}}60+. The implication is that the FWHM of the bands in the electronic spectrum of {{{C}}}60+ below 10 K is 1.4 Å. The effect of 13C isotopes on the {{{C}}}60+ electronic spectrum is experimentally evaluated by measurement of {}12{{{C}}}60+{--}{He}, {}13{{{C}}}112{{{C}}}59+{--}{He}, and {}13{{{C}}}212{{{C}}}58+{--}{He}. Data on the 9365 Å absorption band indicate a wavelength shift of about 0.3 Å between the former and latter. This result is consistent with models used to interpret the vibrational isotope effect in the Raman spectrum of neutral C60. The influence of 13C isotopes on the 9348, 9365, 9428, 9577, and 9632 Å diffuse interstellar bands is expected to be minor considering other broadening factors that affect astronomical observations. The presented data also provide more accurate relative intensities of the five interstellar bands attributed to {{{C}}}60+.

  19. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  20. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    PubMed

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  1. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500more » and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.« less

  2. Trophic hierarchies revealed via amino acid isotopic analysis

    USDA-ARS?s Scientific Manuscript database

    Despite the potential of isotopic methods to illuminate trophic function, accurate estimates of lifetime feeding tendencies have remained elusive. A relatively new approach—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino ...

  3. Isotopes and Minor Volatiles in the Coma of Comet 67P/Churyumov-Gerasimenko Observed by the Rosetta/ROSINA Instrument: Planetary Implications

    NASA Astrophysics Data System (ADS)

    Marty, B.; Altwegg, K.; Balsiger, H. R.; Calmonte, U.; Hässig, M.; Le Roy, L.; Rubin, M.; Bieler, A. M.; Fuselier, S. A.; De Keyser, J. M.; Mousis, O.

    2015-12-01

    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite is part of the payload of the European Space Agency's Rosetta spacecraft. Part of this suite, the Double Focusing Mass Spectrometer (DFMS) has been analyzing major (e.g., H2O,) as well as minor (CO, CO2, N2, NHx, noble gases) species and elements and some of their isotopes thanks to its high mass resolution of 3,000 at 1% peak height and its high sensitivity. In parallel to the presentation by Rubin et al. (this meeting) who discuss temporal variation of the coma composition as a function of heliospheric distance, we present here the on-going measurements done on the above species and isotopes. Besides temporal variability, one of the goals of ROSINA is to document the composition of cometary volatiles in the context of the formation of planets and of the origin of atmospheres. The first detection of a noble gas, Ar, in a cometary coma (Balsiger et al, in press), together with the measured D/H isotope ratio and carbon species, constrains the origin of the inner planet atmospheres and the terrestrial oceans. Assuming that 67P is representative of the cometary reservoir, major volatiles (H, C, N) of the inner planets are unlikely to have originated from comets, but a cometary origin for atmospheric noble gases is a viable hypothesis. However, these cometary measurements were done during a short interval of time (in autumn 2014) when the comet was at 3.5 AU from the Sun, which raises the question of how well they represent the bulk cometary composition. Further measurements of the bulk composition are planned close to the perihelion. Also of interest is the isotope composition of nitrogen in N-bearing compounds. Spectroscopic measurements of cometary HCN and NH2+ done so far indicate a two-fold enrichment in 15N, that needs to be confirmed by in-situ mass spectrometry. Measurements of other noble gases, in particular Xe (a very difficult measurement), may set stringent constraints

  4. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    USDA-ARS?s Scientific Manuscript database

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  5. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  6. Intramolecular Isotopic Studies: Chemical Enhancements and Alternatives

    NASA Astrophysics Data System (ADS)

    Hayes, J. M.

    2016-12-01

    As mass spectroscopic and NMR-based methods now appropriately flourish, chemical techniques should not be forgotten. First, the methods developed by pioneering intramolecular analysts can be reapplied to new samples. Second, they can be extended. The synthesis of intramolecular isotopic standards is particularly important and straightforward. It requires only that a chemical reaction has no secondary products. An example is provided by the addition of carbon dioxide to a Grignard reagent. The reaction proceeds with an isotope effect. The isotopic composition of the carboxyl group in the acid which is produced is thus not equal to that of the starting carbon dioxide but the unconsumed CO2 can be recovered and analyzed. A simple titration can show that all the rest of the CO2 is in the product acid. The isotopic composition of the carboxyl group can then be calculated by difference. The product is an intramolecular isotopic standard, an organic molecule in which the isotopic composition of a specific carbon position is known accurately. Both analysts and reviewers can thus gain invaluable confidence in the accuracy of instrumental results. A second example: the haloform reaction quantitatively degrades methyl ketones, producing a carboxylic acid which can be decarboxylated to determine the isotopic composition of the parent carbonyl and a haloform (CHI3, for example) that can be combusted to determine the isotopic composition of the methyl group. Ketones thus analyzed can be combined with Grignard reagents to yield carbon skeletons in which the isotopic compositions of internal and terminal -CH2- and -CH3 groups are known accurately. In general, analysts accustomed to demanding quantitative reactions should remember the power of mass balances and recognize that many organic-chemical reactions, while not quantitative, lack side products and can be driven to the total consumption of at least one reactant.

  7. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    PubMed

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  8. Stable isotope laser spectrometer for exploration of Mars.

    PubMed

    Sauke, T B; Becker, J F

    1998-01-01

    On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions.

  9. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Applications of stable isotope analysis in mammalian ecology.

    PubMed

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  11. Sulphur isotope applications in two Philippine geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayon, F.E.B.

    1996-12-31

    A general and very preliminary study of sulphur isotope geochemistry is presented in this paper. Data from the Mt. Apo and Palinpinon geothermal fields are used to demonstrate the use of sulphur isotopes in geothermometry and correlation of sulphur species. Sulphur and oxygen isotope geothermometers applied to Mt. Apo data show very good agreement with temperatures estimated using other established geothermometers, as well as bore measured temperatures. This signifies that sulphur isotopes in S-species in fluids of the Mt. Apo hydrothermal system are in equilibrium at drilled depths. In Palinpinon, on the other hand, temperature estimates from fluid and mineralmore » sulphur isotope geothermometry calculations do not agree with, and are commonly higher than, well measured temperatures and temperatures estimated from other geothermometers. Sulphur isotopes in the presently-exploited Palinpinon fluid are not in equilibrium, and sulphur isotope geothermometry may be reflective of isotopic equilibrium of the deeper portions of the hydrothermal system. Dissolved sulphate in both the Palinpinon and Mt. Apo geothermal fluids appear to originate from the disproportionation of magmatic SO{sub 2} at temperatures below 400{degrees}C. Hydrogen sulphide in well discharge fluids are dominantly directly derived from the magma, with a minor amount coming from SO{sub 2} disproportionation.« less

  12. Accurate analysis of parabens in human urine using isotope-dilution ultrahigh-performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Zhou, Hui-Ting; Chen, Hsin-Chang; Ding, Wang-Hsien

    2018-02-20

    An analytical method that utilizes isotope-dilution ultrahigh-performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS or called UHPLC-HRMS) was developed, and validated to be highly precise and accurate for the detection of nine parabens (methyl-, ethyl-, propyl-, isopropyl-, butyl-, isobutyl-, pentyl-, hexyl-, and benzyl-parabens) in human urine samples. After sample preparation by ultrasound-assisted emulsification microextraction (USAEME), the extract was directly injected into UHPLC-HRMS. By using negative electrospray ionization in the multiple reaction monitoring (MRM) mode and measuring the peak area ratios of both the natural and the labeled-analogues in the samples and calibration standards, the target analytes could be accurately identified and quantified. Another use for the labeled-analogues was to correct for systematic errors associated with the analysis, such as the matrix effect and other variations. The limits of quantitation (LOQs) were ranging from 0.3 to 0.6 ng/mL. High precisions for both repeatability and reproducibility were obtained ranging from 1 to 8%. High trueness (mean extraction recovery, or called accuracy) ranged from 93 to 107% on two concentration levels. According to preliminary results, the total concentrations of four most detected parabens (methyl-, ethyl-, propyl- and butyl-) ranged from 0.5 to 79.1 ng/mL in male urine samples, and from 17 to 237 ng/mL in female urine samples. Interestingly, two infrequently detected pentyl- and hexyl-parabens were found in one of the male samples in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.

    PubMed

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M

    2017-04-01

    Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ 13 C) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ 13 C of L. minor at environmentally relevant concentrations. The increase of δ 13 C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was the

  14. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGES

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  15. Changes in hydrogen isotope ratios in sequential plumage stages: an implication for the creation of isotope-base maps for tracking migratory birds.

    PubMed

    Duxbury, J M; Holroyd, G L; Muehlenbachs, K

    2003-09-01

    Accurate reference maps are important in the use of stable-isotopes to track the movements of migratory birds. Reference maps created by the analysis of samples collected from young at the nest site are more accurate than simply referring to naturally occurring patterns of hydrogen isotope ratios created by precipitation cycles. Ratios of hydrogen isotopes in the nutrients incorporated early in the development of young birds can be derived from endogenous, maternal sources. Base-maps should be created with the analysis of tissue samples from hatchlings after local the isotopic signature of exogenous nutrients is dominant. Migratory species such as Peregrine Falcons are known to use endogenous sources in the creation of their eggs, therefore knowledge of what plumage stage best represents the local hydrogen ratios would assist in the planning of nest visits. We conducted diet manipulation experiments involving Japanese Quail and Peregrine Falcons to determine the plumage stage when hydrogen isotope ratios were indicative of a switch in their food source. The natal down of both the quail and falcons reflected the diet of breeding adult females. The hydrogen isotope ratios of a new food source were dominant in the juvenile down of the young falcons, although a further shift was detected in the final juvenile plumage. The juvenile plumage is grown during weeks 3-4 after hatch on Peregrine Falcons. Nest visits for the purpose of collecting feathers for isotope-base-map creation should be made around 4 weeks after the presumed hatch of the young falcons.

  16. Constraints on Nucleosynthesis from Xenon Isotopes in Presolar Material

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Turner, G.

    2007-03-01

    By applying theoretical constraints to three-dimensional fits of xenon isotope data from presolar grains, we show that they strongly suggest a nucleosynthesis process that produces ``r-process'' isotopes without producing s-process isotopes (128Xe, 130Xe) and without producing the conventional r-process isotope 136Xe. It is one of three distinct nucleosynthetic sources that are necessary and sufficient to explain the gross variation in xenon isotopic data across all presolar material. The other source contributing r-process isotopes is responsible for the heavy isotope signature identified in nanodiamonds, which is also present in presolar SiC, and is associated with light isotope enrichment. The relative enrichments of heavy and light isotopes in this component in nanodiamonds and SiC grains are different, implying that the parent nucleosynthetic processes are not inextricably linked. Because minor variations in the isotopic compositions of xenon trapped in nanodiamonds show that two distinct sites contributed nanodiamonds to the early solar system within the average grain lifetime, it is suggested that Type IIa supernovae (SNe IIa) are not the source of the nanodiamonds. The s-process signature derived is consistent with that derived from mixing lines between grain subpopulations for isotopes on the s-process path. This implies that a pure end-member is present in the grains (although not approached in analyses). Our approach is more general and provides a less restrictive set of numerical constraints to be satisfied by proposed theoretical treatments of nucleosynthesis.

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  18. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  19. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less

  20. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  1. Isotopic equilibration between dissolved and suspended particulate lead in the Atlantic Ocean - Evidence from Pb-210 and stable Pb isotopes

    NASA Technical Reports Server (NTRS)

    Sherrell, Robert M.; Boyle, Edward A.; Hamelin, Bruno

    1992-01-01

    Vertical profiles of, on one hand, the stable Pb isotopic composition, and on the other, the ratio of total Pb to Pb-210 in suspended particles, are noted to closely track contemporaneous depth variations in these ratios for dissolved Pb throughout the upper 2 km of the Sargasso Sea near Bermuda. A simple flux model suggests that the effect of deep ocean scavenging processes on the flux and isotopic composition of Pb sinking on large particles was minor throughout the preanthropogenic, and most of the anthropogenic era: but it has become more important as surface inputs decrease to preleaded gasoline levels, perhaps exceeding the contribution of surface-derived Pb flux in the next decade.

  2. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Seo, Miyeong; Kim, Byungjoo; Baek, Song-Yee

    2015-07-01

    Patulin, a mycotoxin produced by several molds in fruits, has been frequently detected in apple products. Therefore, regulatory bodies have established recommended maximum permitted patulin concentrations for each type of apple product. Although several analytical methods have been adopted to determine patulin in food, quality control of patulin analysis is not easy, as reliable certified reference materials (CRMs) are not available. In this study, as a part of a project for developing CRMs for patulin analysis, we developed isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) as a higher-order reference method for the accurate value-assignment of CRMs. (13)C7-patulin was used as internal standard. Samples were extracted with ethyl acetate to improve recovery. For further sample cleanup with solid-phase extraction (SPE), the HLB SPE cartridge was chosen after comparing with several other types of SPE cartridges. High-performance liquid chromatography was performed on a multimode column for proper retention and separation of highly polar and water-soluble patulin from sample interferences. Sample extracts were analyzed by LC/MS/MS with electrospray ionization in negative ion mode with selected reaction monitoring of patulin and (13)C7-patulin at m/z 153→m/z 109 and m/z 160→m/z 115, respectively. The validity of the method was tested by measuring gravimetrically fortified samples of various apple products. In addition, the repeatability and the reproducibility of the method were tested to evaluate the performance of the method. The method was shown to provide accurate measurements in the 3-40 μg/kg range with a relative expanded uncertainty of around 1%.

  3. The impact of carbon-13 and deuterium on relative quantification of proteins using stable isotope diethyl labeling.

    PubMed

    Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd

    2015-05-15

    Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Calcium Isotopic Composition of Bulk Silicate Earth

    NASA Astrophysics Data System (ADS)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  5. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    NASA Astrophysics Data System (ADS)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  6. Kinetics of the reaction of the heaviest hydrogen atom with H2, the 4Heμ + H2 → 4HeμH + H reaction: Experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass

    NASA Astrophysics Data System (ADS)

    Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr; Brewer, Jess H.; Mielke, Steven L.; Truhlar, Donald G.; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.

    2011-11-01

    The neutral muonic helium atom 4Heμ, in which one of the electrons of He is replaced by a negative muon, may be effectively regarded as the heaviest isotope of the hydrogen atom, with a mass of 4.115 amu. We report details of the first muon spin rotation (μSR) measurements of the chemical reaction rate constant of 4Heμ with molecular hydrogen, 4Heμ + H2 → 4HeμH + H, at temperatures of 295.5, 405, and 500 K, as well as a μSR measurement of the hyperfine coupling constant of muonic He at high pressures. The experimental rate constants, kHeμ, are compared with the predictions of accurate quantum mechanical (QM) dynamics calculations carried out on a well converged Born-Huang (BH) potential energy surface, based on complete configuration interaction calculations and including a Born-Oppenheimer diagonal correction. At the two highest measured temperatures the agreement between the quantum theory and experiment is good to excellent, well within experimental uncertainties that include an estimate of possible systematic error, but at 295.5 K the quantum calculations for kHeμ are below the experimental value by 2.1 times the experimental uncertainty estimates. Possible reasons for this discrepancy are discussed. Variational transition state theory calculations with multidimensional tunneling have also been carried out for kHeμ on the BH surface, and they agree with the accurate QM rate constants to within 30% over a wider temperature range of 200-1000 K. Comparisons between theory and experiment are also presented for the rate constants for both the D + H2 and Mu + H2 reactions in a novel study of kinetic isotope effects for the H + H2 reactions over a factor of 36.1 in isotopic mass of the atomic reactant.

  7. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry

    USGS Publications Warehouse

    Truesdell, A.H.

    1974-01-01

    Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.

  8. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/ 239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presencemore » of a significant quantity of 238U in the samples.« less

  9. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  10. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  11. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  12. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  13. High Resolution Gamma Ray Analysis of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  14. Prevention, Detection and Management of Coronary Artery Disease in Minority Females.

    PubMed

    Bullock-Palmer, Renée P

    2015-11-05

    Heart disease is the leading cause of death for women living in the United States; this disease claims more female lives than all cancers combined. Additionally, according to the Centers of Disease Control data between the years 1979 and 2006, while cardiac-related mortality among men decreased significantly, only a modest decline was found among women. This disparity is greatest among minority females including Blacks and Hispanics who have an even greater prevalence of CVD and its risk factors. There are several risk factors for coronary artery disease (CAD). Modifiable risk factors include: tobacco smoking, hypertension, diabetes, hyperlipidemia, obesity and physical inactivity. The prevention of CAD is grounded in decreasing or removing these modifiable risk factors. Accurately diagnosing CAD is dependent on an accurate assessment of the patient's pre-test probability to determine the best diagnostic approach to pursue. The patient's functional status, resting EKG and cardiac risk factors also assist in determining the best non-invasive cardiac test to pursue. The goals and mainstay in the management of minority females with stable CAD includes surveillance for CAD symptoms, management of hypertension, diabetes mellitus and hyperlipidemia, as well as encouraging healthy habits. Heart disease remains the leading cause of death in minority females. Providers must be diligent to aggressively decrease patients' cardiovascular risk and, when patients do present with cardiovascular symptoms, providers must be aggressive in accurately diagnosing and treating these patients to decrease cardiac morbidity and mortality.

  15. Effects of spin crossover on iron isotope fractionation in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Qin, T.; Shukla, G.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Recent studies have revealed that the iron isotope composition of mid-ocean ridge basalts (MORBs) is +0.1‰ richer in heavy Fe (56Fe) relative to chondrites, while basalts from Mars and Vesta have similar Fe isotopic composition as chondrites. Several hypotheses could explain these observations. For instance, iron isotope fractionation may have occurred during core formation or Earth may have lost some light Fe isotope during the high temperature event in the early Earth. To better understand what drove these isotopic observations, it is important to obtain accurate Fe isotope fractionation factors among mantle and core phases at the relevant P-T conditions. In bridgmanite, the most voluminous mineral in the lower mantle, Fe can occupy more than one crystalline site, be in ferrous and/or ferric states, and may undergo a spin crossover in the lower mantle. Iron isotopic fractionation properties under spin crossover are poorly constrained, while this may be relevant to differentiation of Earth's magma ocean. In this study we address the effect of these multiple states on the iron isotope fractionation factors between mantle and core phases.

  16. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  17. Characterization of a new candidate isotopic reference material for natural Pb using primary measurement method.

    PubMed

    Nonose, Naoko; Suzuki, Toshihiro; Shin, Ki-Cheol; Miura, Tsutomu; Hioki, Akiharu

    2017-06-29

    A lead isotopic standard solution with natural abundance has been developed by applying a mixture of a solution of enriched 208 Pb and a solution of enriched 204 Pb ( 208 Pb- 204 Pb double spike solution) as bracketing method. The amount-of-substance ratio of 208 Pb: 204 Pb in this solution is accurately measured by applying EDTA titrimetry, which is one of the primary measurement methods, to each enriched Pb isotope solution. Also metal impurities affecting EDTA titration and minor lead isotopes contained in each enriched Pb isotope solution are quantified by ICP-SF-MS. The amount-of-substance ratio of 208 Pb: 204 Pb in the 208 Pb- 204 Pb double spike solution is 0.961959 ± 0.000056 (combined standard uncertainty; k = 1). Both the measurement of lead isotope ratios in a candidate isotopic standard solution and the correction of mass discrimination in MC-ICP-MS are carried out by coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method, where thallium solution is added to the standard and the sample. The measured lead isotope ratios and their expanded uncertainties (k = 2) in the candidate isotopic standard solution are 18.0900 ± 0.0046 for 206 Pb: 204 Pb, 15.6278 ± 0.0036 for 207 Pb: 204 Pb, 38.0626 ± 0.0089 for 208 Pb: 204 Pb, 2.104406 ± 0.00013 for 208 Pb: 206 Pb, and 0.863888 ± 0.000036 for 207 Pb: 206 Pb. The expanded uncertainties are about one half of the stated uncertainty for NIST SRM 981, for 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, or one eighth, for 208 Pb: 206 Pb and 207 Pb: 206 Pb, The combined uncertainty consists of the uncertainties due to lead isotope ratio measurements and the remaining time-drift effect of mass discrimination in MC-ICP-MS, which is not removed by the coupled correction method. In the measurement of 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, the latter contribution is two or three times larger than the former. When the coupling of

  18. Application of zinc isotope tracer technology in tracing soil heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang

    2017-08-01

    Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.

  19. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  20. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  1. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  2. Socio-legal protection of minorities -- a study of Indian educational cases.

    PubMed

    Chandra, S

    1992-01-01

    Many Muslim families do not enroll their children in school. This is so because material in school syllabi sometimes goes against Islamic beliefs or adversely affects the Muslim self-image, orthodox parents will not send their daughters to coeducational academic institutions, some adults do not realize the benefits of education with regard to the welfare of their children, and many Muslim localities remain resource-deficient slums. The government, local authorities, and Muslims should band together to encourage and enable backward Muslim minorities to uplift themselves academically. Steps to that end could include adding minority representation to the bodies which approve the syllabi in order to monitor the potential inclusion of offensive material, continuing to upgrade teachers in Muslim schools, optimizing available space in Muslim educational institutions, empowering minorities commissions in states to help backward minorities to garner education, eliminating the rules of discretion to avoid corruption and nepotism, simplifying the rules and procedures governing grants to educational institutions, conducting a scientific survey to obtain accurate baseline information for use in planning the education of Muslim minorities, giving special preference to localities populated predominantly with minorities when establishing educational institutions, and providing scholarship to bright and needy minority students. Additionally, the National Minorities Commission should be empowered by the central government to collect information and report on the educational, social, and economic conditions of minorities across the country. Autonomy in management must also be respected, with regulatory measures applicable to minority institutions being reasonable and appropriate.

  3. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  4. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  5. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  6. Thermal Diffusion Fractionation of Cr and V Isotope in Silicate Melt

    NASA Astrophysics Data System (ADS)

    Lin, X.; Lundstrom, C.

    2017-12-01

    Earth's mantle is isotopically heavy relative to chondrites for V, Cr and some other siderophile elements. A possible solution is that isotopic fractionation by thermal diffusion occurs in a thermal boundary layer between solid mantle and an underlying basal magma ocean (BMO:Labrosse et al.,2007). If so, isotopically light composition might partition into the core, resulting in a complimentary isotopically heavy solid mantle. To verify how much fractionation could happen in this process, piston cylinder experiment were conducted to investigate the fractionation of Cr and V isotope ratios in partially molten silicate under an imposed temperature gradient from 1650 °C to 1350 °C at 1 GPa for 10 to 50 hours to reach a steady state isotopic profile. The temperature profile for experiments was determined by the spinel-growth method at the same pressure and temperature. Experimental runs result in 100% glass at the hot end progressing to nearly 100 % olivine at the cold end. Major and minor element concentrations of run products show systematic changes with temperature. Glass MgO contents increase and Al2O3 and CaO contents decrease by several weight percent as temperature increases across the charge. These are well modeled using IRIDIUM (Boudreau 2003) to simulate the experiments. Isotopic composition measurements of Cr and V at different temperatures are in progress, providing the first determinations of thermal diffusion isotopic sensitivity, Ω (permil isotopic fractionation per temperature offset per mass unit) for these elements. These results will be compared with previously determined Ω for network formers and modifiers and used in a BMO-based thermal diffusion model for formation of Earth's isotopically heavy mantle.

  7. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G

    2005-08-01

    Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.

  8. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion.

    PubMed

    Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G

    2004-09-01

    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.

  9. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  10. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    NASA Astrophysics Data System (ADS)

    Yoon, Myung-Hwan; Choi, Yun-Yong; Hong, Jung-Pyo

    2017-05-01

    Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  11. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  12. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  13. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.

  14. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the

  15. The Carbon Isotope Ratio in Local Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Usuda, Tomonori; Takato, Naruhisa; Masahiko, Hayashi; Sakamoto, Seiichi; Mitchell, George

    We report the carbon isotope ratio in nearby molecular clouds LkHα 101, AFGL 490, and Mon R2 IRS 3. The vibrational transition bands of 12CO ν = 2 ← 0 and 13CO ν = 1 ← 0 were observed with high resolution near-infrared spectroscopy (R = 23,000) to measure the relative abundance of 13CO to 12CO. The isotopic ratios are 12CO/13CO = 1379 (LkHα 101), 8649 (AFGL 490), and 158 (Mon R2 IRS 3), which is twice higher than in the solar neighborhood. The molecular clouds are with high visible extinction (AV = 10 70 mag), well shielded from destructive FUV field. It is questionable that the selective photo-destruction of 13CO plays a major role in biasing isotope ratio. Uncertainty in the Doppler parameters of the unresolved absorption lines, and possible emission filling of fundamental transitions are suspected to account for the high 12CO/13CO ratio. Higher resolution spectroscopy (R ~ 100,000) is the key to go for the accurate measurement of isotope ratio.

  16. A Hydrogen and He Isotope Nanoprobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Barney L.; Van Deusen, Stuart B.

    Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries…more » Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.« less

  17. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS.

    PubMed

    Kappel, S; Boulyga, S F; Dorta, L; Günther, D; Hattendorf, B; Koffler, D; Laaha, G; Leisch, F; Prohaska, T

    2013-03-01

    Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. 'point-by-point', 'integration' and 'linear regression slope' method) for the computation of (235)U/(238)U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their (235)U/(238)U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the 'point-by-point' method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a 'finite mixture model' is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The (235)U/(238)U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different (235)U/(238)U isotope ratios of particles deposited on the NUSIMEP-7 test samples.

  18. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination.

    PubMed

    Jin, Biao; Haderlein, Stefan B; Rolle, Massimo

    2013-02-05

    We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.

  19. Carbon and nitrogen isotope systematics in diamond: Different sensitivities to isotopic fractionation or a decoupled origin?

    NASA Astrophysics Data System (ADS)

    Hogberg, K.; Stachel, T.; Stern, R. A.

    2016-11-01

    stages of influx, availability of the mantle-type fluid at the site of diamond growth became limited, leading to Rayleigh fractionation. These fractionation trends are clearly depicted by δ15N-[N] but are not detected when examining co-variation diagrams involving δ13C. Also on the level of individual diamonds, large (≥ 5‰) variations in δ15N are associated with δ13C values that typically are constant within analytical uncertainty. The much smaller isotope fractionation factor for carbon (considering carbonate- or methane-rich fluids as possible carbon sources) compared to nitrogen leads to an approximately one order of magnitude lower sensitivity of δ13C values to Rayleigh fractionation processes (i.e. during fractionation, a 1‰ change in δ13C is associated with a 10‰ change in δ15N). As a consequence, even minor heterogeneity in the primary isotopic composition of diamond forming carbon (e.g., due to addition of minor subducted carbon) will completely blur any possible co-variations with δ15N or [N]. We suggest this strong difference in isotope effects for C and N to be the likely cause of observations of an apparently decoupled behaviour of carbon and nitrogen isotopes in diamond.

  20. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  1. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen.

    PubMed

    Tripp, Jennifer A; McCullagh, James S O; Hedges, Robert E M

    2006-01-01

    Analysis of stable and radioactive isotopes from bone collagen provides useful information to archaeologists about the origin and age of bone artifacts. Isolation and analysis of single amino acids from the proteins can provide additional and more accurate information by removing contamination and separating a bulk isotope signal into its constituent parts. In this paper, we report a new method for the separation and isolation of underivatized amino acids from bone collagen, and their analysis by isotope ratio MS and accelerator MS. RP chromatography is used to separate the amino acids with nonpolar side chains, followed by an ion pair separation to isolate the remaining amino acids. The method produces single amino acids with little or no contamination from the separation process and allows for the measurement of accurate stable isotope ratios and pure samples for radiocarbon dating.

  2. Detecting Children's Lies: Are Parents Accurate Judges of Their Own Children's Lies?

    ERIC Educational Resources Information Center

    Talwar, Victoria; Renaud, Sarah-Jane; Conway, Lauryn

    2015-01-01

    The current study investigated whether parents are accurate judges of their own children's lie-telling behavior. Participants included 250 mother-child dyads. Children were between three and 11 years of age. A temptation resistance paradigm was used to elicit a minor transgressive behavior from the children involving peeking at a forbidden toy and…

  3. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    PubMed

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  4. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  5. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).

    PubMed

    Guo, Guangyu; Li, Ning

    2011-07-01

    In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    PubMed Central

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  7. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-10-14

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  8. All-diode-laser cooling of Sr+ isotope ions for analytical applications

    NASA Astrophysics Data System (ADS)

    Jung, Kyunghun; Yamamoto, Kazuhiro; Yamamoto, Yuta; Miyabe, Masabumi; Wakaida, Ikuo; Hasegawa, Shuichi

    2017-06-01

    Trapping and cooling of Sr+ isotope ions by an all-diode-laser system has been demonstrated in order to develop a novel mass spectrometric technique in combination with ion trap-laser cooling. First, we constructed external cavity diode lasers and associated stabilization apparatus for laser cooling of Sr+ ions. The transition frequencies confirmed by optogalvanic spectroscopy enabled successful cooling of 88Sr+ ions. An image of two trapped ions has been captured by CCD camera. Minor isotopes, 84Sr+ and 86Sr+, were also cooled and trapped. From an analysis of the observed spectra of a string crystal of each isotope, the isotope shifts of the cooling transition (5s 2S1/2 → 5p 2P1/2) of Sr+ ions were determined to be +371(8) MHz for Δν84-88 and +169(8) MHz for Δν86-88. In the case of the repumping transition (4d 2D3/2 → 5p 2P1/2), Δν84-88 and Δν86-88 were measured to be -833(6) and -400(5) MHz, respectively. These values are in good agreement with previously reported values.

  9. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn.

    PubMed

    Kumkrong, Paramee; Thiensong, Benjaporn; Le, Phuong Mai; McRae, Garnet; Windust, Anthony; Deawtong, Suladda; Meija, Juris; Maxwell, Paulette; Yang, Lu; Mester, Zoltán

    2016-11-02

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a 13 C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me 198 Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative 1 H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg -1 for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg -1 as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg -1 . It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in cuttlefish. Crown Copyright © 2016

  10. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  11. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  12. Commuting by bike in Belgium, the costs of minor accidents.

    PubMed

    Aertsens, Joris; de Geus, Bas; Vandenbulcke, Grégory; Degraeuwe, Bart; Broekx, Steven; De Nocker, Leo; Liekens, Inge; Mayeres, Inge; Meeusen, Romain; Thomas, Isabelle; Torfs, Rudi; Willems, Hanny; Int Panis, Luc

    2010-11-01

    Minor bicycle accidents are defined as "bicycle accidents not involving death or heavily injured persons, implying that possible hospital visits last less than 24 hours". Statistics about these accidents and related injuries are very poor, because they are mostly not reported to police, hospitals or insurance companies. Yet, they form a major share of all bicycle accidents. Official registrations underestimate the number of minor accidents and do not provide cost data, nor the distance cycled. Therefore related policies are hampered by a lack of accurate data. This paper provides more insight into the importance of minor bicycle accidents and reports the frequency, risk and resulting costs of minor bicycle accidents. Direct costs, including the damage to bike and clothes as well as medical costs and indirect costs such as productivity loss and leisure time lost are calculated. We also estimate intangible costs of pain and psychological suffering and costs for other parties involved in the accident. Data were collected during the SHAPES project using several electronic surveys. The weekly prospective registration that lasted a year, covered 1187 persons that cycled 1,474,978 km. 219 minor bicycle accidents were reported. Resulting in a frequency of 148 minor bicycle accidents per million kilometres. We analyzed the economic costs related to 118 minor bicycle accidents in detail. The average total cost of these accidents is estimated at 841 euro (95% CI: 579-1205) per accident or 0.125 euro per kilometre cycled. Overall, productivity loss is the most important component accounting for 48% of the total cost. Intangible costs, which in past research were mostly neglected, are an important burden related to minor bicycle accidents (27% of the total cost). Even among minor accidents there are important differences in the total cost depending on the severity of the injury. 2010 Elsevier Ltd. All rights reserved.

  13. Stable isotopic analysis of human diet in the Marianas Archipelago, western Pacific.

    PubMed

    Ambrose, S H; Butler, B M; Hanson, D B; Hunter-Anderson, R L; Krueger, H W

    1997-11-01

    Proportions of marine vs. terrestrial resources in prehistoric human diets in the southern Mariana Islands (Guam, Rota, Saipan), Micronesia, have been estimated by analysis of stable isotope ratios of carbon and nitrogen in bone collagen and of carbon in apatite. The isotopic composition of marine and terrestrial food resources from the Marianas have also been determined. Experimental evidence shows that collagen carbon isotopes mainly reflect those of dietary protein sources and thus overestimate the contribution of marine animal foods. Marine protein consumption apparently ranges from approximately 20% to approximately 50% on these islands. Experiments also demonstrate the carbon isotope ratio of bone apatite carbonate accurately reflects that of the whole diet. Carbonate carbon isotope data suggest some individuals consumed significant amounts of 13C-enriched (C4) plants or seaweeds. Sugar cane is an indigenous C4 crop and seaweeds are eaten throughout the Pacific, but they have not been considered by archaeologists to have been prehistoric dietary staples. Apatite carbon isotope analysis has apparently identified previously unrecognized prehistoric dietary adaptations in the Mariana Islands, but this must be confirmed by archaeobotanical evidence.

  14. pyQms enables universal and accurate quantification of mass spectrometry data.

    PubMed

    Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian

    2017-10-01

    Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  16. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  17. The Development of a Minority Recruitment Plan for Cancer Clinical Trials.

    PubMed

    Trevino, Monica; Padalecki, Susan; Karnad, Anand; Parra, Alberto; Weitman, Steve; Nashawati, Melissa; Pollock, Brad H; Ramirez, Amelie; Thompson, Ian M

    2013-09-01

    Cancer does not occur in all ethnic and racial groups at similar rates. In addition, responses to treatment also vary in certain ethnic and racial groups. For Hispanics, the overall cancer incidence is generally lower yet for some specific tumor types, the incidence rates are higher compared to other populations. Although disparities are recognized for treatment outcomes and prevention methodologies for Hispanics and other minority populations, specific recruiting and reporting of minorities remains a challenge. In order to circumvent this problem, the Cancer Therapy and Research Center (CTRC) has developed a new minority recruitment plan for all cancer related clinical trials at this Institute. The overall goal of this initiative is to increase the accrual of minorities in cancer clinical trials by implementing several key interventions. The Cancer Therapy & Research Center (CTRC) at the University of Texas Health Science Center at San Antonio established the Clinical Trials Accrual Task Force to develop and monitor interventions designed to increase accrual to cancer clinical trials, specifically the accrual of minorities with a focus on the Hispanic population that makes up 68% of the CTRC's catchment area. A Minority Accrual Plan (MAP) was implemented in March 2013 as part of the process for initiating and conducting cancer-related clinical trials at the CTRC. The Minority Accrual Plan focuses on Hispanic enrollment due to the characteristics of the South Texas population served by the CTRC but could be easily adapted to other populations. The CTRC has designed a process to prospectively address the challenge of deliberately enrolling minority subjects and accurately accounting for the results by implementing a Minority Accrual Plan for every cancer-related clinical trial at CTRC.

  18. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Bahlmann, Enno; Greule, Markus; Schöler, Heinz Friedrich; Wittmer, Julian; Zetzsch, Cornelius

    2018-05-01

    Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be -264±45 and -280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of -205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  19. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    PubMed

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  20. Developing the Molybdenum Isotopic Proxy in Marine Barite

    NASA Astrophysics Data System (ADS)

    Erhardt, A. M.; Paytan, A.; Aggarwal, J.

    2006-12-01

    Molybdenum isotope ratios in seawater fluctuate in response to changing redox conditions and can provide clues into the degree of global ocean anoxia. The isotopic ratio of molybdenum has been shown to be sensitive to the relative proportion of oxic, suboxic, and euxinic environments. Deposition in oxic environments is isotopically light (~ -1.6‰ for δ^{97/95}Mo) relative to an average crustal source (0‰). Conversely, euxinic environments have been shown to be consistently heavier (~1.3‰) than the oxic sink through time, with suboxic sediments falling between these two signals. Shifts in the relative proportion of each sink, relative to a constant source, would alter the isotopic ratio of seawater over long time scales. Previously, this seawater value, and hence the degree of global anoxia, could only be inferred through mass balance calculations. We seek to quantify the isotopic signature of seawater though time using a phase that directly records this ratio. Marine barite precipitates inorganically in the water column directly from seawater, potentially providing a direct record of seawater characteristics. Molybdenum is a trace constituent of barite, with the molybdate ion substituting for sulfate at concentrations of about 1 ppm. To accurately determine the molybdenum isotopic ratio at these low concentrations (<15 ng per sample), modifications to existing measurement techniques are required. We will present the variations made to existing separation and mass-spectrometry techniques and the calibration of these new methods. The modifications were undertaken to reduce molybdenum blank to below 1 ng per analysis, to quantitatively remove interfering zirconium and to measure precise and reproducible isotope values. Preliminary data will be presented to illustrate potential applications for this new paleoredox proxy. This technique will allow for the measurement of molybdenum isotopic ratios at low concentrations, expanding the breath of compounds and

  1. Mentoring the minority nurse leader of tomorrow.

    PubMed

    Washington, Deborah; Erickson, Jeanette Ives; Ditomassi, Marianne

    2004-01-01

    Diversity is crucial to the future of nursing. And fortunately, a shift in the composition of the nursing workforce so that it more accurately mirrors the composition of America's patient population is already taking place. However, this emerging multiculturalism brings an important issue to the forefront-the leadership tier in healthcare organizations must also reflect the ethnic and cultural changes taking place. Movement in this direction makes prominent the importance of the mentor role in the life of the minority nurse seeking a leadership career path. Acknowledging the present demographics of the profession, it is most unlikely that the mentor and mentee will be a cultural or ethnic match. The good news is that this should not be viewed as an automatic barrier. This article describes the 5 Cs of mentoring a minority nurse professional, that is, candor, compromise, confidence, complexity, and champion-the specific competencies that promote a mentor-mentee relationship focused on career success.

  2. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism

    PubMed Central

    2016-01-01

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level

  3. Transition State Geometry Measurements from 13C Isotope Effects. The Experimental Transition State for the Epoxidation of Alkenes with Oxaziridines

    PubMed Central

    Hirschi, Jennifer S.; Takeya, Tetsuya; Hang, Chao; Singleton, Daniel A.

    2009-01-01

    We suggest here and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured 13C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition state geometries based on calculations at non-stationary points, and the methodology is found to be reasonably accurate. PMID:19146405

  4. Combination of sugar and stable isotopes analyses to detect the use of non-grape sugars in balsamic vinegar must.

    PubMed

    Matteo, Perini; Tiziana, Nardin; Federica, Camin; Mario, Malacarne; Roberto, Larcher

    2018-06-15

    'Aceto Balsamico di Modena' (ABM) is a PGI (Protected Geographical Indication) salad dressing obtained from cooked and/or concentrated grape must, with the addition of wine vinegar and a maximum of 2% caramel (EU Reg. 583/2009). In this study we investigated whether the combination of 13 C/ 12 C of ethanol using Isotope Ratio Mass Spectrometry with 2 H-site-specific Natural Isotope Fractionation - Nuclear Magnetic Resonance, and minor sugars using Ion Chromatography with Pulse Amperometric and Charged Aerosol Detection, is able to improve detection of sugar addition to ABM must. A large selection of authentic Italian grape musts and different samples of balsamic vinegar with an increasing percentage of added beet, cane and sugar syrups were considered. The possible degradation of sugars in the ABM matrix during shelf life was also investigated. While stable isotope ratios analysis remains the favoured method for determining cane and beet sugar addition, dosage of minor sugar (in particular maltose) proved to be very useful for detecting the addition of sugar syrup. Thanks to this innovative approach, 3 out of 27 commercial ABMs were identified as adulterated. A combination of stable isotope ratio and IC-PAD-CAD analysis can be therefore proposed as a suitable tool for detecting the authenticity of ABM must. This article is protected by copyright. All rights reserved.

  5. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  6. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei

    2016-04-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  7. Minority Language Rights.

    ERIC Educational Resources Information Center

    O Riagain, Padraig; Shuibhne, Niamh Nic

    1997-01-01

    A survey of literature since 1990 on minority languages and language rights focuses on five issues: definition of minorities; individual vs. collective rights; legal bases for minority linguistic rights; applications and interpretations of minority language rights; and assessments of the impact of minority rights legislation. A nine-item annotated…

  8. Cryogenic gamma detectors enable direct detection of 236U and minor actinides for non-destructive assay [Cryogenic gamma detectors enable direct detection of minor actinides for non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velazquez, Miguel; Dreyer, Jonathan; Drury, Owen B.

    2015-09-05

    Here, we demonstrate the utility of a superconducting transition edge sensor (TES) γ-ray detector with high energy resolution and low Compton background for non-destructive assay (NDA) of a uranium sample from reprocessed nuclear fuel. We show that TES γ-detectors can separate low energy actinide γ-emissions from the background and nearby lines, even from minor isotopes whose signals are often obscured in NDA with conventional Ge detectors. Superconducting γ detectors may therefore bridge the gap between high-accuracy destructive assay (DA) and easier to-use NDA.

  9. Multiple Minority Stress and LGBT Community Resilience among Sexual Minority Men.

    PubMed

    McConnell, Elizabeth A; Janulis, Patrick; Phillips, Gregory; Truong, Roky; Birkett, Michelle

    2018-03-01

    Minority stress theory has widespread research support in explaining health disparities experienced by sexual and gender minorities. However, less is known about how minority stress impacts multiply marginalized groups, such as lesbian, gay, bisexual, and transgender people of color (LGBT POC). Also, although research has documented resilience in the face of minority stress at the individual level, research is needed that examines macro-level processes such as community resilience (Meyer, 2015). In the current study, we integrate minority stress theory and intersectionality theory to examine multiple minority stress (i.e., racial/ethnic stigma in LGBT spaces and LGBT stigma in one's neighborhood) and community resilience (i.e., connection to LGBT community) among sexual minority men of different racial/ethnic groups who use a geosocial networking application for meeting sexual partners. Results showed that Black sexual minority men reported the highest levels of racial/ethnic stigma in LGBT spaces and White sexual minority men reported the lowest levels, with Asian and Hispanic/Latino men falling in between. Consistent with minority stress theory, racial/ethnic stigma in LGBT spaces and LGBT stigma in one's neighborhood were associated with greater stress for sexual minority men of all racial/ethnic groups. However, connection to LGBT community played more central role in mediating the relationship between stigma and stress for White than POC sexual minority men. Results suggest that minority stress and community resilience processes may differ for White and POC sexual minority men. Potential processes driving these differences and implications for minority stress theory are discussed.

  10. Isotope effects associated with tunneling and double proton transfer in the hydrogen bonds of benzoic acid

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Horsewill, A. J.; Johnson, M. R.; Trommsdorff, H. P.

    2004-06-01

    The isotope effects associated with double proton transfer in the hydrogen bonds of benzoic acid (BA) dimers have been measured using field-cycling 1H NMR relaxometry and quasielastic neutron scattering. By studying mixed isotope (hydrogen and deuterium) samples, the dynamics of three isotopologues, BA-HH, BA-HD, and BA-DD, have been investigated. Low temperature measurements provide accurate measurements of the incoherent tunneling rate, k0. This parameter scales accurately with the mass number, m, according to the formula k0=(E/m)e-F√m providing conclusive evidence that the proton transfer process is a strongly correlated motion of two hydrons. Furthermore, we conclude that the tunneling pathway is the same for the three isotopologue species. Measurements at higher temperatures illuminate the through barrier processes that are mediated via intermediate or excited vibrational states. In parallel with the investigation of proton transfer dynamics, the theoretical and experimental aspects of studying spin-lattice relaxation in single crystals of mixed isotope samples are investigated in depth. Heteronuclear dipolar interactions between 1H and 2H isotopes contribute significantly to the overall proton spin-lattice relaxation and it is shown that these must be modeled correctly to obtain accurate values for the proton transfer rates. Since the sample used in the NMR measurements was a single crystal, full account of the orientation dependence of the spin-lattice relaxation with respect to the applied B field was incorporated into the data analysis.

  11. C Diffusion in Fe: Isotope Effects and Other Complexities

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.

    2011-12-01

    Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial

  12. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    PubMed Central

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; Ehleringer, James; West, Jason; Gill, Gary; Duckworth, Douglas

    2012-01-01

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model. PMID:22919270

  13. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-05

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  14. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    PubMed Central

    Canfield, Donald E.

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon. PMID:23650346

  15. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  16. The Development of a Minority Recruitment Plan for Cancer Clinical Trials

    PubMed Central

    Trevino, Monica; Padalecki, Susan; Karnad, Anand; Parra, Alberto; Weitman, Steve; Nashawati, Melissa; Pollock, Brad H.; Ramirez, Amelie; Thompson, Ian M.

    2014-01-01

    Background Cancer does not occur in all ethnic and racial groups at similar rates. In addition, responses to treatment also vary in certain ethnic and racial groups. For Hispanics, the overall cancer incidence is generally lower yet for some specific tumor types, the incidence rates are higher compared to other populations. Objectives Although disparities are recognized for treatment outcomes and prevention methodologies for Hispanics and other minority populations, specific recruiting and reporting of minorities remains a challenge. In order to circumvent this problem, the Cancer Therapy and Research Center (CTRC) has developed a new minority recruitment plan for all cancer related clinical trials at this Institute. The overall goal of this initiative is to increase the accrual of minorities in cancer clinical trials by implementing several key interventions. Method The Cancer Therapy & Research Center (CTRC) at the University of Texas Health Science Center at San Antonio established the Clinical Trials Accrual Task Force to develop and monitor interventions designed to increase accrual to cancer clinical trials, specifically the accrual of minorities with a focus on the Hispanic population that makes up 68% of the CTRC's catchment area. Results A Minority Accrual Plan (MAP) was implemented in March 2013 as part of the process for initiating and conducting cancer-related clinical trials at the CTRC. The Minority Accrual Plan focuses on Hispanic enrollment due to the characteristics of the South Texas population served by the CTRC but could be easily adapted to other populations. Conclusions The CTRC has designed a process to prospectively address the challenge of deliberately enrolling minority subjects and accurately accounting for the results by implementing a Minority Accrual Plan for every cancer-related clinical trial at CTRC. PMID:25152846

  17. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    PubMed

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  18. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater

    USGS Publications Warehouse

    Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K.

    2001-01-01

    We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2‰ (1 SD) at concentrations of nitrate down to 1 μM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 μM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.

  19. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  20. Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.

    PubMed

    Kowalczyk, Piotr; MacElroy, J M D

    2006-08-03

    We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.

  1. Geant4 Modifications for Accurate Fission Simulations

    NASA Astrophysics Data System (ADS)

    Tan, Jiawei; Bendahan, Joseph

    Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.

  2. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less

  3. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  4. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  5. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  6. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  7. Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function.

    PubMed

    Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L

    2013-04-16

    Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.

  8. Paleogene Seawater Osmium Isotope Records

    NASA Astrophysics Data System (ADS)

    Rolewicz, Z.; Thomas, D. J.; Marcantonio, F.

    2012-12-01

    Paleoceanographic reconstructions of the Late Cretaceous and early Cenozoic require enhanced geographic coverage, particularly in the Pacific, in order to better constrain meridional variations in environmental conditions. The challenge with the existing inventory of Pacific deep-sea cores is that they consist almost exclusively of pelagic clay with little existing age control. Pelagic clay sequences are useful for reconstructions of dust accumulation and water mass composition, but accurate correlation of these records to other sites requires improved age control. Recent work indicates that seawater Os isotope analyses provide useful age control for red clay sequences. The residence time of Os in seawater is relatively long compared to oceanic mixing, therefore the global seawater 187Os/188Os composition is practically homogeneous. A growing body of Late Cretaceous and Cenozoic data has constrained the evolution of the seawater Os isotopic composition and this curve is now a viable stratigraphic tool, employed in dating layers of Fe-Mn crusts (e.g., Klemm et al., 2005). Ravizza (2007) also demonstrated that the seawater Os isotopic composition can be extracted reliably from pelagic red clay sediments by analyzing the leached oxide minerals. The drawback to using seawater Os isotope stratigraphy to date Paleogene age sediments is that the compilation of existing data has some significant temporal gaps, notably between ~38 and 55 Ma. To improve the temporal resolution of the seawater Os isotope curve, we present new data from Ocean Drilling Program (ODP) Site 865 in the equatorial Pacific. Site 865 has excellent biostratigraphic age control over the interval ~38-55Ma. Preliminary data indicate an increase in the seawater composition from 0.427 at 53.4 Ma to 0.499 by 43 Ma, consistent with the apparent trend in the few existing data points. We also analyzed the Os isotopic composition recorded by oxide minerals at Integrated Ocean Drilling Program (IODP) Site U1370

  9. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  10. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  11. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    PubMed

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.

  12. Chronology of chrondrule and CAI formation: Mg-Al isotopic evidence

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Davis, A. M.

    1994-01-01

    Details of the chondrule and Ca-Al-rich inclusion (CAI) formation during the earliest history of the solar system are imperfectly known. Because CAI's are more 'refractory' than ferromagnesian chondrules and have the lowest recorded initial Sr-87/Sr-86 ratios of any solar system materials, the expectation is that CAI's formed earlier than chondrules. But it is not known, for example, if CAI formation had stopped by the time chondrule formation began. Conventional (absolute) age-dating techniques cannot adequately resolve small age differences (less than 10(exp 6) years) between objects of such antiquity. One approach has been to look at systematic differences in the daughter products of short-lived radionuclides such as Al-26 and I-129. Unfortunately, neither system appears to be 'well-behaved.' One possible reason for this circumstance is that later secondary events have partially reset the isotopic systems, but a viable alternative continues to be large-scale (nebular) heterogeneity in initial isotopic abundances, which would of course render the systems nearly useless as chronometers. In the past two years the nature of this problem has been redefined somewhat. Examination of the Al-Mg isotopic database for all CAI's suggests that the vast majority of inclusions originally had the same initial Al-26/Al-27 abundance ratio, and that the ill-behaved isotopic systematics now observed are the results of later partial reequilibration due to thermal processing. Isotopic heterogeneities did exist in the nebula, as demonstrated by the existence of so-called FUN inclusions in CV3 chondrites and isotopically anomalous hibonite grains in CM2 chondrites, which had little or no live Al-26 at the time of their formation. But, among the population of CV3 inclusions at least, FUN inclusions appear to have been a relatively minor nebular component.

  13. Methods to improve traffic flow and noise exposure estimation on minor roads.

    PubMed

    Morley, David W; Gulliver, John

    2016-09-01

    Address-level estimates of exposure to road traffic noise for epidemiological studies are dependent on obtaining data on annual average daily traffic (AADT) flows that is both accurate and with good geographical coverage. National agencies often have reliable traffic count data for major roads, but for residential areas served by minor roads, especially at national scale, such information is often not available or incomplete. Here we present a method to predict AADT at the national scale for minor roads, using a routing algorithm within a geographical information system (GIS) to rank roads by importance based on simulated journeys through the road network. From a training set of known minor road AADT, routing importance is used to predict AADT on all UK minor roads in a regression model along with the road class, urban or rural location and AADT on the nearest major road. Validation with both independent traffic counts and noise measurements show that this method gives a considerable improvement in noise prediction capability when compared to models that do not give adequate consideration to minor road variability (Spearman's rho. increases from 0.46 to 0.72). This has significance for epidemiological cohort studies attempting to link noise exposure to adverse health outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tissue Turnover Rates and Isotopic Trophic Discrimination Factors in the Endothermic Teleost, Pacific Bluefin Tuna (Thunnus orientalis)

    PubMed Central

    Madigan, Daniel J.; Litvin, Steven Y.; Popp, Brian N.; Carlisle, Aaron B.; Farwell, Charles J.; Block, Barbara A.

    2012-01-01

    Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology. PMID:23145128

  15. Extrinsic labeling method may not accurately measure Fe absorption from cooked pinto beans (Phaseolus vulgaris): comparison of extrinsic and intrinsic labeling of beans.

    PubMed

    Jin, Fuxia; Cheng, Zhiqiang; Rutzke, Michael A; Welch, Ross M; Glahn, Raymond P

    2008-08-27

    Isotopic labeling of food has been widely used for the measurement of Fe absorption in determining requirements and evaluating the factors involved in Fe bioavailability. An extrinsic labeling technique will not accurately predict the total Fe absorption from foods unless complete isotopic exchange takes place between an extrinsically added isotope label and the intrinsic Fe of the food. We examined isotopic exchange in the case of both white beans and colored beans (Phaseolus vulgaris) with an in vitro digestion model. There are significant differences in (58)Fe/(56)Fe ratios between the sample digest supernatant and the pellet of extrinsically labeled pinto bean. The white bean digest shows significantly better equilibration of the extrinsic (58)Fe with the intrinsic (56)Fe. In contrast to the extrinsically labeled samples, both white and red beans labeled intrinsically with (58)Fe demonstrated consistent ratios of (58)Fe/(56)Fe in the bean meal, digest, supernatant, and pellet. It is possible that the polyphenolics in the bean seed coat may bind Fe and thus interfere with extrinsic labeling of the bean meals. These observations raise questions on the accuracy of studies that used extrinsic tags to measure Fe absorption from beans. Intrinsic labeling appears necessary to accurately measure Fe bioavailability from beans.

  16. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  17. Nonradioactive heteroduplex tracking assay for the detection of minority-variant chloroquine-resistant Plasmodium falciparum in Madagascar

    PubMed Central

    Juliano, Jonathan J; Randrianarivelojosia, Milijaona; Ramarosandratana, Benjamin; Ariey, Frédéric; Mwapasa, Victor; Meshnick, Steven R

    2009-01-01

    Background Strains of Plasmodium falciparum genetically resistant to chloroquine (CQ) due to the presence of pfcrt 76T appear to have been recently introduced to the island of Madagascar. The prevalence of such resistant genotypes is reported to be low (< 3%) when evaluated by conventional PCR. However, these methods are insensitive to low levels of mutant parasites present in patients with polyclonal infections. Thus, the current estimates may be an under representation of the prevalence of the CQ-resistant P. falciparum isolates on the island. Previously, minority variant chloroquine resistant parasites were described in Malawian patients using an isotopic heteroduplex tracking assay (HTA), which can detect pfcrt 76T-bearing P. falciparum minority variants in individual patients that were undetectable by conventional PCR. However, as this assay required a radiolabeled probe, it could not be used in many resource-limited settings. Methods This study describes a digoxigenin (DIG)-labeled chemiluminescent heteroduplex tracking assay (DIG-HTA) to detect pfcrt 76T-bearing minority variant P. falciparum. This assay was compared to restriction fragment length polymorphism (RFLP) analysis and to the isotopic HTA for detection of genetically CQ-resistant parasites in clinical samples. Results Thirty one clinical P. falciparum isolates (15 primary isolates and 16 recurrent isolates) from 17 Malagasy children treated with CQ for uncomplicated malaria were genotyped for the pfcrt K76T mutation. Two (11.7%) of 17 patients harboured genetically CQ-resistant P. falciparum strains after therapy as detected by HTA. RFLP analysis failed to detect any pfcrt K76T-bearing isolates. Conclusion These findings indicate that genetically CQ-resistant P. falciparum are more common than previously thought in Madagascar even though the fitness of the minority variant pfcrt 76T parasites remains unclear. In addition, HTAs for malaria drug resistance alleles are promising tools for the

  18. Nitrogen Isotope Evidence for a Shift in Eastern Beringian Nitrogen Cycle after the Terminal Pleistocene

    NASA Astrophysics Data System (ADS)

    Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.

    2016-12-01

    The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.

  19. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    PubMed

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to

  20. ROBOCAL: Gamma-ray isotopic hardware/software interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, presently being developed at the Los Alamos National Laboratory, is a full-scale prototypical robotic system for remotely performing calorimetric and gamma-ray isotopics measurements of nuclear materials. It features a fully automated vertical stacker-retriever for storing and retrieving packaged nuclear materials from a multi-drawer system, and a fully automated, uniquely integrated gantry robot for programmable selection and transfer of nuclear materials to calorimetric and gamma-ray isotopic measurement stations. Since ROBOCAL is to require almost no operator intervention, a mechanical control system is required in addition to a totally automated assay system. The assay system must be a completely integrated datamore » acquisition and isotopic analysis package fully capable of performing state-of-the-art homogeneous and heterogeneous analyses on many varied matrices. The TRIFID assay system being discussed at this conference by J. G. Fleissner of the Rocky Flats Plant has been adopted because of its many automated features. These include: MCA/ADC setup and acquisition; spectral storage and analysis utilizing an expert system formalism; report generation with internal measurement control printout; user friendly screens and menus. The mechanical control portion consists primarily of two detector platforms and a sample platform, each with independent movement. Some minor modifications and additions are needed with TRIFID to interface the assay and mechanical portions with the CimRoc 4000 software controlling the robot. 6 refs., 5 figs., 3 tabs.« less

  1. Theoretical estimation of equilibrium sulfur isotope fractionations among aqueous sulfite species: Implications for isotope models of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Farquhar, J.; Guo, W.

    2015-12-01

    Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate

  2. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  3. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  4. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    NASA Astrophysics Data System (ADS)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  5. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE PAGES

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret; ...

    2012-01-01

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  6. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based onmore » the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  7. Bayesian Integration of Isotope Ratio for Geographic Sourcing of Castor Beans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo; Kreuzer, Helen; Hart, Garret

    Recenmore » t years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1 % versus 55.9 ± 2.1 % and 40.2 ± 1.8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.« less

  8. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  9. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  10. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  11. Clumped isotope effects during OH and Cl oxidation of methane

    NASA Astrophysics Data System (ADS)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan A.; Wang, David T.; Johnson, Matthew S.; Ono, Shuhei

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE). The deviation from this relationship is 0.3‰ ± 1.2‰ and 3.5‰ ± 0.7‰ for OH and Cl oxidation, respectively. This is consistent with model calculations performed using quantum chemistry and transition state theory. The OH and Cl reactions enrich the residual methane in the clumped isotopologue in open system reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane, will only have a minor (∼0.3‰) impact on the clumped isotope signature (Δ13CH3D, measured as a deviation from a stochastic distribution of isotopes) of tropospheric methane. This paper shows that Δ13CH3D will provide constraints on methane source strengths, and predicts that Δ12CH2D2 can provide information on methane sink strengths.

  12. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  13. Legal approaches regarding health-care decisions involving minors: implications for next-generation sequencing

    PubMed Central

    Sénécal, Karine; Thys, Kristof; Vears, Danya F; Van Assche, Kristof; Knoppers, Bartha M; Borry, Pascal

    2016-01-01

    The development of next-generation sequencing (NGS) technologies are revolutionizing medical practice, facilitating more accurate, sophisticated and cost-effective genetic testing. NGS is already being implemented in the clinic assisting diagnosis and management of disorders with a strong heritable component. Although considerable attention has been paid to issues regarding return of incidental or secondary findings, matters of consent are less well explored. This is particularly important for the use of NGS in minors. Recent guidelines addressing genomic testing and screening of children and adolescents have suggested that as ‘young children' lack decision-making capacity, decisions about testing must be conducted by a surrogate, namely their parents. This prompts consideration of the age at which minors can provide lawful consent to health-care interventions, and consequently NGS performed for diagnostic purposes. Here, we describe the existing legal approaches regarding the rights of minors to consent to health-care interventions, including how laws in the 28 Member States of the European Union and in Canada consider competent minors, and then apply this to the context of NGS. There is considerable variation in the rights afforded to minors across countries. Many legal systems determine that minors would be allowed, or may even be required, to make decisions about interventions such as NGS. However, minors are often considered as one single homogeneous population who always require parental consent, rather than recognizing there are different categories of ‘minors' and that capacity to consent or to be involved in discussions and decision-making process is a spectrum rather than a hurdle. PMID:27302841

  14. Legal approaches regarding health-care decisions involving minors: implications for next-generation sequencing.

    PubMed

    Sénécal, Karine; Thys, Kristof; Vears, Danya F; Van Assche, Kristof; Knoppers, Bartha M; Borry, Pascal

    2016-11-01

    The development of next-generation sequencing (NGS) technologies are revolutionizing medical practice, facilitating more accurate, sophisticated and cost-effective genetic testing. NGS is already being implemented in the clinic assisting diagnosis and management of disorders with a strong heritable component. Although considerable attention has been paid to issues regarding return of incidental or secondary findings, matters of consent are less well explored. This is particularly important for the use of NGS in minors. Recent guidelines addressing genomic testing and screening of children and adolescents have suggested that as 'young children' lack decision-making capacity, decisions about testing must be conducted by a surrogate, namely their parents. This prompts consideration of the age at which minors can provide lawful consent to health-care interventions, and consequently NGS performed for diagnostic purposes. Here, we describe the existing legal approaches regarding the rights of minors to consent to health-care interventions, including how laws in the 28 Member States of the European Union and in Canada consider competent minors, and then apply this to the context of NGS. There is considerable variation in the rights afforded to minors across countries. Many legal systems determine that minors would be allowed, or may even be required, to make decisions about interventions such as NGS. However, minors are often considered as one single homogeneous population who always require parental consent, rather than recognizing there are different categories of 'minors' and that capacity to consent or to be involved in discussions and decision-making process is a spectrum rather than a hurdle.

  15. What is a good death? Minority and non-minority perspectives.

    PubMed

    Tong, Elizabeth; McGraw, Sarah A; Dobihal, Edward; Baggish, Rosemary; Cherlin, Emily; Bradley, Elizabeth H

    2003-01-01

    While much attention has been directed at improving the quality of care at the end of life, few studies have examined what determines a good death in different individuals. We sought to identify common domains that characterize a good death in a diverse range of community-dwelling individuals, and to describe differences that might exist between minority and non-minority community-dwelling individuals' views. Using data from 13 focus groups, we identified 10 domains that characterize the quality of the death experience: 1) physical comfort, 2) burdens on family, 3) location and environment, 4) presence of others, 5) concerns regarding prolongation of life, 6) communication, 7) completion and emotional health, 8) spiritual care, 9) cultural concerns, 10) individualization. Differences in minority compared to non-minority views were apparent within the domains of spiritual concerns, cultural concerns, and individualization. The findings may help in efforts to encourage more culturally sensitive and humane end-of-life care for both minority and non-minority individuals.

  16. Minor shoulder instability.

    PubMed

    Castagna, Alessandro; Nordenson, Ulf; Garofalo, Raffaele; Karlsson, Jon

    2007-02-01

    The wide spectrum of shoulder instability is difficult to include in 1 classification. The distinction between traumatic, unidirectional, and atraumatic multidirectional instability is still widely used, even though this classification is not sufficiently precise to include all the different pathological findings of shoulder instability. We present "minor instability," which is a pathological condition causing a dysfunction of the glenohumeral articulation, especially in combination with microtrauma, repetitive or not, or after a period of immobilization or inactivity. When "minor shoulder instability" is suspected, the patient's history and detailed clinical examination represent the most important factors when establishing the diagnosis. In particular, the apprehension test stressing the middle glenohumeral ligament (MGHL)/labral complex in the position of midabduction and external rotation may be painful and may even reveal anterior instability or subluxation. Conventional radiographs are negative in most cases, as is magnetic resonance imaging arthrography. It is only after an accurate arthroscopic assessment that the pathological lesion can be found. The major pathological process can be identified at the level of the anterior superior labrum, in particular the MGHL complex, and appears as hyperemia, fraying, stretching, loosening, thinning, hypoplasia, or even absence. It may, however, be difficult to distinguish between a normal variant and a pathological lesion. Clinical symptoms and examination should always be correlated with arthroscopic findings. Recommended treatment is to restore shoulder stability and thereby prevent shoulder pain secondary to the increase in laxity. A reduction in range of motion should be expected during the postoperative phase, at least up to six to nine months. External rotation is usually permanently reduced by a few degrees.

  17. Rb-Sr and Sm-Nd Isotope Systematics of Shergottite NWA 856: Crystallization Age and Implications for Alteration of Hot Desert SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.

    2004-01-01

    Nakhlite NWA 998 was discovered in Algeria in 2001, and is unique among the six known members of this group of Martian meteorites in containing significant modal orthopyroxene. Initial petrologic and isotopic data were reported by Irving et al. This 456 gram stone consists mainly of sub-calcic augite with subordinate olivine and minor orthopyroxene, titanomagnetite, pyrrhotite, chlorapatite, and intercumulus An(sub 35) plagioclase. We report here preliminary results of radiogenic isotopic analyses conducted on fragmental material from the main mass.

  18. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  19. Revising Estimates of the Methane Production Pathway in Peatland Porewater Using Intramolecular Isotopic Analyses of Acetate

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Arthur, M. A.; Freeman, K. H.

    2007-12-01

    Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the

  20. Protein Stable Isotope Fingerprinting (P-SIF): A New Tool to Understand Natural Isotopic Heterogeneity of Mixed Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Mohr, W.; Tang, T.; Sattin, S.; Bovee, R.

    2014-12-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the ratios of 13C/12C (values of δ13C) for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms, while (iii) not perturbing the system, i.e., not adding exogenous substrates or isotope labels. To accomplish this, we employ two-dimensional HPLC to resolve a sample containing ca. 5-10 mg of mixed proteins into 960-1440 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second is measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from pure cultures show that bacteria have a narrow distribution of protein δ13C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of 13C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ13C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Initial tests on environmental samples suggest the approach will be useful to determine the overall trophic breadth of mixed microbial ecosystems.

  1. Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food.

    PubMed

    Bostic, Joshua N; Palafox, Sherilyn J; Rottmueller, Marina E; Jahren, A Hope

    2015-05-30

    Isotope ratio mass spectrometry (IRMS) is used extensively to reconstruct general attributes of prehistoric and modern diets in both humans and animals. In order to apply these methods to the accurate determination of specific intakes of foods/nutrients of interest, the isotopic signature of individually consumed foods must be constrained. For example, 86% of the calories consumed in the USA are derived from processed and prepared foods, but the relationship between the stable isotope composition of raw ingredients and the resulting products has not been characterized. To examine the effect of common cooking techniques on the stable isotope composition of grain-based food items, we prepared yeast buns and sugar cookies from standardized recipes and measured bulk δ(13) C and δ(15) N values of samples collected throughout a 75 min fermentation process (buns) and before and after baking at 190°C (buns and cookies). Simple isotope mixing models were used to determine if the isotopic signatures of 13 multi-ingredient foods could be estimated from the isotopic signatures of their constituent raw ingredients. No variations in δ(13) C or δ(15) N values were detected between pre- and post-baked yeast buns (pre: -24.78‰/2.61‰, post: -24.75‰/2.74‰), beet-sugar cookies (pre: -24.48‰/3.84‰, post: -24.47‰/3.57‰), and cane-sugar cookies (pre: -19.07‰/2.97‰, post: -19.02‰/3.21‰), or throughout a 75 min fermentation process in yeast buns. Using isotopic mass balance equations, the δ(13) C/δ(15) N values of multi-ingredient foods were estimated from the isotopic composition of constituent raw ingredients to within 0.14 ± 0.13‰/0.24 ± 0.17‰ for gravimetrically measured recipes and 0.40 ± 0.38‰/0.58 ± 0.53‰ for volumetrically measured recipes. Two common food preparation techniques, baking and fermentation, do not substantially affect the carbon or nitrogen isotopic signature of grain-based foods. Mass-balance equations can be used to

  2. Modeling stable isotope transport in metamorphic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.

    2007-12-01

    Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope

  3. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Brewer, Aaron W.; Teng, Fang-Zhen; Mullen, Emily

    2018-03-01

    Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being -0.33 ± 0.07‰) to heavier compositions (as heavy as -0.15 ± 0.06‰). The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  4. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    PubMed

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  5. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  6. Improved estimation of sediment source contributions by concentration-dependent Bayesian isotopic mixing model

    NASA Astrophysics Data System (ADS)

    Ram Upadhayay, Hari; Bodé, Samuel; Griepentrog, Marco; Bajracharya, Roshan Man; Blake, Will; Cornelis, Wim; Boeckx, Pascal

    2017-04-01

    The implementation of compound-specific stable isotope (CSSI) analyses of biotracers (e.g. fatty acids, FAs) as constraints on sediment-source contributions has become increasingly relevant to understand the origin of sediments in catchments. The CSSI fingerprinting of sediment utilizes CSSI signature of biotracer as input in an isotopic mixing model (IMM) to apportion source soil contributions. So far source studies relied on the linear mixing assumptions of CSSI signature of sources to the sediment without accounting for potential effects of source biotracer concentration. Here we evaluated the effect of FAs concentration in sources on the accuracy of source contribution estimations in artificial soil mixture of three well-separated land use sources. Soil samples from land use sources were mixed to create three groups of artificial mixture with known source contributions. Sources and artificial mixture were analysed for δ13C of FAs using gas chromatography-combustion-isotope ratio mass spectrometry. The source contributions to the mixture were estimated using with and without concentration-dependent MixSIAR, a Bayesian isotopic mixing model. The concentration-dependent MixSIAR provided the closest estimates to the known artificial mixture source contributions (mean absolute error, MAE = 10.9%, and standard error, SE = 1.4%). In contrast, the concentration-independent MixSIAR with post mixing correction of tracer proportions based on aggregated concentration of FAs of sources biased the source contributions (MAE = 22.0%, SE = 3.4%). This study highlights the importance of accounting the potential effect of a source FA concentration for isotopic mixing in sediments that adds realisms to mixing model and allows more accurate estimates of contributions of sources to the mixture. The potential influence of FA concentration on CSSI signature of sediments is an important underlying factor that determines whether the isotopic signature of a given source is observable

  7. A new method and application for determining the nitrogen isotopic composition of NOx

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Miller, D. J.; Wojtal, P.; O'Connor, M.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different

  8. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  9. The Alaska Water Isotope Network (AKWIN): Precipitation, lake, river and stream dynamics

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J. M.; Toohey, R.

    2011-12-01

    The hydrologic cycle is central to the structure and function of northern landscapes. The movement of water creates interactions between terrestrial, aquatic, marine and atmospheric processes. Understanding the processes and the spatial patterns that govern the isotopic (δ18O & δD) characteristics of the hydrologic cycle is especially important today as: a) modern climate/weather-isotope relations allow for more accurate interpretation of climate proxies and the calibration of atmospheric models, b) water isotopes facilitate understanding the role of storm tracks in regulating precipitation isotopic variability, c) water isotopes allow for estimates of glacial melt water inputs into aquatic systems, d) water isotopes allow for quantification of surface and groundwater interactions, e) water isotopes allow for quantification of permafrost meltwater use by plant communities, f) water isotopes aid in migratory bird forensics, g) water isotopes are critical to estimating field metabolic rates, h) water isotopes allow for crop and diet forensics and i) water isotopes can provide insight into evaporation and transpiration processes. As part of a new NSF MRI project at the Environment and Natural Resources Institute (ENRI) at the University of Alaska Anchorage and as an extension of the US Network for Isotopes in Precipitation (USNIP); we are forming AKWIN. The network will utilize long-term weekly sampling at Denali National Park and Caribou Poker Creek Watershed (USNIP sites-1989 to present), regular sampling across Alaska involving land management agencies (USGS, NPS, USFWS, EPA), educators, volunteers and citizen scientists, UA extended campuses, individual research projects, opportunistic sampling and published data to construct isoscapes and time series databases and information packages. We will be using a suite of spatial and temporal analysis methods to characterize water isotopes across Alaska and will provide web portals for data products. Our network is

  10. Recent and Late Holocene Alaskan Lake Changes Identified from Water Isotopes

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Birks, S. J.; Rover, J.; Guldager, N.

    2014-12-01

    To identify the existence and cause of recent lake area changes in the Yukon Flats, a region of discontinuous permafrost in north central Alaska, we evaluate lake water isotope compositions with remotely sensed imagery and hydroclimatic parameters. Estimates of the ratio of water lost by evaporation to that gained by inflow (E/I) were derived from an isotope-based water balance model. The isotope labels are also used to identify the dominant sources for lakes such as rainfall and snowfall, groundwater, rivers, or thawed permafrost. These parameters are then used in conjunction with climatic data and remotely sensed imagery to identify the patterns and causes of recent lake area changes and for evaluation with lake sediment oxygen isotope records of late Holocene lake water isotope variations. Lake water isotope samples from 83 lakes were acquired in July, August or September between 2007 and 2010 by fixed wing aircraft. An additional set of smaller lakes (n = 33) was sampled by helicopter in September 2009. In July 2011 59 lakes were sampled on foot within five distinct 11.2-km2 areas. River water data used here are previously collected during the months of June through October between 2006 and 2008. Isotope compositions indicate that mixtures of precipitation, river water, and groundwater source ~95% of the studied lakes. The remaining minority are more dominantly sourced by snowmelt and/or permafrost thaw. Isotope-based water balance estimates indicate 58% of lakes lose more than half of inflow by evaporation. For 26% of the lakes studied, evaporative losses exceeded supply. Surface area trend analysis indicates that most lakes were near their maximum extent in the early 1980s during a relatively cool and wet period. Subsequent reductions can be explained by moisture deficits and greater evaporation. Comparison with late Holocene isotope values and trends indicates recent changes are within the range of late Holocene variability. The records indicate a drier and

  11. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  12. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris).

    PubMed

    Alves-Stanley, Christy D; Worthy, Graham A J

    2009-08-01

    The Florida manatee (Trichechus manatus latirostris) is a herbivorous marine mammal that occupies freshwater, estuarine and marine habitats. Despite being considered endangered, relatively little is known about its feeding ecology. The present study expands on previous work on manatee feeding ecology by providing critical baseline parameters for accurate isotopic data interpretation. Stable carbon and nitrogen isotope ratios were examined over a period of more than 1 year in the epidermis of rescued Florida manatees that were transitioning from a diet of aquatic forage to terrestrial forage (lettuce). The mean half-life for (13)C turnover was 53 and 59 days for skin from manatees rescued from coastal and riverine regions, respectively. The mean half-life for (15)N turnover was 27 and 58 days, respectively. Because of these slow turnover rates, carbon and nitrogen stable isotope analysis in manatee epidermis is useful in summarizing average dietary intake over a long period of time rather than assessing recent diet. In addition to turnover rate, a diet-tissue discrimination value of 2.8 per thousand for (13)C was calculated for long-term captive manatees on a lettuce diet. Determining both turnover rate and diet-tissue discrimination is essential in order to accurately interpret stable isotope data.

  13. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  14. Paleoclimate Reconstruction at Lamanai, Belize Using Oxygen-Isotope Tropical Dendrochronology

    NASA Astrophysics Data System (ADS)

    Prentice, A.; Webb, E. A.; White, C. D.; Graham, E.

    2009-05-01

    Tropical dendrochronology can be complicated because many trees growing in these areas lack distinct visible annual rings. However, the oxygen-isotope composition of wood growing in tropical regions can provide a record of seasonal fluctuations in the amount of precipitation even when visible rings are absent. Variations in the oxygen-isotope compositions of cellulose as the trees grow can be related to the relative timing of wet and dry seasons and used to identify periods of drought. In this study, the oxygen-isotope composition was determined for cellulose extracted from living trees at the site of Lamanai, Belize to assess the variation in oxygen-isotope values that result from heterogeneity within individual tree rings and seasonal fluctuations in amount of precipitation. In temperate regions, the latewood rings that form during periods of reduced growth are traditionally selected for oxygen-isotope analysis of cellulose because their oxygen-isotope compositions are more directly influenced by climate and precipitation during the growing season. However, in tropical isotope dendrochronology, when visible rings are present, detailed sampling of both the light coloured earlywood and the denser latewood is required. At Lamanai, a seasonal signal was evident in the oxygen- isotope composition of the cellulose when tree rings were sectioned in very small increments (approximately every mm), sub-sampling both earlywood and latewood. However, the visible rings did not always correspond with minimum or maximum oxygen-isotope values. As a result, the amplitude of the oxygen-isotope signal obtained by considering only latewood samples is smaller than that obtained from fine-increment sampling. Hence, the oxygen-isotope values of latewood samples alone did not provide accurate data for climate reconstruction. Multiple series of latewood samples extracted from different cross-sections of the same tree did not consistently show the same trends in oxygen isotope values

  15. Controls on the distribution and isotopic composition of helium in deep ground-water flows

    USGS Publications Warehouse

    Zhao, X.; Fritzel, T.L.B.; Quinodoz, H.A.M.; Bethke, C.M.; Torgersen, T.

    1998-01-01

    The distribution and isotopic composition of helium in sedimentary basins can be used to interpret the ages of very old ground waters. The piston-flow model commonly used in such interpretation, how ever, does not account for several important factors and as such works well only in very simple flow regimes. In this study of helium transport in a hypothetical sedimentary basin, we develop a numerical model that accounts for the magnitude and distribution of the basal helium flux, hydrodynamic dispersion, and complexities in flow regimes such as subregional flow cells. The modeling shows that these factors exert strong controls on the helium distribution and isotopic composition. The simulations may provide a basis for more accurate interpretations of observed helium concentrations and isotopic ratios in sedimentary basins.

  16. Advances in laser ablation MC-ICPMS isotopic analysis of rock materials

    NASA Astrophysics Data System (ADS)

    Young, E. D.

    2007-12-01

    Laser ablation multiple-collector inductively coupled plasma-source mass spectrometry (LA-MC-ICPMS) is a rapid method for obtaining high-precision isotope ratio measurements in geological samples. The method has been used with success for measuring isotope ratios of numerous elements, including Pb, Hf, Mg, Si, and Fe in terrestrial and extraterrestrial samples. It fills the gap between the highest precision obtainable with acid digestion together with MC-ICPMS and thermal ionization mass spectrometry (TIMS) and the maximum spatial resolution afforded by secondary ion mass spectrometry (SIMS). Matrix effects have been shown to be negligible for Pb isotopic analysis by LA-MC-ICPMS (Simon et al., 2007). Glass standards NBS 610, 612, and 614 have Pb/matrix ratios spanning two orders of magnitude. Our sample-standard bracketing laser ablation technique gives accurate and precise 208Pb/206Pb and 207Pb/206Pb for these glasses. The accuracy is superior to that obtained when using Tl to correct for mass fractionation. Accuracy and precision (± 0.2 ‰) for Pb in feldspars is comparable to that for double-spike TIMS. Data like these have been used to distinguish distinct sources of magmas in the Long Valley silicic magma system. LA-MC-ICPMS analyses of Mg isotope ratios in calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrite meteorites have revealed a wealth of new information about the history of these objects. A byproduct of this work has been recognition of the importance of different mass fractionation laws among three isotopes of a given element. Kinetic and equilibrium processes define distinct fractionation laws. Reservoir effects can further modify these laws. The result is that the linear coefficient β that relates the logarithms of the ratios n2/n1 and n3/n1 (ni refers to the number of atoms of isotope i) of isotopes with masses m3 > m2 > m1 is not unique. Rather, it is process dependent. In the case of Mg, this coefficient ranges from 0.521 for

  17. Glycan reductive isotope labeling for quantitative glycomics.

    PubMed

    Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D

    2009-04-15

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.

  18. Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time- of-flight mass spectrometry.

    PubMed

    Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R

    2004-01-01

    The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.

  19. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal

  20. A developmentally informed adaptation of minority stress for sexual minority adolescents

    PubMed Central

    Goldbach, Jeremy T.; Gibbs, Jeremy J.

    2017-01-01

    Sexual minority adolescents (lesbian, gay, bisexual) experience disparities in behavioral health outcomes compared to their heterosexual peers, generally attributed to minority stress. Although evidence of the applicability of the minority stress model among adolescents exists, it is based on a primarily adult literature. Developmental and generational differences demand further examination of minority stress to confirm its applicability. Forty-eight life history interviews with sexual minority adolescents in California (age 14–19; M=19.27 SD = 1.38; 39.6% cismale, 35.4% cisfemale, 25% other gender) were completed, recorded, transcribed, and analyzed using thematic analysis in QSR NVivo. Following a consensus model, all transcripts were double coded. Results suggest that minority stress is appropriate for use with adolescents; however, further emphasis should be placed on social context, coping resources, and developmental processes regarding identity development. A conceptual model is provided, as are implications for research and practice. PMID:28033502

  1. Minority stress is longitudinally associated with alcohol-related problems among sexual minority women.

    PubMed

    Wilson, Sarah M; Gilmore, Amanda K; Rhew, Isaac C; Hodge, Kimberley A; Kaysen, Debra L

    2016-10-01

    Compared to sexual minority men and heterosexual women, sexual minority women report elevated alcohol use in young adulthood. Heavy alcohol use and alcohol use disorders disproportionately affect sexual minority women across the lifespan, yet there is limited research investigating reasons for such associations. The present study investigates longitudinal associations between minority stress and both alcohol use as well as self-rated drinking consequences. Participants (N=1057) were self-identified lesbian (40.5%) and bisexual (59.5%) women between the ages of 18 to 25 recruited from across the U.S. using online advertisements. Participants completed four annual surveys. Hurdle mixed effects models were used to assess associations between minority stress and typical weekly drinking and drinking consequences one year later. Minority stress was not significantly associated with subsequent typical drinking. However, minority stress was significantly associated with having any alcohol consequences as well as the count of alcohol consequences one year later after controlling for covariates. Consistent with extant literature, this study provides evidence for a prospective association between minority stress experienced by sexual minority women and drinking consequences. This study also provides support for the potential impact of efforts to reduce minority stress faced by sexual minority women. Published by Elsevier Ltd.

  2. A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ34S fractionation

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer L.; Steefel, Carl I.; Conrad, Mark E.; DePaolo, Donald J.

    2014-01-01

    This study demonstrates a mechanistic incorporation of the stable isotopes of sulfur within the CrunchFlow reactive transport code to model the range of microbially-mediated redox processes affecting kinetic isotope fractionation. Previous numerical models of microbially mediated sulfate reduction using Monod-type rate expressions have lacked rigorous coupling of individual sulfur isotopologue rates, with the result that they cannot accurately simulate sulfur isotope fractionation over a wide range of substrate concentrations using a constant fractionation factor. Here, we derive a modified version of the dual-Monod or Michaelis-Menten formulation (Maggi and Riley, 2009, 2010) that successfully captures the behavior of the 32S and 34S isotopes over a broad range from high sulfate and organic carbon availability to substrate limitation using a constant fractionation factor. The new model developments are used to simulate a large-scale column study designed to replicate field scale conditions of an organic carbon (acetate) amended biostimulation experiment at the Old Rifle site in western Colorado. Results demonstrate an initial period of iron reduction that transitions to sulfate reduction, in agreement with field-scale behavior observed at the Old Rifle site. At the height of sulfate reduction, effluent sulfate concentrations decreased to 0.5 mM from an influent value of 8.8 mM over the 100 cm flow path, and thus were enriched in sulfate δ34S from 6.3‰ to 39.5‰. The reactive transport model accurately reproduced the measured enrichment in δ34S of both the reactant (sulfate) and product (sulfide) species of the reduction reaction using a single fractionation factor of 0.987 obtained independently from field-scale measurements. The model also accurately simulated the accumulation and δ34S signature of solid phase elemental sulfur over the duration of the experiment, providing a new tool to predict the isotopic signatures associated with reduced mineral pools

  3. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  4. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil

    NASA Astrophysics Data System (ADS)

    Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang

    2010-12-01

    Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources

  5. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  6. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  7. Magnesium stable isotope ecology using mammal tooth enamel

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  8. Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.

    PubMed

    Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A

    2017-01-01

    Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Do Double Minority Students Face Double Jeopardy? Testing Minority Stress Theory

    ERIC Educational Resources Information Center

    Hayes, Jeffrey A.; Chun-Kennedy, Caitlin; Edens, Astrid; Locke, Benjamin D.

    2011-01-01

    Data from 2 studies revealed that ethnic and sexual minority clients experienced greater psychological distress on multiple dimensions than did European American or heterosexual clients, respectively, as did ethnic and sexual minority students who were not clients. Among sexual minority students, ethnicity was not an added source of distress.…

  10. Oxygen isotopes as a tool to quantify reservoir-scale CO2 pore-space saturation

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Flude, Stephanie; Johnson, Gareth; Mayer, Bernard; Boyce, Adrian; Karolyte, Ruta; Haszeldine, Stuart; Gilfillan, Stuart

    2017-04-01

    Structural and residual trapping of carbon dioxide (CO2) are two key mechanisms of secure CO2 storage, an essential component of Carbon Capture and Storage technology [1]. Estimating the amount of CO2 that is trapped by these two mechanisms is a vital requirement for accurately assessing the secure CO2 storage capacity of a formation, but remains a key challenge. Recent field [2,3] and laboratory experiment studies [4] have shown that simple and relatively inexpensive measurements of oxygen isotope ratios in both the injected CO2 and produced water can provide an assessment of the amount of CO2 that is stored by these processes. These oxygen isotope assessments on samples obtained from observation wells provide results which are comparable to other geophysical techniques. In this presentation, based on the first comprehensive review of oxygen isotope ratios measured in reservoir waters and CO2 from global CO2 injection projects, we will outline the advantages and potential limitations of using oxygen isotopes to quantify CO2 pore-space saturation. We will further summarise the currently available information on the oxygen isotope composition of captured CO2. Finally, we identify the potential issues in the use of the oxygen isotope shifts in the reservoir water from baseline conditions to estimate accurate saturations of the pore space with CO2, and suggest how these issues can be reduced or avoided to provide reliable CO2 pore-space saturations on a reservoir scale in future field experiments. References [1] Scott et al., (2013) Nature Climate Change, Vol. 3, 105-111 doi:10.1038/nclimate1695 [2] Johnson et al., (2011) Chemical Geology, Vol. 283, 185-193 http://dx.doi.org/10.1016/j.ijggc.2016.06.019 [3] Serno et al., (2016) IJGGC, Vol. 52, 73-83 http://dx.doi.org/10.1016/j.ijggc.2016.06.019 [4] Johnson et al., (2011) Applied Geochemistry, Vol. 26 (7) 1184-1191 http://dx.doi.org/10.1016/j.apgeochem.2011.04.007

  11. The Submillimeter Wave Spectrum of Isotopic Methyl Cyanide

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mueller, H. S. P.

    1996-01-01

    The laboratory submillimeter wave rotational spectrum of the 13CH3CN, CH3C13CN, and CH3C15N isotopomers of methyl cyanide has been observed in natural abundance in the 294 to 607 GHz region. The maximum J and K values are 34 and 14, respectively. Fifteen additional CH3CN transitions up to K = 21 were also measured. The transitions of all four species are fitted to a symmetric top Hamiltonian, and the rotation and distortion constants are determined. The 14N quadrupole and spin rotation coupling constants are also calculated and presented. Suggested values for many other parameters, which could not be directly determined from the isotope spectra, are calculated from the normal species values and isotope relationships. The determined and calculated constants should predict the spectrum of the three isotopomers to well over 1 THz accurately enough for astronomical assignments.

  12. Vaccines for minor use and minor species (MUMS)--industry's views.

    PubMed

    Bönisch, B

    2004-01-01

    Over the past 30 years the importance of vaccines for minor use and minor species has changed for multinational animal health companies. The major reasons for this are being reviewed, with a particular focus on technical, financial and business aspects. Key regulatory obstacles to the development of new products for minor uses and minor species are identified, and examples of vaccines falling into the various categories are provided. A number of proposals are offered with the intention of resolving the medicines availability problem between all the stakeholders involved. Finally, based on the presented scientific and regulatory considerations, ideas are shared as to where the legal and economical framework would need to change to reach a viable solution.

  13. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

    NASA Astrophysics Data System (ADS)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.

    2018-03-01

    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (<10 °C) groundwaters (δ98/95MoGROUNDWATER = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt (δ 98 / 95MoBASALT = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  14. Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput

    DOE PAGES

    Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...

    2016-10-20

    Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.

  15. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    PubMed Central

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements. PMID:28067218

  16. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    PubMed

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  18. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  19. Concentrations and activity ratios of uranium isotopes in groundwater from Doñana National Park, South of Spain

    NASA Astrophysics Data System (ADS)

    Bolívar, J. P.; Olías, M.; González-García, F.; García-Tenorio, R.

    2008-08-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Doñana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234U/238U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer.

  20. Minority stress, psychosocial resources, and psychological distress among sexual minority breast cancer survivors

    PubMed Central

    Kamen, Charles; Jabson, Jennifer M.; Mustian, Karen M.; Boehmer, Ulrike

    2017-01-01

    Objective Few studies have examined unique factors predicting psychological distress among sexual minority (i.e., lesbian and bisexual) women post breast cancer diagnosis. The present study assessed the association of minority stress and psychosocial resource factors with depression and anxiety symptoms among sexual minority breast cancer survivors. Methods 201 sexual minority women who had ductal carcinoma in situ (DCIS) or stage I-IV breast cancer participated in this study through the Love/Avon Army of Women (AOW). Self-report questionnaires were used to assess demographic and clinical factors, minority stress factors (discrimination, minority identity development, outness), psychosocial resources (resilience, social support), and psychological distress (anxiety and depression). These factors were included in a structural equation model, testing psychosocial resources as mediators between minority stress and psychological distress. Results There were no significant differences noted between lesbian and bisexual women. The final structural equation model demonstrated acceptable fit across all sexual minority women, χ2 = 27.83, p > 0.05; confirmatory fit index = 0.97, root-mean-square error of approximation = 0.04, Tucker-Lewis Index = 0.93. The model accounted for significant variance in psychological distress (56%). Examination of indirect effects confirmed that exposure to discrimination was associated with distress via association with resilience. Conclusions Factors unique to sexual minority populations, such as minority stress, may be associated with higher rates of psychological distress among sexual minority breast cancer survivors. However, presence of psychosocial resources may mediate relationships with distress in this population; enhancement of resilience, in particular, could be an aim of psychological intervention. PMID:28165265

  1. Minority stress, psychosocial resources, and psychological distress among sexual minority breast cancer survivors.

    PubMed

    Kamen, Charles; Jabson, Jennifer M; Mustian, Karen M; Boehmer, Ulrike

    2017-06-01

    Few studies have examined unique factors predicting psychological distress among sexual minority (i.e., lesbian and bisexual) women postbreast cancer diagnosis. The present study assessed the association of minority stress and psychosocial resource factors with depression and anxiety symptoms among sexual minority breast cancer survivors. Two hundred one sexual minority women who had ductal carcinoma in situ or Stage I-IV breast cancer participated in this study through the Love/Avon Army of Women. Self-report questionnaires were used to assess demographic and clinical factors, minority stress factors (discrimination, minority identity development, outness), psychosocial resources (resilience, social support), and psychological distress (anxiety and depression). These factors were included in a structural equation model, testing psychosocial resources as mediators between minority stress and psychological distress. There were no significant differences noted between lesbian and bisexual women. The final structural equation model demonstrated acceptable fit across all sexual minority women, χ2 = 27.83, p > .05; confirmatory fit index = 0.97, root-mean-square error of approximation = 0.04, Tucker-Lewis index = 0.93. The model accounted for significant variance in psychological distress (56%). Examination of indirect effects confirmed that exposure to discrimination was associated with distress via association with resilience. Factors unique to sexual minority populations, such as minority stress, may be associated with higher rates of psychological distress among sexual minority breast cancer survivors. However, presence of psychosocial resources may mediate relationships with distress in this population; enhancement of resilience, in particular, could be an aim of psychological intervention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.

    2014-05-01

    We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.

  3. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.

    PubMed

    Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.

  4. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  5. Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.

    2015-07-01

    disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.

  6. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to

  7. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  8. Isotope effects on L-H threshold and confinement in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Weisen, H.; Hillesheim, J. C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I. S.; Corrigan, G.; Flanagan, J.; Garzotti, L.; Keeling, D.; King, D.; Lerche, E.; Lorenzini, R.; Maslov, M.; Menmuir, S.; Saarelma, S.; Sips, A. C. C.; Solano, E. R.; Belonohy, E.; Casson, F. J.; Challis, C.; Giroud, C.; Parail, V.; Silva, C.; Valisa, M.; Contributors, JET

    2018-01-01

    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.

  9. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  10. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the

  11. Kinetic isotope effects and how to describe them

    PubMed Central

    Karandashev, Konstantin; Xu, Zhen-Hao; Meuwly, Markus; Vaníček, Jiří; Richardson, Jeremy O.

    2017-01-01

    We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved. PMID:29282447

  12. GLYCAN REDUCTIVE ISOTOPE LABELING (GRIL) FOR QUANTITATIVE GLYCOMICS

    PubMed Central

    Xia, Baoyun; Feasley, Christa L.; Sachdev, Goverdhan P.; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed Glycan Reductive Isotope Labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]-aniline and [13C6]-aniline. These dual-labeled aniline-tagged glycans can be recovered by reversed-phase chromatography and quantified based on UV-absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins using this method. This technique allows for linear, relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of Glycomics. PMID:19454239

  13. Minority engineering scholarships, 2012.

    DOT National Transportation Integrated Search

    2014-02-01

    Scholarships for Minority Students Studying Engineering and Science: Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri S...

  14. Insulin sensitivity index (ISI0, 120) potentially linked to carbon isotopes of breath CO2 for pre-diabetes and type 2 diabetes

    PubMed Central

    Ghosh, Chiranjit; Mukhopadhyay, Prabuddha; Ghosh, Shibendu; Pradhan, Manik

    2015-01-01

    New strategies for an accurate and early detection of insulin resistance are important to delay or prevent the acute onset of type 2 diabetes (T2D). Currently, insulin sensitivity index (ISI0,120) is considered to be a viable invasive method of whole-body insulin resistance for use in clinical settings in comparison with other invasive sensitivity indexes like homeostasis model assessment (HOMA), and quantitative insulin sensitivity check index (QUICKI). To investigate how these sensitivity indexes link the 13C/12C-carbon isotopes of exhaled breath CO2 to pre-diabetes (PD) and type 2 diabetes in response to glucose ingestion, we studied excretion dynamics of 13C/12C-isotopic fractionations of breath CO2. Here, we show that 13C/12C-isotope ratios of breath CO2 were well correlated with blood glucose, insulin, glycosylated-hemoglobin as well as with HOMA-IR and 1/QUICKI. Conversely, the strongest correlation was observed between 1/ISI0,120 and breath CO2 isotopes. Consequently, we determined several optimal diagnostic cut-off points of 1/ISI0,120 and 13CO2/12CO2-isotope ratios to distinctively track the evolution of PD prior to the onset of T2D. Our findings suggest that isotopic breath CO2 is a novel method for accurate estimation of ISI0,120 and thus may open new perspectives into the isotope-specific non-invasive evaluation of insulin resistance for large-scale real-time diabetes screening purposes. PMID:26148706

  15. Concomitant ion effects on isotope ratio measurements with liquid sampling – atmospheric pressure glow discharge ion source Orbitrap mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegg, Edward D.; Marcus, R. Kenneth; Hager, George J.

    RATIONALE: The field of highly accurate and precise isotope ratio (IR) analysis has been dominated by inductively coupled plasma and thermal ionization mass spectrometers. While these instruments are considered the gold standard for IR analysis, the International Atomic Energy Agency desires a field deployable instrument capable of accurately and precisely measuring U isotope ratios. METHODS: The proposed system interfaces the liquid sampling – atmospheric pressure glow discharge (LS-APGD) ion source with a high resolution Exactive Orbitrap mass spectrometer. With this experimental setup certified U isotope standards and unknown samples were analyzed. The accuracy and precision of the system were thenmore » determined. RESULTS: The LS-APGD /Exactive instrument measures a certified reference material of natural U (235U/238U = 0.007258) as 0.007041 with a relative standard deviation of 0.158% meeting the International Target Values for Uncertainty for the destructive analysis of U. Additionally, when three unknowns measured and compared to the results from an ICP multi collector instrument, there is no statistical difference between the two instruments.CONCLUSIONS: The LS-APGD / Orbitrap system, while still in the preliminary stages of development, offers highly accurate and precise IR analysis that suggest a paradigm shift in the world of IR analysis. Furthermore, the portability of the LS-APGD as an elemental ion source combined with the low overhead and small size of the Orbitrap suggest that the instrumentation is capable of being field deployable.With liquid sampling glow discharge-Orbitrap MS, isotope ratio and precision performance improves with rejection of concomitant ion species.« less

  16. Sm-Nd isotopic compositions of LREE minerals for use as reference materials for in situ analysis by LA-MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; McFarlane, C. R.; Sylvester, P.; Hanchar, J. M.; Lam, R.; Schmitz, M. D.

    2009-12-01

    Recent work has demonstrated the possibility of obtaining both accurate and precise in situ Sm-Nd isotopic data in light rare earth enriched (LREE) accessory minerals including apatite, titanite, and monazite, using laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). A distinct advantage of using LA-MC-ICPMS is that Sm-Nd isotopic data from these minerals can be determined in sub-grain domains potentially avoiding problems of isotopic mixing from inherited or xenocrystic components and allowing both valuable tracer isotope and geochronologic data to be obtained. However, a number of analytical obstacles complicate accurate Sm-Nd determination by LA-MC-ICPMS including mass bias corrections, the 144Sm isobaric interference on 144Nd, and potential offset (ca. 20-40 ppm) from thermal ionization mass spectrometry (TIMS) determination of similar materials. Thus, in order to verify Sm-Nd isotopic determination from unknowns, matrix-matched quality control standards (i.e., reference materials) must be developed to test the data handling protocol. This talk will present new Sm-Nd isotopic data determined by both TIMS as well as LA-MC-ICPMS of a number of natural potential reference minerals including Durango apatite, Fish Canyon titanite, Daibosatsu allanite, Trebilcock monazite, as well as a monazite from the Doi Inthanon core complex in northern Thailand. Our preliminary LA-MC-ICPMS results demonstrate that Durango apatite, Fish Canyon titanite, and Thailand monazite show both inter- and intra-grain homogeneity at current levels of precision (ca. 0.3-0.5 ɛNd) and close agreement with our TIMS data.

  17. Applications of isotopes to tracing sources of solutes and water in shallow systems

    USGS Publications Warehouse

    Kendall, Carol; Krabbenhoft, David P.

    1995-01-01

    New awareness of the potential danger to water supplies posed by the use of agricultural chemicals has focused attention on the nature of groundwater recharge and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. A better understanding of hydrologic flowpaths and solute sources is required to determine the potential impact of sources of contamination on water supplies, to develop management practices for preserving water quality, and to develop remediation plans for sites that are already contaminated. In many cases, environmental isotopes can be employed as 'surgical tools' for answering very specific questions about water and solute sources. Isotopic data can often provide more accurate information about the system than hydrologic measurements or complicated hydrologic models. This note focuses on practical and cost-effective examples of how naturally-occurring isotopes can be used to track water and solutes as they move through shallow systems.

  18. Stable isotope turnover and half-life in animal tissues: a literature synthesis.

    PubMed

    Vander Zanden, M Jake; Clayton, Murray K; Moody, Eric K; Solomon, Christopher T; Weidel, Brian C

    2015-01-01

    Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day(-1), often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.

  19. Evidence of isotopic fractionation of natural uranium in cultured human cells

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  20. Evidence of isotopic fractionation of natural uranium in cultured human cells

    PubMed Central

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-01-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes. PMID:27872304

  1. Evidence of isotopic fractionation of natural uranium in cultured human cells.

    PubMed

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-06

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235 U isotope with regard to 238 U. Efforts were made to develop and then validate a procedure for highly accurate n( 238 U)/n( 235 U) determinations in microsamples of cells. We found that intracellular U is enriched in 235 U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO 2 2+ ) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  2. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields.

    PubMed

    Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael

    2018-04-11

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.

  3. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields

    PubMed Central

    Gulson, Brian; Manton, William; Rabinowitz, Michael

    2018-01-01

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields. PMID:29641487

  4. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  5. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  6. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  7. Comparable hydrogen isotopic fractionation of plant leaf wax n-alkanoic acids in arid and humid subtropical ecosystems

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zheng, Mei; Fraser, Matthew; Huang, Yongsong

    2014-02-01

    Leaf wax hydrogen isotope proxies have been widely used to reconstruct past hydrological changes. However, published reconstructions have given little consideration for the potentially variable hydrogen isotopic fractionation relative to precipitation (ɛwax-p) under different climate and environmental settings. Chief among various potential factors controlling fractionation is relative humidity, which is known to strongly affect oxygen isotopic ratios of plant cellulose, but its effect on hydrogen isotopic fractionation of leaf waxes is still ambiguous. Analyses of lake surface sediments and individual modern plants have provided valuable information on the variability of ɛwax-p, but both approaches have significant limitations. Here, we present an alternative method to obtain the integrated, time-resolved ecosystem-level ɛwax-p values, by analyzing modern aerosol samples collected weekly from arid (Arizona lowlands) and humid subtropical (Atlanta, Georgia) environments during the main growth season. Because aerosol samples mainly reflect regional leaf wax resources, the extreme contrast in the hydroclimate and associated vegetation assemblages between our study sites allows us to rigorously assess the impact of relative humidity and associated vegetation assemblages on leaf wax hydrogen isotopic fractionation. We show there is only minor difference (mostly <10‰) in the mean ɛwax-p values in the two end-member environments. One possible explanation is that the positive isotopic effects of low relative humidity are offset by progressive replacement of trees with grasses that have a more negative apparent fractionation. Our results represent an important step toward quantitative interpretation of leaf wax hydrogen isotopic records.

  8. Accounting for cyanide and its degradation products at three Nevada gold mines; constraints from stable C- and N-isotopes

    USGS Publications Warehouse

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    1998-01-01

    An understanding of the fate of cyanide (CN-) in mine process waters is important for addressing environmental concerns and for taking steps to minimize reagent costs. The utility of stable isotope methods in identifying cyanide loss pathways has been investigated in case studies at three Nevada gold mines. Freshly prepared barren solutions at the mines have cyanide d15N and d13C values averaging -4 ? and -36 ?, respectively, reflecting the nitrogen and carbon sources used by commercial manufacturers, air and natural gas methane. Pregnant solutions returning from ore heaps display small isotopic shifts to lower d15N and d13C values. The shifts are similar to those observed in laboratory experiments where cyanide was progressively precipitated as a cyanometallic compound, and are opposite in sign and much smaller in magnitude than the shifts observed in experiments where HCN was offgassed. Offgassing is inferred to be a minor cyanide loss mechanism in the heap leach operations at the three mines, and precipitation as cyanometallic compounds, and possibly coprecipitation with ferric oxides, is inferred to be an important loss mechanism. Isotopic analysis of dissolved inorganic carbon (DIC) shows that uptake of high d13C air CO2 has been important in many barren and pregnant solutions. However, DIC in reclaim pond waters at all three mines has low d13C values of -28 to -34 ? indicating cyanide breakdown either by hydrolysis or by other chemical pathways that break the C-N bond. Isotope mass balance calculations indicate that about 40 % of the DIC load in the ponds, at a minimum, was derived from cyanide breakdown. This level of cyanide hydrolysis accounts for 14-100 % of the dissolved inorganic nitrogen species present in the ponds. Overall, isotope data provide quantitative evidence that only minor amounts of cyanide are lost via offgassing and that significant amounts are destroyed via hydrolysis and related pathways. The data also highlight the possibility that

  9. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  10. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    PubMed

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.

    2003-01-01

    For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  12. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  13. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

    PubMed

    Gao, J

    2016-01-01

    Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.

  14. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    PubMed

    Caut, Stéphane; Fossette, Sabrina; Guirlet, Elodie; Angulo, Elena; Das, Krishna; Girondot, Marc; Georges, Jean-Yves

    2008-03-26

    The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling

  15. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  16. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  17. Isotopic composition of a sample enriched in 93Zr

    DOE PAGES

    Fujii, Toshiyuki; Hori, Jun-ichi; Du, Miting; ...

    2015-10-22

    A project to determine the neutron-capture cross section of long lived fission products and minor actinides has been started by using a beam-line at Japan Proton Accelerator Research Complex (J-PARC). We prepared one of the target nuclides is Zr-93, which in Oak Ridge National Laboratory. Qualitative and quantitative analyses on the sample were performed at Kyoto University. The isotopic composition of (m) Zr (m 90, 91, 92, 93, 94, and 96) was precisely determined by multi-collector thermal ionization mass spectrometry with < 0.1 % of 2 sigma uncertainty. We determined that the atomic abundance of Zr-93 in the sample tomore » be 18.86 ± A 0.05 %.« less

  18. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  19. A successful Minority Retention Project.

    PubMed

    Gardner, Janelle D

    2005-12-01

    Racial and ethnic minorities are underrepresented in the nursing profession. The high attrition rate of minority students from nursing schools contributes to this problem. Academic leaders are calling for change in nursing education and asking educators to work diligently to retain minority students. This article describes a Minority Retention Project that included interventions designed to enhance the integration of minority students into a supportive learning environment, assist them in using the available resources, and help them feel connected and supported by their peers and faculty. At the end of the first year of the project, the nursing school experienced 100% retention of minority nursing students. Increasing the retention and graduation of minority nursing students supports the continued effort to provide culturally competent health care.

  20. Isotopic signatures and distribution of nitrogen and trapped and radiogenic xenon in the Acapulco and FRO90011 meteorites

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Marti, K.

    1993-01-01

    Acapulco metal and silicate show distinct N isotopic signatures. Trapped heavy noble gases are carried by 'magnetic' opx and radiogenic Xe-129 excesses are observed in phosphate and in minor surficial phases on metal grains. N and Xe isotopic signatures in FRO90011 do not agree with those observed in Acapulco. The Acapulco meteorite is unique in having achondritic texture and chondritic composition. Its mineralogical study shows the record of high temperature (1100 C) recrystallization. However, this meteorite shows abundances of volatile elements close to the levels observed in carbonaceous chondrites and concentrations of heavy noble gases comparable to those observed in type 4 ordinary chondrites, not expected for a presumed highly equilibrated object. Nitrogen measurements in bulk Acapulco revealed two different isotopic signatures, in apparent conflict with evidence for a high degree of recrystallization. N and Xe were studied in separated mineral phases to search for the carriers in order to better understand the formation and thermal history of the Acapulco parent body.

  1. A new method of tree xylem water extraction for isotopic analysis

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, B. T.

    2011-12-01

    The Sacramento Mountain Watershed Study in the southern Sacramento Mountains of New Mexico is designed to assess the forest restoration technique of tree thinning in mountain watersheds as an effective method of increasing local and regional groundwater recharge. The project is using a soil water balance approach to quantify the partitioning of local precipitation within this watershed before and after thinning trees. Understanding what sources trees extract their water from (e.g. shallow groundwater, unsaturated fractured bedrock, and soils) is difficult due to a complex hydrologic system and heterogeneous distribution of soil thicknesses. However, in order to accurately quantify the soil water balance and to assess how thinning trees will affect this water balance, it is important determine the sources from which trees extract their water. We plan to use oxygen and hydrogen stable isotopic analysis of various end member waters to identify these different sources. We are in the process of developing a new method of determining the isotopic composition of tree water that has several advantages over conventional methods. Within the tree there is the xylem which transports water from the roots to the leaves and the phloem which transports starches and sugars in a water media throughout the tree. Previous studies have shown that the isotopic composition of xylem water accurately reflects that of source water, while phloem water has undergone isotopic fractionation during photosynthesis and metabolism. The distillation of water from twigs, which is often used to extract tree water for isotopic analysis, is very labor intensive. Other disadvantages to distillation methods include possible fractionation due to phase changes and the possible extraction of fractionated phloem waters. Employing a new mixing method, the composition of the twig water (TW) can be determined by putting twigs of unknown isotopic water composition into waters of known compositions or initial

  2. Estimation and Validation of \\delta18O Global Distribution with Rayleigh-type two Dimensional Isotope Circulation Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.

    2004-12-01

    A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.

  3. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni

  4. Effects of preservatives on stable isotope analyses of four marine species

    NASA Astrophysics Data System (ADS)

    Carabel, Sirka; Verísimo, Patricia; Freire, Juan

    2009-04-01

    The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.

  5. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    PubMed

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Recruitment of underrepresented minority students to medical school: minority medical student organizations, an untapped resource.

    PubMed

    Rumala, Bernice B; Cason, Frederick D

    2007-09-01

    Recruitment of more underrepresented minority students (black, Hispanic and native American) to increase racial diversity in the physician workforce is on the agenda for medical schools around the nation. The benefits of having a racially diverse class are indisputable. Minority physicians are more likely to provide care to minority, underserved, disadvantaged and low-income populations. Therefore, medical schools would benefit from diversity through utilizing strategies for recruitment of underrepresented minority (URM) students. Numerous recruitment strategies have been employed to increase the number of underrepresented minority students. However, formal collaboration with minority medical student organizations is an underutilized tool in the recruitment process. Many medical schools have informally used minority medical students and members of various minority organizations on campus in the recruitment process, but a formal collaboration which entails a strategic approach on using minority medical student organizations has yet to be included in the literature. This paper discusses the innovative collaboration between the University of Toledo College of Medicine (UTCOM) chapter of the Student National Medical Association (SNMA) and the college of medicine's admissions office to strategize a recruitment plan to increase the number of underrepresented minority students at the UTCOM. This paper suggests that minority medical student organizations, particularly the SNMA, can be used as a recruiting tool; hence, admissions offices cannot negate the usefulness of having formal involvement of minority medical student organizations as a recruiting tool. This approach may also be applicable to residency programs and other graduate professional fields with a severe shortage of URM students.

  7. Minority and minority-deaf professionals. How many and where are they?

    PubMed

    Andrews, J F; Jordan, D L

    1993-12-01

    A survey of 6,043 professionals in 349 deaf education programs showed that 10.4% are from nonwhite or minority ethnic/cultural backgrounds. Of these minority professionals, 11.7% are deaf. Only 8 minority deaf administrators were found. Chi-square analyses showed that ethnic/cultural background and hearing loss were strongly associated with the type of program where the professionals were employed. More than half of the minority professionals worked in public schools. The District of Columbia, New York, and Maryland lead the country in the number of deaf professionals employed. More than half of all black deaf professionals work in either D.C. or New York. Texas leads the country in numbers of Hispanic professionals employed, and New Mexico has more Hispanic professionals than does California, New York, or Florida.

  8. The Trojan minor planets

    NASA Astrophysics Data System (ADS)

    Spratt, Christopher E.

    1988-08-01

    There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

  9. Disproportionate Minority Contact.

    PubMed

    Fix, Rebecca L; Cyperski, Melissa A; Burkhart, Barry R

    2017-04-01

    The overrepresentation of racial/ethnic minorities within the criminal justice system relative to their population percentage, a phenomenon termed disproportionate minority contact, has been examined within general adult and adolescent offender populations; yet few studies have tested whether this phenomenon extends to juvenile sexual offenders (JSOs). In addition, few studies have examined whether offender race/ethnicity influences registration and notification requirements, which JSOs are subject to in some U.S. states. The present study assessed for disproportionate minority contact among general delinquent offenders and JSOs, meaning it aimed to test whether the criminal justice system treats those accused of sexual and non-sexual offenses differently by racial/ethnic group. Furthermore, racial/ethnic group differences in risk, legal classification, and sexual offending were examined for JSOs. Results indicated disproportionate minority contact was present among juveniles with non-sexual offenses and JSOs in Alabama. In addition, offense category and risk scores differed between African American and European American JSOs. Finally, registration classifications were predicted by offending characteristics, but not race/ethnicity. Implications and future directions regarding disproportionate minority contact among JSOs and social and legal policy affecting JSOs are discussed.

  10. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  11. Minorities and Career Education.

    ERIC Educational Resources Information Center

    Davenport, Lawrence; Petty, Reginald

    This publication explores needed changes in the career preparation and education for minorities and examines the implications of career education emphases for minorities in the U.S. Contents include: (1) "An Overview of Minorities and Career Education" by L. Davenport and R. Petty, (2) "Public Schools, Public Policy, and Public Problems: Some…

  12. 22 CFR 51.28 - Minors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.28 Minors. (a) Minors under age 16—(1) Personal appearance. Minors under 16 years of age applying for a passport must appear in person, unless the personal appearance of the minor is specifically excused by a senior passport authorizing...

  13. 22 CFR 51.28 - Minors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.28 Minors. (a) Minors under age 16—(1) Personal appearance. Minors under 16 years of age applying for a passport must appear in person, unless the personal appearance of the minor is specifically excused by a senior passport authorizing...

  14. 22 CFR 51.28 - Minors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.28 Minors. (a) Minors under age 16—(1) Personal appearance. Minors under 16 years of age applying for a passport must appear in person, unless the personal appearance of the minor is specifically excused by a senior passport authorizing...

  15. 22 CFR 51.28 - Minors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.28 Minors. (a) Minors under age 16—(1) Personal appearance. Minors under 16 years of age applying for a passport must appear in person, unless the personal appearance of the minor is specifically excused by a senior passport authorizing...

  16. 22 CFR 51.28 - Minors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.28 Minors. (a) Minors under age 16—(1) Personal appearance. Minors under 16 years of age applying for a passport must appear in person, unless the personal appearance of the minor is specifically excused by a senior passport authorizing...

  17. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  18. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    DOEpatents

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  19. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  20. 7 CFR 760.114 - Minors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Minors. 760.114 Section 760.114 Agriculture... Assistance Programs § 760.114 Minors. A minor child is eligible to apply for program benefits under ELAP, LFP, LIP, SURE, or TAP if all the eligibility requirements are met and the provision for minor children in...

  1. 7 CFR 760.114 - Minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Minors. 760.114 Section 760.114 Agriculture... Assistance Programs § 760.114 Minors. A minor child is eligible to apply for program benefits under ELAP, LFP, LIP, SURE, or TAP if all the eligibility requirements are met and the provision for minor children in...

  2. Future goal setting, task motivation and learning of minority and non-minority students in Dutch schools.

    PubMed

    Andriessen, Iris; Phalet, Karen; Lens, Willy

    2006-12-01

    Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination Theory, has not yet been validated among minority students. To replicate across cultures the known motivational benefits of perceived instrumentality and internal regulation by distant future goals; to clarify when and how the future motivates minority students' educational performance. Participants in this study were 279 minority students (100 of Turkish and 179 of Moroccan origin) and 229 native Dutch students in Dutch secondary schools. Participants rated the importance of future goals, their perceptions of instrumentality, their task motivation and learning strategies. Dependent measures and their functional relations with future goal setting were simultaneously validated across minority and non-minority students, using structural equation modelling in multiple groups. As expected, Positive Perceived Instrumentality for the future increases task motivation and (indirectly) adaptive learning of both minority and non-minority students. But especially internally regulating future goals are strongly related to more task motivation and indirectly to more adaptive learning strategies. Our findings throw new light on the role of future goal setting in minority school careers: distant future goals enhance minority and non-minority students' motivation and learning, if students perceive positive instrumentality and if their schoolwork is internally regulated by future goals.

  3. Sexual Minority Stressors, Internalizing Symptoms, and Unhealthy Eating Behaviors in Sexual Minority Youth

    PubMed Central

    Katz-Wise, Sabra L.; Calzo, Jerel P.; Scherer, Emily A.; Sarda, Vishnudas; Jackson, Benita; Haines, Jess; Austin, S. Bryn

    2015-01-01

    Background Sexual minorities are more likely than heterosexuals to engage in unhealthy eating behaviors. Purpose To examine sexual minority stressors and internalizing symptoms as predictors of unhealthy eating behaviors among sexual minority youth. Methods We used longitudinal data from 1461 sexual minority youth in the Growing Up Today Study, across ages 14-28 years. We hypothesized that sexual minority stressors would predict unhealthy eating behaviors, in part due to internalizing symptoms. Linear regression models fit via generalized estimating equations were stratified by gender and sexual orientation. Results Significant positive and inverse associations between stressors and eating behaviors were detected among females and males, with more significant associations among females. Associations were attenuated by up to 71% for females and 12% for males when internalizing symptoms were added to the models. Conclusions Sexual minority stressors predicted unhealthy eating behaviors overall and more so for some sexual orientation and gender groups; associations were partially explained by internalizing symptoms. The conceptual model appears to best describe the experiences of bisexual females. Findings have clinical implications for adolescent health. PMID:26156678

  4. Testing a Model of Minority Identity Achievement, Identity Affirmation and Psychological Well-Being among Ethnic Minority and Sexual Minority Individuals

    PubMed Central

    2011-01-01

    How is social identity related to psychological well-being among minority individuals? Drawing on developmental models of identity formation (e.g., Erikson, 1968) and on Social Identity Theory (Tajfel & Turner, 1979), we tested a conceptual model examining links between two key aspects of social identity and psychological well-being. We proposed that the association between identity achievement (exploring and understanding the meaning of one’s identity) and psychological well-being is mediated by identity affirmation (developing positive feelings and a sense of belonging to one’s social group). Across three studies, including ethnic minority high school students (Study 1), ethnic minority college students (Study 2) and lesbian and gay male adults (Study 3), we found strong support for the model. Results suggest that the process of exploring and understanding one’s minority identity can serve as an important basis for developing positive feelings toward and an enhanced sense of attachment to the group which can in turn confer psychological benefits for minority individuals. Implications and directions for future research are discussed. PMID:21341900

  5. Re-assessing the Molybdenum Isotope Composition of Pre-GOE Seawater: Evidence for Dynamic Ocean Redox

    NASA Astrophysics Data System (ADS)

    Ostrander, C. M.; Kendall, B.; Roy, M.; Romaniello, S. J.; Nunn, S. J.; Gordon, G. W.; Olson, S. L.; Lyons, T. W.; Zheng, W.; Anbar, A. D.

    2016-12-01

    Molybdenum (Mo) isotope compositions of Archean shales can provide important insights into ocean and atmosphere redox dynamics prior to the Great Oxidation Event (GOE). Unfortunately, the relatively limited Mo isotope database and small number of sample sets for Archean shales do not allow for in-depth reconstructions and specifically make it difficult to differentiate global from local effects. To accurately estimate the Mo isotope composition of Archean seawater and better investigate the systematics of local and global redox, more complete sample sets are needed. We carried out a Mo isotope analysis of the euxinic 2.65 Ga Roy Hill Shale sampled in two stratigraphically correlated cores, and revisited the well-studied euxinic 2.5 Ga Mt. McRae Shale in higher resolution. Our data show contrasting Mo isotope values in the 2.65 Ga Roy Hill Shale between near- and offshore depositional environments, with systematically heavier isotope values in the near-shore environment. High-resolution analysis of the Mt. McRae Shale yields oscillating Mo concentrations and isotope values at the cm- to dm-scale during the well-characterized "whiff of O2" interval, with the heaviest isotope values measured during euxinic deposition. Variations in the measured isotope values within each section are primarily associated with redox changes in the local depositional environment and amount of detrital content. Both non-quantitative removal of Mo associated with incorporation into non-euxinic sediments and large detrital Mo contributions shift some measured isotopic compositions toward lighter values. This is readily apparent in the near-shore Roy Hill Shale section and the Mt. McRae Shale, but may not fully explain variations observed in the offshore Roy Hill Shale deposit. Here, euxinic deposition is not accompanied by Mo enrichments or isotopic compositions as heavy as the near-shore equivalent, even after detrital correction. This disparity between the near- and offshore environment

  6. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  7. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  8. Minority workers or minority human beings? A European dilemma

    NASA Astrophysics Data System (ADS)

    Skutnabb-Kangas, Tove; Phillipson, Robert

    1996-07-01

    "European" identities may be politonymic, toponymic, ethnomyic or linguonymic (Bromley 1984). Each dimension may affect whether migrant minorities are treated as "European", and influence their schooling, integration and rights. Treatment and terminology vary in different states and periods of migration. However, the position for immigrated minorities is that they are still largely seen as workers rather than human beings with equal rights. Lack of success in schools is blamed on the migrants themselves rather than the educational system. This construction of migrants as being deficient is parallel to educational practice which falls within a UN definition of linguistic genocide, and contributes to mis-education. If current efforts in international bodies to codify educational linguistic human rights were to lead to greater support for minorities, this could assist in a redefinition of national identities and a reduction of racism and conflict.

  9. Minority Record Reported

    ERIC Educational Resources Information Center

    Hobbs, Louise; Pakiser, L. C.

    1978-01-01

    Forty-two minority students receiving American Geological Institute (AGI) scholarships are discussed in this article. The value of the AGI scholarship program is examined with regard to student academic success, future professional success, and minority representation. Most faculty members and employers involved in the program were favorably…

  10. Minorities and Malnutrition.

    ERIC Educational Resources Information Center

    Kornegay, Francis A.

    Various aspects of the relationship between minorities and malnutrition are discussed in this brief paper. Malnutrition, one of the byproducts of low economic status, is creating a crisis-proportion health problem affecting minority citizens. Malnutrition seriously affects children, older people in poverty, and chronically unemployed or…

  11. Minority engineering scholarships renewal, 2011.

    DOT National Transportation Integrated Search

    2012-08-01

    Scholarships for Minority Students Studying Engineering and Science : Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri ...

  12. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  13. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury

    USGS Publications Warehouse

    Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.

  14. CCQM-K140: carbon stable isotope ratio delta values in honey

    NASA Astrophysics Data System (ADS)

    Dunn, P. J. H.; Goenaga-Infante, H.; Goren, A. C.; Şimşek, A.; Bilsel, M.; Ogrinc, N.; Armishaw, P.; Hai, L.

    2017-01-01

    As there can be small but measureable differences in isotope ratios between different sources of the same element/compound/material, isotope ratio measurements are applied in a number of different fields including archaeology, environmental science, geochemistry, forensic science and ecology. Isotope ratios for the light elements (H, C, N, O and S) are typically reported as δ-values which are isotope ratios expressed relative to an internationally agreed standard (this standard is the zero-point on the scale), although absolute isotope ratios which are traceable to the SI have also been reported. The IAWG has been granted a traceability exception for the use of arbitrary delta scales until SI traceability can be established at the required level of uncertainty but this goal is some years away. While the CCQM IAWG has previously organised several pilot studies on isotope ratio determination (CCQM-P75: Stable isotope delta values in methionine, 2006; CCQM-P105: Sr isotope ratios in wine, 2008; CCQM-K98: Pb isotope ratios in bronze with additional delta values in CCQM-P134, 2011), it has been a number of years since delta values of light elements have been considered and there has been no key comparison (KC). Therefore, the IAWG has included the need for a KC (CCQM-K140) based on an arbitrary delta scale in its program to support ongoing requirements to demonstrate core capabilities as well as specific claims of measurement capability (CMCs) in this area. The performance of all five of the CCQM-K140 participants was very good, illustrating their ability to obtain accurate results for carbon isotope ratios, within the calibration range afforded by internationally agreed reference materials (δ13CVPDB-LSVEC between -47.32 % and +535.3 %) with measurement uncertainties of between 0.08 and 0.28 %. This was despite the fact that no two participants used exactly the same approach in terms of instrumentation or data treatment. Main text To reach the main text of this paper

  15. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  16. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  17. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  18. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  19. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  20. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver

    PubMed Central

    Blanquart, François; Golubchik, Tanya; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Croucher, Nicholas J; Hall, Matthew; Hillebregt, Mariska; Ratmann, Oliver; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Cornelissen, Marion; Kellam, Paul; Reiss, Peter

    2018-01-01

    Abstract Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between- and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user’s choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver’s constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also

  1. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver.

    PubMed

    Wymant, Chris; Blanquart, François; Golubchik, Tanya; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Croucher, Nicholas J; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Ratmann, Oliver; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Berkhout, Ben; Cornelissen, Marion; Kellam, Paul; Reiss, Peter; Fraser, Christophe

    2018-01-01

    Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between- and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver's constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied

  2. Time Variations of Cosmic-Ray Helium Isotopes with Bess-Polar I

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2013-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.

  3. Time Variations of Cosmic-Ray Helium Isotopes with BESS-Polar I

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2013-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.

  4. 40 CFR 161.60 - Minor uses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Minor uses. 161.60 Section 161.60... FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES General Provisions § 161.60 Minor uses. (a) Minor use policy. A minor use of a pesticide is a use on a “minor crop” (a crop which is planted on a small total...

  5. [Medical confidentiality for minors].

    PubMed

    Peyrebrune, Cécile; Génot-Pok, Isabelle

    2009-12-20

    The new statutory provisions on the care of minors have given a legal framework for primary healthcare professionals. They clarify the rights of minors and their general application to improve the quality of the healthcare system. They are valuable and relevant tools for general practitioners in their day to day practice, and they help improve the medical care of minors, currently considered as a real public health problem.

  6. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches.

    PubMed

    Laffoon, Jason E; Sonnemann, Till F; Shafie, Termeh; Hofman, Corinne L; Brandes, Ulrik; Davies, Gareth R

    2017-01-01

    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data.

  7. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    PubMed

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  8. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary

  9. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  10. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  11. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  12. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  13. Minority Stress and Psychological Distress among Asian American Sexual Minority Persons

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.; Sung, Mi Ra

    2010-01-01

    The purpose of this study was to examine multiple minority stressors (i.e., heterosexist events, racist events, heterosexism in communities of color, racism in sexual minority communities, race-related dating and relationship problems, internalized heterosexism or homophobia, outness to family, and outness to world) as they relate to the…

  14. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation

    USGS Publications Warehouse

    Page, B.D.; Bullen, T.D.; Mitchell, M.J.

    2008-01-01

    The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.

  15. Determination of the origin and texture of marble artifacts using stable isotopes

    NASA Astrophysics Data System (ADS)

    Dotsika, E.; Poutoukis, D.; Zisi, N.; Psomiadis, D.

    2009-04-01

    For the characterization of marble and the identification of the origin of marble artifacts, samples from several ancient monuments of Greece were analyzed using several techniques: stable isotopes of carbonates (13C, 18O), XRD analysis and optical microscopy, from which information can be obtained on the origin and texture of the marble used for the production of the artifacts. The full range of grain sizes and isotopic signatures that occur in a lot of different quarries has been measured and presented. In a δ13C versus δ18O diagram, the fields corresponding to all known ancient quarries (from Penteli, Cyclades, especially Naxos (Mela, Apol, Apir, Senax), Keros, Paros (Parlak, Parlyc) and Asia Minor (Prokon)) are reported. The plots representing the analyzed samples are also shown on the same diagram. The final results of the study indicate the origin of the carbonate material of the artefacts from each of the ancient monument. In cases that the samples plot on overlapping areas, a further study is proposed, using the maximum grain size of the material.

  16. Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.

    PubMed

    Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus

    2014-01-07

    The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.

  17. Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington

    USGS Publications Warehouse

    Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.

    1986-01-01

    Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.

  18. ACCURATE: Influence of Cloud Layers and Aerosol on Infrared Laser Occultation Signals for Sensing of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Schweitzer, S.; Emde, C.; Ladstädter, F.; Fritzer, J.; Kirchengast, G.

    2009-04-01

    ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer), a new climate satellite concept, enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the well-studied but not yet flown LEO-LEO microwave occultation (LMO) technique. As intrinsic to the space-borne occultation technique, the measurements are evenly distributed around the world, have high vertical resolution and high accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 m in the case of ACCURATE) which are absorbed by various trace species in the Earth's atmosphere. From signal transmission measurements, profiles of the concentration of the absorbing species can be derived given that temperature and pressure are accurately known from LMO. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O) with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction and scintillation strength. This contribution presents an overview on the ACCURATE mission design and the expected accuracy of retrieved atmospheric variables and further focuses on the influence of clouds and aerosols on propagating LIO signals. Special emphasis will be given to sub-visible cirrus clouds which are semi-transparent to infrared signals. A simple frequency dependent cloud extinction parametrization was included into the occultation propagation software EGOPS and evaluated against results of the

  19. Isotopic composition of zinc, copper, and iron in lunar samples

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Albarède, F.; Herzog, G. F.

    2006-12-01

    We determined by ICP-MS the concentrations and isotopic ratios of Fe, Cu, and Zn in the Ti-rich lunar basalt 74275, in the lunar orange glass 74220, and in up to 10 lunar soils, namely, 14163, 15231, 64501, 66041, 68841, 69941, 70011, 72501, 75081, and 76501. Two analyses of zinc in lunar basalt 74275 give δ 66Zn = 0.17‰ and 0.75‰, values within the range of those measured in terrestrial basalts; copper in lunar basalt 74275 has δ 65Cu ˜ +1.4‰, which is isotopically heavier than values observed in terrestrial basalts. In the orange glass, we measured δ 56Fe = -0.24‰, δ 65Cu = -0.42‰, and δ 66Zn ˜ -3.6‰. These values of δ are more negative than those obtained for 74275 and for typical lunar basalts, but for Cu, comparable to those observed in terrestrial sulfides and meteorites. In lunar soils we found 0.11‰ ⩽ δ 56Fe ⩽ 0.51‰, 2.6‰ ⩽ δ 65Cu ⩽ 4.5‰, and 2.2‰ ⩽ δ 66Zn ⩽ 6.4‰. Insofar as we can generalize from a small sample set, S, Fe, Cu, Zn, and Cd show similar trends in isotopic fractionation on the Moon. Lunar basalts have nearly terrestrial isotopic ratios. Relative to the lunar basalt 74275, the pyroclastic glass 74220 is enriched in the lighter isotopes of Fe, Cu, and Zn, and the soils are enriched in the heavier isotopes of Fe, Cu, and Zn. The patterns in the basalts are likely inherited from the source material; the light-isotope enrichments seen in the orange glass originated during lava fountaining or, less probably, during partial condensation of vapor; and the heavy-isotope enrichments in the lunar soils were likely created by a combination of processes that included micrometeorite vaporization and sputtering. In the orange glass, the light-isotope enrichments (relative to lunar basalts) of Zn are larger than those of Cu. If these enrichments reflect accurately the isotopic composition of the gas, they suggest that Cu is more volatile than Zn in the liquid from which the gas derived. A simple model built on

  20. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  1. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.

    PubMed

    Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C

    2006-01-01

    Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.

  2. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    USGS Publications Warehouse

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  3. Osmium Isotope Compositions of Komatiite Sources Through Time

    NASA Astrophysics Data System (ADS)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os

  4. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis.

    PubMed

    Conte, Maureen H; Weber, John C

    2002-06-06

    Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the (12)C/(13)C isotopic ratio (delta(13)C) of atmospheric carbon dioxide, because terrestrial photosynthesis strongly discriminates against (13)CO(2), whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Delta; ref. 5) at large regional scales, yet terrestrial ecosystem heterogeneity makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Delta over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Delta simply. Our estimates indicate a large (5 6 per thousand) seasonal variation in Delta of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C(3) and C(4) plants, and environmentally controlled adjustments in the photosynthetic discrimination of C(3)-plant-dominated ecosystems.

  5. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  6. Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    PubMed Central

    Angulo, Elena; Das, Krishna; Girondot, Marc

    2008-01-01

    Background The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our

  7. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework.

    PubMed

    Calabrese, Sarah K; Meyer, Ilan H; Overstreet, Nicole M; Haile, Rahwa; Hansen, Nathan B

    2015-09-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination-frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)-and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context.

  8. Sexual minority-related victimization as a mediator of mental health disparities in sexual minority youth: a longitudinal analysis.

    PubMed

    Burton, Chad M; Marshal, Michael P; Chisolm, Deena J; Sucato, Gina S; Friedman, Mark S

    2013-03-01

    Sexual minority youth (youth who are attracted to the same sex or endorse a gay/lesbian/bisexual identity) report significantly higher rates of depression and suicidality than heterosexual youth. The minority stress hypothesis contends that the stigma and discrimination experienced by sexual minority youth create a hostile social environment that can lead to chronic stress and mental health problems. The present study used longitudinal mediation models to directly test sexual minority-specific victimization as a potential explanatory mechanism of the mental health disparities of sexual minority youth. One hundred ninety-seven adolescents (14-19 years old; 70 % female; 29 % sexual minority) completed measures of sexual minority-specific victimization, depressive symptoms, and suicidality at two time points 6 months apart. Compared to heterosexual youth, sexual minority youth reported higher levels of sexual minority-specific victimization, depressive symptoms, and suicidality. Sexual minority-specific victimization significantly mediated the effect of sexual minority status on depressive symptoms and suicidality. The results support the minority stress hypothesis that targeted harassment and victimization are partly responsible for the higher levels of depressive symptoms and suicidality found in sexual minority youth. This research lends support to public policy initiatives that reduce bullying and hate crimes because reducing victimization can have a significant impact on the health and well-being of sexual minority youth.

  9. Sexual Minority-Related Victimization as a Mediator of Mental Health Disparities in Sexual Minority Youth: A Longitudinal Analysis

    PubMed Central

    Burton, Chad M.; Marshal, Michael P.; Chisolm, Deena J.; Sucato, Gina S.; Friedman, Mark S.

    2013-01-01

    Sexual minority youth (youth who are attracted to the same sex or endorse a gay/lesbian/bisexual identity) report significantly higher rates of depression and suicidality than heterosexual youth. The minority stress hypothesis contends that the stigma and discrimination experienced by sexual minority youth create a hostile social environment that can lead to chronic stress and mental health problems. The present study used longitudinal mediation models to directly test sexual minority-specific victimization as a potential explanatory mechanism of the mental health disparities of sexual minority youth. One hundred ninety seven adolescents (14–19 years old; 70% female; 29% sexual minority) completed measures of sexual minority-specific victimization, depressive symptoms, and suicidality at two time points six months apart. Compared to heterosexual youth, sexual minority youth reported higher levels of sexual minority-specific victimization, depressive symptoms, and suicidality. Sexual minority-specific victimization significantly mediated the effect of sexual minority status on depressive symptoms and suicidality. The results support the minority stress hypothesis that targeted harassment and victimization are partly responsible for the higher levels of depressive symptoms and suicidality found in sexual minority youth. This research lends support to public policy initiatives that reduce bullying and hate crimes because reducing victimization can have a significant impact on the health and well-being of sexual minority youth. PMID:23292751

  10. 76 FR 11331 - New Animal Drugs for Minor Use and Minor Species; Confirmation of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 516 [Docket No. FDA-2010-N-0534] RIN 0910-AG58 New Animal Drugs for Minor Use and Minor Species; Confirmation of... direct final rule amends the regulations regarding new animal drugs for minor use and minor species (MUMS...

  11. Socioeconomic status and parenting in ethnic minority families: testing a minority family stress model.

    PubMed

    Emmen, Rosanneke A G; Malda, Maike; Mesman, Judi; van Ijzendoorn, Marinus H; Prevoo, Mariëlle J L; Yeniad, Nihal

    2013-12-01

    According to the family stress model (Conger & Donnellan, 2007), low socioeconomic status (SES) predicts less-than-optimal parenting through family stress. Minority families generally come from lower SES backgrounds than majority families, and may experience additional stressors associated with their minority status, such as acculturation stress. The primary goal of this study was to test a minority family stress model with a general family stress pathway, as well as a pathway specific to ethnic minority families. The sample consisted of 107 Turkish-Dutch mothers and their 5- to 6-year-old children, and positive parenting was observed during a 7-min problem-solving task. In addition, mothers reported their daily hassles, psychological distress, and acculturation stress. The relation between SES and positive parenting was partially mediated by both general maternal psychological stress and maternal acculturation stress. Our study contributes to the argument that stressors specific to minority status should be considered in addition to more general demographic and family stressors in understanding parenting behavior in ethnic minority families.

  12. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    PubMed

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  13. [Tracing Sources of Sulfate Aerosol in Nanjing Northern Suburb Using Sulfur and Oxygen Isotopes].

    PubMed

    Wei, Ying; Guo, Zhao-bing; Ge, Xin; Zhu, Sheng-nan; Jiang, Wen-juan; Shi, Lei; Chen, Shu

    2015-04-01

    Abstract: To trace the sources of sulfate contributing to atmospheric aerosol, PM2.5 samples for isotopic analysis were collected in Nanjing northern suburb during January 2014. The sulfur and oxygen isotopic compositions of sulfate from these samples were determined by EA-IRMS. Source identification and apportionment were carried out using stable isotopic and chemical evidences, combined with absolute principal component analysis (APCA) method. The Δ34S values of aerosol sulfate ranged from 2.7 per thousand to 6.4 per thousand, with an average of 5.0 per thousand ± 0.9 per thousand, while the Δ18O values ranged from 10.6 per thousand to 16.1 per thousand, with an average of 12.5 per thousand ± 1.37 per thousand. In conjunction with air mass trajectories, the results suggested that aerosol sulfates were controlled by a dominance of local anthropogenic sulfate, followed by the contributions of long-distance transported sulfate. There was a minor effect of some other low-Δ34S valued sulfates, which might be expected from biogenic sources. Absolute principal component analysis results showed that the contributions of anthropogenic sulfate and long-distance transported sulfate were 46.74% and 31.54%, respectively.

  14. The Oxygen Isotopic Composition of the Sun

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  15. Determinants and beliefs of health information mavens among a lower-socioeconomic position and minority population

    PubMed Central

    Emmons, Karen M.; Puleo, Elaine; Viswanath, K.

    2011-01-01

    People of lower-socioeconomic position (SEP) and most racial/ethnic minorities face significant communication challenges which may negatively impact their health. Previous research has shown that these groups rely heavily on interpersonal sources to share and receive health information; however, little is known about these lay sources. The purpose of this paper is to apply the concept of a market maven to the public health sector with the aims of identifying determinants of high health information mavenism among low-SEP and racial/ethnic minority groups and to assess the information they may be sharing based on their own health beliefs. Data for this study were drawn from the baseline survey (n=325) of a US randomized control intervention study aimed at eliciting an understanding of Internet-related challenges among lower-SEP and minority individuals. Regression models were estimated to distinguish significant determinants of health information mavenism among the sample. Similarly, bivariate and logistic multivariable models were estimated to determine the association between health information mavenism and accurate health beliefs relating to diet, physical activity and smoking. The data illustrate that having a larger social network, being female and being older were important factors associated with higher mavenism scores. Additionally being a moderate consumer of general media as well as fewer years in the US and lower language acculturation were significant predictors of higher mavenism scores. Mavens were more likely than non-mavens to maintain accurate beliefs regarding diet; however, there was no distinction between physical activity and smoking beliefs between mavens and non-mavens. These results offer a unique understanding of health information mavenism which could better leverage word-of-mouth health communication efforts among lower-SEP and minority groups in order to reduce communication inequalities. Moreover, the data indicate that health information

  16. Determinants and beliefs of health information mavens among a lower-socioeconomic position and minority population.

    PubMed

    Kontos, Emily Z; Emmons, Karen M; Puleo, Elaine; Viswanath, K

    2011-07-01

    People of lower-socioeconomic position (SEP) and most racial/ethnic minorities face significant communication challenges which may negatively impact their health. Previous research has shown that these groups rely heavily on interpersonal sources to share and receive health information; however, little is known about these lay sources. The purpose of this paper is to apply the concept of a market maven to the public health sector with the aims of identifying determinants of high health information mavenism among low-SEP and racial/ethnic minority groups and to assess the information they may be sharing based on their own health beliefs. Data for this study were drawn from the baseline survey (n = 325) of a US randomized control intervention study aimed at eliciting an understanding of Internet-related challenges among lower-SEP and minority individuals. Regression models were estimated to distinguish significant determinants of health information mavenism among the sample. Similarly, bivariate and logistic multivariable models were estimated to determine the association between health information mavenism and accurate health beliefs relating to diet, physical activity and smoking. The data illustrate that having a larger social network, being female and being older were important factors associated with higher mavenism scores. Additionally being a moderate consumer of general media as well as fewer years in the US and lower language acculturation were significant predictors of higher mavenism scores. Mavens were more likely than non-mavens to maintain accurate beliefs regarding diet; however, there was no distinction between physical activity and smoking beliefs between mavens and non-mavens. These results offer a unique understanding of health information mavenism which could better leverage word-of-mouth health communication efforts among lower-SEP and minority groups in order to reduce communication inequalities. Moreover, the data indicate that health

  17. Exploring Discrimination and Mental Health Disparities Faced By Black Sexual Minority Women Using a Minority Stress Framework

    PubMed Central

    Calabrese, Sarah K.; Meyer, Ilan H.; Overstreet, Nicole M.; Haile, Rahwa; Hansen, Nathan B.

    2015-01-01

    Black sexual minority women are triply marginalized due to their race, gender, and sexual orientation. We compared three dimensions of discrimination—frequency (regularity of occurrences), scope (number of types of discriminatory acts experienced), and number of bases (number of social statuses to which discrimination was attributed)—and self-reported mental health (depressive symptoms, psychological well-being, and social well-being) between 64 Black sexual minority women and each of two groups sharing two of three marginalized statuses: (a) 67 White sexual minority women and (b) 67 Black sexual minority men. Black sexual minority women reported greater discrimination frequency, scope, and number of bases and poorer psychological and social well-being than White sexual minority women and more discrimination bases, a higher level of depressive symptoms, and poorer social well-being than Black sexual minority men. We then tested and contrasted dimensions of discrimination as mediators between social status (race or gender) and mental health outcomes. Discrimination frequency and scope mediated the association between race and mental health, with a stronger effect via frequency among sexual minority women. Number of discrimination bases mediated the association between gender and mental health among Black sexual minorities. Future research and clinical practice would benefit from considering Black sexual minority women's mental health in a multidimensional minority stress context. PMID:26424904

  18. Lithium isotope geochemistry and origin of Canadian shield brines.

    PubMed

    Bottomley, D J; Chan, L H; Katz, A; Starinsky, A; Clark, I D

    2003-01-01

    Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.

  19. MINORITY STRESS, POSITIVE IDENTITY DEVELOPMENT, AND DEPRESSIVE SYMPTOMS: IMPLICATIONS FOR RESILIENCE AMONG SEXUAL MINORITY MALE YOUTH.

    PubMed

    Bruce, Douglas; Harper, Gary W; Bauermeister, Jose A

    2015-09-01

    Minority stress processes have been shown to have significant associations with negative mental health outcomes among sexual minority populations. Given that adversity may be experienced growing up as a sexual minority in heteronormative, if not heterosexist, environments, our research on resilience among sexual minority male youth proposes that positive identity development may buffer the effects of a range of minority stress processes. An ethnically diverse sample of 200 sexual minority males ages 16-24 (mean age, 20.9 years) was recruited using mixed recruitment methods. We developed and tested two new measures: concealment stress during adolescence and sexual minority-related positive identity development. We then tested a path model that assessed the effects of minority stressors, positive identity development, and social support on major depressive symptoms. Experience of stigma was associated with internalized homophobia (β=.138, p<.05) and major depressive symptoms (β=1.076, OR=2.933, p<.001), and internalized homophobia partially mediated experience's effects on major depression (β=.773, OR=2.167, p<.001). Concealment stress was associated with positive identity development (β=.155, p<.05) and internalized homophobia (β=.418, p<.001), and positive identity development partially mediated concealment stress's effects on internalized homophobia (β=-.527, p<.001). Concealment stress demonstrated a direct effect on major depression (β=1.400, OR=4.056, p<.001), and indirect paths to social support through positive identity development. With these results, we offer an exploratory model that empirically identifies significant paths among minority stress dimensions, positive identity development, and major depressive symptoms. This study helps further our understanding of minority stress, identity development, and resources of resilience among sexual minority male youth.

  20. Meeting the Needs of Sexual and Gender Minority Youth: Formative Research on Potential Digital Health Interventions.

    PubMed

    Steinke, Jessica; Root-Bowman, Meredith; Estabrook, Sherry; Levine, Deborah S; Kantor, Leslie M

    2017-05-01

    Sexual and gender minority youth (SGMY) have unique risk factors and worse health outcomes than their heterosexual and cisgender counterparts. SGMY's significant online activity represents an opportunity for digital interventions. To help meet the sex education and health needs of SGMY and to understand what they consider important, formative research was conducted to guide and inform the development of new digital health interventions. Semistructured interviews, in-person focus groups, and online focus groups were conducted with 92 youths (aged 15-19 years) who self-identify as nonheterosexual, noncisgender, questioning, and/or have engaged in same-sex sexual behavior. Data were coded and analyzed using inductive thematic analysis. Thematic analysis revealed that SGMYs are often driven online by experiences of isolation, stigmatization, and lack of information and are looking for a supportive, validating community and relevant, accurate information. Gender minority youths felt that they faced a larger number of and more extreme incidences of discrimination than sexual minority youths. Most youths described interpersonal discrimination as having substantial negative effects on their mental health. Any digital intervention for SGMY should focus on mental health and well-being holistically rather than solely on risk behaviors, such as preventing HIV. Interventions should include opportunities for interpersonal connection, foster a sense of belonging, and provide accurate information about sexuality and gender to help facilitate positive identity development. Content and delivery of digital interventions should appeal to diverse sexualities, genders, and other intersecting identities held by SGMY to avoid further alienation. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. The Impact of Minority Stress on Mental Health and Substance Use Among Sexual Minority Women

    PubMed Central

    Lehavot, Keren; Simoni, Jane M.

    2014-01-01

    Objective We examined the direct and indirect impact of minority stress on mental health and substance use among sexual minority women. Method A combination of snowball and targeted sampling strategies was used to recruit lesbian and bisexual women (N = 1,381) for a cross-sectional, online survey. Participants (M age = 33.54 years; 74% White) completed a questionnaire assessing gender expression, minority stressors (i.e., victimization, internalized homophobia, and concealment), social–psychological resources (i.e., social support, spirituality), and health-related outcomes. We used structural equation modeling to test associations among these factors, with gender expression as an antecedent and social–psychological resources as a mediator between minority stress and health. Results The final model demonstrated acceptable fit, χ2(79) = 414.00, p < .05, confirmatory fit index = .93, Tucker–Lewis index = .91, standardized root-mean-square residual = .05, root-mean-square error of approximation = .06, accounting for significant portions of the variance in mental health problems (56%) and substance use (14%), as well as the mediator social–psychological resources (24%). Beyond indirect effects of minority stress on health outcomes, direct links emerged between victimization and substance use and between internalized homophobia and substance use. Conclusions Findings indicate a significant impact of minority stressors and social–psychological resources on mental health and substance use among sexual minority women. The results improve understanding of the distinct role of various minority stressors and their mechanisms on health outcomes. Health care professionals should assess for minority stress and coping resources and refer for evidence-based psychosocial treatments. PMID:21341888

  2. The impact of minority stress on mental health and substance use among sexual minority women.

    PubMed

    Lehavot, Keren; Simoni, Jane M

    2011-04-01

    We examined the direct and indirect impact of minority stress on mental health and substance use among sexual minority women. A combination of snowball and targeted sampling strategies was used to recruit lesbian and bisexual women (N = 1,381) for a cross-sectional, online survey. Participants (M age = 33.54 years; 74% White) completed a questionnaire assessing gender expression, minority stressors (i.e., victimization, internalized homophobia, and concealment), social-psychological resources (i.e., social support, spirituality), and health-related outcomes. We used structural equation modeling to test associations among these factors, with gender expression as an antecedent and social-psychological resources as a mediator between minority stress and health. The final model demonstrated acceptable fit, χ²(79) = 414.00, p < .05, confirmatory fit index = .93, Tucker-Lewis index = .91, standardized root-mean-square residual = .05, root-mean-square error of approximation = .06, accounting for significant portions of the variance in mental health problems (56%) and substance use (14%), as well as the mediator social-psychological resources (24%). Beyond indirect effects of minority stress on health outcomes, direct links emerged between victimization and substance use and between internalized homophobia and substance use. Findings indicate a significant impact of minority stressors and social-psychological resources on mental health and substance use among sexual minority women. The results improve understanding of the distinct role of various minority stressors and their mechanisms on health outcomes. Health care professionals should assess for minority stress and coping resources and refer for evidence-based psychosocial treatments. (c) 2011 APA, all rights reserved.

  3. The Economics of Minorities

    ERIC Educational Resources Information Center

    Coles, Flournoy A., Jr.

    1973-01-01

    This article discusses some of the more important economic problems of minorities in the United States, identifying the economics of minorities with the economics of poverty, discrimination, exploitation, urban life, and alienation. (JM)

  4. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  5. Spatial heterogeneity in sulfur isotopes: implications for modern environments and paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Fike, D. A.; Jones, D. S.; Fischer, W. W.

    2011-12-01

    Sulfur isotope ratio data have been used to provide significant insights into global biogeochemical cycling over Earth history. In addition to providing a framework for the construction of global redox budgets, these observations also provide the primary constraints on the advent and environmental importance of particular microbial metabolisms. As the chemostratigraphic record has become better resolved in space and time, however, reports of coeval discordant data are increasingly common - both within and between individual sedimentary basins. If accurate, this variability challenges our understanding of the first order behavior of the 'global' sulfur biogeochemical cycle. Some of this discordance may be due to spatial gradients in important oceanographic parameters; however, we think that a more likely culprit is ongoing microbial metabolic activity (that impacts the isotopic composition recorded by geological samples) during both syndepositional sediment reworking and early diagenetic lithification. Modern studies have recently highlighted the efficacy with which microbial activity during sediment remobilization can dramatically alter isotopic profiles. Further, the magnitude of local, microbially driven variations in S isotopes in modern sediments is sufficiently large that uneven incorporation of these signatures during deposition and lithification can explain much of the observed discordance in chemostratigraphic reconstructions of sulfur cycling. Here we attempt to link spatial variability in the sedimentary rock record with understanding of modern microbial systems operating in marine sediments. To that end we examine chemostratigraphic records of sulfur isotope (δ34S) data spanning the terminal Neoproterozoic to early Paleozoic eras and assess their scales of spatial reproducibility. We can gain insight into interpreting the observed patterns in these records by examining modern (bio)sedimentary environments. This understanding also allows us to reflect on

  6. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Beard, Brian L.; Rosso, Kevin M.

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Femore » isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II) aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II) aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II) aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous solutions, but presents a

  7. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  8. Late-Quaternary Molecular Isotopic Paleohydrology of Lake Junin, Peru

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Liu, C.; Rodbell, D. T.; Abbott, M. B.

    2013-12-01

    There is great potential for reconstructing past changes in the hydrologic cycle using the hydrogen isotopic composition of plant-wax biomarkers. At present, empirical relationships relating plant-wax hydrogen isotope compositions (δDwax) to source water are almost exclusively based upon modern plants, soils and sediments. Relatively little is known about how plant-wax hydrogen isotopes track source water through time. Here we take advantage of existing paleoisotopic information from Lake Junin in the central Peruvian Andes to evaluate the temporal fidelity of δDwax to source water δD. In Lake Junin and the nearby region, oxygen isotopic records from lacustrine carbonates, speleothems and ice-cores provide robust constraints on the isotopic composition of lake water and precipitation in the past. Combined with new measurements of δDwax in Lake Junin sediments, these data allow us to evaluate the isotopic, climatic and vegetation influences on δDwax over the past 20,000 years. The n-alkanoic acid δDwax values exhibit trends through time that are similar to those for precipitation and lakewater δD. Highly negative δDwax values during the Last Glacial Maximum mirror depleted lakewater and precipitation δD values, more positive δDwax values at the beginning of the Holocene correspond to more enriched water δD values, and decreasing δDwax values over the past 10,000 years parallel the decreasing δD of lakewater and precipitation. However, the magnitude of the δDwax shifts are much larger than can be explained by changing δD water values. For example, the enrichment of δDwax values at the beginning of the Holocene is +30‰ and +80‰ larger than those of lakewater or precipitation δD, respectively. These differences could reflect changes in vegetation type, shifting proportions of aquatic and terrestrial plant sources, or environmental factors such as aridity. Vegetation type is an unlikely explanation as pollen abundances indicate only minor

  9. ICT: isotope correction toolbox.

    PubMed

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Development of MMC Gamma Detectors for Precise Characterization of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Kim, G. B.; Flynn, C. C.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.; Friedrich, S.

    2018-06-01

    Precise nuclear data from radioactive decays are important for the accurate non-destructive assay of fissile materials in nuclear safeguards. We are developing high energy resolution gamma detectors based on metallic magnetic calorimeters (MMCs) to accurately measure gamma-ray energies and branching ratios of uranium isotopes. Our MMC gamma detectors exhibit good linearity, reproducibility and a consistent response function for low energy gamma-rays. We illustrate the capabilities of MMCs to improve literature values of nuclear data with an analysis of gamma spectra of U-233. In this context, we also improve the value of the energy for the single gamma-ray of the U-233 daughter Ra-225 by over an order of magnitude from 40.09 ± 0.05 to 40.0932 ± 0.0007 keV.

  11. Stable Isotope Signatures of Middle Palaeozoic Ahermatypic Rugose Corals - Deciphering Secondary Alteration, Vital Fractionation Effects, and Palaeoecological Implications.

    PubMed

    Jakubowicz, Michal; Berkowski, Blazej; López Correa, Matthias; Jarochowska, Emilia; Joachimski, Michael; Belka, Zdzislaw

    2015-01-01

    This study investigates stable isotope signatures of five species of Silurian and Devonian deep-water, ahermatypic rugose corals, providing new insights into isotopic fractionation effects exhibited by Palaeozoic rugosans, and possible role of diagenetic processes in modifying their original isotopic signals. To minimize the influence of intraskeletal cements on the observed signatures, the analysed specimens included unusual species either devoid of large intraskeletal open spaces ('button corals': Microcyclus, Palaeocyclus), or typified by particularly thick corallite walls (Calceola). The corals were collected at four localities in the Holy Cross Mountains (Poland), Mader Basin (Morocco) and on Gotland (Sweden), representing distinct diagenetic histories and different styles of diagenetic alteration. To evaluate the resistance of the corallites to diagenesis, we applied various microscopic and trace element preservation tests. Distinct differences between isotopic compositions of the least-altered and most-altered skeleton portions emphasise a critical role of material selection for geochemical studies of Palaeozoic corals. The least-altered parts of the specimens show marine or near-marine stable isotope signals and lack positive correlation between δ13C and δ18O. In terms of isotopic fractionation mechanisms, Palaeozoic rugosans must have differed considerably from modern deep-water scleractinians, typified by significant depletion in both 18O and 13C, and pronounced δ13C-δ18O co-variance. The fractionation effects exhibited by rugosans seem similar rather to the minor isotopic effects typical of modern non-scleractinian corals (octocorals and hydrocorals). The results of the present study add to growing evidence for significant differences between Scleractinia and Rugosa, and agree with recent studies indicating that calcification mechanisms developed independently in these two groups of cnidarians. Consequently, particular caution is needed in using

  12. Counseling Minors: Ethical and Legal Issues.

    ERIC Educational Resources Information Center

    Ledyard, Pat

    1998-01-01

    Discusses the ethical and legal dilemmas facing counselors who work with minors in the school system. From an ethical perspective, minors should be able to expect confidentiality; however, parents and guardians have certain legal rights that limit the rights of minors. Uses a hypothetical case. Offers interventions for empowering minors in…

  13. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    NASA Astrophysics Data System (ADS)

    Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.

    2015-12-01

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  14. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  15. 75 FR 1289 - Minority and Women Inclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... ensure the inclusion of minorities, women, and individuals with disabilities, and businesses owned by... inclusion and utilization of minorities, women, individuals with disabilities, and minority-, women-, and... the inclusion and utilization of minorities, women, individuals with disabilities, and minority...

  16. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  17. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers

    NASA Astrophysics Data System (ADS)

    Yuan, Honglin; Liu, Xu; Chen, Lu; Bao, Zhian; Chen, Kaiyun; Zong, Chunlei; Li, Xiao-Chun; Qiu, Johnson Wenhong

    2018-04-01

    We herein report the coupling of a nanosecond laser ablation system with a large-scale multi-collector inductively coupled plasma mass spectrometer (Nu1700 MC-ICPMS, NP-1700) and a conventional Nu Plasma II MC-ICPMS (NP-II) for the simultaneous laser ablation and determination of in situ S and Pb isotopic compositions of sulfide minerals. We found that the required aerosol distribution between the two spectrometers depended on the Pb content of the sample. For example, for a sulfide containing 100-3000 ppm Pb, the aerosol was distributed between the NP-1700 and the NP-II spectrometers in a 1:1 ratio, while for lead contents >3000 and <100 ppm, these ratios were 5:1 and 1:3, respectively. In addition, S isotopic analysis showed a pronounced matrix effect, so a matrix-matched external standard was used for standard-sample bracketing correction. The NIST NBS 977 (NBS, National Bureau of Standards; NIST, National Institute of Standards & Technology) Tl (thallium) dry aerosol internal standard and the NIST SRM 610 (SRM, standard reference material) external standard were employed to obtain accurate results for the analysis of Pb isotopes. In tandem experiments where airflow conditions were similar to those employed during stand-alone analyses, small changes in the aerosol carrier gas flow did not significantly influence the accurate determination of S and Pb isotope ratios. In addition, careful optimization of the flow ratio of the aerosol carrier (He) and makeup (Ar) gases to match stand-alone analytical conditions allowed comparable S and Pb isotope ratios to be obtained within an error of 2 s analytical uncertainties. Furthermore, the results of tandem analyses obtained using our method were consistent with those of previously reported stand-alone techniques for the S and Pb isotopes of chalcopyrite, pyrite, galena, and sphalerite, thus indicating that this method is suitable for the simultaneous analysis of S and Pb isotopes of natural sulfide minerals, and provides

  18. MINORITY STRESS, POSITIVE IDENTITY DEVELOPMENT, AND DEPRESSIVE SYMPTOMS: IMPLICATIONS FOR RESILIENCE AMONG SEXUAL MINORITY MALE YOUTH

    PubMed Central

    Bruce, Douglas; Harper, Gary W.; Bauermeister, Jose A.

    2015-01-01

    Introduction Minority stress processes have been shown to have significant associations with negative mental health outcomes among sexual minority populations. Given that adversity may be experienced growing up as a sexual minority in heteronormative, if not heterosexist, environments, our research on resilience among sexual minority male youth proposes that positive identity development may buffer the effects of a range of minority stress processes. Methods An ethnically diverse sample of 200 sexual minority males ages 16–24 (mean age, 20.9 years) was recruited using mixed recruitment methods. We developed and tested two new measures: concealment stress during adolescence and sexual minority-related positive identity development. We then tested a path model that assessed the effects of minority stressors, positive identity development, and social support on major depressive symptoms. Results Experience of stigma was associated with internalized homophobia (β=.138, p<.05) and major depressive symptoms (β=1.076, OR=2.933, p<.001), and internalized homophobia partially mediated experience’s effects on major depression (β=.773, OR=2.167, p<.001). Concealment stress was associated with positive identity development (β=.155, p<.05) and internalized homophobia (β=.418, p<.001), and positive identity development partially mediated concealment stress’s effects on internalized homophobia (β=−.527, p<.001). Concealment stress demonstrated a direct effect on major depression (β=1.400, OR=4.056, p<.001), and indirect paths to social support through positive identity development. Conclusions With these results, we offer an exploratory model that empirically identifies significant paths among minority stress dimensions, positive identity development, and major depressive symptoms. This study helps further our understanding of minority stress, identity development, and resources of resilience among sexual minority male youth. PMID:26478901

  19. Tribal Minor NSR Synthetic Minor Limit Application Form in EPA's South Central Region

    EPA Pesticide Factsheets

    This Tribal Minor NSR application form should be used to notify the EPA Region 6 Tribal NSR Permitting Program of requested synthetic minor emission limits associated with a new source general application form.

  20. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  1. Comparative analysis of monoclonal antibody N-glycosylation using stable isotope labelling and UPLC-fluorescence-MS.

    PubMed

    Millán Martín, Silvia; Delporte, Cédric; Farrell, Amy; Navas Iglesias, Natalia; McLoughlin, Niaobh; Bones, Jonathan

    2015-03-07

    A twoplex method using (12)C6 and (13)C6 stable isotope analogues (Δmass = 6 Da) of 2-aminobenzoic acid (2-AA) is described for quantitative analysis of N-glycans present on monoclonal antibodies and other glycoproteins using ultra performance liquid chromatography with sequential fluorescence and accurate mass tandem quadrupole time of flight (QToF) mass spectrometric detection.

  2. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  3. Isotopic ages of rocks in the northern Front Range, Colorado

    USGS Publications Warehouse

    Wilson, Anna B.; Bryant, Bruce

    2006-01-01

    These maps, and the tables that accompany them, are a compilation of isotopic age determinations of rocks and minerals in four 1:100,000 quadrangles in the northern and central Front Range, Colorado. Phanerozoic (primarily Tertiary and Cretaceous) age data are shown on one map; Proterozoic data are on the other. A sample location map is included for ease of matching specific localities and data in the tables to the maps. Several records in the tables were not included in the maps because either there were ambiguous dates or lack of location precluded accurate plotting.

  4. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  5. Disadvantages of Minority Group Membership: The Perspective of a "Nondeprived" Minority Group

    ERIC Educational Resources Information Center

    Lavender, Abraham D.

    1975-01-01

    Utilizing a sample of Jewish undergraduate students, evidence is presented to indicate that a minority group which is not deprived materially can nonetheless perceive itself as receiving disadvantages from its minority group status. The most frequently perceived disadvantages (as well as advantages) are enumerated and discussed. (EH)

  6. Stable isotope quality assurance using the 'calibrated IRMS' strategy.

    PubMed

    Meijer, Harro A J

    2009-06-01

    Procedures in our laboratory have always been directed towards complete understanding of all processes involved and corrections needed etc., instead of relying fully on laboratory reference materials. This rather principal strategy (or attitude) is probably not optimal in the economic sense, and is not necessarily more accurate either. Still, it has proven to be very rewarding in its capability to detect caveats that go undiscovered in the standard way of measurement, but that do influence the accuracy or reliability of the measurement procedure. An additional benefit of our laboratory procedures is that it makes us capable of assisting the International Atomic Energy Agency (IAEA) with primary questions like mutual scale assignments and comparison of isotope ratios of the same isotope in different matrices (like delta(18)O in water, carbonates and atmospheric CO(2)), establishment of the (17)O-(18)O relation, and the replenishment of the calibration standards. Finally, for manual preparation systems with a low sample throughput (and thus only few reference materials analysed) it may well be the only way to produce reliable results.

  7. Top-down MALDI-in-source decay-FTICR mass spectrometry of isotopically resolved proteins.

    PubMed

    Nicolardi, Simone; Switzar, Linda; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2015-03-17

    An accurate mass measurement of a known protein provides information on potential amino acid deletions and post-translational modifications. Although this field is dominated by strategies based on electrospray ionization, mass spectrometry (MS) methods using matrix-assisted laser desorption/ionization (MALDI) have the advantage of yielding predominantly singly charged precursor ions, thus avoiding peak overlap from different charge states of multiple species. Such MALDI-MS methods require mass measurement at ultrahigh resolution, which is provided by Fourier transform ion cyclotron resonance (FTICR) mass analyzers. Recently, using a MALDI-FTICR-MS platform equipped with a 15 T magnet, we reported on the mass analysis of intact human serum peptides and small proteins with isotopic resolution up to ∼15 kDa and identified new proteoforms from an accurate measurement of mass distances. In the current study, we have used this FTICR system after an upgrade with a novel dynamically harmonized ICR cell, i.e., ParaCell, for mapping isotopically resolved intact proteins up to about 17 kDa and performed top-down MALDI in-source decay (ISD) analysis. Standard proteins myoglobin (m/z-value 16,950) and ribonuclease B (m/z-value 14,900) were measured with resolving powers of 62,000 and 61,000, respectively. Furthermore, it will be shown that (singly charged) MALDI-ISD fragment ions can be measured at isotopic resolution up to m/z-value 12,000 (e.g., resolving power 39,000 at m/z-value 12,000) providing more reliable identifications. Moreover, examples are presented of pseudo-MS(3) experiments on ISD fragment ions from RNase B by collisional-induced dissociation (CID).

  8. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury

    PubMed Central

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142

  9. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  10. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development.

    PubMed

    Pelak, Adam J; Sharma, Shikha

    2014-12-01

    Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica

    NASA Astrophysics Data System (ADS)

    Dauby, Patrick

    1989-02-01

    The Gulf of Calvi, Corsica, presents a wide diversity of biocoenoses, amongst which the seagrass Posidonia meadow is prevalent. More than 100 plant, animal and sediment samples from various biotopes were analysed for their stable carbon isotope ratios, to assess carbon flows within the food chains. Marine plants display a wide range of δ 13C values, from -6 to -32‰ but with three relatively well distinct peaks for Posidonia, brown algae and phytoplankton (-9, -19 and -23‰, respectively), which are the main carbon sources. The range of isotopic values of animals is narrower, from -14 to -24‰, suggesting that they feed mainly on algae and plankton. Computations based on simple equations show the proportion of each carbon source in the diet of the animals. Posidonia, notwithstanding their important biomass, appear to be a minor food source; this is possibly because of the transfer of their dead leaves, towards the shorelines, in winter.

  12. Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada

    PubMed Central

    Longstaffe, Fred J.; Zazula, Grant

    2018-01-01

    A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0–1 ‰) in δ13C of modern Yukon grasses. A major change (~2–10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time. PMID:29447202

  13. Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada.

    PubMed

    Tahmasebi, Farnoush; Longstaffe, Fred J; Zazula, Grant

    2018-01-01

    A magnificent repository of Late Pleistocene terrestrial megafauna fossils is contained in ice-rich loess deposits of Alaska and Yukon, collectively eastern Beringia. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen from these fossils are routinely used to determine paleodiet and reconstruct the paleoecosystem. This approach requires consideration of changes in C- and N-isotope dynamics over time and their effects on the terrestrial vegetation isotopic baseline. To test for such changes between the Late Pleistocene and modern time, we compared δ13C and δ15N for vegetation and bone collagen and structural carbonate of some modern, Yukon, arctic ground squirrels with vegetation and bones from Late Pleistocene fossil arctic ground squirrel nests preserved in Yukon loess deposits. The isotopic discrimination between arctic ground squirrel bone collagen and their diet was measured using modern samples, as were isotopic changes during plant decomposition; Over-wintering decomposition of typical vegetation following senescence resulted in a minor change (~0-1 ‰) in δ13C of modern Yukon grasses. A major change (~2-10 ‰) in δ15N was measured for decomposing Yukon grasses thinly covered by loess. As expected, the collagen-diet C-isotope discrimination measured for modern samples confirms that modern vegetation δ13C is a suitable proxy for the Late Pleistocene vegetation in Yukon Territory, after correction for the Suess effect. The N-isotope composition of vegetation from the fossil arctic ground squirrel nests, however, is determined to be ~2.8 ‰ higher than modern grasslands in the region, after correction for decomposition effects. This result suggests a change in N dynamics in this region between the Late Pleistocene and modern time.

  14. The Importance of Minority Teachers: Student Perceptions of Minority versus White Teachers

    ERIC Educational Resources Information Center

    Cherng, Hua-Yu Sebastian; Halpin, Peter F.

    2016-01-01

    The demographic divide between teachers and students is of growing public concern. However, few studies have explicitly addressed the common argument that students, and particularly minority students, have more favorable perceptions of minority versus White teachers. Using data from the Measure of Effective Teaching study, we find that students…

  15. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-05-01

    Here we explore the potential of time-series magnesium (δ26Mg) isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07 ‰ and HK3: -4.17 ± 0.15 ‰) and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: -3.96 ± 0.04 ‰) but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07 ‰; BU 4 mean δ26Mg: -4.20 ± 0.10 ‰) record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73 ‰; SPA 59: -3.70 ± 0.43 ‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several data points in the Austrian and two data points in the

  16. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-11-01

    Here we explore the potential of magnesium (δ26Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07‰ and HK3: -4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: -3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07‰; BU 4 mean δ26Mg: -4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73‰; SPA 59: -3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ26Mg values of the Austrian and two

  17. 43 CFR 3102.3 - Minors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minors. 3102.3 Section 3102.3 Public Lands... INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Qualifications of Lessees § 3102.3 Minors. Leases shall not be acquired or held by one considered a minor under the laws of the State in which the lands...

  18. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  19. Preliminary Report on U-Th-Pb Isotope Systematics of the Olivine-Phyric Shergottite Tissint

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions, and trace element abundances.. These correlations have been interpreted as indicating the presence of a reduced, incompatible-element- depleted reservoir and an oxidized, incompatible-element-rich reservoir. The former is clearly a depleted mantle source, but there has been a long debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former clearly requires the ancient martian crust to be the enriched source (crustal assimilation), whereas the latter requires a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and U-Th-Pb concentration analyses of the olivine-phyric shergottite Tissint because U-Th-Pb isotope systematics have been intensively used as a powerful radiogenic tracer to characterize old crust/sediment components in mantle- derived, terrestrial oceanic island basalts. The U-Th-Pb analyses are applied to sequential acid leaching fractions obtained from Tissint whole-rock powder in order to search for Pb isotopic source components in Tissint magma. Here we report preliminary results of the U-Th-Pb analyses of acid leachates and a residue, and propose the possibility that Tissint would have experienced minor assimilation of old martian crust.

  20. Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures

    NASA Astrophysics Data System (ADS)

    Mansor, Muammar; Harouaka, Khadouja; Gonzales, Matthew S.; Macalady, Jennifer L.; Fantle, Matthew S.

    2018-01-01

    Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ˜13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic

  1. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  2. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    USGS Publications Warehouse

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  3. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  4. Oxygen isotope ratio measurements on carbon dioxide generated by reaction of microliter quantities of biological fluids with guanidine hydrochloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.W.; Lee, L.S.; Klein, P.D.

    1987-03-01

    Guanidine hydrochloride was used to convert water in biological fluids to carbon dioxide for oxygen isotope ratio measurements. Five 10-..mu..L aliquots each of five different saliva, urine, plasma, and human milk samples were allowed to react with 100 mg of guanidine hydrochloride at 260/sup 0/C to produce ammonia and carbon dioxide. Ammonia was removed with 100% phosphoric acid and carbon dioxide was cryogenically purified before isotope ratio measurement. At natural abundances, the delta/sup 18/O values of the biological fluids were reproducible to within 0.16% (standard deviation) and accurate to within 0.11 +/- 0.73% (x vector +/- SD) of the H/submore » 2/O-CO/sub 2/ equilibration values. At a 250% enrichment level of /sup 18/O, the delta/sup 18/O values of the biological fluids were reproducible to within 0.95% and accurate to -1.27 +/- 2.25%.« less

  5. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  6. Forensic utility of the carbon isotope ratio of PVC tape backings

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    materials and recycling reactants during manufacture; as a result, tapes may be otherwise physically and chemical indistinguishable, but may have distinct carbon isotope ratios. We compared the carbon isotope ratios of 6 pairs of pre- and post-blast samples of PVC tapes adhered to explosive charges. The carbon isotope ratios of the post-blast samples were 0 to 0.5 ‰ higher than the corresponding pre-blast samples. Possible causes of this carbon isotope increase may be the reaction of the plasticizer and/or adhesive with the PVC backing during the explosion or the addition of debris to the tape backing during the explosion. Even with these minor explosive-induced carbon isotope alterations, the δ13C values of post-blast PVC tape backings were similar enough to the starting material to make carbon isotope ratios of post-blast tape a useful forensic tool. The range of carbon isotope ratios that would be used to exclude potential matches would have to be larger for post-blast samples, but with a 17 ‰ range in the population, this approach may still be useful for post-blast tape samples.

  7. The BCLA Minor: Business, Communication, and Liberal Arts Minor at Towson University

    ERIC Educational Resources Information Center

    Mahin, Linda

    2008-01-01

    In this article, the author describes a cross-disciplinary minor that combines elements of business, communication, and the liberal arts. The BCLA Minor enhances employment opportunities and cultural awareness for students with majors in the Colleges of Business and Economics, Fine Arts and Communication, and Liberal Arts by integrating the…

  8. Platinum isotopes in iron meteorites: Galactic cosmic ray effects and nucleosynthetic homogeneity in the p-process isotope 190Pt and the other platinum isotopes

    NASA Astrophysics Data System (ADS)

    Hunt, Alison C.; Ek, Mattias; Schönbächler, Maria

    2017-11-01

    Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.

  9. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  10. Ionospheric chemistry. [minor neutrals and ionized constituents of thermosphere

    NASA Technical Reports Server (NTRS)

    Torr, D. G.

    1979-01-01

    This report deals primarily with progress in the chemistry of minor neutrals and ionized constituents of the thermosphere. Significant progress was made over the last few years in quantitative studies of many chemical processes. This success was primarily due to the advent of multiparameter multisatellite programs which permitted accurate simultaneous measurements to be made of many important parameters. In many cases studies of chemical reactions were made with laboratory-like precision. Rate coefficients have been derived as functions of temperature for a number of important reactions. New information has been acquired on nearly every major process which occurs in the thermosphere, including the recombination rates of all major molecular ions, charge transfer reactions, ion atom interchange reactions, and reactions of neutral and ionized metastable atoms and molecules.

  11. Blood-specific isotopic discrimination factors in the Magellanic penguin (Spheniscus magellanicus).

    PubMed

    Ciancio, Javier E; Righi, Carina; Faiella, Adrián; Frere, Esteban

    2016-08-30

    The use of stable isotopes for ecological studies has increased exponentially in recent years. Isotopic trophic studies are based on the assumption that animals are what they eat plus a discrimination factor. The discrimination factor is affected by many variables and can be determined empirically. The Magellanic penguin is a highly abundant marine bird that plays a key role in the southern oceans. This study provides the first estimation of the Magellanic penguin blood discrimination factor for (13) C and (15) N. A two and a half month feeding experiment was performed, in which ten captive penguins were fed their main natural prey (anchovy Engraulis anchoita). The discrimination factors were estimated by comparing anchovy δ(13) C and δ(15) N values (obtained with isotope ratio mass spectrometry using lipid-extracted and bulk anchovy muscle) with penguin blood δ(13) C and δ(15) N values. Penguin blood was shown to be enriched, compared with anchovies, for (13) C and (15) N. No changes were observed in the stable isotope ratios of anchovies and discrimination factors during the experiment. The overall discrimination factors were 0.93 ± 0.12 (bulk) and 0.41 ± 0.12 (lipid-free) for (13) C; and 2.81 ± 0.17 (bulk) and 2.31 ± 0.17 (lipid-free) for (15) N. Having an accurate discrimination factor for the studied species is key in any trophic or food web isotopic study. Comparisons of estimated diet-to-blood discrimination factors with published values of aquatic piscivore birds showed that the (13) C discrimination factor is particularly variable, and therefore ecologists should be cautious when using a surrogate value from other species. In this study, the Magellanic penguin discrimination factor of a tissue that does not require euthanasia was obtained, a fundamental input for trophic isotopic modeling of the species. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope Rb 82 and its impact on dosimetry

    DOE PAGES

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; ...

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99mTc sestamibi. High-quality β-decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ-ray transitions, and the determination of many new spin assignmentsmore » through angular correlations. Lastly, these new high-quality data allow a precise reappraisal of the β-decay strength function and thus the consequent dose received by patients.« less

  13. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  14. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  15. Clumped isotope paleothermometry of eggshells as an indicator of vertebrate endothermy

    NASA Astrophysics Data System (ADS)

    Canavan, R. R.; Field, D. J.; Therrien, F.; Zelenitsky, D.; Affek, H. P.

    2014-12-01

    Isotopic analyses of the calcite or aragonite shells of aquatic organisms are often used in the study of the environmental conditions in which they grow; however, this approach is less straightforward in the terrestrial realm, where environments may be more heterogeneous. In such terrestrial localities, the bioapatite of vertebrate teeth comprises the typical archival material for isotopic analyses. The calcitic eggshells of birds and other reptiles may provide suitable material for isotopic analyses that are aimed at studying their physiology and ecology. Here we apply a novel thermometer, carbonate clumped isotopes (Δ47), to test for endothermy in extinct non-avian dinosaurs in the context provided by eggs of modern reptiles and birds. These Δ47-derived temperatures should reflect the temperature of shell formation, which in endothermic animals such as birds should represent the mother's internal body temperature. In ectothermic animals, the same is true although their body temperatures are more affected by the external environment and thus Δ47 temperatures could more accurately describe local environmental temperatures during eggshell formation. Fossil eggshells represent appropriate material for reconstructing internal body temperatures of extinct non-avian dinosaurs since they mineralized within the mother's body, and fragments of eggshell are commonly recovered from dinosaur-bearing fossil deposits. The dimensions of these fragments provide sufficient material for the relatively large sample required for clumped isotope analysis (~20mg). Fossil eggshell samples from several taxa of Late Cretaceous non-avian dinosaurs were analyzed using Δ47 paleothermometry. Textural inspection was used as a first test for diagenetic alteration of the original calcite, and histological indicators were used for broad taxonomic identifications. Preliminary results of Δ47-derived body temperature estimates from eggshells are consistent with previous body temperatures

  16. Self-Esteem Comparisons among Intellectually Gifted Minority/Non-Minority Junior High Students.

    ERIC Educational Resources Information Center

    Legin-Bucell, Cynthia; And Others

    Differences in self-esteem between 48 minority and 62 non-minority intellectually gifted and 75 intellectually average junior-high students were assessed using the Coopersmith Self-Esteem Inventory. Results indicated a higher level of self-esteem for the gifted students than for the control group. Significant differences were also found to exist…

  17. Minority stressors, rumination, and psychological distress in monozygotic twins discordant for sexual minority status.

    PubMed

    Timmins, Liam; Rimes, Katharine A; Rahman, Qazi

    2017-11-07

    Lesbian, gay, and bisexual (LGB) individuals report higher levels of depression and anxiety than heterosexual people. Genetic factors may be a 'common cause' of sexual minority status and psychological distress. Alternatively, these may be correlated because of non-genetic environmental factors (e.g. minority stressors). This study investigated minority stressors and distress in monozygotic twins discordant for sexual minority status. This design provides a test of the role of non-shared environmental factors while minimizing differences due to genetics. Thirty-eight twin pairs in which one was heterosexual and the other was LGB completed a survey. Differences between twin pairs in minority stressors, rumination, psychological distress, and gender non-conformity were examined. Associations between these variables were also tested. Although there were no significant group differences for distress, LGB twins had higher rumination, a vulnerability factor for distress, than heterosexual co-twins. LGB twins also had higher scores than heterosexual co-twins on expectations of rejection, active concealment, self-stigma, prejudice events, childhood gender non-conformity, and lower scores on sexual orientation disclosure. Differences between twin pairs in rumination were positively associated with differences in acceptance concerns and self-stigma. Finally, self-stigma was positively associated with rumination in the full sample of heterosexual co-twins and microaggressions were positively associated with rumination when looking at exclusively heterosexual co-twins. These results support environmental factors as a causal explanation for disparities in rumination between LGB and heterosexual individuals. These factors likely include minority stressors. Rumination may also be associated with minority stressors in heterosexual MZ co-twins of LGB individuals.

  18. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  19. A quantitative evaluation of spurious results in the infrared spectroscopic measurement of CO2 isotope ratios

    NASA Astrophysics Data System (ADS)

    Mansfield, C. D.; Rutt, H. N.

    2002-02-01

    The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.

  20. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li

    2015-10-01

    A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Women and Minority Scientists

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    1975-01-01

    Offers statistics on the numbers of women and members of minority groups in the sciences. Suggests if women and members of minority groups are to be encouraged to prepare for scientific careers, they must be given the same incentives as offered to men. (CP)

  2. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  3. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  4. Defining minors' abortion rights.

    PubMed

    Rhodes, A M

    1988-01-01

    The right to abortion is confirmed in the Roe versus Wade case, by the US Supreme Court. It is a fundamental right of privacy but not an absolute right, and must consider state interests. During the first trimester of pregnancy abortion is a decision of the woman and her doctor. During the second trimester of pregnancy the state may control the abortion practice to protect the mothers health, and in the last trimester, it may prohibit abortion, except in cases where the mother's life or health are in danger. The states enacted laws, including one that required parents to give written consent for a unmarried minor's abortion. This law was struck down by the US Court, but laws on notification were upheld as long as there was alternative procedures where the minor's interests are upheld. Many of these law have been challenged successfully, where the minor was judged mature and where it served her best interests. The state must enact laws on parental notification that take into consideration basic rights of the minor woman. Health professionals and workers should be aware of these laws and should encourage the minor to let parents in on the decision making process where possible.

  5. 11 CFR 110.19 - Contributions by minors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Contributions by minors. 110.19 Section 110.19... PROHIBITIONS § 110.19 Contributions by minors. An individual who is 17 years old or younger (a Minor) may make... the Minor; (b) The funds, goods, or services contributed are owned or controlled by the Minor, such as...

  6. 11 CFR 110.19 - Contributions by minors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Contributions by minors. 110.19 Section 110.19... PROHIBITIONS § 110.19 Contributions by minors. An individual who is 17 years old or younger (a Minor) may make... the Minor; (b) The funds, goods, or services contributed are owned or controlled by the Minor, such as...

  7. Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano

    USGS Publications Warehouse

    Gerlach, T.M.; Taylor, B.E.

    1990-01-01

    We examine models for batch-equilibrium and fractional-equilibrium degassing of CO2 from magma at Kilauea Volcano. The models are based on 1. (1) the concept of two-stage degassing of CO2 from magma supplied to the summit chamber, 2. (2) C isotope data for CO2 in eruptive and noneruptive (quiescent) gases from Kilauea and 3. (3) data for the isotopic fractionation of C between CO2 and C dissolved in tholeiitic basalt melt. The results of our study indicate that 1. (1) both eruptive and noneruptive degassing of CO2 most closely approach a batch equilibrium process, 2. (2) the ??13C of parental magma supplied to the summit chamber is in the range -4.1 to-3.4??? and 3. (3) the ??13C of melt after summit chamber degassing is in the range -7 to -8???, depending upon the depth of equilibration. We also present ??13C data for CO2 in eruptive gases from the current East Rift Zone eruption. These are the first C isotope data for CO2 in high-temperature (>900??C) eruptive gases from Kilauea; they have a mean ??13C value of -7.82 ?? 0.24??? and are similar to those predicted for the melt after summit chamber degassing. The minor role played by fractional degassing of ascending magma at Kilauea means that exsolved CO2 tends to remain entrained in and coherent with its host melt during ascent from both mantle source regions and crustal magma reservoirs. This has important implications for magma dynamics at Kilauea. ?? 1990.

  8. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  9. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  10. 77 FR 18685 - New Animal Drugs for Minor Use and Minor Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... HEALTH AND HUMAN SERVICES DEPARTMENT Food and Drug Administration 21 CFR Part 516 New Animal Drugs for Minor Use and Minor Species CFR Correction In Title 21 of the Code of Federal Regulations, Parts 500 to 599, revised as of April 1, 2011, on page 96, in Sec. 516.20, (b)(2) is revised to read as...

  11. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  12. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    occurring first at the level of secondary roots, and second at the level of leaves. (2) No Ca isotope difference was observed neither between old and young organs, (except for H6 leaves), nor between the two growth stages (except for H6 roots). This suggest that the mechanisms controlling isotopic fractionations of Ca within common beans do not vary during growth, and that the nutrients stored in the cotyledons have only a minor effect on the Ca isotope fractionations of plants harvested after 10 days. (3) Strongest Ca isotope fractionations were observed at the nutritive solution/root interface. This implies that the mechanisms of light isotope enrichments in the plant are mainly due to transport processes taking place at this interface. (4) The non infinite L6 nutritive solution became enriched in 44Ca during the experiment compared to the infinite L6 nutritive solution and all the other solutions (L4, H4, and H6). This enrichment can be explained by Rayleigh fractionation or isotopic equilibrium. (5) Bean organs, from L4 and non infinite L6 experiment conditions, were enriched in 44Ca compared to stems and roots cultivated under H4, H6 and infinite L6 conditions. This might be due to the limited Ca in the nutritive solutions that cause smallest Ca isotope fractionations in the bean organs. All these results show that there is no simple correlation between Ca isotopic variations, Ca content and pH of the nutrient solution, and that physiological effects have also to be involved. They confirm the potential of the Ca isotopic system for tracing biological fractionations in natural ecosystems.

  13. Photonuclear Production of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Weinandt, Nick

    2011-10-01

    Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.

  14. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  15. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  16. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    PubMed

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. FIESTA; Minority Television Programming.

    ERIC Educational Resources Information Center

    Marshall, Wes; And Others

    The suggestions for planning, running, and evaluating minority television programing presented in this handbook are based on the experience and example of the FIESTA project (Tucson, Arizona). After initiating the reader into the topic of minority programing, the document disucsses the following topics: broadcast research, origins of the FIESTA…

  18. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organicmore » carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.« less

  19. Multichoice minority game.

    PubMed

    Ein-Dor, L; Metzler, R; Kanter, I; Kinzel, W

    2001-06-01

    The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations.

  20. Minority Health and Health Disparities

    MedlinePlus

    ... Populations & Co-occurring Disorders » Minority Health and Health Disparities In this Section Underage Drinking College Drinking Women Older Adults Minority Health & Health Disparities Other Psychiatric ...

  1. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources

    USGS Publications Warehouse

    Aleinikoff, John N.; Muhs, Daniel R.; Bettis, E. Arthur; Johnson, William C.; Fanning, C. Mark; Benton, Rachel

    2008-01-01

    Pb isotope compositions of detrital K-feldspars and U-Pb ages of detrital zircons are used as indicators for determining the sources of Peoria Loess deposited during the last glacial period (late Wisconsin, ca. 25–14 ka) in Nebraska and western Iowa. Our new data indicate that only loess adjacent to the Platte River has Pb isotopic characteristics suggesting derivation from this river. Most Peoria Loess in central Nebraska (up to 20 m thick) is non-glaciogenic, on the basis of Pb isotope ratios in K-feldspars and the presence of 34-Ma detrital zircons. These isotopic characteristics suggest derivation primarily from the Oligocene White River Group in southern South Dakota, western Nebraska, southeastern Wyoming, and northeastern Colorado. The occurrence of 10–25 Ma detrital zircons suggests additional minor contributions of silt from the Oligocene-Miocene Arikaree Group and Miocene Ogallala Group. Isotopic data from detrital K-feldspar and zircon grains from Peoria Loess deposits in eastern Nebraska and western Iowa suggest that the immediate source of this loess was alluvium of the Missouri River. We conclude that this silt probably is of glaciogenic origin, primarily derived from outwash from the western margin of the Laurentide Ice Sheet. Identification of the White River Group as the main provenance of Peoria Loess of central Nebraska and the Missouri River valley as the immediate source of western Iowa Peoria Loess indicates that paleowind directions during the late Wisconsin were primarily from the northwest and west, in agreement with earlier studies of particle size and loess thickness variation. In addition, the results are in agreement with recent simulations of non-glaciogenic dust sources from linked climate-vegetation modeling, suggesting dry, windy, and minimally vegetated areas in parts of the Great Plains during the last glacial period.

  2. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2010-12-31

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  3. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  4. Mental Health and Minorities.

    ERIC Educational Resources Information Center

    Meadows, Michelle, Ed.

    1997-01-01

    This newsletter includes 12 brief articles or news items concerning mental health among minority groups. These address: (1) cultural considerations in treating Asians (reasons why Asians tend not to use mental health services); (2) coping with racial stress (responses to a questionnaire on dealing with racial stress); (3) minority health…

  5. Improving medical decisions for incapacitated persons: does focusing on "accurate predictions" lead to an inaccurate picture?

    PubMed

    Kim, Scott Y H

    2014-04-01

    The Patient Preference Predictor (PPP) proposal places a high priority on the accuracy of predicting patients' preferences and finds the performance of surrogates inadequate. However, the quest to develop a highly accurate, individualized statistical model has significant obstacles. First, it will be impossible to validate the PPP beyond the limit imposed by 60%-80% reliability of people's preferences for future medical decisions--a figure no better than the known average accuracy of surrogates. Second, evidence supports the view that a sizable minority of persons may not even have preferences to predict. Third, many, perhaps most, people express their autonomy just as much by entrusting their loved ones to exercise their judgment than by desiring to specifically control future decisions. Surrogate decision making faces none of these issues and, in fact, it may be more efficient, accurate, and authoritative than is commonly assumed.

  6. The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.

    2004-12-01

    Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding

  7. Evidence for only minor contributions from bacteria to sedimentary organic carbon

    NASA Technical Reports Server (NTRS)

    Hartgers, W. A.; Sinninghe Damste, J. S.; Requejo, A. G.; Allan, J.; Hayes, J. M.; de Leeuw, J. W.

    1994-01-01

    Because their molecular signatures are often prominent in extracts of sediments, bacteria are thought to be important contributors to petroleum source beds. It has been shown recently, however, that abundances of biomarkers do not always reflect relative contributions to sedimentary organic carbon (Corg). The contribution of photosynthetic green sulphur bacteria to sediments can be assessed effectively because the diagenetic products of distinctive carotenoids from these organisms occur widely and their biomass is isotopically labelled, being enriched in 13C. We show here that, although sediments and oils from the Western Canada and Williston basins contain prominent biomarkers of photosynthetic bacteria, the absence of 13C enrichment in the total Corg requires that the bacterial contribution is in fact minimal. Although the importance of bacterial reworking of sedimentary debris cannot be doubted, we argue that our findings, when considered in conjunction with those from other settings, suggest that bacterial biomass may commonly represent only a minor component of total Corg in carbonaceous rocks.

  8. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    PubMed

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  9. Faster Parameterized Algorithms for Minor Containment

    NASA Astrophysics Data System (ADS)

    Adler, Isolde; Dorn, Frederic; Fomin, Fedor V.; Sau, Ignasi; Thilikos, Dimitrios M.

    The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour's theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time O(3^{k^2}\\cdot (h+k-1)!\\cdot m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J'CTSB 95]. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time O(2^{(2k +1 )\\cdot log k} \\cdot h^{2k} \\cdot 2^{2h^2} \\cdot m). Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time 2^{O(k)} \\cdot h^{2k} \\cdot 2^{O(h)} \\cdot n, with n = |V(G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment.

  10. Minor elements in Keweenawan lavas, Michigan

    USGS Publications Warehouse

    Cornwall, H.R.; Rose, H.J.

    1957-01-01

    The distribution of minor elements in three basaltic flows of the Keweenawan series, of Michigan, is related to differentiation in the flows. Thus, nickel is most abundant in the early differentiates; nickel, chromium, and barium are generally deficient in the pegmatites, which formed late; whereas copper, vanadium, yttrium, and other minor elements are concentrated in the pegmatites. The minor-element content of individual minerals in the Greenstone flow varies markedly from one mineral to another and seems to depend primarily on the presence or absence in the minerals of major elements for which the minor elements can substitute. Minor elements have substituted most readily for those major elements with similar ionic radii. Valence and electronegativity also seem to influence the ease of substitution. The distribution of other minor elements in copper-bearing lodes of the Michigan copper district shows no apparent relation to copper mineralization. ?? 1957.

  11. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  12. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions.

    PubMed

    Coughlin, Justin G; Yu, Zhongjie; Elliott, Emily M

    2017-07-30

    Nitrogen oxides or NO x (NO x = NO + NO 2 ) play an important role in air quality, atmospheric chemistry, and climate. The isotopic compositions of anthropogenic and natural NO 2 sources are wide-ranging, and they can be used to constrain sources of ambient NO 2 and associated atmospheric deposition of nitrogen compounds. While passive sample collection of NO 2 isotopes has been used in field studies to determine NO x source influences on atmospheric deposition, this approach has not been evaluated for accuracy or precision under different environmental conditions. The efficacy of NO 2 passive sampler collection for NO 2 isotopes was evaluated under varied temperature and relative humidity (RH) conditions in a dynamic flux chamber. The precision and accuracy of the filter NO 2 collection as nitrite (NO 2 - ) for isotopic analysis were determined using a reference NO 2 gas tank and through inter-calibration with a modified EPA Method 7. The bacterial denitrifer method was used to convert 20 μM of collected NO 2 - or nitrate (NO 3 - ) into N 2 O and was carried out on an Isoprime continuous flow isotope ratio mass spectrometer. δ 15 N-NO 2 values determined from passive NO 2 collection, in conditions of 11-34 °C, 1-78% RH, have an overall accuracy and precision of ±2.1 ‰, and individual run precision of ±0.6 ‰. δ 18 O-NO 2 values obtained from passive NO 2 sampler collection, under the same conditions, have an overall precision of ± 1.3 ‰. Suitable conditions for passive sampler collection of NO 2 isotopes are in environments ranging from 11 to 34 °C and 1 to 78% RH. The passive NO 2 isotope measurement technique provides an accurate method to determine variations in atmospheric δ 15 N-NO 2 values and a precise method for determining atmospheric δ 18 O-NO 2 values. The ability to measure NO 2 isotopes over spatial gradients at the same temporal resolution provides a unique perspective on the extent and seasonality of fluctuations in atmospheric NO 2

  13. Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.

    1992-01-01

    The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate

  14. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS.

    PubMed

    Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann

    2015-03-03

    A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.

  15. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  16. β-decay half-lives of new neutron-rich rare-earth isotopes 159Pm,162Sm, and 166Gd

    NASA Astrophysics Data System (ADS)

    Ichikawa, S.; Asai, M.; Tsukada, K.; Haba, H.; Nagame, Y.; Shibata, M.; Sakama, M.; Kojima, Y.

    2005-06-01

    The new neutron-rich rare-earth isotopes 159Pm, 162Sm, and 166Gd produced in the proton-induced fission of 238U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives of 159Pm, 162Sm, and 166Gd were determined to be 1.5 ± 0.2, 2.4 ± 0.5, and 4.8 ± 1.0 s respectively. The partial decay scheme of 166Gd was constructed from γγ-coincidence data. A more accurate half-life value of 25.6 ± 2.2 s was obtained for the previously identified isotope 166Tb. The half-lives measured in the present study are in good agreement with the theoretical predictions calculated by the second generation of the gross theory with the atomic masses evaluated by Audi and Wapstra.

  17. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  18. 7 CFR 1753.80 - Minor construction procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Minor construction procedure. 1753.80 Section 1753.80... AGRICULTURE TELECOMMUNICATIONS SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Minor Construction § 1753.80 Minor construction procedure. (a) If the borrower performs minor construction financed with loan funds, the borrower...

  19. 7 CFR 1753.82 - Minor construction closeout.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Minor construction closeout. 1753.82 Section 1753.82... AGRICULTURE TELECOMMUNICATIONS SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Minor Construction § 1753.82 Minor construction closeout. (a) For minor construction inspected by the borrower's engineer, an original and two...

  20. 7 CFR 1753.82 - Minor construction closeout.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Minor construction closeout. 1753.82 Section 1753.82... AGRICULTURE TELECOMMUNICATIONS SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Minor Construction § 1753.82 Minor construction closeout. (a) For minor construction inspected by the borrower's engineer, an original and two...

  1. The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward

    2005-06-01

    Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.

  2. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    PubMed

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  3. Isotopic tracking of Hanford 300 area derived uranium in the Columbia River.

    PubMed

    Christensen, John N; Dresel, P Evan; Conrad, Mark E; Patton, Gregory W; DePaolo, Donald J

    2010-12-01

    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area and to follow that U downriver to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low level of Hanford-derived U can be discerned, despite dilution to <1% of natural background U, 400 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern or insignificant relative to natural uranium background in the Columbia River.

  4. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  5. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  6. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  7. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  8. Language, Ethnicity and Education: Case Studies on Immigrant Minority Groups and Immigrant Minority Languages. Multilingual Matters 111.

    ERIC Educational Resources Information Center

    Broeder, Peter; Extra, Guus

    Immigrant minority groups and immigrant minority languages in Europe are viewed from three perspectives (demographic, sociolinguistic, and educational) through case studies. The first part, using a demographic approach, includes research on immigrant minority groups in population statistics of both European Union and English-dominant countries…

  9. How minority members' perceptions of majority members' acculturation preferences shape minority members' own acculturation preferences: evidence from Chile.

    PubMed

    Zagefka, Hanna; González, Roberto; Brown, Rupert

    2011-06-01

    Two survey studies were conducted in Chile with members of the indigenous minority group Mapuche (Ns = 566; 394). The aim was to find predictors of minority members' acculturation preferences, especially integration. It was hypothesized that minority members' preferences would depend on their perceptions of what majority members want. Specifically, it was predicted that a perception that majority members want minority members to maintain their original culture would be associated with a greater desire for culture maintenance among minority participants. Further, it was predicted that a perception that majority members want intergroup contact would be associated with a greater desire for contact among minority participants. Finally, it was predicted that a perception that majority members are in favour of both culture maintenance and contact (i.e., integration) would be associated with more support for integration among minority participants. Results bore out these predictions. Theoretical and policy implications are discussed. ©2010 The British Psychological Society.

  10. 11 CFR 9002.7 - Minor party.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Minor party. 9002.7 Section 9002.7 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: GENERAL ELECTION FINANCING DEFINITIONS § 9002.7 Minor party. Minor party means a political party whose candidate for the office of...

  11. 11 CFR 9002.7 - Minor party.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Minor party. 9002.7 Section 9002.7 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: GENERAL ELECTION FINANCING DEFINITIONS § 9002.7 Minor party. Minor party means a political party whose candidate for the office of...

  12. Assessing Cigarette Sales Rates to Minors.

    ERIC Educational Resources Information Center

    Jason, Leonard A.; And Others

    1992-01-01

    Interviews with 24 adolescents, observation of minors using cigarette vending machines, and studies of the attempts of 20 minors to purchase cigarettes over the counter all confirm that it is easy for minors to gain access to cigarettes in Chicago (Illinois). Implications for tobacco purchase laws are discussed. (SLD)

  13. The Vocational Rehabilitation of Minorities [and] Reactions.

    ERIC Educational Resources Information Center

    Giles, Frank L.; And Others

    This paper addresses problems encountered by minorities in accessing the state/federal vocational rehabilitation (VR) system, how minorities have fared in the system, the lack of trained minorities in the VR counseling profession, and a comparison of private-for-profit and state/federal VR programs. Minorities considered include Blacks, Hispanic…

  14. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records.

    PubMed

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-18

    Atmospheric methane (CH 4 ) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ 13 CH 4 and δD(CH 4 )] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH 4 ) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH 4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  15. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-01

    Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  16. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    PubMed

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  17. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    NASA Astrophysics Data System (ADS)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  18. Diet-to-female and female-to-pup isotopic discrimination in South American sea lions.

    PubMed

    Drago, Massimiliano; Franco-Trecu, Valentina; Cardona, Luis; Inchausti, Pablo

    2015-08-30

    The use of accurate, species-specific diet-tissue discrimination factors is a critical requirement when applying stable isotope mixing models to predict consumer diet composition. Thus, diet-to-female and female-to-pup isotopic discrimination factors in several tissues for both captive and wild South American sea lions were estimated to provide appropriate values for quantifying feeding preferences at different timescales in the wild populations of this species. Stable carbon and nitrogen isotope ratios in the blood components of two female-pup pairs and females' prey muscle from captive individuals were determined by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) to calculate the respective isotopic discrimination factors. The same analysis was carried out in both blood components, and skin and hair tissues for eight female-pup pairs from wild individuals. Mean diet-to-female Δ(13) C and Δ(15) N values were higher than the female-to-pup ones. Pup tissues were more (15) N-enriched than their mothers but (13) C-depleted in serum and plasma tissues. In most of the tissue comparisons, we found differences in both Δ(15) N and Δ(13) C values, supporting tissue-specific discrimination. We found no differences between captive and wild female-to-pup discrimination factors either in Δ(13) C or Δ(15) N values of blood components. Only the stable isotope ratios in pup blood are good proxies of the individual lactating females. Thus, we suggest that blood components are more appropriate to quantify the feeding habits of wild individuals of this species. Furthermore, because female-to-pup discrimination factors for blood components did not differ between captive and wild individuals, we suggest that results for captive experiments can be extrapolated to wild South American sea lion populations. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Pb isotopes of Gorgona Island (Colombia): isotopic variations correlated with magma type

    NASA Astrophysics Data System (ADS)

    Dupré, B.; Echeverría, L. M.

    1984-02-01

    Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8 × 2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios ( 206Pb/ 204Pb˜ 19.75 ) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle source regions, and by mixing or contamination between them.

  20. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  1. 14 CFR 152.419 - Minority business.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Minority business. 152.419 Section 152.419... AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.419 Minority business. Each person subject to this subpart is required to comply with the Minority Business Enterprise Regulations of the...

  2. 14 CFR 152.419 - Minority business.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Minority business. 152.419 Section 152.419... AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.419 Minority business. Each person subject to this subpart is required to comply with the Minority Business Enterprise Regulations of the...

  3. 14 CFR 152.419 - Minority business.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Minority business. 152.419 Section 152.419... AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.419 Minority business. Each person subject to this subpart is required to comply with the Minority Business Enterprise Regulations of the...

  4. 14 CFR 152.419 - Minority business.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Minority business. 152.419 Section 152.419... AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.419 Minority business. Each person subject to this subpart is required to comply with the Minority Business Enterprise Regulations of the...

  5. 14 CFR 152.419 - Minority business.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Minority business. 152.419 Section 152.419... AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.419 Minority business. Each person subject to this subpart is required to comply with the Minority Business Enterprise Regulations of the...

  6. 12 CFR 217.21 - Minority interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Minority interest. 217.21 Section 217.21 Banks... OF BOARD-REGULATED INSTITUTIONS Definition of Capital § 217.21 Minority interest. (a) Applicability. For purposes of § 217.20, a Board-regulated institution is subject to the minority interest...

  7. 12 CFR 324.21 - Minority interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Minority interest. 324.21 Section 324.21 Banks... ADEQUACY OF FDIC-SUPERVISED INSTITUTIONS Definition of Capital § 324.21 Minority interest. (a) Applicability. For purposes of § 324.20, an FDIC-supervised institution is subject to the minority interest...

  8. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  9. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results

    PubMed Central

    Tonyushkina, Ksenia; Nichols, James H.

    2009-01-01

    Glucose meters are universally utilized in the management of hypoglycemic and hyperglycemic disorders in a variety of healthcare settings. Establishing the accuracy of glucose meters, however, is challenging. Glucose meters can only analyze whole blood, and glucose is unstable in whole blood. Technical accuracy is defined as the closeness of agreement between a test result and the true value of that analyte. Truth for glucose is analysis by isotope dilution mass spectrometry, and frozen serum standards analyzed by this method are available from the National Institute of Standards and Technology. Truth for whole blood has not been established, and cells must be separated from the whole blood matrix before analysis by a method like isotope dilution mass spectrometry. Serum cannot be analyzed by glucose meters, and isotope dilution mass spectrometry is not commonly available in most hospitals and diabetes clinics to evaluate glucose meter accuracy. Consensus standards recommend comparing whole blood analysis on a glucose meter against plasma/serum centrifuged from a capillary specimen and analyzed by a clinical laboratory comparative method. Yet capillary samples may not provide sufficient volume to test by both methods, and venous samples may be used as an alternative when differences between venous and capillary blood are considered. There are thus multiple complexities involved in defining technical accuracy and no clear consensus among standards agencies and professional societies on accuracy criteria. Clinicians, however, are more concerned with clinical agreement of the glucose meter with a serum/plasma laboratory result. Acceptance criteria for clinical agreement vary across the range of glucose concentrations and depend on how the result will be used in screening or management of the patient. A variety of factors can affect glucose meter results, including operator technique, environmental exposure, and patient factors, such as medication, oxygen therapy

  10. Minor burn - first aid - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100213.htm Minor burn - first aid - series—Procedure, part 1 To use ... out of 2 Overview To treat a minor burn, run cool water over the area of the ...

  11. Gleanings: The Minority Student Success Project.

    ERIC Educational Resources Information Center

    Smith, Barbara Leigh; MacGregor, Jean

    The Minority Student Success Project (MSSP) initiated in 1989 was designed to improve the recruitment and retention of minority students on campuses in the state of Washington. The results of a questionnaire on minority students administered to all of Washington's community colleges, and data from follow-up interviews, were used to design working…

  12. 7 CFR 795.12 - Minor children.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Minor children. 795.12 Section 795.12 Agriculture... PROVISIONS COMMON TO MORE THAN ONE PROGRAM PAYMENT LIMITATION General § 795.12 Minor children. (a) A minor child and his parents or guardian (or other person responsible for him) shall be considered as one...

  13. 7 CFR 795.12 - Minor children.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Minor children. 795.12 Section 795.12 Agriculture... PROVISIONS COMMON TO MORE THAN ONE PROGRAM PAYMENT LIMITATION General § 795.12 Minor children. (a) A minor child and his parents or guardian (or other person responsible for him) shall be considered as one...

  14. 7 CFR 795.12 - Minor children.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Minor children. 795.12 Section 795.12 Agriculture... PROVISIONS COMMON TO MORE THAN ONE PROGRAM PAYMENT LIMITATION General § 795.12 Minor children. (a) A minor child and his parents or guardian (or other person responsible for him) shall be considered as one...

  15. 7 CFR 795.12 - Minor children.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Minor children. 795.12 Section 795.12 Agriculture... PROVISIONS COMMON TO MORE THAN ONE PROGRAM PAYMENT LIMITATION General § 795.12 Minor children. (a) A minor child and his parents or guardian (or other person responsible for him) shall be considered as one...

  16. 7 CFR 795.12 - Minor children.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Minor children. 795.12 Section 795.12 Agriculture... PROVISIONS COMMON TO MORE THAN ONE PROGRAM PAYMENT LIMITATION General § 795.12 Minor children. (a) A minor child and his parents or guardian (or other person responsible for him) shall be considered as one...

  17. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  18. 31 CFR 360.62 - Payment to minor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Payment to minor. 360.62 Section 360... BONDS, SERIES I Minors, Incompetents, Aged Persons, Absentees, et al. § 360.62 Payment to minor. If the owner of a savings bond is a minor and the form of registration does not indicate that there is a...

  19. 31 CFR 360.62 - Payment to minor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment to minor. 360.62 Section 360... BONDS, SERIES I Minors, Incompetents, Aged Persons, Absentees, et al. § 360.62 Payment to minor. If the owner of a savings bond is a minor and the form of registration does not indicate that there is a...

  20. 31 CFR 353.62 - Payment to minors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment to minors. 353.62 Section 353... BONDS, SERIES EE AND HH Minors, Incompetents, Aged Persons, Absentees, et al. § 353.62 Payment to minors. If the owner of a savings bond is a minor and the form of registration does not indicate that there...

  1. 31 CFR 353.62 - Payment to minors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Payment to minors. 353.62 Section 353... BONDS, SERIES EE AND HH Minors, Incompetents, Aged Persons, Absentees, et al. § 353.62 Payment to minors. If the owner of a savings bond is a minor and the form of registration does not indicate that there...

  2. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  3. Minorities in the Labor Market. Volume III: Metropolitan and Regional Inequalities Among Minorities in the Labor Market.

    ERIC Educational Resources Information Center

    Wilber, George L.; Hagan, Robert J.

    Data are presented on the employment inequalities among color-ethnic minorities in major regions and metropolitan areas in the U.S. Achievements of minorities are summarized in brief profiles of each of eight ethnic minorities. Emphasis is placed on their labor force participation, employment, occupational achievement, mobility, weeks worked, and…

  4. 25 CFR 213.11 - Minor lessors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Minor lessors. 213.11 Section 213.11 Indians BUREAU OF... FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING How to Acquire Leases § 213.11 Minor lessors. Where the lessor is a minor, certified copies of letters of guardianship and court orders approving leases must be...

  5. 25 CFR 213.11 - Minor lessors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Minor lessors. 213.11 Section 213.11 Indians BUREAU OF... FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING How to Acquire Leases § 213.11 Minor lessors. Where the lessor is a minor, certified copies of letters of guardianship and court orders approving leases must be...

  6. 29 CFR 780.320 - Nonlocal minors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Nonlocal minors. 780.320 Section 780.320 Labor Regulations... Provisions § 780.320 Nonlocal minors. The exemption applies only to migrant or other than local hand harvest... specified minors who work for short periods of several days or weeks without returning daily to their homes...

  7. Paragenetic and minor- and trace-element studies of Mississippi Valley-type ore deposits of the Silesian-Cracow district, Poland

    USGS Publications Warehouse

    Viets, J.G.; Leach, D.L.; Lichte, F.E.; Hopkins, R.T.; Gent, C.A.; Powell, J.W.

    1996-01-01

    Paragenetic and minor- and trace-element studies were conducted on samples of epigenetic ore and gangue minerals collected from mines and drill core in the Silesian-Cracow (S-C) district of southern Poland. Four discrete mineral suites representing four mineralizing stages can be identified throughout the district. The earliest epigenetic minerals deposited during stage 1 consist of a late dolomite cement together with minor pyrite and marcasite. Stage 2 was the first ore-forming stage and included repetitive deposition of sphalerite and galena in a variety of morphologies. Stage 3 abruptly followed the first ore stage and deposited marcasite and pyrite with variable amounts of late sphalerite and galena. In the samples studied, minerals deposited during stage 3 are predominately marcasite-pyrite with minor sphalerite and galena in the Pomorzany and Olkusz mines, whereas, at the Trzebionka mine, stage 3 mineralization deposited mostly galena and sphalerite with little marcasite or pyrite. Stage 4 minerals include contains barite, followed by calcite, with very minor pyrite and a rare, late granular sphalerite. Compared to other major Mississippi Valley-type (MVT) districts of the world, the Silesian-Cracow district contains sphalerite with the second largest range in Ag concentrations and the largest range in Fe and Cd concentrations of any district. Unlike in other districts, very wide ranges in minor- and trace-element concentrations are also observed in paragenetically equivalent samples collected throughout the district. This wide range indicates that the minor- and trace-element content of the ore-forming environment was highly variable, both spatially and temporally, and suggests that the hydrologic system that the ore fluids traversed from their basinal source was very complex. Throughout the district, a significant increase in Tl, Ge, and As concentrations is accompanied by a lightening of sulfur isotopes between stage 2 and stage 3 minerals. This change

  8. New method for GC/FID and GC-C-IRMS Analysis of plasma free fatty acid concentration and isotopic enrichment

    PubMed Central

    Kangani, Cyrous O.; Kelley, David E.; DeLany, James P.

    2008-01-01

    A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards free fatty acids so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methylester derivative after thin-layer chromatography. The [13C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF3/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry. PMID:18757250

  9. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment.

    PubMed

    Kangani, Cyrous O; Kelley, David E; Delany, James P

    2008-09-15

    A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids (FFAs) in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards FFAs so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methyl ester derivative after thin-layer chromatography. The [(13)C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF(3)/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry.

  10. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  11. An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells

    PubMed Central

    Argus, Joseph P.; Yu, Amy K.; Wang, Eric S.; Williams, Kevin J.; Bensinger, Steven J.

    2017-01-01

    Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. PMID:27974366

  12. Carbon Kinetic Isotope Effects in the Oxidation of Atmospheric Alkane and Aromatic Hydrocarbons by Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Thompson, A. E.; Rudolph, J.; Huang, L.

    2001-12-01

    To interpret measurements of stable carbon isotope ratios of ambient NMHC, we need to understand the isotopic composition of the emissions, and the isotope fractionation associated with the removal of NMHC from the atmosphere. Oxidation by OH-radicals is by far the most important atmospheric process for removal of NMHC. In this presentation measurements of the kinetic isotope effects (KIEs) for the reactions of hydroxyl radicals with several C5-C8 alkanes, including cyclic, branched and straight-chain alkanes, as well as C6-C9 aromatics are presented. All KIEs are positive: compounds containing only 12C atoms react faster than 13C labelled compounds. KIEs for light n-alkanes are typically between 1.5-4‰ and are larger than mass dependent collision frequencies, deviating from the collision frequency as carbon number increases. For n-alkanes there is no statistically significant difference between the KIEs of structural isomers. KIEs for the reactions of light alkenes and aromatics with OH-radicals are considerably higher than for alkane reactions, ranging from 3-18‰ . The KIEs for the aromatic reactions can be described by a 33.3+/-2.0‰ fractionation for the addition of an OH-radical to the aromatic ring and an inverse dependency on the number of carbon atoms, added to the mass dependent collision frequency. There are indications for minor structure specific effects, however the deviations from the idealised inverse carbon number dependence is relatively small and the limited number of studied alkyl benzenes does not yet allow the identification of systematic dependencies.

  13. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Saylor, Joel E.; Garzione, Carmala N.; Leier, Andrew; Sundell, Kurt E.

    2016-12-01

    Environmental parameters that influence the isotopic composition of meteoric water (δ18O and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in δ18O of stream water west of the Eastern Cordillera (∼1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative δ18O values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in δ18O on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to

  14. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  15. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  16. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  17. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  18. America's Minorities--The Demographics of Diversity.

    ERIC Educational Resources Information Center

    O'Hare, William P.

    1992-01-01

    The four largest racial and ethnic minorities--African Americans, Hispanics, Asians/Pacific Islanders, and American Indians--accounted for 25 percent of the U.S. population in 1992. By 2050, these minorities may account for 47 percent of the U.S. population. The U.S. minority population is also becoming more diverse because of high rates of…

  19. 12 CFR 3.21 - Minority interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Minority interest. 3.21 Section 3.21 Banks and... Capital § 3.21 Minority interest. (a) Applicability. For purposes of § 3.20, a national bank or Federal savings association is subject to the minority interest limitations in this section if: (1) A consolidated...

  20. 40 CFR 49.158 - Synthetic minor source permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Synthetic minor source permits. 49.158... Federal Minor New Source Review Program in Indian Country § 49.158 Synthetic minor source permits. You may obtain a synthetic minor source permit under this program to establish a synthetic minor source for...