Accurate numerical solutions of conservative nonlinear oscillators
NASA Astrophysics Data System (ADS)
Khan, Najeeb Alam; Nasir Uddin, Khan; Nadeem Alam, Khan
2014-12-01
The objective of this paper is to present an investigation to analyze the vibration of a conservative nonlinear oscillator in the form u" + lambda u + u^(2n-1) + (1 + epsilon^2 u^(4m))^(1/2) = 0 for any arbitrary power of n and m. This method converts the differential equation to sets of algebraic equations and solve numerically. We have presented for three different cases: a higher order Duffing equation, an equation with irrational restoring force and a plasma physics equation. It is also found that the method is valid for any arbitrary order of n and m. Comparisons have been made with the results found in the literature the method gives accurate results.
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1975-01-01
The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.
Accurate stress resultants equations for laminated composite deep thick shells
Qatu, M.S.
1995-11-01
This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.
Accurate complex scaling of three dimensional numerical potentials
Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan; Deutsch, Thierry
2013-05-28
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.
Results from Numerical General Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.
2011-01-01
For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.
Numerical simulations of catastrophic disruption: Recent results
NASA Technical Reports Server (NTRS)
Benz, W.; Asphaug, E.; Ryan, E. V.
1994-01-01
Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Fast and Accurate Learning When Making Discrete Numerical Estimates
Sanborn, Adam N.; Beierholm, Ulrik R.
2016-01-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques
Petersen, Richard C.
2014-01-01
Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms
The development of accurate and efficient methods of numerical quadrature
NASA Technical Reports Server (NTRS)
Feagin, T.
1973-01-01
Some new methods for performing numerical quadrature of an integrable function over a finite interval are described. Each method provides a sequence of approximations of increasing order to the value of the integral. Each approximation makes use of all previously computed values of the integrand. The points at which new values of the integrand are computed are selected in such a way that the order of the approximation is maximized. The methods are compared with the quadrature methods of Clenshaw and Curtis, Gauss, Patterson, and Romberg using several examples.
Accurate numerical solution of compressible, linear stability equations
NASA Technical Reports Server (NTRS)
Malik, M. R.; Chuang, S.; Hussaini, M. Y.
1982-01-01
The present investigation is concerned with a fourth order accurate finite difference method and its application to the study of the temporal and spatial stability of the three-dimensional compressible boundary layer flow on a swept wing. This method belongs to the class of compact two-point difference schemes discussed by White (1974) and Keller (1974). The method was apparently first used for solving the two-dimensional boundary layer equations. Attention is given to the governing equations, the solution technique, and the search for eigenvalues. A general purpose subroutine is employed for solving a block tridiagonal system of equations. The computer time can be reduced significantly by exploiting the special structure of two matrices.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.
2000-01-01
The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
Efficient and accurate numerical methods for the Klein-Gordon-Schroedinger equations
Bao, Weizhu . E-mail: bao@math.nus.edu.sg; Yang, Li . E-mail: yangli@nus.edu.sg
2007-08-10
In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein-Gordon-Schroedinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schroedinger-type equation in KGS (ii) the utilization of Fourier pseudospectral discretization for spatial derivatives in the Klein-Gordon equation in KGS (iii) the adoption of solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear terms for time derivatives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as well as dynamics of a 2D problem in KGS.
Accurate Navier-Stokes results for the hypersonic flow over a spherical nosetip
Blottner, F.G.
1989-01-01
The unsteady thin-layer Navier-Stokes equations for a perfect gas are solved with a linearized block Alternating Direction Implicit finite-difference solution procedure. Solution errors due to numerical dissipation added to the governing equations are evaluated. Errors in the numerical predictions on three different grids are determined where Richardson extrapolation is used to estimate the exact solution. Accurate computational results are tabulated for the hypersonic laminar flow over a spherical body which can be used as a benchmark test case. Predictions obtained from the code are in good agreement with inviscid numerical results and experimental data. 9 refs., 11 figs., 3 tabs.
Recommendations for accurate numerical blood flow simulations of stented intracranial aneurysms.
Janiga, Gábor; Berg, Philipp; Beuing, Oliver; Neugebauer, Mathias; Gasteiger, Rocco; Preim, Bernhard; Rose, Georg; Skalej, Martin; Thévenin, Dominique
2013-06-01
The number of scientific publications dealing with stented intracranial aneurysms is rapidly increasing. Powerful computational facilities are now available; an accurate computational modeling of hemodynamics in patient-specific configurations is, however, still being sought. Furthermore, there is still no general agreement on the quantities that should be computed and on the most adequate analysis for intervention support. In this article, the accurate representation of patient geometry is first discussed, involving successive improvements. Concerning the second step, the mesh required for the numerical simulation is especially challenging when deploying a stent with very fine wire structures. Third, the description of the fluid properties is a major challenge. Finally, a founded quantitative analysis of the simulation results is obviously needed to support interventional decisions. In the present work, an attempt has been made to review the most important steps for a high-quality computational fluid dynamics computation of virtually stented intracranial aneurysms. In consequence, this leads to concrete recommendations, whereby the obtained results are not discussed for their medical relevance but for the evaluation of their quality. This investigation might hopefully be helpful for further studies considering stent deployment in patient-specific geometries, in particular regarding the generation of the most appropriate computational model. PMID:23729530
Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release
NASA Astrophysics Data System (ADS)
Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.
2016-09-01
The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.
Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods
NASA Astrophysics Data System (ADS)
Kozdon, J. E.; Wilcox, L.
2013-12-01
Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.
Numerical taxonomy on data: Experimental results
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
Numerical Simulation of the 2004 Indian Ocean Tsunami: Accurate Flooding and drying in Banda Aceh
NASA Astrophysics Data System (ADS)
Cui, Haiyang; Pietrzak, Julie; Stelling, Guus; Androsov, Alexey; Harig, Sven
2010-05-01
The Indian Ocean Tsunami on December 26, 2004 caused one of the largest tsunamis in recent times and led to widespread devastation and loss of life. One of the worst hit regions was Banda Aceh, which is the capital of the Aceh province, located in the northern part of Sumatra, 150km from the source of the earthquake. A German-Indonesian Tsunami Early Warning System (GITEWS) (www.gitews.de) is currently under active development. The work presented here is carried out within the GITEWS framework. One of the aims of this project is the development of accurate models with which to simulate the propagation, flooding and drying, and run-up of a tsunami. In this context, TsunAWI has been developed by the Alfred Wegener Institute; it is an explicit, () finite element model. However, the accurate numerical simulation of flooding and drying requires the conservation of mass and momentum. This is not possible in the current version of TsunAWi. The P1NC - P1element guarantees mass conservation in a global sense, yet as we show here it is important to guarantee mass conservation at the local level, that is within each individual cell. Here an unstructured grid, finite volume ocean model is presented. It is derived from the P1NC - P1 element, and is shown to be mass and momentum conserving. Then a number of simulations are presented, including dam break problems flooding over both a wet and a dry bed. Excellent agreement is found. Then we present simulations for Banda Aceh, and compare the results to on-site survey data, as well as to results from the original TsunAWI code.
Orbital Advection by Interpolation: A Fast and Accurate Numerical Scheme for Super-Fast MHD Flows
Johnson, B M; Guan, X; Gammie, F
2008-04-11
In numerical models of thin astrophysical disks that use an Eulerian scheme, gas orbits supersonically through a fixed grid. As a result the timestep is sharply limited by the Courant condition. Also, because the mean flow speed with respect to the grid varies with position, the truncation error varies systematically with position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO has been developed that advects the gas along its mean orbit using a separate interpolation substep. This relaxes the constraint imposed by the Courant condition, which now depends only on the peculiar velocity of the gas, and results in a truncation error that is more nearly independent of position. This paper describes a FARGO-like algorithm suitable for evolving magnetized disks. Our method is second order accurate on a smooth flow and preserves {del} {center_dot} B = 0 to machine precision. The main restriction is that B must be discretized on a staggered mesh. We give a detailed description of an implementation of the code and demonstrate that it produces the expected results on linear and nonlinear problems. We also point out how the scheme might be generalized to make the integration of other supersonic/super-fast flows more efficient. Although our scheme reduces the variation of truncation error with position, it does not eliminate it. We show that the residual position dependence leads to characteristic radial variations in the density over long integrations.
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Accurate Analytic Results for the Steady State Distribution of the Eigen Model
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun
2016-04-01
Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.
Seth A Veitzer
2008-10-21
Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of
Takahashi, F; Endo, A
2007-01-01
A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure. PMID:17510203
A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Yousefi, Hossein; Delkhosh, Mehdi; Ghaderi, Amin
2016-07-01
In this paper, a new algorithm based on the fractional order of rational Euler functions (FRE) is introduced to study the Thomas-Fermi (TF) model which is a nonlinear singular ordinary differential equation on a semi-infinite interval. This problem, using the quasilinearization method (QLM), converts to the sequence of linear ordinary differential equations to obtain the solution. For the first time, the rational Euler (RE) and the FRE have been made based on Euler polynomials. In addition, the equation will be solved on a semi-infinite domain without truncating it to a finite domain by taking FRE as basic functions for the collocation method. This method reduces the solution of this problem to the solution of a system of algebraic equations. We demonstrated that the new proposed algorithm is efficient for obtaining the value of y'(0) , y(x) and y'(x) . Comparison with some numerical and analytical solutions shows that the present solution is highly accurate.
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979
Meek, Garrett A; Levine, Benjamin G
2014-07-01
Spikes in the time-derivative coupling (TDC) near surface crossings make the accurate integration of the time-dependent Schrödinger equation in nonadiabatic molecular dynamics simulations a challenge. To address this issue, we present an approximation to the TDC based on a norm-preserving interpolation (NPI) of the adiabatic electronic wave functions within each time step. We apply NPI and two other schemes for computing the TDC in numerical simulations of the Landau-Zener model, comparing the simulated transfer probabilities to the exact solution. Though NPI does not require the analytical calculation of nonadiabatic coupling matrix elements, it consistently yields unsigned population transfer probability errors of ∼0.001, whereas analytical calculation of the TDC yields errors of 0.0-1.0 depending on the time step, the offset of the maximum in the TDC from the beginning of the time step, and the coupling strength. The approximation of Hammes-Schiffer and Tully yields errors intermediate between NPI and the analytical scheme. PMID:26279558
Bangalore, Sai Santosh; Wang, Jelai; Allison, David B.
2009-01-01
In the fields of genomics and high dimensional biology (HDB), massive multiple testing prompts the use of extremely small significance levels. Because tail areas of statistical distributions are needed for hypothesis testing, the accuracy of these areas is important to confidently make scientific judgments. Previous work on accuracy was primarily focused on evaluating professionally written statistical software, like SAS, on the Statistical Reference Datasets (StRD) provided by National Institute of Standards and Technology (NIST) and on the accuracy of tail areas in statistical distributions. The goal of this paper is to provide guidance to investigators, who are developing their own custom scientific software built upon numerical libraries written by others. In specific, we evaluate the accuracy of small tail areas from cumulative distribution functions (CDF) of the Chi-square and t-distribution by comparing several open-source, free, or commercially licensed numerical libraries in Java, C, and R to widely accepted standards of comparison like ELV and DCDFLIB. In our evaluation, the C libraries and R functions are consistently accurate up to six significant digits. Amongst the evaluated Java libraries, Colt is most accurate. These languages and libraries are popular choices among programmers developing scientific software, so the results herein can be useful to programmers in choosing libraries for CDF accuracy. PMID:20161126
Saturn's North Polar Hexagon Numerical Modeling Results
NASA Astrophysics Data System (ADS)
Morales-Juberias, R.; Sayanagi, K. M.; Dowling, T. E.
2008-12-01
In 1980, Voyager images revealed the presence of a circumpolar wave at 78 degrees planetographic latitude in the northern hemisphere of Saturn. It was notable for having a dominant planetary wavenumber-six zonal mode, and for being stationary with respect to Saturn's Kilometric Radiation rotation rate measured by Voyager. The center of this hexagonal feature was coincident with the center of a sharp eastward jet with a peak speed of 100 ms-1 and it had a meridional width of about 4 degrees. This hexagonal feature was confirmed in 1991 through ground-based observations, and it was observed again in 2006 with the Cassini VIMS instrument. The latest observations highlight the longevity of the hexagon and suggest that it extends at least several bars deep into the atmosphere. We use the Explicit Planetary Isentropic Code (EPIC) to perform high-resolution numerical simulations of this unique feature. We show that a wavenumber six instability mode arises naturally from initially barotropic jets when seeded with weak random turbulence. We also discuss the properties of the wave activity on the background vertical stability, zonal wind, planetary rotation rate and adjacent vortices. Computational resources were provided by the New Mexico Computing Applications Center and New Mexico Institute of Mining and Technology and the Comparative Planetology Laboratory at the University of Louisville.
Differential-equation-based representation of truncation errors for accurate numerical simulation
NASA Astrophysics Data System (ADS)
MacKinnon, Robert J.; Johnson, Richard W.
1991-09-01
High-order compact finite difference schemes for 2D convection-diffusion-type differential equations with constant and variable convection coefficients are derived. The governing equations are employed to represent leading truncation terms, including cross-derivatives, making the overall O(h super 4) schemes conform to a 3 x 3 stencil. It is shown that the two-dimensional constant coefficient scheme collapses to the optimal scheme for the one-dimensional case wherein the finite difference equation yields nodally exact results. The two-dimensional schemes are tested against standard model problems, including a Navier-Stokes application. Results show that the two schemes are generally more accurate, on comparable grids, than O(h super 2) centered differencing and commonly used O(h) and O(h super 3) upwinding schemes.
Towards more accurate numerical modeling of impedance based high frequency harmonic vibration
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Kiong Soh, Chee
2014-03-01
The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.
A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Eiseman, Peter R.
1990-01-01
A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.
Synthetic jet parameter identification and numerical results validation
NASA Astrophysics Data System (ADS)
Sabbatini, Danilo; Rimasauskiene, Ruta; Matejka, Milan; Kurowski, Marcin; Wandowski, Tomasz; Malinowski, Paweł; Doerffer, Piotr
2012-06-01
The design of a synthetic jet requires a careful identification of the components' parameters, in order to be able to perform accurate numerical simulations, this identification must be done by mean of a series of measurements that, due to the small dimensions of the components, are required to be non-contact techniques. The activities described in this paper have been performed in the frame of the STA-DY-WI-CO project, whose purpose is the design of a synthetic jet and demonstrate its effectiveness and efficiency for a real application. To measure the energy saving, due to the synthetic jet effects on the separation, the increased performances of the profile must be compared to the energy absorbed by the actuator and the weight of the system. In design phase a series of actuators has being considered as well as a series of cavity layout, in order to obtain the most effective, efficient and durable package. The modal characteristics of piezoelectric component was assessed by means of tests performed with a 3D scanning laser vibrometer, measuring the frequency response to voltage excitation. Analyzed the effects of the parameters, and chosen components and layout, the system can be dimensioned by means of numeric simulations. The outcome of the simulation is the effect of the synthetic jet, in an assumed flow, for the selected profile. The numerical results on the field of the separated flow with recirculating area were validated by means of tests performed in an Eiffel type wind tunnel. The last test performed on the synthetic jet aims to understand the acoustic impact, noise measurements were performed to have full analysis and synthesis.
Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments
NASA Astrophysics Data System (ADS)
Chen, Juanjuan; Zhang, Tianping; Geng, Hai; Jia, Yanhui; Meng, Wei; Wu, Xianming; Sun, Anbang
2016-06-01
Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime. During the thruster's operation, Charge Exchange Xenon (CEX) ions are generated from collisions between plasma and neutral atoms. Those CEX ions grid's barrel and wall frequently, which cause the failures of the grid system. In order to validate whether the 20 cm Lanzhou Ion Propulsion System (LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping (NSSK), this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster. Different from the previous method, in this paper, the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly. Then, based on these results, theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200. The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster. The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.
Numerical prediction of freezing fronts in cryosurgery: comparison with experimental results.
Fortin, André; Belhamadia, Youssef
2005-08-01
Recent developments in scientific computing now allow to consider realistic applications of numerical modelling to medicine. In this work, a numerical method is presented for the simulation of phase change occurring in cryosurgery applications. The ultimate goal of these simulations is to accurately predict the freezing front position and the thermal history inside the ice ball which is essential to determine if cancerous cells have been completely destroyed. A semi-phase field formulation including blood flow considerations is employed for the simulations. Numerical results are enhanced by the introduction of an anisotropic remeshing strategy. The numerical procedure is validated by comparing the predictions of the model with experimental results. PMID:16298846
The use of experimental bending tests to more accurate numerical description of TBC damage process
NASA Astrophysics Data System (ADS)
Sadowski, T.; Golewski, P.
2016-04-01
Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
Danshita, Ippei; Polkovnikov, Anatoli
2010-09-01
We study the quantum dynamics of supercurrents of one-dimensional Bose gases in a ring optical lattice to verify instanton methods applied to coherent macroscopic quantum tunneling (MQT). We directly simulate the real-time quantum dynamics of supercurrents, where a coherent oscillation between two macroscopically distinct current states occurs due to MQT. The tunneling rate extracted from the coherent oscillation is compared with that given by the instanton method. We find that the instanton method is quantitatively accurate when the effective Planck's constant is sufficiently small. We also find phase slips associated with the oscillations.
NASA Technical Reports Server (NTRS)
Ellison, Donald; Conway, Bruce; Englander, Jacob
2015-01-01
A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.
2006-01-01
Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.
Numerical results for the WFNDEC 2012 eddy current benchmark problem
NASA Astrophysics Data System (ADS)
Theodoulidis, T. P.; Martinos, J.; Poulakis, N.
2013-01-01
We present numerical results for the World Federation of NDE Centers (WFNDEC) 2012 eddy current benchmark problem obtained with a commercial FEM package (Comsol Multiphysics). The measurements of the benchmark problem consist of coil impedance values acquired when an inspection probe coil is moved inside an Inconel tube along an axial through-wall notch. The simulation runs smoothly with minimal user interference (default settings used for mesh and solver) and agreement between numerical and experimental results is excellent for all five inspection frequencies. Comments are made for the pros and cons of FEM and also some good practice rules are presented when using such numerical tools.
TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas
NASA Astrophysics Data System (ADS)
Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.
2006-07-01
The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA
TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas
NASA Astrophysics Data System (ADS)
Milanesio, D.; Lancellotti, V.; Meneghini, O.; Maggiora, R.; Vecchi, G.; Bilato, R.
2007-09-01
Auxiliary ICRF heating systems in tokamaks often involve large complex antennas, made up of several conducting straps hosted in distinct cavities that open towards the plasma. The same holds especially true in the LH regime, wherein the antennas are comprised of arrays of many phased waveguides. Upon observing that the various cavities or waveguides couple to each other only through the EM fields existing over the plasma-facing apertures, we self-consistently formulated the EM problem by a convenient set of multiple coupled integral equations. Subsequent application of the Method of Moments yields a highly sparse algebraic system; therefore formal inversion of the system matrix happens to be not so memory demanding, despite the number of unknowns may be quite large (typically 105 or so). The overall strategy has been implemented in an enhanced version of TOPICA (Torino Polytechnic Ion Cyclotron Antenna) and in a newly developed code named TOPLHA (Torino Polytechnic Lower Hybrid Antenna). Both are simulation and prediction tools for plasma facing antennas that incorporate commercial-grade 3D graphic interfaces along with an accurate description of the plasma. In this work we present the new proposed formulation along with examples of application to real life large LH antenna systems.
Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A
2015-12-21
In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482
TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas
NASA Astrophysics Data System (ADS)
Milanesio, D.; Meneghini, O.; Maggiora, R.; Guadamuz, S.; Hillairet, J.; Lancellotti, V.; Vecchi, G.
2012-01-01
This paper presents a self-consistent, integral-equation approach for the analysis of plasma-facing lower hybrid (LH) launchers; the geometry of the waveguide grill structure can be completely arbitrary, including the non-planar mouth of the grill. This work is based on the theoretical approach and code implementation of the TOPICA code, of which it shares the modular structure and constitutes the extension into the LH range. Code results are validated against the literature results and simulations from similar codes.
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Siviglia, Annunziato; Blom, Astrid
2016-07-01
We present an accurate numerical approximation to the Saint-Venant-Hirano model for mixed-sediment morphodynamics in one space dimension. Our solution procedure originates from the fully-unsteady matrix-vector formulation developed in [54]. The principal part of the problem is solved by an explicit Finite Volume upwind method of the path-conservative type, by which all the variables are updated simultaneously in a coupled fashion. The solution to the principal part is embedded into a splitting procedure for the treatment of frictional source terms. The numerical scheme is extended to second-order accuracy and includes a bookkeeping procedure for handling the evolution of size stratification in the substrate. We develop a concept of balancedness for the vertical mass flux between the substrate and active layer under bed degradation, which prevents the occurrence of non-physical oscillations in the grainsize distribution of the substrate. We suitably modify the numerical scheme to respect this principle. We finally verify the accuracy in our solution to the equations, and its ability to reproduce one-dimensional morphodynamics due to streamwise and vertical sorting, using three test cases. In detail, (i) we empirically assess the balancedness of vertical mass fluxes under degradation; (ii) we study the convergence to the analytical linearised solution for the propagation of infinitesimal-amplitude waves [54], which is here employed for the first time to assess a mixed-sediment model; (iii) we reproduce Ribberink's E8-E9 flume experiment [46].
NASA Astrophysics Data System (ADS)
Jiang, Shidong; Luo, Li-Shi
2016-07-01
The integral equation for the flow velocity u (x ; k) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on Lp for any 1 ≤ p ≤ ∞ and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double power series of the form ∑n=0∞∑m=0∞cn,mxn(xln x) m about x = 0 on a small interval x ∈ (0 , a) for some a > 0. And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u (x ; k), the stress Pxy (k), and the half-channel mass flow rate Q (k) are obtained in a wide range of the Knudsen number 0.003 ≤ k ≤ 100.0; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.
Some theoretical and numerical results for delayed neural field equations
NASA Astrophysics Data System (ADS)
Faye, Grégory; Faugeras, Olivier
2010-05-01
In this paper we study neural field models with delays which define a useful framework for modeling macroscopic parts of the cortex involving several populations of neurons. Nonlinear delayed integro-differential equations describe the spatio-temporal behavior of these fields. Using methods from the theory of delay differential equations, we show the existence and uniqueness of a solution of these equations. A Lyapunov analysis gives us sufficient conditions for the solutions to be asymptotically stable. We also present a fairly detailed study of the numerical computation of these solutions. This is, to our knowledge, the first time that a serious analysis of the problem of the existence and uniqueness of a solution of these equations has been performed. Another original contribution of ours is the definition of a Lyapunov functional and the result of stability it implies. We illustrate our numerical schemes on a variety of examples that are relevant to modeling in neuroscience.
Integrating Numerical Groundwater Modeling Results With Geographic Information Systems
NASA Astrophysics Data System (ADS)
Witkowski, M. S.; Robinson, B. A.; Linger, S. P.
2001-12-01
Many different types of data are used to create numerical models of flow and transport of groundwater in the vadose zone. Results from water balance studies, infiltration models, hydrologic properties, and digital elevation models (DEMs) are examples of such data. Because input data comes in a variety of formats, for consistency the data need to be assembled in a coherent fashion on a single platform. Through the use of a geographic information system (GIS), all data sources can effectively be integrated on one platform to store, retrieve, query, and display data. In our vadoze zone modeling studies in support of Los Alamos National Laboratory's Environmental Restoration Project, we employ a GIS comprised of a Raid storage device, an Oracle database, ESRI's spatial database engine (SDE), ArcView GIS, and custom GIS tools for three-dimensional (3D) analysis. We store traditional GIS data, such as, contours, historical building footprints, and study area locations, as points, lines, and polygons with attributes. Numerical flow and transport model results from the Finite Element Heat and Mass Transfer Code (FEHM) are stored as points with attributes, such as fluid saturation, or pressure, or contaminant concentration at a given location. We overlay traditional types of GIS data with numerical model results, thereby allowing us to better build conceptual models and perform spatial analyses. We have also developed specialized analysis tools to assist in the data and model analysis process. This approach provides an integrated framework for performing tasks such as comparing the model to data and understanding the relationship of model predictions to existing contaminant source locations and water supply wells. Our process of integrating GIS and numerical modeling results allows us to answer a wide variety of questions about our conceptual model design: - Which set of locations should be identified as contaminant sources based on known historical building operations
Path Integrals and Exotic Options:. Methods and Numerical Results
NASA Astrophysics Data System (ADS)
Bormetti, G.; Montagna, G.; Moreni, N.; Nicrosini, O.
2005-09-01
In the framework of Black-Scholes-Merton model of financial derivatives, a path integral approach to option pricing is presented. A general formula to price path dependent options on multidimensional and correlated underlying assets is obtained and implemented by means of various flexible and efficient algorithms. As an example, we detail the case of Asian call options. The numerical results are compared with those obtained with other procedures used in quantitative finance and found to be in good agreement. In particular, when pricing at the money (ATM) and out of the money (OTM) options, path integral exhibits competitive performances.
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Interaction between subducting plates: results from numerical and analogue modeling
NASA Astrophysics Data System (ADS)
Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio
2016-04-01
The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Busted Butte: Achieving the Objectives and Numerical Modeling Results
W.E. Soll; M. Kearney; P. Stauffer; P. Tseng; H.J. Turin; Z. Lu
2002-10-07
The Unsaturated Zone Transport Test (UZTT) at Busted Butte is a mesoscale field/laboratory/modeling investigation designed to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain. The UZTT test facility is located approximately 8 km southeast of the potential Yucca Mountain repository area. The UZTT was designed in two phases, to address five specific objectives in the UZ: the effect of heterogeneities, flow and transport (F&T) behavior at permeability contrast boundaries, migration of colloids , transport models of sorbing tracers, and scaling issues in moving from laboratory scale to field scale. Phase 1A was designed to assess the influence of permeability contrast boundaries in the hydrologic Calico Hills. Visualization of fluorescein movement , mineback rock analyses, and comparison with numerical models demonstrated that F&T are capillary dominated with permeability contrast boundaries distorting the capillary flow. Phase 1B was designed to assess the influence of fractures on F&T and colloid movement. The injector in Phase 1B was located at a fracture, while the collector, 30 cm below, was placed at what was assumed to be the same fracture. Numerical simulations of nonreactive (Br) and reactive (Li) tracers show the experimental data are best explained by a combination of molecular diffusion and advective flux. For Phase 2, a numerical model with homogeneous unit descriptions was able to qualitatively capture the general characteristics of the system. Numerical simulations and field observations revealed a capillary dominated flow field. Although the tracers showed heterogeneity in the test block, simulation using heterogeneous fields did not significantly improve the data fit over homogeneous field simulations. In terms of scaling, simulations of field tracer data indicate a hydraulic conductivity two orders of magnitude higher than measured in the laboratory. Simulations of Li, a weakly sorbing tracer
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Numerical calculations of high-altitude differential charging: Preliminary results
NASA Technical Reports Server (NTRS)
Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.
1979-01-01
A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.
NASA Astrophysics Data System (ADS)
Zhang, Na; Yao, Jun; Huang, Zhaoqin; Wang, Yueying
2013-06-01
Numerical simulation in naturally fractured media is challenging because of the coexistence of porous media and fractures on multiple scales that need to be coupled. We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. Multiscale methods are suitable for this type of modeling, because it enables capturing the large scale behavior of the solution without solving all the small features. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, we use a multiscale finite element method (MsFEM) for two-phase flow in fractured media using the discrete-fracture model. By combining MsFEM with the discrete-fracture model, we aim towards a numerical scheme that facilitates fractured reservoir simulation without upscaling. MsFEM uses a standard Darcy model to approximate the pressure and saturation on a coarse grid, whereas fine scale effects are captured through basis functions constructed by solving local flow problems using the discrete-fracture model. The accuracy and the robustness of MsFEM are shown through several examples. In the first example, we consider several small fractures in a matrix and then compare the results solved by the finite element method. Then, we use the MsFEM in more complex models. The results indicate that the MsFEM is a promising path toward direct simulation of highly resolution geomodels.
NASA Astrophysics Data System (ADS)
Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith
2015-09-01
Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Spurious frequencies as a result of numerical boundary treatments
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David
1990-01-01
The stability theory for finite difference Initial Boundary-Value approximations to systems of hyperbolic partial differential equations states that the exclusion of eigenvalues and generalized eigenvalues is a sufficient condition for stability. The theory, however, does not discuss the nature of numerical approximations in the presence of such eigenvalues. In fact, as was shown previously, for the problem of vortex shedding by a 2-D cylinder in subsonic flow, stating boundary conditions in terms of the primitive (non-characteristic) variables may lead to such eigenvalues, causing perturbations that decay slowly in space and remain periodic time. Characteristic formulation of the boundary conditions avoided this problem. A more systematic study of the behavior of the (linearized) one-dimensional gas dynamic equations under various sets of oscillation-inducing legal boundary conditions is reported.
Numerical computation of the effective-one-body potential q using self-force results
NASA Astrophysics Data System (ADS)
Akcay, Sarp; van de Meent, Maarten
2016-03-01
The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.
Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei
2015-05-01
Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth. PMID:25744607
2015-01-01
discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results. PMID:25602515
Equations of state of freely jointed hard-sphere chain fluids: Numerical results
Stell, G.; Lin, C.; Kalyuzhnyi, Y.V.
1999-03-01
We continue our series of studies in which the equations of state (EOS) are derived based on the product-reactant Ornstein{endash}Zernike approach (PROZA) and first-order thermodynamic perturbation theory (TPT1). These include two compressibility EOS, two virial EOS, and one TPT1 EOS (TPT1-D) that uses the structural information of the dimer fluid as input. In this study, we carry out the numerical implementation for these five EOS and compare their numerical results as well as those obtained from Attard{close_quote}s EOS and GF-D (generalized Flory-dimer) EOS with computer simulation results for the corresponding chain models over a wide range of densities and chain length. The comparison shows that our compressibility EOS, GF-D, and TPT1-D are in quantitative agreement with simulation results, and TPT1-D is the best among various EOS according to its average absolute deviation (AAD). On the basis of a comparison of limited data, our virial EOS appears to be superior to the predictions of Attard{close_quote}s approximate virial EOS and the approximate virial EOS derived by Schweizer and Curro in the context of the PRISM approach; all of them are only qualitatively accurate. The degree of accuracy predicted by our compressibility EOS is comparable to that of GF-D EOS, and both of them overestimate the compressibility factor at low densities and underestimate it at high densities. The compressibility factor of a polydisperse homonuclear chain system is also investigated in this work via our compressibility EOS; the numerical results are identical to those of a monodisperse system with the same chain length. {copyright} {ital 1999 American Institute of Physics.}
Electron transport in the solar wind -results from numerical simulations
NASA Astrophysics Data System (ADS)
Smith, Håkan; Marsch, Eckart; Helander, Per
A conventional fluid approach is in general insufficient for a correct description of electron trans-port in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat transport from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the electron distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat transport a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for electrons in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal electrons has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D
NASA Astrophysics Data System (ADS)
Hedrick, A. R.; Marks, D. G.; Winstral, A. H.; Marshall, H. P.
2014-12-01
The ability to forecast snow water equivalent, or SWE, in mountain catchments would benefit many different communities ranging from avalanche hazard mitigation to water resource management. Historical model runs of Isnobal, the physically based energy balance snow model, have been produced over the 2150 km2 Boise River Basin for water years 2012 - 2014 at 100-meter resolution. Spatially distributed forcing parameters such as precipitation, wind, and relative humidity are generated from automated weather stations located throughout the watershed, and are supplied to Isnobal at hourly timesteps. Similarly, the Weather Research & Forecasting (WRF) Model provides hourly predictions of the same forcing parameters from an atmospheric physics perspective. This work aims to quantitatively compare WRF model output to the spatial meteorologic fields developed to force Isnobal, with the hopes of eventually using WRF predictions to create accurate hourly forecasts of SWE over a large mountainous basin.
Sediment Pathways Across Trench Slopes: Results From Numerical Modeling
NASA Astrophysics Data System (ADS)
Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.
2015-12-01
Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.
NASA Astrophysics Data System (ADS)
Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.
2013-12-01
The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales
Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ
NASA Technical Reports Server (NTRS)
Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.
2008-01-01
Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
Accurate Evaluation of Quantum Integrals
NASA Technical Reports Server (NTRS)
Galant, David C.; Goorvitch, D.
1994-01-01
Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.
Johnson, B M; Guan, X; Gammie, C F
2008-06-24
The descriptions of some of the numerical tests in our original paper are incomplete, making reproduction of the results difficult. We provide the missing details here. The relevant tests are described in section 4 of the original paper (Figures 8-11).
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Galushina, T. Yu.
2015-12-01
The paper describes the software package developed for the numerical simulation of the breakups of natural and artificial objects and algorithms on which it is based. A new software "Numerical model of breakups" includes models of collapse of the spacecraft (SC) as a result of the explosion and collision as well as two models of the explosion of an asteroid.
NASA Astrophysics Data System (ADS)
Crivellini, A.
2016-02-01
This paper deals with the numerical performance of a sponge layer as a non-reflective boundary condition. This technique is well known and widely adopted, but only recently have the reasons for a sponge failure been recognised, in analysis by Mani. For multidimensional problems, the ineffectiveness of the method is due to the self-reflections of the sponge occurring when it interacts with an oblique acoustic wave. Based on his theoretical investigations, Mani gives some useful guidelines for implementing effective sponge layers. However, in our opinion, some practical indications are still missing from the current literature. Here, an extensive numerical study of the performance of this technique is presented. Moreover, we analyse a reduced sponge implementation characterised by undamped partial differential equations for the velocity components. The main aim of this paper relies on the determination of the minimal width of the layer, as well as of the corresponding strength, required to obtain a reflection error of no more than a few per cent of that observed when solving the same problem on the same grid, but without employing the sponge layer term. For this purpose, a test case of computational aeroacoustics, the single airfoil gust response problem, has been addressed in several configurations. As a direct consequence of our investigation, we present a well documented and highly validated reference solution for the far-field acoustic intensity, a result that is not well established in the literature. Lastly, the proof of the accuracy of an algorithm for coupling sub-domains solved by the linear and non-liner Euler governing equations is given. This result is here exploited to adopt a linear-based sponge layer even in a non-linear computation.
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Wyrick, J. R.; Jackson, J. R.
2014-12-01
Long practiced in fisheries, visual substrate mapping of coarse-bedded rivers is eschewed by geomorphologists for inaccuracy and limited sizing data. Geomorphologists perform time-consuming measurements of surficial grains, with the few locations precluding spatially explicit mapping and analysis of sediment facies. Remote sensing works for bare land, but not vegetated or subaqueous sediments. As visual systems apply the log2 Wentworth scale made for sieving, they suffer from human inability to readily discern those classes. We hypothesized that size classes centered on the PDF of the anticipated sediment size distribution would enable field crews to accurately (i) identify presence/absence of each class in a facies patch and (ii) estimate the relative amount of each class to within 10%. We first tested 6 people using 14 measured samples with different mixtures. Next, we carried out facies mapping for ~ 37 km of the lower Yuba River in California. Finally, we tested the resulting data to see if it produced statistically significant hydraulic-sedimentary-geomorphic results. Presence/absence performance error was 0-4% for four people, 13% for one person, and 33% for one person. The last person was excluded from further effort. For the abundance estimation performance error was 1% for one person, 7-12% for three people, and 33% for one person. This last person was further trained and re-tested. We found that the samples easiest to visually quantify were unimodal and bimodal, while those most difficult had nearly equal amounts of each size. This confirms psychological studies showing that humans have a more difficult time quantifying abundances of subgroups when confronted with well-mixed groups. In the Yuba, mean grain size decreased downstream, as is typical for an alluvial river. When averaged by reach, mean grain size and bed slope were correlated with an r2 of 0.95. At the morphological unit (MU) scale, eight in-channel bed MU types had an r2 of 0.90 between mean
NASA Technical Reports Server (NTRS)
Smutek, C.; Bontoux, P.; Roux, B.; Schiroky, G. H.; Hurford, A. C.
1985-01-01
The results of a three-dimensional numerical simulation of Boussinesq free convection in a horizontal differentially heated cylinder are presented. The computation was based on a Samarskii-Andreyev scheme (described by Leong, 1981) and a false-transient advancement in time, with vorticity, velocity, and temperature as dependent variables. Solutions for velocity and temperature distributions were obtained for Rayleigh numbers (based on the radius) Ra = 74-18,700, thus covering the core- and boundary-layer-driven regimes. Numerical solutions are compared with asymptotic analytical solutions and experimental data. The numerical results well represent the complex three-dimensional flows found experimentally.
Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver
2014-10-02
This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.
Silva, Romesh; Amouzou, Agbessi; Munos, Melinda; Marsh, Andrew; Hazel, Elizabeth; Victora, Cesar; Black, Robert; Bryce, Jennifer
2016-01-01
Introduction Most low-income countries lack complete and accurate vital registration systems. As a result, measures of under-five mortality rates rely mostly on household surveys. In collaboration with partners in Ethiopia, Ghana, Malawi, and Mali, we assessed the completeness and accuracy of reporting of births and deaths by community-based health workers, and the accuracy of annualized under-five mortality rate estimates derived from these data. Here we report on results from Ethiopia, Malawi and Mali. Method In all three countries, community health workers (CHWs) were trained, equipped and supported to report pregnancies, births and deaths within defined geographic areas over a period of at least fifteen months. In-country institutions collected these data every month. At each study site, we administered a full birth history (FBH) or full pregnancy history (FPH), to women of reproductive age via a census of households in Mali and via household surveys in Ethiopia and Malawi. Using these FBHs/FPHs as a validation data source, we assessed the completeness of the counts of births and deaths and the accuracy of under-five, infant, and neonatal mortality rates from the community-based method against the retrospective FBH/FPH for rolling twelve-month periods. For each method we calculated total cost, average annual cost per 1,000 population, and average cost per vital event reported. Results On average, CHWs submitted monthly vital event reports for over 95 percent of catchment areas in Ethiopia and Malawi, and for 100 percent of catchment areas in Mali. The completeness of vital events reporting by CHWs varied: we estimated that 30%-90% of annualized expected births (i.e. the number of births estimated using a FPH) were documented by CHWs and 22%-91% of annualized expected under-five deaths were documented by CHWs. Resulting annualized under-five mortality rates based on the CHW vital events reporting were, on average, under-estimated by 28% in Ethiopia, 32% in
NASA Astrophysics Data System (ADS)
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia-Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan-Wen; Millis, Andrew J.; Prokof'ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo-Xiao; Zhu, Zhenyue; Gull, Emanuel; Simons Collaboration on the Many-Electron Problem
2015-10-01
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
NASA Astrophysics Data System (ADS)
West, J. B.; Ehleringer, J. R.; Cerling, T.
2006-12-01
Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across
Height of burst explosions: a comparative study of numerical and experimental results
NASA Astrophysics Data System (ADS)
Omang, M.; Christensen, S. O.; Børve, S.; Trulsen, J.
2009-06-01
In the current work, we use the Constant Volume model and the numerical method, Regularized Smoothed Particle Hydrodynamics (RSPH) to study propagation and reflection of blast waves from detonations of the high explosives C-4 and TNT. The results from simulations of free-field TNT explosions are compared to previously published data, and good agreement is found. Measurements from height of burst tests performed by the Norwegian Defence Estates Agency are used to compare against numerical simulations. The results for shock time of arrival and the pressure levels are well represented by the numerical results. The results are also found to be in good agreement with results from a commercially available code. The effect of allowing different ratios of specific heat capacities in the explosive products are studied. We also evaluate the effect of changing the charge shape and height of burst on the triple point trajectory.
NASA Astrophysics Data System (ADS)
Wojcik, J.; Powalowski, T.; Trawinski, Z.
2008-02-01
The aim of this paper is to compare the results of the mathematical modeling and experimental results of the ultrasonic waves scattering in the inhomogeneous dissipative medium. The research was carried out for an artery model (a pipe made of a latex), with internal diameter of 5 mm and wall thickness of 1.25 mm. The numerical solver was created for calculation of the fields of ultrasonic beams and scattered fields under different boundary conditions, different angles and transversal displacement of ultrasonic beams with respect to the position of the arterial wall. The investigations employed the VED ultrasonic apparatus. The good agreement between the numerical calculation and experimental results was obtained.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients Final Report
Sovinec, Carl R.
2005-08-29
This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years.
Trescott, Peter C.; Pinder, George Francis; Larson, S.P.
1976-01-01
The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.
LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?
Zullo, John R. Kudchadker, Rajat J.; Zhu, X. Ronald; Sahoo, Narayan; Gillin, Michael T.
2010-04-01
In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.
Improving the trust in results of numerical simulations and scientific data analytics
Cappello, Franck; Constantinescu, Emil; Hovland, Paul; Peterka, Tom; Phillips, Carolyn; Snir, Marc; Wild, Stefan
2015-04-30
This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general
NASA Astrophysics Data System (ADS)
Ahmed, Mahmoud; Eslamian, Morteza
2015-07-01
Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number. PMID:26183389
Dragna, Didier; Blanc-Benon, Philippe; Poisson, Franck
2014-03-01
Results from outdoor acoustic measurements performed in a railway site near Reims in France in May 2010 are compared to those obtained from a finite-difference time-domain solver of the linearized Euler equations. During the experiments, the ground profile and the different ground surface impedances were determined. Meteorological measurements were also performed to deduce mean vertical profiles of wind and temperature. An alarm pistol was used as a source of impulse signals and three microphones were located along a propagation path. The various measured parameters are introduced as input data into the numerical solver. In the frequency domain, the numerical results are in good accordance with the measurements up to a frequency of 2 kHz. In the time domain, except a time shift, the predicted waveforms match the measured waveforms with a close agreement. PMID:24606253
Forecasting Energy Market Contracts by Ambit Processes: Empirical Study and Numerical Results
Di Persio, Luca; Marchesan, Michele
2014-01-01
In the present paper we exploit the theory of ambit processes to develop a model which is able to effectively forecast prices of forward contracts written on the Italian energy market. Both short-term and medium-term scenarios are considered and proper calibration procedures as well as related numerical results are provided showing a high grade of accuracy in the obtained approximations when compared with empirical time series of interest. PMID:27437500
NASA Astrophysics Data System (ADS)
Kitaygorsky, J.; Amburgey, C.; Elliott, J. R.; Fisher, R.; Perala, R. A.
A broadband (100 MHz-1.2 GHz) plane wave electric field source was used to evaluate electric field penetration inside a simplified Boeing 707 aircraft model with a finite-difference time-domain (FDTD) method using EMA3D. The role of absorption losses inside the simplified aircraft was investigated. It was found that, in this frequency range, none of the cavities inside the Boeing 707 model are truly reverberant when frequency stirring is applied, and a purely statistical electromagnetics approach cannot be used to predict or analyze the field penetration or shielding effectiveness (SE). Thus it was our goal to attempt to understand the nature of losses in such a quasi-statistical environment by adding various numbers of absorbing objects inside the simplified aircraft and evaluating the SE, decay-time constant τ, and quality factor Q. We then compare our numerical results with experimental results obtained by D. Mark Johnson et al. on a decommissioned Boeing 707 aircraft.
Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash
2016-06-01
Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas. PMID:27122050
Some numerical simulation results of swirling flow in d.c. plasma torch
NASA Astrophysics Data System (ADS)
Felipini, C. L.; Pimenta, M. M.
2015-03-01
We present and discuss some results of numerical simulation of swirling flow in d.c. plasma torch, obtained with a two-dimensional mathematical model (MHD model) which was developed to simulate the phenomena related to the interaction between the swirling flow and the electric arc in a non-transferred arc plasma torch. The model was implemented in a computer code based on the Finite Volume Method (FVM) to enable the numerical solution of the governing equations. For the study, cases were simulated with different operating conditions (gas flow rate; swirl number). Some obtained results were compared to the literature and have proved themselves to be in good agreement in most part of computational domain regions. The numerical simulations performed with the computer code enabled the study of the behaviour of the flow in the plasma torch and also study the effects of different swirl numbers on temperature and axial velocity of the plasma flow. The results demonstrated that the developed model is suitable to obtain a better understanding of the involved phenomena and also for the development and optimization of plasma torches.
A method for data handling numerical results in parallel OpenFOAM simulations
NASA Astrophysics Data System (ADS)
Anton, Alin; Muntean, Sebastian
2015-12-01
Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit®[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.
A method for data handling numerical results in parallel OpenFOAM simulations
Anton, Alin; Muntean, Sebastian
2015-12-31
Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.
NASA Astrophysics Data System (ADS)
Sun, Yuansheng; Periasamy, Ammasi
2010-03-01
Förster resonance energy transfer (FRET) microscopy is commonly used to monitor protein interactions with filter-based imaging systems, which require spectral bleedthrough (or cross talk) correction to accurately measure energy transfer efficiency (E). The double-label (donor+acceptor) specimen is excited with the donor wavelength, the acceptor emission provided the uncorrected FRET signal and the donor emission (the donor channel) represents the quenched donor (qD), the basis for the E calculation. Our results indicate this is not the most accurate determination of the quenched donor signal as it fails to consider the donor spectral bleedthrough (DSBT) signals in the qD for the E calculation, which our new model addresses, leading to a more accurate E result. This refinement improves E comparisons made with lifetime and spectral FRET imaging microscopy as shown here using several genetic (FRET standard) constructs, where cerulean and venus fluorescent proteins are tethered by different amino acid linkers.
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Wernet, Mark P.; Hsieh, Kwang-Chung
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.
Wave interpretation of numerical results for the vibration in thin conical shells
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, Stephen J.
2014-05-01
The dynamic behaviour of thin conical shells can be analysed using a number of numerical methods. Although the overall vibration response of shells has been thoroughly studied using such methods, their physical insight is limited. The purpose of this paper is to interpret some of these numerical results in terms of waves, using the wave finite element, WFE, method. The forced response of a thin conical shell at different frequencies is first calculated using the dynamic stiffness matrix method. Then, a wave finite element analysis is used to calculate the wave properties of the shell, in terms of wave type and wavenumber, as a function of position along it. By decomposing the overall results from the dynamic stiffness matrix analysis, the responses of the shell can then be interpreted in terms of wave propagation. A simplified theoretical analysis of the waves in the thin conical shell is also presented in terms of the spatially-varying ring frequency, which provides a straightforward interpretation of the wave approach. The WFE method provides a way to study the types of wave that travel in thin conical shell structures and to decompose the response of the numerical models into the components due to each of these waves. In this way the insight provided by the wave approach allows us to analyse the significance of different waves in the overall response and study how they interact, in particular illustrating the conversion of one wave type into another along the length of the conical shell.
Recent Analytical and Numerical Results for The Navier-Stokes-Voigt Model and Related Models
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss; Petersen, Mark; Wingate, Beth
2010-11-01
The equations which govern the motions of fluids are notoriously difficult to handle both mathematically and computationally. Recently, a new approach to these equations, known as the Voigt-regularization, has been investigated as both a numerical and analytical regularization for the 3D Navier-Stokes equations, the Euler equations, and related fluid models. This inviscid regularization is related to the alpha-models of turbulent flow; however, it overcomes many of the problems present in those models. I will discuss recent work on the Voigt-regularization, as well as a new criterion for the finite-time blow-up of the Euler equations based on their Voigt-regularization. Time permitting, I will discuss some numerical results, as well as applications of this technique to the Magnetohydrodynamic (MHD) equations and various equations of ocean dynamics.
Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results
Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej
2010-03-09
Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm{sup 2}, duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
NASA Astrophysics Data System (ADS)
Zueco, Joaquín; López-González, Luis María
2016-04-01
We have studied decompression processes when pressure changes that take place, in blood and tissues using a technical numerical based in electrical analogy of the parameters that involved in the problem. The particular problem analyzed is the behavior dynamics of the extravascular bubbles formed in the intercellular cavities of a hypothetical tissue undergoing decompression. Numerical solutions are given for a system of equations to simulate gas exchanges of bubbles after decompression, with particular attention paid to the effect of bubble size, nitrogen tension, nitrogen diffusivity in the intercellular fluid and in the tissue cell layer in a radial direction, nitrogen solubility, ambient pressure and specific blood flow through the tissue over the different molar diffusion fluxes of nitrogen per time unit (through the bubble surface, between the intercellular fluid layer and blood and between the intercellular fluid layer and the tissue cell layer). The system of nonlinear equations is solved using the Network Simulation Method, where the electric analogy is applied to convert these equations into a network-electrical model, and a computer code (electric circuit simulator, Pspice). In this paper, numerical results new (together to a network model improved with interdisciplinary electrical analogies) are provided.
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.
Fluid Instabilities in the Crab Nebula Jet: Results from Numerical Simulations
NASA Astrophysics Data System (ADS)
Mignone, A.; Striani, E.; Bodo, G.; Anjiri, M.
2014-09-01
We present an overview of high-resolution relativistic MHD numerical simulations of the Crab Nebula South-East jet. The models are based on hot and relativistic hollow outflows initially carrying a purely toroidal magnetic field. Our results indicate that weakly relativistic (γ˜ 2) and strongly magnetized jets are prone to kink instabilities leading to a noticeable deflection of the jet. These conclusions are in good agreement with the recent X-ray (Chandra) data of Crab Nebula South-East jet indicating a change in the direction of propagation on a time scale of the order of few years.
NASA Astrophysics Data System (ADS)
Fontana, A.; Marzari, F.
2016-05-01
Context. Planetesimals and planets embedded in a circumstellar disk are dynamically perturbed by the disk gravity. It causes an apsidal line precession at a rate that depends on the disk density profile and on the distance of the massive body from the star. Aims: Different analytical models are exploited to compute the precession rate of the perihelion ϖ˙. We compare them to verify their equivalence, in particular after analytical manipulations performed to derive handy formulas, and test their predictions against numerical models in some selected cases. Methods: The theoretical precession rates were computed with analytical algorithms found in the literature using the Mathematica symbolic code, while the numerical simulations were performed with the hydrodynamical code FARGO. Results: For low-mass bodies (planetesimals) the analytical approaches described in Binney & Tremaine (2008, Galactic Dynamics, p. 96), Ward (1981, Icarus, 47, 234), and Silsbee & Rafikov (2015a, ApJ, 798, 71) are equivalent under the same initial conditions for the disk in terms of mass, density profile, and inner and outer borders. They also match the numerical values computed with FARGO away from the outer border of the disk reasonably well. On the other hand, the predictions of the classical Mestel disk (Mestel 1963, MNRAS, 126, 553) for disks with p = 1 significantly depart from the numerical solution for radial distances beyond one-third of the disk extension because of the underlying assumption of the Mestel disk is that the outer disk border is equal to infinity. For massive bodies such as terrestrial and giant planets, the agreement of the analytical approaches is progressively poorer because of the changes in the disk structure that are induced by the planet gravity. For giant planets the precession rate changes sign and is higher than the modulus of the theoretical value by a factor ranging from 1.5 to 1.8. In this case, the correction of the formula proposed by Ward (1981) to
The route to MBxNyCz molecular wheels: II. Results using accurate functionals and basis sets
NASA Astrophysics Data System (ADS)
Güthler, A.; Mukhopadhyay, S.; Pandey, R.; Boustani, I.
2014-04-01
Applying ab initio quantum chemical methods, molecular wheels composed of metal and light atoms were investigated. High quality basis sets 6-31G*, TZPV, and cc-pVTZ as well as exchange and non-local correlation functionals B3LYP, BP86 and B3P86 were used. The ground-state energy and structures of cyclic planar and pyramidal clusters TiBn (for n = 3-10) were computed. In addition, the relative stability and electronic structures of molecular wheels TiBxNyCz (for x, y, z = 0-10) and MBnC10-n (for n = 2 to 5 and M = Sc to Zn) were determined. This paper sustains a follow-up study to the previous one of Boustani and Pandey [Solid State Sci. 14 (2012) 1591], in which the calculations were carried out at the HF-SCF/STO3G/6-31G level of theory to determine the initial stability and properties. The results show that there is a competition between the 2D planar and the 3D pyramidal TiBn clusters (for n = 3-8). Different isomers of TiB10 clusters were also studied and a structural transition of 3D-isomer into 2D-wheel is presented. Substitution boron in TiB10 by carbon or/and nitrogen atoms enhances the stability and leads toward the most stable wheel TiB3C7. Furthermore, the computations show that Sc, Ti and V at the center of the molecular wheels are energetically favored over other transition metal atoms of the first row.
Noninvasive assessment of mitral inertness: clinical results with numerical model validation
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.
NASA Astrophysics Data System (ADS)
Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn
2016-04-01
We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.
Re-Computation of Numerical Results Contained in NACA Report No. 496
NASA Technical Reports Server (NTRS)
Perry, Boyd, III
2015-01-01
An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.
Castro, A. P. G.; Paul, C. P. L.; Detiger, S. E. L.; Smit, T. H.; van Royen, B. J.; Pimenta Claro, J. C.; Mullender, M. G.; Alves, J. L.
2014-01-01
The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly
Castro, A P G; Paul, C P L; Detiger, S E L; Smit, T H; van Royen, B J; Pimenta Claro, J C; Mullender, M G; Alves, J L
2014-01-01
The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly
Interpretation of high-dimensional numerical results for the Anderson transition
Suslov, I. M.
2014-12-15
The existence of the upper critical dimension d{sub c2} = 4 for the Anderson transition is a rigorous consequence of the Bogoliubov theorem on renormalizability of φ{sup 4} theory. For d ≥ 4 dimensions, one-parameter scaling does not hold and all existent numerical data should be reinterpreted. These data are exhausted by the results for d = 4, 5 from scaling in quasi-one-dimensional systems and the results for d = 4, 5, 6 from level statistics. All these data are compatible with the theoretical scaling dependences obtained from Vollhardt and Wolfle’s self-consistent theory of localization. The widespread viewpoint that d{sub c2} = ∞ is critically discussed.
Asymptotic expansion for stellarator equilibria with a non-planar magnetic axis: Numerical results
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Cerfon, Antoine; Parra, Felix
2012-10-01
We have recently presented a new asymptotic expansion for stellarator equilibria that generalizes the classic Greene-Johnson expansion [1] to allow for 3D equilibria with a non-planar magnetic axis [2]. Our expansion achieves the two goals of reducing the complexity of the three-dimensional MHD equilibrium equations and of describing equilibria in modern stellarator experiments. The end result of our analysis is a set of two coupled partial differential equations for the plasma pressure and the toroidal vector potential which fully determine the stellarator equilibrium. Both equations are advection equations in which the toroidal angle plays the role of time. We show that the method of characteristics, following magnetic field lines, is a convenient way of solving these equations, avoiding the difficulties associated with the periodicity of the solution in the toroidal angle. By combining the method of characteristics with Green's function integrals for the evaluation of the magnetic field due to the plasma current, we obtain an efficient numerical solver for our expansion. Numerical equilibria thus calculated will be given.[4pt] [1] J.M. Greene and J.L. Johnson, Phys. Fluids 4, 875 (1961)[0pt] [2] A.J. Cerfon, J.P. Freidberg, and F.I. Parra, Bull. Am. Phys. Soc. 56, 16 GP9.00081 (2011)
Verification of Numerical Weather Prediction Model Results for Energy Applications in Latvia
NASA Astrophysics Data System (ADS)
Sīle, Tija; Cepite-Frisfelde, Daiga; Sennikovs, Juris; Bethers, Uldis
2014-05-01
A resolution to increase the production and consumption of renewable energy has been made by EU governments. Most of the renewable energy in Latvia is produced by Hydroelectric Power Plants (HPP), followed by bio-gas, wind power and bio-mass energy production. Wind and HPP power production is sensitive to meteorological conditions. Currently the basis of weather forecasting is Numerical Weather Prediction (NWP) models. There are numerous methodologies concerning the evaluation of quality of NWP results (Wilks 2011) and their application can be conditional on the forecast end user. The goal of this study is to evaluate the performance of Weather Research and Forecast model (Skamarock 2008) implementation over the territory of Latvia, focusing on forecasting of wind speed and quantitative precipitation forecasts. The target spatial resolution is 3 km. Observational data from Latvian Environment, Geology and Meteorology Centre are used. A number of standard verification metrics are calculated. The sensitivity to the model output interpretation (output spatial interpolation versus nearest gridpoint) is investigated. For the precipitation verification the dichotomous verification metrics are used. Sensitivity to different precipitation accumulation intervals is examined. Skamarock, William C. and Klemp, Joseph B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics. 227, 2008, pp. 3465-3485. Wilks, Daniel S. Statistical Methods in the Atmospheric Sciences. Third Edition. Academic Press, 2011.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Rino, Charles L.
2016-06-01
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.
Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Carati, A. Benfenati, F.; Maiocchi, A.; Galgani, L.; Zuin, M.
2014-03-15
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
NASA Astrophysics Data System (ADS)
Soares, Edson J.; Thompson, Roney L.; Niero, Debora C.
2015-08-01
The immiscible displacement of one viscous liquid by another in a capillary tube is experimentally and numerically analyzed in the low inertia regime with negligible buoyancy effects. The dimensionless numbers that govern the problem are the capillary number Ca and the viscosity ratio of the displaced to the displacing fluids Nμ. In general, there are two output quantities of interest. One is associated to the relation between the front velocity, Ub, and the mean velocity of the displaced fluid, U ¯ 2 . The other is the layer thickness of the displaced fluid that remains attached to the wall. We compute these quantities as mass fractions in order to make them able to be compared. In this connection, the efficiency mass fraction, me, is defined as the complement of the mass fraction of the displaced fluid that leaves the tube while the displacing fluid crosses its length. The geometric mass fraction, mg, is defined as the fraction of the volume of the layer that remains attached to the wall. Because in gas-liquid displacement, these two quantities coincide, it is not uncommon in the literature to use mg as a measure of the displacement efficiency for liquid-liquid displacements. However, as is shown in the present paper, these two quantities have opposite tendencies when we increase the viscosity of the displacing fluid, making this distinction a crucial aspect of the problem. Results from a Galerkin finite element approach are also presented in order to make a comparison. Experimental and numerical results show that while the displacement efficiency decreases, the geometrical fraction increases when the viscosity ratio decreases. This fact leads to different decisions depending on the quantity to be optimized. The quantitative agreement between the numerical and experimental results was not completely achieved, especially for intermediate values of Ca. The reasons for that are still under investigation. The experiments conducted were able to achieve a wide range
NASA Technical Reports Server (NTRS)
Peltier, L. J.; Biringen, S.
1993-01-01
The present numerical simulation explores a thermal-convective mechanism for oscillatory thermocapillary convection in a shallow Cartesian cavity for a Prandtl number 6.78 fluid. The computer program developed for this simulation integrates the two-dimensional, time-dependent Navier-Stokes equations and the energy equation by a time-accurate method on a stretched, staggered mesh. Flat free surfaces are assumed. The instability is shown to depend upon temporal coupling between large scale thermal structures within the flow field and the temperature sensitive free surface. A primary result of this study is the development of a stability diagram presenting the critical Marangoni number separating steady from the time-dependent flow states as a function of aspect ratio for the range of values between 2.3 and 3.8. Within this range, a minimum critical aspect ratio near 2.3 and a minimum critical Marangoni number near 20,000 are predicted below which steady convection is found.
vom Saal, Frederick S.; Welshons, Wade V.
2016-01-01
There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources. PMID:25304273
vom Saal, Frederick S; Welshons, Wade V
2014-12-01
There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources. PMID:25304273
NASA Astrophysics Data System (ADS)
Hrubý, Jan
2012-04-01
Mathematical modeling of the non-equilibrium condensing transonic steam flow in the complex 3D geometry of a steam turbine is a demanding problem both concerning the physical concepts and the required computational power. Available accurate formulations of steam properties IAPWS-95 and IAPWS-IF97 require much computation time. For this reason, the modelers often accept the unrealistic ideal-gas behavior. Here we present a computation scheme based on a piecewise, thermodynamically consistent representation of the IAPWS-95 formulation. Density and internal energy are chosen as independent variables to avoid variable transformations and iterations. On the contrary to the previous Tabular Taylor Series Expansion Method, the pressure and temperature are continuous functions of the independent variables, which is a desirable property for the solution of the differential equations of the mass, energy, and momentum conservation for both phases.
NASA Astrophysics Data System (ADS)
Chiu, Ming-Hung; Lai, Chin-Fa; Tan, Chen-Tai; Lin, Yi-Zhi
2011-03-01
This paper presents a study of the lateral and axial resolutions of a transmission laser-scanning angle-deviation microscope (TADM) with different numerical aperture (NA) values. The TADM is based on geometric optics and surface plasmon resonance principles. The surface height is proportional to the phase difference between two marginal rays of the test beam, which is passed through the test medium. We used common-path heterodyne interferometry to measure the phase difference in real time, and used a personal computer to calculate and plot the surface profile. The experimental results showed that the best lateral and axial resolutions for NA = 0.41 were 0.5 μm and 3 nm, respectively, and the lateral resolution breaks through the diffraction limits.
NASA Astrophysics Data System (ADS)
Milošević, M.; Dimitrijević, D. D.; Djordjević, G. S.; Stojanović, M. D.
2016-06-01
The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n), and tensor-scalar ratio (r) for the given potentials. We pay special attention to the inverse power potential, first of all to V(x)˜ x^{-4}, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X_0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X_0 to the string theory motivated sector of its values is briefly considered.
Solar flare model: Comparison of the results of numerical simulations and observations
NASA Astrophysics Data System (ADS)
Podgorny, I. M.; Vashenyuk, E. V.; Podgorny, A. I.
2009-12-01
The electrodynamic flare model is based on numerical 3D simulations with the real magnetic field of an active region. An energy of ˜1032 erg necessary for a solar flare is shown to accumulate in the magnetic field of a coronal current sheet. The thermal X-ray source in the corona results from plasma heating in the current sheet upon reconnection. The hard X-ray sources are located on the solar surface at the loop foot-points. They are produced by the precipitation of electron beams accelerated in field-aligned currents. Solar cosmic rays appear upon acceleration in the electric field along a singular magnetic X-type line. The generation mechanism of the delayed cosmic-ray component is also discussed.
NASA Astrophysics Data System (ADS)
Xu, Hengyi; Heinzel, T.; Zozoulenko, I. V.
2011-09-01
We derive analytical expressions for the conductivity of bilayer graphene (BLG) using the Boltzmann approach within the the Born approximation for a model of Gaussian disorders describing both short- and long-range impurity scattering. The range of validity of the Born approximation is established by comparing the analytical results to exact tight-binding numerical calculations. A comparison of the obtained density dependencies of the conductivity with experimental data shows that the BLG samples investigated experimentally so far are in the quantum scattering regime where the Fermi wavelength exceeds the effective impurity range. In this regime both short- and long-range scattering lead to the same linear density dependence of the conductivity. Our calculations imply that bilayer and single-layer graphene have the same scattering mechanisms. We also provide an upper limit for the effective, density-dependent spatial extension of the scatterers present in the experiments.
Marom, Gil; Bluestein, Danny
2016-02-01
This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed. PMID:26679833
NASA Astrophysics Data System (ADS)
Cotel, Aline; Junghans, Lars; Wang, Xiaoxiang
2014-11-01
In recent years, a recognition of the scope of the negative environmental impact of existing buildings has spurred academic and industrial interest in transforming existing building design practices and disciplinary knowledge. For example, buildings alone consume 72% of the electricity produced annually in the United States; this share is expected to rise to 75% by 2025 (EPA, 2009). Significant reductions in overall building energy consumption can be achieved using green building methods such as natural ventilation. An office was instrumented on campus to acquire CO2 concentrations and temperature profiles at multiple locations while a single occupant was present. Using openFOAM, numerical calculations were performed to allow for comparisons of the CO2 concentration and temperature profiles for different ventilation strategies. Ultimately, these results will be the inputs into a real time feedback control system that can adjust actuators for indoor ventilation and utilize green design strategies. Funded by UM Office of Vice President for Research.
NASA Astrophysics Data System (ADS)
Helsdon, John H.; Farley, Richard D.
1987-05-01
A recently developed Storm Electrification Model (SEM) has been used to simulate the July 19, 1981, Cooperative Convective Precipitation Experiment (CCOPE) case study cloud. This part of the investigation examines the comparison between the model results and the observations of the actual cloud with respect to its nonelectrical aspects. A timing equivalence is established between the simulation and observations based on an explosive growth phase which was both observed and modeled. This timing equivalence is used as a basis upon which the comparisons are made. The model appears to do a good job of reproducing (in both space and time) many of the observed characteristics of the cloud. These include: (1) the general cloud appearance; (2) cloud size; (3) cloud top rise rate; (4) rapid growth phase; (5) updraft structure; (6) first graupel appearance; (7) first radar echo; (8) qualitative radar range-height indicator evolution; (9) cloud decay; and (10) the location of hydrometers with respect to the updraft/-downdraft structure. Some features that are not accurately modeled are the cloud base height, the maximum liquid water content, and the time from first formation of precipitation until it reaches the ground. While the simulation is not perfect, the faithfulness of the model results to the observations is sufficient to give us confidence that the microphysical processes active in this storm are adequately represented in the model physics. Areas where model improvement is indicated are also discussed.
Numerical predictions and experimental results of a dry bay fire environment.
Suo-Anttila, Jill Marie; Gill, Walter; Black, Amalia Rebecca
2003-11-01
The primary objective of the Safety and Survivability of Aircraft Initiative is to improve the safety and survivability of systems by using validated computational models to predict the hazard posed by a fire. To meet this need, computational model predictions and experimental data have been obtained to provide insight into the thermal environment inside an aircraft dry bay. The calculations were performed using the Vulcan fire code, and the experiments were completed using a specially designed full-scale fixture. The focus of this report is to present comparisons of the Vulcan results with experimental data for a selected test scenario and to assess the capability of the Vulcan fire field model to accurately predict dry bay fire scenarios. Also included is an assessment of the sensitivity of the fire model predictions to boundary condition distribution and grid resolution. To facilitate the comparison with experimental results, a brief description of the dry bay fire test fixture and a detailed specification of the geometry and boundary conditions are included. Overall, the Vulcan fire field model has shown the capability to predict the thermal hazard posed by a sustained pool fire within a dry bay compartment of an aircraft; although, more extensive experimental data and rigorous comparison are required for model validation.
NASA Technical Reports Server (NTRS)
Holman, Gordon
2010-01-01
Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.
Lima da Silva, M.; Sauvage, E.; Brun, P.; Gagnoud, A.; Fautrelle, Y.; Riva, R.
2013-07-01
The process of vitrification in a cold crucible heated by direct induction is used in the fusion of oxides. Its feature is the production of high-purity materials. The high-level of purity of the molten is achieved because this melting technique excludes the contamination of the charge by the crucible. The aim of the present paper is to analyze the hydrodynamic of the vitrification process by direct induction, with the focus in the effects associated with the interaction between the mechanical stirrer and bubbling. Considering the complexity of the analyzed system and the goal of the present work, we simplified the system by not taking into account the thermal and electromagnetic phenomena. Based in the concept of hydraulic similitude, we performed an experimental study and a numerical modeling of the simplified model. The results of these two studies were compared and showed a good agreement. The results presented in this paper in conjunction with the previous work contribute to a better understanding of the hydrodynamics effects resulting from the interaction between the mechanical stirrer and air bubbling in the cold crucible heated by direct induction. Further works will take into account thermal and electromagnetic phenomena in the presence of mechanical stirrer and air bubbling. (authors)
NASA Astrophysics Data System (ADS)
Peukert, P.; Hrubý, J.
2013-04-01
The paper describes new results for an experimental heat exchanger equipped with a single corrugated capillary tube, basic information about the measurements and the experimental setup. Some of the results were compared with numerical simulations.
Pathmanathan, P; Bernabeu, M O; Niederer, S A; Gavaghan, D J; Kay, D
2012-08-01
A recent verification study compared 11 large-scale cardiac electrophysiology solvers on an unambiguously defined common problem. An unexpected amount of variation was observed between the codes, including significant error in conduction velocity in the majority of the codes at certain spatial resolutions. In particular, the results of the six finite element codes varied considerably despite each using the same order of interpolation. In this present study, we compare various algorithms for cardiac electrophysiological simulation, which allows us to fully explain the differences between the solvers. We identify the use of mass lumping as the fundamental cause of the largest variations, specifically the combination of the commonly used techniques of mass lumping and operator splitting, which results in a slightly different form of mass lumping to that supported by theory and leads to increased numerical error. Other variations are explained through the manner in which the ionic current is interpolated. We also investigate the effect of different forms of mass lumping in various types of simulation. PMID:25099569
NASA Astrophysics Data System (ADS)
Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno
2016-05-01
This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k-ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.
Liberatore, S.; Jaouen, S.; Tabakhoff, E.; Canaud, B.
2009-04-15
Magnetic Rayleigh-Taylor instability is addressed in compressible hydrostatic media. A full model is presented and compared to numerical results from a linear perturbation code. A perfect agreement between both approaches is obtained in a wide range of parameters. Compressibility effects are examined and substantial deviations from classical Chandrasekhar growth rates are obtained and confirmed by the model and the numerical calculations.
Numerical modeling of protocore destabilization during planetary accretion: Methodology and results
NASA Astrophysics Data System (ADS)
Lin, Ja-Ren; Gerya, Taras V.; Tackley, Paul J.; Yuen, David A.; Golabek, Gregor J.
2009-12-01
We developed and tested an efficient 2D numerical methodology for modeling gravitational redistribution processes in a quasi spherical planetary body based on a simple Cartesian grid. This methodology allows one to implement large viscosity contrasts and to handle properly a free surface and self-gravitation. With this novel method we investigated in a simplified way the evolution of gravitationally unstable global three-layer structures in the interiors of large metal-silicate planetary bodies like those suggested by previous models of cold accretion [Sasaki, S., Nakazawa, K., 1986. J. Geophys. Res. 91, 9231-9238; Karato, S., Murthy, V.R., 1997. Phys. Earth Planet Interios 100, 61-79; Senshu, H., Kuramoto, K., Matsui, T., 2002. J. Geophys. Res. 107 (E12), 5118. 10.1029/2001JE001819]: an innermost solid protocore (either undifferentiated or partly differentiated), an intermediate metal-rich layer (either continuous or disrupted), and an outermost silicate-rich layer. Long-wavelength (degree-one) instability of this three-layer structure may strongly contribute to core formation dynamics by triggering planetary-scale gravitational redistribution processes. We studied possible geometrical modes of the resulting planetary reshaping using scaled 2D numerical experiments for self-gravitating planetary bodies with Mercury-, Mars- and Earth-size. In our simplified model the viscosity of each material remains constant during the experiment and rheological effects of gravitational energy dissipation are not taken into account. However, in contrast to a previously conducted numerical study [Honda, R., Mizutani, H., Yamamoto, T., 1993. J. Geophys. Res. 98, 2075-2089] we explored a freely deformable planetary surface and a broad range of viscosity ratios between the metallic layer and the protocore (0.001-1000) as well as between the silicate layer and the protocore (0.001-1000). An important new prediction from our study is that realistic modes of planetary reshaping
Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.
2011-01-01
Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Xing, H. L.; Ding, R. W.; Yuen, D. A.
2015-08-01
Australia is surrounded by the Pacific Ocean and the Indian Ocean and, thus, may suffer from tsunamis due to its proximity to the subduction earthquakes around the boundary of Australian Plate. Potential tsunami risks along the eastern coast, where more and more people currently live, are numerically investigated through a scenario-based method to provide an estimation of the tsunami hazard in this region. We have chosen and calculated the tsunami waves generated at the New Hebrides Trench and the Puysegur Trench, and we further investigated the relevant tsunami hazards along the eastern coast and their sensitivities to various sea floor frictions and earthquake parameters (i.e. the strike, the dip and the slip angles and the earthquake magnitude/rupture length). The results indicate that the Puysegur trench possesses a seismic threat causing wave amplitudes over 1.5 m along the coast of Tasmania, Victoria, and New South Wales, and even reaching over 2.6 m at the regions close to Sydney, Maria Island, and Gabo Island for a certain worse case, while the cities along the coast of Queensland are potentially less vulnerable than those on the southeastern Australian coast.
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2014-02-15
Ferrofluids consist of magnetic nanoparticles dispersed in a carrier liquid. Their strong thermodiffusive behaviour, characterised by the Soret coefficient, coupled with the dependency of the fluid's parameters on magnetic fields is dealt with in this work. It is known from former experimental investigations on the one hand that the Soret coefficient itself is magnetic field dependent and on the other hand that the accuracy of the coefficient's experimental determination highly depends on the volume concentration of the fluid. The thermally driven separation of particles and carrier liquid is carried out with a concentrated ferrofluid (φ = 0.087) in a horizontal thermodiffusion cell and is compared to equally detected former measurement data. The temperature gradient (1 K/mm) is applied perpendicular to the separation layer. The magnetic field is either applied parallel or perpendicular to the temperature difference. For three different magnetic field strengths (40 kA/m, 100 kA/m, 320 kA/m) the diffusive separation is detected. It reveals a sign change of the Soret coefficient with rising field strength for both field directions which stands for a change in the direction of motion of the particles. This behaviour contradicts former experimental results with a dilute magnetic fluid, in which a change in the coefficient's sign could only be detected for the parallel setup. An anisotropic behaviour in the current data is measured referring to the intensity of the separation being more intense in the perpendicular position of the magnetic field: S{sub T‖} = −0.152 K{sup −1} and S{sub T⊥} = −0.257 K{sup −1} at H = 320 kA/m. The ferrofluiddynamics-theory (FFD-theory) describes the thermodiffusive processes thermodynamically and a numerical simulation of the fluid's separation depending on the two transport parameters ξ{sub ‖} and ξ{sub ⊥} used within the FFD-theory can be implemented. In the case of a parallel aligned magnetic field, the parameter can
NASA Astrophysics Data System (ADS)
Chan, P. W.
2009-03-01
The Hong Kong International Airport (HKIA) is situated in an area of complex terrain. Turbulent flow due to terrain disruption could occur in the vicinity of HKIA when winds from east to southwest climb over Lantau Island, a mountainous island to the south of the airport. Low-level turbulence is an aviation hazard to the aircraft flying into and out of HKIA. It is closely monitored using remote-sensing instruments including Doppler LIght Detection And Ranging (LIDAR) systems and wind profilers in the airport area. Forecasting of low-level turbulence by numerical weather prediction models would be useful in the provision of timely turbulence warnings to the pilots. The feasibility of forecasting eddy dissipation rate (EDR), a measure of turbulence intensity adopted in the international civil aviation community, is studied in this paper using the Regional Atmospheric Modelling System (RAMS). Super-high resolution simulation (within the regime of large eddy simulation) is performed with a horizontal grid size down to 50 m for some typical cases of turbulent airflow at HKIA, such as spring-time easterly winds in a stable boundary layer and gale-force southeasterly winds associated with a typhoon. Sensitivity of the simulation results with respect to the choice of turbulent kinetic energy (TKE) parameterization scheme in RAMS is also examined. RAMS simulation with Deardorff (1980) TKE scheme is found to give the best result in comparison with actual EDR observations. It has the potential for real-time forecasting of low-level turbulence in short-term aviation applications (viz. for the next several hours).
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
NASA Astrophysics Data System (ADS)
Alhammoud, B.; Béranger, K.; Mortier, L.; Crépon, M.
The Eastern Mediterranean hydrology and circulation are studied by comparing the results of a high resolution primitive equation model (described in dedicated session: Béranger et al.) with observations. The model has a horizontal grid mesh of 1/16o and 43 z-levels in the vertical. The model was initialized with the MODB5 climatology and has been forced during 11 years by the daily sea surface fluxes provided by the European Centre for Medium-range Weather Forecasts analysis in a perpetual year mode corresponding to the year March 1998-February 1999. At the end of the run, the numerical model is able to accurately reproduce the major water masses of the Eastern Mediterranean Basin (Levantine Surface Water, modi- fied Atlantic Water, Levantine Intermediate Water, and Eastern Mediterranean Deep Water). Comparisons with the POEM observations reveal good agreement. While the initial conditions of the model are somewhat different from POEM observations, dur- ing the last year of the simulation, we found that the water mass stratification matches that of the observations quite well in the seasonal mean. During the 11 years of simulation, the model drifts slightly in the layers below the thermocline. Nevertheless, many important physical processes were reproduced. One example is that the dispersal of Adriatic Deep Water into the Levantine Basin is rep- resented. In addition, convective activity located in the northern part of the Levantine Basin occurs in Spring as expected. The surface circulation is in agreement with in-situ and satellite observations. Some well known mesoscale features of the upper thermocline circulation are shown. Sea- sonal variability of transports through Sicily, Otranto and Cretan straits are inves- tigated as well. This work was supported by the french MERCATOR project and SHOM.
NASA Astrophysics Data System (ADS)
Barnes, T.
In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.
Scholl, M.A.
2000-01-01
Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence
Preliminary results of numerical investigations at SECARB Cranfield, MS field test site
NASA Astrophysics Data System (ADS)
Choi, J.; Nicot, J.; Meckel, T. A.; Chang, K.; Hovorka, S. D.
2008-12-01
The Southeast Regional Carbon Sequestration partnership sponsored by DOE has chosen the Cranfield, MS field as a test site for its Phase II experiment. It will provide information on CO2 storage in oil and gas fields, in particular on storage permanence, storage capacity, and pressure buildup as well as on sweep efficiency. The 10,300 ft-deep reservoir produced 38 MMbbl of oil and 677 MMSCF of gas from the 1940's to the 1960's and is being retrofitted by Denbury Resources for tertiary recovery. CO2 injection started in July 2008 with a scheduled ramp up during the next few months. The Cranfield modeling team selected the northern section of the field for development of a numerical model using the multiphase-flow, compositional CMG-GEM software. Model structure was determined through interpretation of logs from old and recently-drilled wells and geophysical data. PETREL was used to upscale and export permeability and porosity data to the GEM model. Preliminary sensitivity analyses determined that relative permeability parameters and oil composition had the largest impact on CO2 behavior. The first modeling step consisted in history-matching the total oil, gas, and water production out of the reservoir starting from its natural state to determine the approximate current conditions of the reservoir. The fact that pressure recovered in the 40 year interval since end of initial production helps in constraining boundary conditions. In a second step, the modeling focused on understanding pressure evolution and CO2 transport in the reservoir. The presentation will introduce preliminary results of the simulations and confirm/explain discrepancies with field measurements.
NASA Astrophysics Data System (ADS)
Gliko, A. O.; Molodenskii, S. M.
2015-01-01
) are not only capable of significantly changing the magnitude of the radial displacements of the geoid but also altering their sign. Moreover, even in the uniform Earth's model, the effects of sphericity of its external surface and self-gravitation can also provide a noticeable contribution, which determines the signs of the coefficients in the expansion of the geoid's shape in the lower-order spherical functions. In order to separate these effects, below we present the results of the numerical calculations of the total effects of thermoelastic deformations for the two simplest models of spherical Earth without and with self-gravitation with constant density and complex-valued shear moduli and for the real Earth PREM model (which describes the depth distributions of density and elastic moduli for the high-frequency oscillations disregarding the rheology of the medium) and the modern models of the mantle rheology. Based on the calculations, we suggest the simplest interpretation of the present-day data on the relationship between the coefficients of spherical expansion of temperature, velocities of seismic body waves, the topography of the Earth's surface and geoid, and the data on the correlation between the lower-order coefficients in the expansions of the geoid and the corresponding terms of the expansions of horizontal inhomogeneities in seismic velocities. The suggested interpretation includes the estimates of the sign and magnitude for the ratios between the first coefficients of spherical expansions of seismic velocities, topography, and geoid. The presence of this correlation and the relationship between the signs and absolute values of these coefficients suggests that both the long-period oscillations of the geoid and the long-period variations in the velocities of seismic body waves are largely caused by thermoelastic deformations.
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Galvan, Boris; Miller, Stephen
2013-04-01
Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental
Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Novick, Jaison Allen
We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source
Nonlinearities of waves propagating over a mild-slope beach: laboratory and numerical results
NASA Astrophysics Data System (ADS)
Rocha, Mariana V. L.; Michallet, Hervé; Silva, Paulo A.; Cienfuegos, Rodrigo
2014-05-01
As surface gravity waves propagate from deeper waters to the shore, their shape changes, primarily due to nonlinear wave interactions and further on due to breaking. The nonlinear effects amplify the higher harmonics and cause the oscillatory flow to transform from nearly sinusoidal in deep water, through velocity-skewed in the shoaling zone, to velocity asymmetric in the inner-surf and swash zones. In addition to short-wave nonlinearities, the presence of long waves and wave groups also results in a supplementary wave-induced velocity and influences the short-waves. Further, long waves can themselves contribute to velocity skewness and asymmetry at low frequencies, particularly for very dissipative mild-slope beach profiles, where long wave shoaling and breaking can also occur. The Hydralab-IV GLOBEX experiments were performed in a 110-m-long flume, with a 1/80 rigid-bottom slope and allowed the acquisition of high-resolution free-surface elevation and velocity data, obtained during 90-min long simulations of random and bichromatic wave conditions, and also of a monochromatic long wave (Ruessink et al., Proc. Coastal Dynamics, 2013). The measurements are compared to numerical results obtained with the SERR-1D Boussinesq-type model, which is designed to reproduce the complex dynamics of high-frequency wave propagation, including the energy transfer mechanisms that enhance infragravity-wave generation. The evolution of skewness and asymmetry along the beach profile until the swash zone is analyzed, relatively to that of the wave groupiness and long wave propagation. Some particularities of bichromatic wave groups are further investigated, such as partially-standing long-wave patterns and short-wave reformation after the first breakpoint, which is seen to influence particularly the skewness trends. Decreased spectral width (for random waves) and increased modulation (for bichromatic wave groups) are shown to enhance energy transfers between super- and sub
Dameron, O; Gibaud, B; Morandi, X
2004-06-01
The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base. PMID:15118839
Numerical Analysis of Large Telescopes in Terms of Induced Loads and Resulting Geometrical Stability
NASA Astrophysics Data System (ADS)
Upnere, S.; Jekabsons, N.; Joffe, R.
2013-03-01
Comprehensive numerical studies, involving structural and Computational Fluid Dynamics (CFD) analysis, have been carried out at the Engineering Research Institute "Ventspils International Radio Astron- omy Center" (VIRAC) of the Ventspils University College to investigate the gravitational and wind load effects on large, ground-based radio tele- scopes RT-32 performance. Gravitational distortions appear to be the main limiting factor for the reflector performance in everyday operation. Random loads caused by wind gusts (unavoidable at zenith) contribute to the fatigue accumulation.
Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results
NASA Technical Reports Server (NTRS)
Lee, Nam C.; Parks, George K.
1992-01-01
A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.
Lorentz resonances and the vertical structure of dusty rings - Analytical and numerical results
NASA Technical Reports Server (NTRS)
Schaffer, Les; Burns, Joseph A.
1992-01-01
The Schaffer and Burns (1987) linear theory of Lorentz resonances (LRs) in planetary rings is extended in order to accurately compute LR locations and to elucidate the nature of grain trajectories within the LR zones. Using the perturbation theory and energy arguments, it is shown that an increase in the inclination or eccentricity of a grain must be accompanied by a shift in the mean orbital radius of the particle. This shift alters the epicyclic frequencies in such a way that the infinite response of the linear resonance theory is suppressed. Chaotic motion is found for the range of charge-to-mass ratios that cause the vertical and horizontal LRs to overlap.
Coupled transport processes in semipermeable media. Part 2: Numerical method and results
NASA Astrophysics Data System (ADS)
Jacobsen, Janet S.; Carnahan, Chalon L.
1990-04-01
A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced.
NASA Astrophysics Data System (ADS)
Morvan, D.
2010-12-01
behaviour of forest fires, based on a multiphase formulation. This approach consists in solving the balance equations (mass, momentum, energy, chemical species, radiation intensity …) governing the coupled system formed by the vegetation and the surrounding atmosphere. The vegetation was represented as a collection of solid fuel particles, regrouped in families, each one characterized by its own set of physical variables (mass fraction of water, of dry matter, of char, temperature, volume fraction, density, surface area to volume ratio …) necessary to describe the evolution of its state during the propagation of fire. Some numerical results were then presented and compared with available experimental data. A particular attention was taken to simulate surface fires propagating through grassland and Mediterranean shrubland for which a large experimental data base exists. We conclude our paper, in presenting some recent results obtained in a more operational context, to simulate the interaction between two fire fronts (head fire and backfire) in conditions similar to two those encountered during a suppression fire operation.
Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results
NASA Astrophysics Data System (ADS)
Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.
2012-12-01
Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base
Ponderomotive stabilization of flute modes in mirrors Feedback control and numerical results
NASA Technical Reports Server (NTRS)
Similon, P. L.
1987-01-01
Ponderomotive stabilization of rigid plasma flute modes is numerically investigated by use of a variational principle, for a simple geometry, without eikonal approximation. While the near field of the studied antenna can be stabilizing, the far field has a small contribution only, because of large cancellation by quasi mode-coupling terms. The field energy for stabilization is evaluated and is a nonnegligible fraction of the plasma thermal energy. A new antenna design is proposed, and feedback stabilization is investigated. Their use drastically reduces power requirements.
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
Fanselau, R.W.; Thakkar, J.G.; Hiestand, J.W.; Cassell, D.
1981-03-01
The Comparative Thermal-Hydraulic Evaluation of Steam Generators program represents an analytical investigation of the thermal-hydraulic characteristics of four PWR steam generators. The analytical tool utilized in this investigation is the CALIPSOS code, a three-dimensional flow distribution code. This report presents the steady state thermal-hydraulic characteristics on the secondary side of a Westinghouse Model 51 steam generator. Details of the CALIPSOS model with accompanying assumptions, operating parameters, and transport correlations are identified. Comprehensive graphical and numerical results are presented to facilitate the desired comparison with other steam generators analyzed by the same flow distribution code.
NASA Astrophysics Data System (ADS)
Conti, Livia; De Gregorio, Paolo; Bonaldi, Michele; Borrielli, Antonio; Crivellari, Michele; Karapetyan, Gagik; Poli, Charles; Serra, Enrico; Thakur, Ram-Krishna; Rondoni, Lamberto
2012-06-01
We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier's Law to a good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically from a statistical mechanics perspective with a loose notion of local equilibrium.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling
NASA Astrophysics Data System (ADS)
Georgen, Jennifer E.
2014-04-01
Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
Numerical results on the transcendence of constants involving pi, e, and Euler's constant
NASA Technical Reports Server (NTRS)
Bailey, David H.
1988-01-01
The existence of simple polynomial equations (integer relations) for the constants e/pi, e + pi, log pi, gamma (Euler's constant), e exp gamma, gamma/e, gamma/pi, and log gamma is investigated by means of numerical computations. The recursive form of the Ferguson-Fourcade algorithm (Ferguson and Fourcade, 1979; Ferguson, 1986 and 1987) is implemented on the Cray-2 supercomputer at NASA Ames, applying multiprecision techniques similar to those described by Bailey (1988) except that FFTs are used instead of dual-prime-modulus transforms for multiplication. It is shown that none of the constants has an integer relation of degree eight or less with coefficients of Euclidean norm 10 to the 9th or less.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Van Fossen, G. J.
1992-01-01
A study of the effect of spanwise variation on leading edge heat transfer is presented. Experimental and numerical results are given for a circular leading edge and for a 3:1 elliptical leading edge. It is demonstrated that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Numerical study of the wind energy potential in Bulgaria - Some preliminary results
NASA Astrophysics Data System (ADS)
Jordanov, G.; Gadzhev, G.; Ganev, K.; Miloshev, N.; Syrakov, D.; Prodanova, M.
2012-10-01
The new energy efficiency politics of the EU requires till year 2020 16% of Bulgarian electricity to be produced from renewable sources. The wind is one of renewable energy sources. The ecological benefits of all the kinds of "green" energy are obvious. It is desirable, however, the utilization of renewable energy sources to be as much as possible economically effective. This means that installment of the respective devices (wind farms, solar farms, etc.) should be based on a detailed and reliable evaluation of the real potential of the country. Detailed study of the wind energy potential of the country - spatial distribution, temporal variation, mean and extreme values, fluctuations and statistical characteristics; evaluation from a point of view of industrial applicability can not be made only on the basis of the existing routine meteorological data - the measuring network is not dense enough to catch all the details of the local flow systems, hence of the real wind energy potential of the country spatial distribution. That is why the measurement data has to be supplemented by numerical modeling. The wind field simulations were performed applying the 5th generation PSU/NCAR Meso-Meteorological Model MM5 for years 2000-2007 with a spatial resolution of 3 km over Bulgaria. Some preliminary evaluations of the country wind energy potential, based on the simulation output are demonstrated in the paper.
Mazza, Fabio; Vulcano, Alfonso
2008-07-08
For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses.
Accretion of rotating fluids by barytropes - Numerical results for white-dwarf models
NASA Technical Reports Server (NTRS)
Durisen, R. H.
1977-01-01
Numerical sequences of rotating axisymmetric nonmagnetic equilibrium models are constructed which represent the evolution of a barytropic star as it accretes material from a rotating medium. Two accretion geometries are considered - one approximating accretion from a rotating cloud and the other, accretion from a Keplerian disk. It is assumed that some process, such as Ekman spin-up or nonequilibrium oscillations, maintains nearly constant angular velocity along cylinders about the rotation axis. Transport of angular momentum in the cylindrically radial direction by viscosity is included. Fluid instabilities and other physical processes leading to enhancement of this transport are discussed. Particular application is made to zero-temperature white-dwarf models, using the degenerate electron equation of state. An initially nonrotating 0.566-solar-mass white dwarf is followed during the accretion of more than one solar mass of material. Applications to degenerate stellar cores, to mass-transfer binary systems containing white dwarfs, such as novae and dwarf novae, to Type I supernovae, and to galactic X-ray sources are considered.
Preliminary Results from Numerical Experiments on the Summer 1980 Heat Wave and Drought
NASA Technical Reports Server (NTRS)
Wolfson, N.; Atlas, R.; Sud, Y. C.
1985-01-01
During the summer of 1980, a prolonged heat wave and drought affected the United States. A preliminary set of experiments has been conducted to study the effect of varying boundary conditions on the GLA model simulation of the heat wave. Five 10-day numerical integrations with three different specifications of boundary conditions were carried out: a control experiment which utilized climatological boundary conditions, an SST experiment which utilized summer 1980 sea-surface temperatures in the North Pacific, but climatological values elsewhere, and a Soil Moisture experiment which utilized the values of Mintz-Serafini for the summer, 1980. The starting dates for the five forecasts were 11 June, 7 July, 21 July, 22 August, and 6 September of 1980. These dates were specifically chosen as days when a heat wave was already established in order to investigate the effect of soil moistures or North Pacific sea-surface temperatures on the model's ability to maintain the heat wave pattern. The experiments were evaluated in terms of the heat wave index for the South Plains, North Plains, Great Plains and the entire U.S. In addition a subjective comparison of map patterns has been performed.
NASA Astrophysics Data System (ADS)
Szeremley, Daniel; Mussenbrock, Thomas; Brinkmann, Ralf Peter; Zimmermanns, Marc; Rolfes, Ilona; Eremin, Denis; Ruhr-University Bochum, Theoretical Electrical Engineering Team; Ruhr-University Bochum, Institute of Microwave Systems Team
2015-09-01
The market shows in recent years a growing demand for bottles made of polyethylene terephthalate (PET). Therefore, fast and efficient sterilization processes as well as barrier coatings to decrease gas permeation are required. A specialized microwave plasma source - referred to as the plasmaline - has been developed to allow for depositing thin films of e.g. silicon oxid on the inner surface of such PET bottles. The plasmaline is a coaxial waveguide combined with a gas-inlet which is inserted into the empty bottle and initiates a reactive plasma. To optimize and control the different surface processes, it is essential to fully understand the microwave power coupling to the plasma and the related heating of electrons inside the bottle and thus the electromagnetic wave propagation along the plasmaline. In this contribution, we present a detailed dispersion analysis based on a numerical approach. We study how modes of guided waves are propagating under different conditions, if at all. The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the framework of the collaborative research centre TRR87.
Recent results from numerical models of the Caribbean Sea and Gulf of Mexico: Do they all agree?
NASA Astrophysics Data System (ADS)
Sheinbaum, J.
2013-05-01
A great variety of numerical models of the Caribbean Sea and Gulf of Mexico have been developed over the years. They all reproduce the basic features of the circulation in the region but do not necessarily agree in the dynamics that explains them. We review recent results related to: 1) semiannual and interannual eddy variability in the Caribbean and their possible role in determining the extension of the western Atlantic warm pool. 2) Loop Current and its eddy shedding dynamics and 3) the deep circulation in the Gulf of Mexico. Recent observations of inertial wave trapping by eddies suggest new veins for numerical research and model comparisons.
NASA Astrophysics Data System (ADS)
Cohen, F.; Kasahara, K.
As described in an accompanying paper (kasahara), full M.C simulation of air showers in the GZK region is possible by a distributed-parallel processing method. However, this still needs a long computation time even with ~50 to ~100 cpu's which may be available in many pc cluster environments. Air showers always fluctuate event to event largely, and only 1 or few events are not appropriate for practical application. However, we may note that the fluctuations appear only in the longitudinal development; if we look into the ingredients (energy spectrum, angular distribution, arrival time distribution etc and their correlations) at the same "age" of the shower, they are almost the same (or at least can be scaled; e.g, for the lateral distribution, we may use appropriate Moliere length ). In some cases (for muons and hadrons), we may use another parameter instead of the "age". Based on this fact, we developed a new fast and accurate M.C simulation scheme which utilizes a database in which full M.C results are stored (FDD). We generate a number of air showers by using the usual thin sampling method. The thin sampling is sometimes very dangerous when we discuss detailed ingredient (say,lateral distribution, energy spectrum, their correlations etc) but is safely employed to see the total number of particles in the longitudinal development (LDD; we can generate ~1000 LDD showers by 50 cpu's in a day). Then, for a given 1 particular such an event at a certain depth, we can extract every details from FDD by a correspondence rule such as the one using "age" etc. We describe the method, its current status and show some results for the TA experiment.
Lee, Chia-Ching; Lin, Shang-Chih; Wu, Shu-Wei; Li, Yu-Ching; Fu, Ping-Yuen
2012-10-01
The holding power of the bone-screw interfaces is one of the key factors in the clinical performance of screw design. The value of the holding power can be experimentally measured by pullout tests. Historically, some researchers have used the finite-element method to simulate the holding power of the different screws. Among them, however, the assumed displacement of the screw withdrawal is unreasonably small (about 0.005-1.0 mm). In addition, the chosen numerical indices are quite different, including maximum stress, strain energy, and reaction force. This study systematically uses dental, traumatic, and spinal screws to experimentally measure and numerically simulate their bone-purchasing ability within the synthetic bone. The testing results (pullout displacement and holding power) and numerical indices (maximum stress, total strain energy, and reaction forces) are chosen to calculate their correlation coefficients. The pullout displacement is divided into five regions from initial to final withdrawal. The experimental results demonstrate that the pullout displacement consistently occurs at the final region (0.6-1.6 mm) and is significantly higher than the assumed value of the literature studies. For all screw groups, the measured holding power within the initial region is not highly or even negatively correlated with the experimental and numerical results within the final region. The observation from the simulative results shows the maximum stress only reflects the loads concentrated at some local site(s) and is the least correlated to the measured holding power. Comparatively, both energy and force are more global indices to correlate with the gross failure at the bone-screw interfaces. However, the energy index is not suitable for the screw groups with rather tiny threads compared with the other specifications. In conclusion, the underestimated displacement leads to erroneous results in the screw-pullout simulation. Among three numerical indices the reaction
Hidden modes in open disordered media: analytical, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Bliokh, Yury P.; Freilikher, Valentin; Shi, Z.; Genack, A. Z.; Nori, Franco
2015-11-01
We explore numerically, analytically, and experimentally the relationship between quasi-normal modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-dimensional (1D) and quasi-1D open disordered systems. It is shown that for weak disorder there exist two types of the eigenstates: ordinary QNMs which are associated with a TR, and hidden QNMs which do not exhibit peaks in transmission or within the sample. The distinctive feature of the hidden modes is that unlike ordinary ones, their lifetimes remain constant in a wide range of the strength of disorder. In this range, the averaged ratio of the number of transmission peaks {N}{{res}} to the number of QNMs {N}{{mod}}, {N}{{res}}/{N}{{mod}}, is insensitive to the type and degree of disorder and is close to the value \\sqrt{2/5}, which we derive analytically in the weak-scattering approximation. The physical nature of the hidden modes is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden QNMs and the segregation of superradiant states and trapped modes is discussed. When the coupling to the environment is tuned by an external edge reflectors, the superradiance transition is reproduced. Hidden modes have been also found in microwave measurements in quasi-1D open disordered samples. The microwave measurements and modal analysis of transmission in the crossover to localization in quasi-1D systems give a ratio of {N}{{res}}/{N}{{mod}} close to \\sqrt{2/5}. In diffusive quasi-1D samples, however, {N}{{res}}/{N}{{mod}} falls as the effective number of transmission eigenchannels M increases. Once {N}{{mod}} is divided by M, however, the ratio {N}{{res}}/{N}{{mod}} is close to the ratio found in 1D.
Madsen, Berit L. . E-mail: ronblm@vmmc.org; Hsi, R. Alex; Pham, Huong T.; Fowler, Jack F.; Esagui, Laura C.; Corman, John
2007-03-15
Purpose: To evaluate the feasibility and toxicity of stereotactic hypofractionated accurate radiotherapy (SHARP) for localized prostate cancer. Methods and Materials: A Phase I/II trial of SHARP performed for localized prostate cancer using 33.5 Gy in 5 fractions, calculated to be biologically equivalent to 78 Gy in 2 Gy fractions ({alpha}/{beta} ratio of 1.5 Gy). Noncoplanar conformal fields and daily stereotactic localization of implanted fiducials were used for treatment. Genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated by American Urologic Association (AUA) score and Common Toxicity Criteria (CTC). Prostate-specific antigen (PSA) values and self-reported sexual function were recorded at specified follow-up intervals. Results: The study includes 40 patients. The median follow-up is 41 months (range, 21-60 months). Acute toxicity Grade 1-2 was 48.5% (GU) and 39% (GI); 1 acute Grade 3 GU toxicity. Late Grade 1-2 toxicity was 45% (GU) and 37% (GI). No late Grade 3 or higher toxicity was reported. Twenty-six patients reported potency before therapy; 6 (23%) have developed impotence. Median time to PSA nadir was 18 months with the majority of nadirs less than 1.0 ng/mL. The actuarial 48-month biochemical freedom from relapse is 70% for the American Society for Therapeutic Radiology and Oncology definition and 90% by the alternative nadir + 2 ng/mL failure definition. Conclusions: SHARP for localized prostate cancer is feasible with minimal acute or late toxicity. Dose escalation should be possible.
Delavari, Alireza; Salimzadeh, Hamideh; Bishehsari, Faraz; Sobh Rakhshankhah, Elham; Delavari, Farnaz; Moossavi, Shirin; Khosravi, Pejman; Nasseri-Moghaddam, Siavosh; Merat, Shahin; Ansari, Reza; Vahedi, Homayoon; Shahbazkhani, Bijan; Saberifiroozi, Mehdi; Sotoudeh, Masoud; Malekzadeh, Reza
2015-01-01
BACKGROUND The incidence of colorectal cancer is rising in several developing countries. In the absence of integrated endoscopy and pathology databases, adenoma detection rate (ADR), as a validated quality indicator of screening colonoscopy, is generally difficult to obtain in practice. We aimed to measure the correlation of polyp-related indicators with ADR in order to identify the most accurate surrogate(s) of ADR in routine practice. METHODS We retrospectively reviewed the endoscopic and histopathological findings of patients who underwent colonoscopy at a tertiary gastrointestinal clinic. The overall ADR and advanced-ADR were calculated using patient-level data. The Pearson’s correlation coefficient (r) was applied to measure the strength of the correlation between the quality metrics obtained by endoscopists. RESULTS A total of 713 asymptomatic adults aged 50 and older who underwent their first-time screening colonoscopy were included in this study. The ADR and advanced-ADR were 33.00% (95% CI: 29.52-36.54) and 13.18% (95% CI: 10.79-15.90), respectively. We observed good correlations between polyp detection rate (PDR) and ADR (r=0.93), and mean number of polyp per patient (MPP) and ADR (r=0.88) throughout the colon. There was a positive, yet insignificant correlation between advanced ADRs and non-advanced ADRs (r=0.42, p=0.35). CONCLUSION MPP is strongly correlated with ADR, and can be considered as a reliable and readily obtainable proxy for ADR in opportunistic screening colonoscopy programs. PMID:26609349
Spiegal, R.J.
1984-08-01
For humans exposed to electromagnetic (EM) radiation, the resulting thermophysiologic response is not well understood. Because it is unlikely that this information will be determined from quantitative experimentation, it is necessary to develop theoretical models which predict the resultant thermal response after exposure to EM fields. These calculations are difficult and involved because the human thermoregulatory system is very complex. In this paper, the important numerical models are reviewed and possibilities for future development are discussed.
222Rn transport in a fractured crystalline rock aquifer: Results from numerical simulations
Folger, P.F.; Poeter, E.; Wanty, R.B.; Day, W.; Frishman, D.
1997-01-01
Dissolved 222Rn concentrations in ground water from a small wellfield underlain by fractured Middle Proterozoic Pikes Peak Granite southwest of Denver, Colorado range from 124 to 840 kBq m-3 (3360-22700 pCi L-1). Numerical simulations of flow and transport between two wells show that differences in equivalent hydraulic aperture of transmissive fractures, assuming a simplified two-fracture system and the parallel-plate model, can account for the different 222Rn concentrations in each well under steady-state conditions. Transient flow and transport simulations show that 222Rn concentrations along the fracture profile are influenced by 222Rn concentrations in the adjoining fracture and depend on boundary conditions, proximity of the pumping well to the fracture intersection, transmissivity of the conductive fractures, and pumping rate. Non-homogeneous distribution (point sources) of 222Rn parent radionuclides, uranium and 226Ra, can strongly perturb the dissolved 222Rn concentrations in a fracture system. Without detailed information on the geometry and hydraulic properties of the connected fracture system, it may be impossible to distinguish the influence of factors controlling 222Rn distribution or to determine location of 222Rn point sources in the field in areas where ground water exhibits moderate 222Rn concentrations. Flow and transport simulations of a hypothetical multifracture system consisting of ten connected fractures, each 10 m in length with fracture apertures ranging from 0.1 to 1.0 mm, show that 222Rn concentrations at the pumping well can vary significantly over time. Assuming parallel-plate flow, transmissivities of the hypothetical system vary over four orders of magnitude because transmissivity varies with the cube of fracture aperture. The extreme hydraulic heterogeneity of the simple hypothetical system leads to widely ranging 222Rn values, even assuming homogeneous distribution of uranium and 226Ra along fracture walls. Consequently, it is
Image restoration by the method of convex projections: part 2 applications and numerical results.
Sezan, M I; Stark, H
1982-01-01
The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method. PMID:18238262
Multi-Country Experience in Delivering a Joint Course on Software Engineering--Numerical Results
ERIC Educational Resources Information Center
Budimac, Zoran; Putnik, Zoran; Ivanovic, Mirjana; Bothe, Klaus; Zdravkova, Katerina; Jakimovski, Boro
2014-01-01
A joint course, created as a result of a project under the auspices of the "Stability Pact of South-Eastern Europe" and DAAD, has been conducted in several Balkan countries: in Novi Sad, Serbia, for the last six years in several different forms, in Skopje, FYR of Macedonia, for two years, for several types of students, and in Tirana,…
A numerically efficient finite element hydroelastic analysis. Volume 1: Theory and results
NASA Technical Reports Server (NTRS)
Coppolino, R. N.
1976-01-01
Symmetric finite element matrix formulations for compressible and incompressible hydroelasticity are developed on the basis of Toupin's complementary formulation of classical mechanics. Results of implementation of the new technique in the NASTRAN structural analysis program are presented which demonstrate accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Khokhlov, A.; Domínguez, I.; Bacon, C.; Clifford, B.; Baron, E.; Hoeflich, P.; Krisciunas, K.; Suntzeff, N.; Wang, L.
2012-07-01
We describe a new astrophysical version of a cell-based adaptive mesh refinement code ALLA for reactive flow fluid dynamic simulations, including a new implementation of α-network nuclear kinetics, and present preliminary results of first three-dimensional simulations of incomplete carbon-oxygen detonation in Type Ia Supernovae.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1992-01-01
A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Preliminary numerical modeling results - cone penetrometer (CPT) tip used as an electrode
Ramirez, A L
2006-12-19
Figure 1 shows the resistivity models considered in this study; log10 of the resistivity is shown. The graph on the upper left hand side shows a hypothetical resisitivity well log measured along a well in the upper layered model; 10% Gaussian noise has been added to the well log data. The lower model is identical to the upper one except for one square area located within the second deepest layer. Figure 2 shows the electrode configurations considered. The ''reference'' case (upper frame) considers point electrodes located along the surface and along a vertical borehole. The ''CPT electrode'' case (middle frame) assumes that the CPT tip serves as an electrode that is electrically connected to the push rod; the surface electrodes are used in conjuction with the moving CPT electrode. The ''isolated CPT electrode'' case assumes that the electrode at the CPT tip is electrically isolated from the pushrod. Note that the separate CPT push rods in the middle and lower frames are shown separated to clarify the figure; in reality, there is only one pushrod that is changing length as the probe advances. Figure 3 shows three pole-pole measurement schemes were considered; in all cases, the ''get lost'' electrodes were the leftmost and rightmost surface electrodes. The top frame shows the reference scheme where all surface and borehole electrodes can be used. The middle frame shows two possible configurations available when a CPT mounted electrode is used. Note that only one of the four poles can be located along the borehole at any given time; electrode combinations such as the one depicted in blue (upper frame) are not possible in this case. The bottom frame shows a sample configuration where only the surface electrodes are used. Figure 4 shows the results obtained for the various measurement schemes. The white lines show the outline of the true model (shown in Figure 1, upper frame). The starting initial model for these inversions is based on the electrical resistivity log
Spallative nucleosynthesis in supernova remnants. II. Time-dependent numerical results
NASA Astrophysics Data System (ADS)
Parizot, Etienne; Drury, Luke
1999-06-01
We calculate the spallative production of light elements associated with the explosion of an isolated supernova in the interstellar medium, using a time-dependent model taking into account the dilution of the ejected enriched material and the adiabatic energy losses. We first derive the injection function of energetic particles (EPs) accelerated at both the forward and the reverse shock, as a function of time. Then we calculate the Be yields obtained in both cases and compare them to the value implied by the observational data for metal-poor stars in the halo of our Galaxy, using both O and Fe data. We find that none of the processes investigated here can account for the amount of Be found in these stars, which confirms the analytical results of Parizot & Drury (1999). We finally analyze the consequences of these results for Galactic chemical evolution, and suggest that a model involving superbubbles might alleviate the energetics problem in a quite natural way.
Collisional evolution in the Eos and Koronis asteroid families - Observational and numerical results
NASA Technical Reports Server (NTRS)
Binzel, Richard P.
1988-01-01
The origin and evolution of the Eos and Koronis families are addressed by an analysis of Binzel's (1987) observational results. The Maxwellian distribution of the Eos family's rotation rates implies a collisionally-evolved population; these rates are also faster than those of the Koronis family and nonfamily asteroids. While the age of the Eos family may be comparable to the solar system's, that of the Koronis family could be considerably younger. Greater shape irregularity may account for the Koronis family's higher mean lightcurve amplitude.
Wang, Zhan-Shan; Pan, Li-Bo
2014-03-01
The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively. PMID:24881370
Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lundgren, Eric
2006-01-01
A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.
Urban Surface Network In Marseille: Network Optimization Using Numerical Simulations and Results
NASA Astrophysics Data System (ADS)
Pigeon, G.; Lemonsu, A.; Durand, P.; Masson, V.
During the ESCOMPTE program (Field experiment to constrain models of atmo- spheric pollution and emissions transport) in Marseille between june and july 2001 an important device has been set up to describe the urban boundary layer over the built-up aera of Marseille. There was notably a network of 20 temperature and humid- ity sensors which has mesured the spatial and temporal variability of these parameters. Before the experiment the arrangement of the network had been optimized to get the maximum of information about these two varaibilities. We have worked on results of high resolution simulations containing the TEB scheme which represents the energy budgets associated with the gobal street geometry of the mesh. First, a qualitative analysis had enabled the identification of the characteristical phenomenons over the town of Marseille. There are narrows links beetween urban effects and local effects : marine advection and orography. Then, a quantitative analysis of the field has been developped. EOF (empirical orthogonal functions) have been used to characterised the spatial and temporal structures of the field evolution. Instrumented axis have been determined with all these results. Finally, we have choosen very carefully the locations of the instruments at the scale of the street to avoid that micro-climatic effects interfere with the meso-scale effect of the town. The recording of the mesurements, every 10 minutes, had started on the 12th of june and had finished on the 16th of july. We did not get any problem with the instrument and so all the period has been recorded every 10 minutes. The analysis of the datas will be led on different way. First, will be done a temporal study. We want to determine if the times when occur phenomenons are linked to the location in the town. We will interest particulary to the warming during the morning and the cooling during the evening. Then, we will look for correlation between the temperature and mixing ratio with the wind
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
NASA Astrophysics Data System (ADS)
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two
NASA Astrophysics Data System (ADS)
Henne, Stephan; Kaufmann, Pirmin; Schraner, Martin; Brunner, Dominik
2013-04-01
allows particles to leave the limited COSMO domain. On the technical side, we added an OpenMP shared-memory parallelisation to the model, which also allows for asynchronous reading of input data. Here we present results from several model performance tests under different conditions and compare these with results from standard FLEXPART simulations using nested ECMWF input. This analysis will contain evaluation of deposition fields, comparison of convection schemes and performance analysis of the parallel version. Furthermore, a series of forward-backward simulations were conducted in order to test the robustness of model results independent of the integration direction. Finally, selected examples from recent applications of the model to transport of radioactive and conservative tracers and for in-situ measurement characterisation will be presented.
NASA Astrophysics Data System (ADS)
Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.
1990-02-01
Accurate 3D coupled channel calculations for total angular momentum J=0 for the reaction F+H2→HF+H using a realistic potential energy surface are analyzed. The reactive scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The adiabatic basis functions are generated quite efficiently using the discrete variable representation method. Reaction probabilities for relative collision energies of up to 17.4 kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure observed in the calculated reaction probabilities, we analyze the phases of the S matrix transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model (BCRLM) calculations are presented and compared with the accurate 3D calculations.
Pham, VT.; Silva, L.; Digonnet, H.; Combeaud, C.; Billon, N.; Coupez, T.
2011-05-04
The objective of this work is to model the viscoelastic behaviour of polymer from the solid state to the liquid state. With this objective, we perform experimental tensile tests and compare with simulation results. The chosen polymer is a PMMA whose behaviour depends on its temperature. The computation simulation is based on Navier-Stokes equations where we propose a mixed finite element method with an interpolation P1+/P1 using displacement (or velocity) and pressure as principal variables. The implemented technique uses a mesh composed of triangles (2D) or tetrahedra (3D). The goal of this approach is to model the viscoelastic behaviour of polymers through a fluid-structure coupling technique with a multiphase approach.
Active behavior of abdominal wall muscles: Experimental results and numerical model formulation.
Grasa, J; Sierra, M; Lauzeral, N; Muñoz, M J; Miana-Mena, F J; Calvo, B
2016-08-01
In the present study a computational finite element technique is proposed to simulate the mechanical response of muscles in the abdominal wall. This technique considers the active behavior of the tissue taking into account both collagen and muscle fiber directions. In an attempt to obtain the computational response as close as possible to real muscles, the parameters needed to adjust the mathematical formulation were determined from in vitro experimental tests. Experiments were conducted on male New Zealand White rabbits (2047±34g) and the active properties of three different muscles: Rectus Abdominis, External Oblique and multi-layered samples formed by three muscles (External Oblique, Internal Oblique, and Transversus Abdominis) were characterized. The parameters obtained for each muscle were incorporated into a finite strain formulation to simulate active behavior of muscles incorporating the anisotropy of the tissue. The results show the potential of the model to predict the anisotropic behavior of the tissue associated to fibers and how this influences on the strain, stress and generated force during an isometric contraction. PMID:27111629
Zlochiver, Sharon; Radai, M Michal; Abboud, Shimon; Rosenfeld, Moshe; Dong, Xiu-Zhen; Liu, Rui-Gang; You, Fu-Sheng; Xiang, Hai-Yan; Shi, Xue-Tao
2004-02-01
In electrical impedance tomography (EIT), measurements of developed surface potentials due to applied currents are used for the reconstruction of the conductivity distribution. Practical implementation of EIT systems is known to be problematic due to the high sensitivity to noise of such systems, leading to a poor imaging quality. In the present study, the performance of an induced current EIT (ICEIT) system, where eddy current is applied using magnetic induction, was studied by comparing the voltage measurements to simulated data, and examining the imaging quality with respect to simulated reconstructions for several phantom configurations. A 3-coil, 32-electrode ICEIT system was built, and an iterative modified Newton-Raphson algorithm was developed for the solution of the inverse problem. The RMS norm between the simulated and the experimental voltages was found to be 0.08 +/- 0.05 mV (<3%). Two regularization methods were implemented and compared: the Marquardt regularization and the Laplacian regularization (a bounded second-derivative regularization). While the Laplacian regularization method was found to be preferred for simulated data, it resulted in distinctive spatial artifacts for measured data. The experimental reconstructed images were found to be indicative of the angular positioning of the conductivity perturbations, though the radial sensitivity was low, especially when using the Marquardt regularization method. PMID:15005319
Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results
NASA Astrophysics Data System (ADS)
Grebenkov, D. S.; Guillot, G.; Sapoval, B.
2007-01-01
A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.
Buoyancy-driven melt segregation in the earth's moon. I - Numerical results
NASA Technical Reports Server (NTRS)
Delano, J. W.
1990-01-01
The densities of lunar mare magmas have been estimated at liquidus temperatures for pressures from 0 to 47 kbar (0.4 GPa; center of the moon) using a third-order Birch-Murnaghan equation and compositionally dependent parameters from Large and Carmichael (1987). Results on primary magmatic compositions represented by pristine volcanic glasses suggest that the density contrast between very-high-Ti melts and their liquidus olivines may approach zero at pressures of about 25 kbar (2.5 GPa). Since this is the pressure regime of the mantle source regions for these magmas, a compositional limit of eruptability for mare liquids may exist that is similar to the highest Ti melt yet observed among the lunar samples. Although the moon may have generated magmas having greater than 16.4 wt pct TiO2, those melts would probably not have reached the lunar surface due to their high densities, and may have even sunk deeper into the moon's interior as negatively buoyant diapirs. This process may have been important for assimilative interactions in the lunar mantle. The phenomenon of melt/solid density crossover may therefore occur not only in large terrestrial-type objects but also in small objects where, despite low pressures, the range of melt compositions is extreme.
NASA Astrophysics Data System (ADS)
Salcedo-Castro, Julio; Bourgault, Daniel; deYoung, Brad
2011-09-01
The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.
The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations
NASA Technical Reports Server (NTRS)
Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.
2003-01-01
We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.
Kam, Seung I.; Gauglitz, Phillip A. ); Rossen, William R.
2000-12-01
The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles are long in the slurry layer and the ratio of pore-body radius to pore-throat radius is close to one; unfortunately, capillary effects can not be quantified unambiguously from the data without additional information on pore geometry. Therefore determining the quantity of gas in the tanks requires more than just slurry volume data. Similar ambiguity also exists with two other simple models: a capillary-tube model with contact angle hysteresis and spherical-p ore model.
NASA Astrophysics Data System (ADS)
Pearson, A.; Pizzuto, J. E.
2015-12-01
Previous work at run-of-river (ROR) dams in northern Delaware has shown that bedload supplied to ROR impoundments can be transported over the dam when impoundments remain unfilled. Transport is facilitated by high levels of sand in the impoundment that lowers the critical shear stresses for particle entrainment, and an inversely sloping sediment ramp connecting the impoundment bed (where the water depth is typically equal to the dam height) with the top of the dam (Pearson and Pizzuto, in press). We demonstrate with one-dimensional bed material transport modeling that bed material can move through impoundments and that equilibrium transport (i.e., a balance between supply to and export from the impoundment, with a constant bed elevation) is possible even when the bed elevation is below the top of the dam. Based on our field work and previous HEC-RAS modeling, we assess bed material transport capacity at the base of the sediment ramp (and ignore detailed processes carrying sediment up and ramp and over the dam). The hydraulics at the base of the ramp are computed using a weir equation, providing estimates of water depth, velocity, and friction, based on the discharge and sediment grain size distribution of the impoundment. Bedload transport rates are computed using the Wilcock-Crowe equation, and changes in the impoundment's bed elevation are determined by sediment continuity. Our results indicate that impoundments pass the gravel supplied from upstream with deep pools when gravel supply rate is low, gravel grain sizes are relatively small, sand supply is high, and discharge is high. Conversely, impoundments will tend to fill their pools when gravel supply rate is high, gravel grain sizes are relatively large, sand supply is low, and discharge is low. The rate of bedload supplied to an impoundment is the primary control on how fast equilibrium transport is reached, with discharge having almost no influence on the timing of equilibrium.
NASA Technical Reports Server (NTRS)
Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.
2002-01-01
An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Sreeram
Harbor observation and prediction system (NYHOPS) which provides 48-hour forecasts of salinity and temperature profiles. Initial results indicate that the NYHOPS forecast of sound speed profiles used in conjunction with the acoustic propagation model is able to make realistic forecasts of TL in the Hudson River Estuary.
Numerical Modeling of Anti-icing Systems and Comparison to Test Results on a NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Potapczuk, Mark G.
1993-01-01
A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experiment results were generally obtained for the surface temperature and the possibility for each runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.
NASA Astrophysics Data System (ADS)
Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet
2014-05-01
Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
NASA Astrophysics Data System (ADS)
Wang, Ten-See; Dumas, Catherine
1993-07-01
A computational fluid dynamics (CFD) model has been applied to study the transient flow phenomena of the nozzle and exhaust plume of the Space Shuttle Main Engine (SSME), fired at sea level. The CFD model is a time accurate, pressure based, reactive flow solver. A six-species hydrogen/oxygen equilibrium chemistry is used to describe the chemical-thermodynamics. An adaptive upwinding scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the temporal solution. Both engine start-up and shut-down processes were simulated. The elapse time is approximately five seconds for both cases. The computed results were animated and compared with the test. The images for the animation were created with PLOT3D and FAST and then animated with ABEKAS. The hysteresis effects, and the issues of free-shock separation, restricted-shock separation and the end-effects were addressed.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Dumas, Catherine
1993-01-01
A computational fluid dynamics (CFD) model has been applied to study the transient flow phenomena of the nozzle and exhaust plume of the Space Shuttle Main Engine (SSME), fired at sea level. The CFD model is a time accurate, pressure based, reactive flow solver. A six-species hydrogen/oxygen equilibrium chemistry is used to describe the chemical-thermodynamics. An adaptive upwinding scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the temporal solution. Both engine start-up and shut-down processes were simulated. The elapse time is approximately five seconds for both cases. The computed results were animated and compared with the test. The images for the animation were created with PLOT3D and FAST and then animated with ABEKAS. The hysteresis effects, and the issues of free-shock separation, restricted-shock separation and the end-effects were addressed.
NASA Astrophysics Data System (ADS)
Wu, Yang; Kelly, Damien P.
2014-12-01
The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.
Wu, Yang; Kelly, Damien P.
2014-01-01
The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf’s treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of Un and Vn type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of Δρ and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by 2πm/Δρ, where m is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system. PMID
NASA Astrophysics Data System (ADS)
Baharun, A. Tarmizi; Maimun, Adi; Ahmed, Yasser M.; Mobassher, M.; Nakisa, M.
2015-05-01
In this paper, three dimensional data and behavior of incompressible and steady air flow around a small scale Wing in Ground Effect Craft (WIG) were investigated and studied numerically then compared to the experimental result and also published data. This computational simulation (CFD) adopted two turbulence models, which were k-ɛ and k-ω in order to determine which model produces minimum difference to the experimental result of the small scale WIG tested in wind tunnel. Unstructured mesh was used in the simulation and data of drag coefficient (Cd) and lift coefficient (Cl) were obtained with angle of attack (AoA) of the WIG model as the parameter. Ansys ICEM was used for the meshing process while Ansys Fluent was used for solution. Aerodynamic forces, Cl, Cd and Cl/Cd along with fluid flow pattern of the small scale WIG craft was shown and discussed.
Meyer, H. O.
The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H
2013-01-01
High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to
NASA Astrophysics Data System (ADS)
Sanz-Enguita, G.; Ortega, J.; Folcia, C. L.; Aramburu, I.; Etxebarria, J.
2016-02-01
We have studied the performance characteristics of a dye-doped cholesteric liquid crystal (CLC) laser as a function of the sample thickness. The study has been carried out both from the experimental and theoretical points of view. The theoretical model is based on the kinetic equations for the population of the excited states of the dye and for the power of light generated within the laser cavity. From the equations, the threshold pump radiation energy Eth and the slope efficiency η are numerically calculated. Eth is rather insensitive to thickness changes, except for small thicknesses. In comparison, η shows a much more pronounced variation, exhibiting a maximum that determines the sample thickness for optimum laser performance. The predictions are in good accordance with the experimental results. Approximate analytical expressions for Eth and η as a function of the physical characteristics of the CLC laser are also proposed. These expressions present an excellent agreement with the numerical calculations. Finally, we comment on the general features of CLC layer and dye that lead to the best laser performance.
NASA Astrophysics Data System (ADS)
de'Michieli Vitturi, M.; Todesco, M.; Neri, A.; Esposti Ongaro, T.; Tola, E.; Rocco, G.
2011-12-01
We present a new DVD of the INGV outreach series, aimed at illustrating our research work on pyroclastic flow modeling. Pyroclastic flows (or pyroclastic density currents) are hot, devastating clouds of gas and ashes, generated during explosive eruptions. Understanding their dynamics and impact is crucial for a proper hazard assessment. We employ a 3D numerical model which describes the main features of the multi-phase and multi-component process, from the generation of the flows to their propagation along complex terrains. Our numerical results can be translated into color animations, which describe the temporal evolution of flow variables such as temperature or ash concentration. The animations provide a detailed and effective description of the natural phenomenon which can be used to present this geological process to a general public and to improve the hazard perception in volcanic areas. In our DVD, the computer animations are introduced and commented by professionals and researchers who deals at various levels with the study of pyroclastic flows and their impact. Their comments are taken as short interviews, mounted in a short video (about 10 minutes), which describes the natural process, as well as the model and its applications to some explosive volcanoes like Vesuvio, Campi Flegrei, Mt. St. Helens and Soufriere Hills (Montserrat). The ensemble of different voices and faces provides a direct sense of the multi-disciplinary effort involved in the assessment of pyroclastic flow hazard. The video also introduces the people who address this complex problem, and the personal involvement beyond the scientific results. The full, uncommented animations of the pyroclastic flow propagation on the different volcanic settings are also provided in the DVD, that is meant to be a general, flexible outreach tool.
Accurate momentum transfer cross section for the attractive Yukawa potential
Khrapak, S. A.
2014-04-15
Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.
NASA Astrophysics Data System (ADS)
Mazoyer, Johan; Pueyo, Laurent; Norman, Colin; N'Diaye, Mamadou; van der Marel, Roeland P.; Soummer, Rémi
2016-03-01
The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffraction artifacts introduced at the science camera by apertures of increasing complexity. Indeed, the future generation of space- and ground-based coronagraphic instruments will be mounted on on-axis and/or segmented telescopes; the design of coronagraphic instruments for such observatories is currently a domain undergoing rapid progress. One approach consists of using two sequential deformable mirrors (DMs) to correct for aberrations introduced by secondary mirror structures and segmentation of the primary mirror. The coronagraph for the WFIRST-AFTA mission will be the first of such instruments in space with a two-DM wavefront control system. Regardless of the control algorithm for these multiple DMs, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Appendix A, we prove analytically that in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the active compensation of aperture discontinuities (ACAD) technique applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the high-contrast imager for complex aperture telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil Lyot coronagraph, and the performance of our current DMs, we are able to obtain, in numerical simulations, a dark hole with a WFIRST-AFTA-like. Our numerical simulation shows that we can obtain contrast better than 2×10-9 in
G. L. Hawkes; J. E. O'Brien; B. A. Haberman; A. J. Marquis; C. M. Baca; D. Tripepi; P. Costamagna
2008-06-01
A numerical study of the thermal and electrochemical performance of a single-tube Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) has been performed. Results obtained from two finite-volume computational fluid dynamics (CFD) codes FLUENT and SOHAB and from a two-dimensional inhouse developed finite-volume GENOA model are presented and compared. Each tool uses physical and geometric models of differing complexity and comparisons are made to assess their relative merits. Several single-tube simulations were run using each code over a range of operating conditions. The results include polarization curves, distributions of local current density, composition and temperature. Comparisons of these results are discussed, along with their relationship to the respective imbedded phenomenological models for activation losses, fluid flow and mass transport in porous media. In general, agreement between the codes was within 15% for overall parameters such as operating voltage and maximum temperature. The CFD results clearly show the effects of internal structure on the distributions of gas flows and related quantities within the electrochemical cells.
NASA Astrophysics Data System (ADS)
Hand, J. W.; Li, Y.; Hajnal, J. V.
2010-02-01
Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SARMWB <= 2 W kg-1 (continuous or time-averaged over 6 min)), whole foetal SAR, local foetal SAR10g and average foetal temperature are within international safety limits. For continuous RF exposure at SARMWB = 2 W kg-1 over periods of 7.5 min or longer, a maximum local foetal temperature >38 °C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SARMWB = 2 W kg-1, some local SAR10g values in the mother's trunk and extremities exceed recommended limits.
Ermolaev, B.S.; Novozhilov, B.V.; Posvyanskii, V.S.; Sulimov, A.A.
1986-03-01
The authors analyze the results of a numerical simulation of the convective burning of explosive powders in the presence of increasing pressure. The formulation of the problem reproduces a typical experimental technique: a strong closed vessel with a channel uniformly filled with the explosive investigated is fitted with devices for initiating and recording the process of explosion. It is shown that the relation between the propagation velocities of the flame and the compression waves in the powder and the rate of pressure increase in the combustion zone is such that a narrow compaction zone is formed ahead of the ignition front. Another important result is obtained by analyzing the difference between the flame velocity and the gas flow velocity in the ignition front. A model of the process is given. The results of the investigation throw light on such aspects of the convective combustion mechanism and the transition from combustion to detonation as the role of compaction of the explosive in the process of flame propogation and the role of the rate of pressure increase and dissipative heating of the gas phase in the pores ahead of the ignition front.
NASA Astrophysics Data System (ADS)
Charbonneau, David; Harps-N Collaboration
2015-01-01
Although the NASA Kepler Mission has determined the physical sizes of hundreds of small planets, and we have in many cases characterized the star in detail, we know virtually nothing about the planetary masses: There are only 7 planets smaller than 2.5 Earth radii for which there exist published mass estimates with a precision better than 20 percent, the bare minimum value required to begin to distinguish between different models of composition.HARPS-N is an ultra-stable fiber-fed high-resolution spectrograph optimized for the measurement of very precise radial velocities. We have 80 nights of guaranteed time per year, of which half are dedicated to the study of small Kepler planets.In preparation for the 2014 season, we compared all available Kepler Objects of Interest to identify the ones for which our 40 nights could be used most profitably. We analyzed the Kepler light curves to constrain the stellar rotation periods, the lifetimes of active regions on the stellar surface, and the noise that would result in our radial velocities. We assumed various mass-radius relations to estimate the observing time required to achieve a mass measurement with a precision of 15%, giving preference to stars that had been well characterized through asteroseismology. We began by monitoring our long list of targets. Based on preliminary results we then selected our final short list, gathering typically 70 observations per target during summer 2014.These resulting mass measurements will have a signifcant impact on our understanding of these so-called super-Earths and small Neptunes. They would form a core dataset with which the international astronomical community can meaningfully seek to understand these objects and their formation in a quantitative fashion.HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National
Dvir, Hila; Zlochiver, Sharon
2015-01-01
A single isolated sinoatrial pacemaker cell presents intrinsic interbeat interval (IBI) variability that is believed to result from the stochastic characteristics of the opening and closing processes of membrane ion channels. To our knowledge, a novel mathematical framework was developed in this work to address the effect of current fluctuations on the IBIs of sinoatrial pacemaker cells. Using statistical modeling and employing the Fokker-Planck formalism, our mathematical analysis suggests that increased stochastic current fluctuation variance linearly increases the slope of phase-4 depolarization, hence the rate of activations. Single-cell and two-dimensional computerized numerical modeling of the sinoatrial node was conducted to validate the theoretical predictions using established ionic kinetics of the rabbit pacemaker and atrial cells. Our models also provide, to our knowledge, a novel complementary or alternative explanation to recent experimental observations showing a strong reduction in the mean IBI of Cx30 deficient mice in comparison to wild-types, not fully explicable by the effects of intercellular decoupling. PMID:25762340
2010-01-01
Background The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an agent of the biological control in the field, we investigated the phylogenetic structure of the species. Results Using DNA sequence data from three unlinked loci for each of 93 strains collected worldwide, we detected a complex speciation process revealing overlapping reproductively isolated biological species, recent agamospecies and numerous relict lineages with unresolved phylogenetic positions. Genealogical concordance and recombination analyses confirm the existence of two genetically isolated agamospecies including T. harzianum sensu stricto and two hypothetical holomorphic species related to but different from H. lixii. The exact phylogenetic position of the majority of strains was not resolved and therefore attributed to a diverse network of recombining strains conventionally called 'pseudoharzianum matrix'. Since H. lixii and T. harzianum are evidently genetically isolated, the anamorph - teleomorph combination comprising H. lixii/T. harzianum in one holomorph must be rejected in favor of two separate species. Conclusions Our data illustrate a complex speciation within H. lixii - T. harzianum species group, which is based on coexistence and interaction of organisms with different evolutionary histories and on the absence of strict genetic borders between them. PMID:20359347
NASA Astrophysics Data System (ADS)
Chirkov, V. A.; Komarov, D. K.; Stishkov, Y. K.; Vasilkov, S. A.
2015-10-01
The paper studies a particular electrode system, two flat parallel electrodes with a dielectric plate having a small circular hole between them. Its main feature is that the region of the strong electric field is located far from metal electrode surfaces, which permits one to preclude the injection charge formation and to observe field-enhanced dissociation (the Wien effect) leading to the emergence of electrohydrodynamic (EHD) flow. The described electrode system was studied by way of both computer simulation and experiment. The latter was conducted with the help of the particle image velocimetry (or PIV) technique. The numerical research used trusted software package COMSOL Multiphysics, which allows solving the complete set of EHD equations and obtaining the EHD flow structure. Basing on the computer simulation and the comparison with experimental investigation results, it was concluded that the Wien effect is capable of causing intense (several centimeters per second) EHD flows in low-conducting liquids and has to be taken into account when dealing with EHD devices.
Luo Xueli; Day, Christian; Haas, Horst; Varoutis, Stylianos
2011-07-15
For the torus of the nuclear fusion project ITER (originally the International Thermonuclear Experimental Reactor, but also Latin: the way), eight high-performance large-scale customized cryopumps must be designed and manufactured to accommodate the very high pumping speeds and throughputs of the fusion exhaust gas needed to maintain the plasma under stable vacuum conditions and comply with other criteria which cannot be met by standard commercial vacuum pumps. Under an earlier research and development program, a model pump of reduced scale based on active cryosorption on charcoal-coated panels at 4.5 K was manufactured and tested systematically. The present article focuses on the simulation of the true three-dimensional complex geometry of the model pump by the newly developed ProVac3D Monte Carlo code. It is shown for gas throughputs of up to 1000 sccm ({approx}1.69 Pa m{sup 3}/s at T = 0 deg. C) in the free molecular regime that the numerical simulation results are in good agreement with the pumping speeds measured. Meanwhile, the capture coefficient associated with the virtual region around the cryogenic panels and shields which holds for higher throughputs is calculated using this generic approach. This means that the test particle Monte Carlo simulations in free molecular flow can be used not only for the optimization of the pumping system but also for the supply of the input parameters necessary for the future direct simulation Monte Carlo in the full flow regime.
Dvir, Hila; Zlochiver, Sharon
2015-03-10
A single isolated sinoatrial pacemaker cell presents intrinsic interbeat interval (IBI) variability that is believed to result from the stochastic characteristics of the opening and closing processes of membrane ion channels. To our knowledge, a novel mathematical framework was developed in this work to address the effect of current fluctuations on the IBIs of sinoatrial pacemaker cells. Using statistical modeling and employing the Fokker-Planck formalism, our mathematical analysis suggests that increased stochastic current fluctuation variance linearly increases the slope of phase-4 depolarization, hence the rate of activations. Single-cell and two-dimensional computerized numerical modeling of the sinoatrial node was conducted to validate the theoretical predictions using established ionic kinetics of the rabbit pacemaker and atrial cells. Our models also provide, to our knowledge, a novel complementary or alternative explanation to recent experimental observations showing a strong reduction in the mean IBI of Cx30 deficient mice in comparison to wild-types, not fully explicable by the effects of intercellular decoupling. PMID:25762340
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni
Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra
NASA Astrophysics Data System (ADS)
Valla, Pierre G.; van der Beek, Peter A.; Lague, Dimitri; Carcaillet, Julien
2010-05-01
Bedrock gorges are frequent features in glacial or post-glacial landscapes and allow measurements of fluvial bedrock incision in mountainous relief. Using digital elevation models, aerial photographs, topographic maps and field reconnaissance in the Pelvoux-Ecrins Massif (French Western Alps), we have identified ~30 tributary hanging valleys incised by gorges toward their confluence with the trunk streams. Longitudinal profiles of these tributaries are all convex and have abrupt knickpoints at the upper limit of oversteepened gorge reaches. From morphometric analyses, we find that mean channel gradients and widths, as well as knickpoint retreat rates, display a drainage-area dependence modulated by bedrock lithology. However, there appears to be no relation between horizontal retreat and vertical downwearing of knickpoints. Numerical modeling has been performed to test the capacity of different fluvial incision models to predict the inferred evolution of the gorges. Results from simple end-member models suggest transport-limited behavior of the bedrock gorges. Using a more sophisticated model including dynamic width adjustment and sediment-dependent incision rates, we show that bedrock gorge evolution requires significant supply of sediment from the gorge sidewalls triggered by gorge deepening, combined with pronounced inhibition of bedrock incision by sediment transport and deposition. We then use in-situ produced 10Be cosmogenic nuclides to date and quantify bedrock gorge incision into a single glacial hanging valley (Gorge du Diable). We have sampled gorge sidewalls and the active channel bed to derive both long-term and present-day incision rates. 10Be ages of sidewall profiles reveal rapid incision through the late Holocene (ca 5 ka), implying either delayed initiation of gorge incision after final ice retreat from internal Alpine valleys at ca 12 ka, or post-glacial surface reburial of the gorge. Both modeling results and cosmogenic dating suggest that
Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Chovancova, Michaela
2016-04-01
In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.5 and 1 L, which correspond to a sedentary regime and deep breath, respectively. The length of the entire breathing cycle was 4 s, with inspiration and expiration each lasting 2 s. As a boundary condition for the CFD simulations, experimentally obtained flow rate distribution in 10 terminal airways was used with zero pressure resistance at the throat inlet. CCM+ CFD code (Adapco) was used with an SST k-[Formula: see text] low-Reynolds Number RANS model. The total number of polyhedral control volumes was 2.6 million with a time step of 0.001 s. Comparisons were made at several points in eight cross sections selected according to experiments in the trachea and the left and right bronchi. The results agree well with experiments involving the oscillation (temporal relocation) of flow structures in the majority of the cross sections and individual local positions. Velocity field simulation in several cross sections shows a very unstable flow field, which originates in the tracheal laryngeal jet and propagates far downstream with the formation of separation zones in both left and right airways. The RANS simulation agrees with the experiments in almost all the cross sections and shows unstable local flow structures and a quantitatively acceptable solution for the time-averaged flow field. PMID:26163996
NASA Astrophysics Data System (ADS)
Li, Xiaoping; Hunt, Katharine L. C.; Pipin, Janusz; Bishop, David M.
1996-12-01
For atoms or molecules of D∞h or higher symmetry, this work gives equations for the long-range, collision-induced changes in the first (Δβ) and second (Δγ) hyperpolarizabilities, complete to order R-7 in the intermolecular separation R for Δβ, and order R-6 for Δγ. The results include nonlinear dipole-induced-dipole (DID) interactions, higher multipole induction, induction due to the nonuniformity of the local fields, back induction, and dispersion. For pairs containing H or He, we have used ab initio values of the static (hyper)polarizabilities to obtain numerical results for the induction terms in Δβ and Δγ. For dispersion effects, we have derived analytic results in the form of integrals of the dynamic (hyper)polarizabilities over imaginary frequencies, and we have evaluated these numerically for the pairs H...H, H...He, and He...He using the values of the fourth dipole hyperpolarizability ɛ(-iω; iω, 0, 0, 0, 0) obtained in this work, along with other hyperpolarizabilities calculated previously by Bishop and Pipin. For later numerical applications to molecular pairs, we have developed constant ratio approximations (CRA1 and CRA2) to estimate the dispersion effects in terms of static (hyper)polarizabilities and van der Waals energy or polarizability coefficients. Tests of the approximations against accurate results for the pairs H...H, H...He, and He...He show that the root mean square (rms) error in CRA1 is ˜20%-25% for Δβ and Δγ; for CRA2 the error in Δβ is similar, but the rms error in Δγ is less than 4%. At separations ˜1.0 a.u. outside the van der Waals minima of the pair potentials for H...H, H...He, and He...He, the nonlinear DID interactions make the dominant contributions to Δγzzzz (where z is the interatomic axis) and to Δγxxxx, accounting for ˜80%-123% of the total value. Contributions due to higher-multipole induction and the nonuniformity of the local field (Qα terms) may exceed 15%, while dispersion effects
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Accurate determination of characteristic relative permeability curves
NASA Astrophysics Data System (ADS)
Krause, Michael H.; Benson, Sally M.
2015-09-01
A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.
NNLOPS accurate associated HW production
NASA Astrophysics Data System (ADS)
Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia
2016-06-01
We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Okei, K.; Nakatsuka, T.
Accuracies of numerical Fourier and Hankel transforms are examined with the Takahasi-Mori theory of error evaluation. The higher Moliere terms both for spatial and projected distributions derived by these methods agree very well with those derived analytically. The methods will be valuable to solve other transport problems concerning fast charged particles.
NASA Astrophysics Data System (ADS)
Declair, Stefan; Stephan, Klaus; Potthast, Roland
2015-04-01
Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs). In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology strongly support the TSOs by developing innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key in the energy prediction process chain is the numerical weather prediction (NWP) system. With focus on wind energy, we face the model errors in the planetary boundary layer, which is characterized by strong spatial and temporal fluctuations in wind speed, to improve the basis of the weather dependent renewable energy prediction. Model data can be corrected by postprocessing techniques such as model output statistics and calibration using historical observational data. On the other hand, latest observations can be used in a preprocessing technique called data assimilation (DA). In DA, the model output from a previous time step is combined such with observational data, that the new model data for model integration initialization (analysis) fits best to the latest model data and the observational data as well. Therefore, model errors can be already reduced before the model integration. In this contribution, the results of an impact study are presented. A so-called OSSE (Observation Simulation System Experiment) is performed using the convective-resoluted COSMO-DE model of the German Weather Service and a 4D-DA technique, a Newtonian relaxation method also called nudging. Starting from a nature run (treated as the truth), conventional observations and artificial wind observations at hub height are generated. In a control run, the basic model setup of the nature run is slightly perturbed to drag the model away from the beforehand generated truth and a free forecast is computed based on the analysis using only conventional
NASA Astrophysics Data System (ADS)
van Aalsburg, Jordan; Rundle, John B.; Grant, Lisa B.; Rundle, Paul B.; Yakovlev, Gleb; Turcotte, Donald L.; Donnellan, Andrea; Tiampo, Kristy F.; Fernandez, Jose
2010-08-01
In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed "model steering". Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California.
NASA Technical Reports Server (NTRS)
Lyons, Walter A.; Pielke, Roger A.; Cotton, William R.; Keen, Cecil S.; Moon, Dennis A.
1992-01-01
Sea breeze thunderstorms during quiescent synoptic conductions account for 40 percent of Florida rainfall, and are the dominant feature of April-October weather at the Kennedy Space Center (KSC). An effort is presently made to assess the feasibility of a mesoscale numerical model in improving the point-specific thunderstorm forecasting accuracy at the KSC, in the 2-12 hour time frame. Attention is given to the Applied Regional Atmospheric Modeling System.
NASA Astrophysics Data System (ADS)
Sprenger, Lisa; Lange, Adrian; Odenbach, Stefan
2013-12-01
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (ST) of 0.16 K-1. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison of the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K-1 in the analytical case and 0.29 K-1 in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.
NASA Astrophysics Data System (ADS)
Raghavan, V.; Whitney, Scott E.; Ebmeier, Ryan J.; Padhye, Nisha V.; Nelson, Michael; Viljoen, Hendrik J.; Gogos, George
2006-09-01
In this article, experimental and numerical analyses to investigate the thermal control of an innovative vortex tube based polymerase chain reaction (VT-PCR) thermocycler are described. VT-PCR is capable of rapid DNA amplification and real-time optical detection. The device rapidly cycles six 20μl 96bp λ-DNA samples between the PCR stages (denaturation, annealing, and elongation) for 30cycles in approximately 6min. Two-dimensional numerical simulations have been carried out using computational fluid dynamics (CFD) software FLUENT v.6.2.16. Experiments and CFD simulations have been carried out to measure/predict the temperature variation between the samples and within each sample. Heat transfer rate (primarily dictated by the temperature differences between the samples and the external air heating or cooling them) governs the temperature distribution between and within the samples. Temperature variation between and within the samples during the denaturation stage has been quite uniform (maximum variation around ±0.5 and 1.6°C, respectively). During cooling, by adjusting the cold release valves in the VT-PCR during some stage of cooling, the heat transfer rate has been controlled. Improved thermal control, which increases the efficiency of the PCR process, has been obtained both experimentally and numerically by slightly decreasing the rate of cooling. Thus, almost uniform temperature distribution between and within the samples (within 1°C) has been attained for the annealing stage as well. It is shown that the VT-PCR is a fully functional PCR machine capable of amplifying specific DNA target sequences in less time than conventional PCR devices.
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison of the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.
Schubert, Frank; Wiggenhauser, Herbert; Lausch, Regine
2004-04-01
In impact-echo testing of finite concrete structures, reflections of Rayleigh and body waves from lateral boundaries significantly affect time-domain signals and spectra. In the present paper we demonstrate by numerical simulations and experimental measurements at a concrete specimen that these reflections can lead to systematic errors in thickness determination. These effects depend not only on the dimensions of the specimen, but also on the location of the actual measuring point and on the duration of the detected time-domain signal. PMID:15047403
Accurate Thermal Stresses for Beams: Normal Stress
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Pilkey, Walter D.
2003-01-01
Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.