Science.gov

Sample records for accurate phylogenetic classification

  1. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  2. A Higher-Level Phylogenetic Classification of the Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive phylogenetic classification of the Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from members of the fungal taxonomic community. The classification includes 196 taxa, down to the level of order, of which 23 are described or are validated ...

  3. Discriminative features and classification methods for accurate classification

    NASA Astrophysics Data System (ADS)

    Dessauer, Michael P.; Dua, Sumeet

    2010-04-01

    Automated classification and tracking approaches suffer from the high-dimensionality of the data and information space, which frequently rely upon both discriminative feature selection and efficient, accurate supervised classification strategies. Feature selection strategies have the benefit of representing the data in a modified reduced space to improve the efficacy of data mining, machine learning, and computer vision approaches. We have developed feature-selection methods involving feature ranking and assimilation to discover reduced feature sets that produce accurate results in classification for automated classifiers with significant specificity and sensitivity. We have tested a wide range of spatial, texture, and wavelet-based feature sets for electro-optical (EO) aerial imagery and infrared (IR) land-based image sequences on several machine-learning algorithms for classification for performance evaluation and comparison. A detailed experimental evaluation is provided for the classification efficacy of the features and classifiers on the particular data sets, and is accompanied by a discussion of the particular success or failure. In the second section, we detail our novel feature set that combines moment and edge descriptors and produces high, robust accuracy when evaluated for classification. Our method leverages information previously calculated in the detection stage, which includes wavelet decomposition and texture statistics. We demonstrate the results of our feature set implementation and discuss methods for creating classifier decision rules to choose a particular classification algorithm dependent on certain operating conditions or data types adaptively.

  4. Towards an integrated phylogenetic classification of the Tremellomycetes

    PubMed Central

    Liu, X.-Z.; Wang, Q.-M.; Göker, M.; Groenewald, M.; Kachalkin, A.V.; Lumbsch, H.T.; Millanes, A.M.; Wedin, M.; Yurkov, A.M.; Boekhout, T.; Bai, F.-Y.

    2016-01-01

    Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained. PMID:26955199

  5. Towards an integrated phylogenetic classification of the Tremellomycetes.

    PubMed

    Liu, X-Z; Wang, Q-M; Göker, M; Groenewald, M; Kachalkin, A V; Lumbsch, H T; Millanes, A M; Wedin, M; Yurkov, A M; Boekhout, T; Bai, F-Y

    2015-06-01

    Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained. PMID:26955199

  6. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects. PMID:10839820

  7. Novel animal papillomavirus sequences and accurate phylogenetic placement.

    PubMed

    Mengual-Chuli, Beatriz; Garca-Prez, Raquel; Gottschling, Marc; Nindl, Ingo; Bravo, Ignacio G

    2012-12-01

    All amniotes are probably infected by specific papillomaviruses (PVs), but knowledge about PV diversity remains sparse. An insufficient taxon sampling, and a focus on humans as hosts, may perturb phylogenetic analyses leading to wrong conclusions about PV evolution. We performed a systematic approach to explore the diversity of PVs combining rolling circle amplification with the use of "universal" primers to search for the presence of novel PV sequences in animal samples. We communicate 12 sequences putatively corresponding to novel PVs gained from 10 host species in eight mammal families: Bovidae, Canidae, Cervidae, Equidae, Hominidae, Phocoenidae, Procyonidae and Pteropodidae. The phylogenetic position of the new sequences was inferred with an evolutionary placement algorithm under a Maximum Likelihood framework using a pre-computed, well-resolved tree constructed with the E1-E2-L1 gene sequences as a backbone. The new sequences were phylogenetically diverse and could be respectively placed with confidence within all four PV crown groups. The prevailing presence of sequences from the crown groups Alpha+Omikron-PVs and Beta+Xi-PVs may correspond to an increased viral diversity in these taxa, or rather reflect a combination of anthropocentric bias and preferential amplification from commonly used "universal" primers. Our results combined with literature data support the view that the number and diversity of animal PVs is overwhelmingly large. PMID:22960206

  8. A higher-level phylogenetic classification of the Fungi.

    PubMed

    Hibbett, David S; Binder, Manfred; Bischoff, Joseph F; Blackwell, Meredith; Cannon, Paul F; Eriksson, Ove E; Huhndorf, Sabine; James, Timothy; Kirk, Paul M; Lcking, Robert; Thorsten Lumbsch, H; Lutzoni, Franois; Matheny, P Brandon; McLaughlin, David J; Powell, Martha J; Redhead, Scott; Schoch, Conrad L; Spatafora, Joseph W; Stalpers, Joost A; Vilgalys, Rytas; Aime, M Catherine; Aptroot, Andr; Bauer, Robert; Begerow, Dominik; Benny, Gerald L; Castlebury, Lisa A; Crous, Pedro W; Dai, Yu-Cheng; Gams, Walter; Geiser, David M; Griffith, Gareth W; Gueidan, Ccile; Hawksworth, David L; Hestmark, Geir; Hosaka, Kentaro; Humber, Richard A; Hyde, Kevin D; Ironside, Joseph E; Kljalg, Urmas; Kurtzman, Cletus P; Larsson, Karl-Henrik; Lichtwardt, Robert; Longcore, Joyce; Miadlikowska, Jolanta; Miller, Andrew; Moncalvo, Jean-Marc; Mozley-Standridge, Sharon; Oberwinkler, Franz; Parmasto, Erast; Reeb, Valrie; Rogers, Jack D; Roux, Claude; Ryvarden, Leif; Sampaio, Jos Paulo; Schssler, Arthur; Sugiyama, Junta; Thorn, R Greg; Tibell, Leif; Untereiner, Wendy A; Walker, Christopher; Wang, Zheng; Weir, Alex; Weiss, Michael; White, Merlin M; Winka, Katarina; Yao, Yi-Jian; Zhang, Ning

    2007-05-01

    A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella. PMID:17572334

  9. Phylogenetic and functional classification of ATP-binding cassette (ABC) systems.

    PubMed

    Bouige, Philippe; Laurent, David; Piloyan, Linda; Dassa, Elie

    2002-10-01

    ATP binding cassette (ABC) systems constitute one of the most abundant superfamilies of proteins. They are involved in the transport of a wide variety of substances, but also in many cellular processes and in their regulation. In this paper, we made a comparative analysis of the properties of ABC systems and we provide a phylogenetic and functional classification. This analysis will be helpful to accurately annotate ABC systems discovered during the sequencing of the genome of living organisms and to identify the partners of the ABC ATPases. PMID:12370001

  10. The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms.

    PubMed

    Dassa, E; Bouige, P

    2001-01-01

    ATP binding cassette (ABC) systems constitute one of the most abundant superfamilies of proteins. They are involved not only in the transport of a wide variety of substances, but also in many cellular processes and in their regulation. In this paper, we made a comparative analysis of the properties of ABC systems and we provide a phylogenetic and functional classification. This analysis will be helpful to accurately annotate ABC systems discovered during the sequencing of the genome of living organisms and to identify the partners of the ABC ATPases. PMID:11421270

  11. Accurate molecular classification of cancer using simple rules

    PubMed Central

    Wang, Xiaosheng; Gotoh, Osamu

    2009-01-01

    Background One intractable problem with using microarray data analysis for cancer classification is how to reduce the extremely high-dimensionality gene feature data to remove the effects of noise. Feature selection is often used to address this problem by selecting informative genes from among thousands or tens of thousands of genes. However, most of the existing methods of microarray-based cancer classification utilize too many genes to achieve accurate classification, which often hampers the interpretability of the models. For a better understanding of the classification results, it is desirable to develop simpler rule-based models with as few marker genes as possible. Methods We screened a small number of informative single genes and gene pairs on the basis of their depended degrees proposed in rough sets. Applying the decision rules induced by the selected genes or gene pairs, we constructed cancer classifiers. We tested the efficacy of the classifiers by leave-one-out cross-validation (LOOCV) of training sets and classification of independent test sets. Results We applied our methods to five cancerous gene expression datasets: leukemia (acute lymphoblastic leukemia [ALL] vs. acute myeloid leukemia [AML]), lung cancer, prostate cancer, breast cancer, and leukemia (ALL vs. mixed-lineage leukemia [MLL] vs. AML). Accurate classification outcomes were obtained by utilizing just one or two genes. Some genes that correlated closely with the pathogenesis of relevant cancers were identified. In terms of both classification performance and algorithm simplicity, our approach outperformed or at least matched existing methods. Conclusion In cancerous gene expression datasets, a small number of genes, even one or two if selected correctly, is capable of achieving an ideal cancer classification effect. This finding also means that very simple rules may perform well for cancerous class prediction. PMID:19874631

  12. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi

    PubMed Central

    Sung, Gi-Ho; Hywel-Jones, Nigel L.; Sung, Jae-Mo; Luangsa-ard, J. Jennifer; Shrestha, Bhushan; Spatafora, Joseph W.

    2007-01-01

    Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1? (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), ?-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichlo, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided. PMID:18490993

  13. An Evolutionary Model-Based Algorithm for Accurate Phylogenetic Breakpoint Mapping and Subtype Prediction in HIV-1

    PubMed Central

    Kosakovsky Pond, Sergei L.; Posada, David; Stawiski, Eric; Chappey, Colombe; Poon, Art F.Y.; Hughes, Gareth; Fearnhill, Esther; Gravenor, Mike B.; Leigh Brown, Andrew J.; Frost, Simon D.W.

    2009-01-01

    Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol) sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (?5%) fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate, robust and extensible subtyping procedures is clear. PMID:19956739

  14. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa)

    PubMed Central

    Maronna, Maximiliano M.; Miranda, Thaís P.; Peña Cantero, Álvaro L.; Barbeitos, Marcos S.; Marques, Antonio C.

    2016-01-01

    Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective. PMID:26821567

  15. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa).

    PubMed

    Maronna, Maximiliano M; Miranda, Thaís P; Peña Cantero, Álvaro L; Barbeitos, Marcos S; Marques, Antonio C

    2016-01-01

    Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective. PMID:26821567

  16. Optimal selection of mother wavelet for accurate infant cry classification.

    PubMed

    Saraswathy, J; Hariharan, M; Nadarajaw, Thiyagar; Khairunizam, Wan; Yaacob, Sazali

    2014-06-01

    Wavelet theory is emerging as one of the prevalent tool in signal and image processing applications. However, the most suitable mother wavelet for these applications is still a relative question mark amongst researchers. Selection of best mother wavelet through parameterization leads to better findings for the analysis in comparison to random selection. The objective of this article is to compare the performance of the existing members of mother wavelets and to select the most suitable mother wavelet for accurate infant cry classification. Optimal wavelet is found using three different criteria namely the degree of similarity of mother wavelets, regularity of mother wavelets and accuracy of correct recognition during classification processes. Recorded normal and pathological infant cry signals are decomposed into five levels using wavelet packet transform. Energy and entropy features are extracted at different sub bands of cry signals and their effectiveness are tested with four supervised neural network architectures. Findings of this study expound that, the Finite impulse response based approximation of Meyer is the best wavelet candidate for accurate infant cry classification analysis. PMID:24691930

  17. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    A blank mask and its preparation stages, such as cleaning or resist coating, play an important role in the eventual yield obtained by using it. Blank mask defects' impact analysis directly depends on the amount of available information such as the number of defects observed, their accurate locations and sizes. Mask usability qualification at the start of the preparation process, is crudely based on number of defects. Similarly, defect information such as size is sought to estimate eventual defect printability on the wafer. Tracking of defect characteristics, specifically size and shape, across multiple stages, can further be indicative of process related information such as cleaning or coating process efficiencies. At the first level, inspection machines address the requirement of defect characterization by detecting and reporting relevant defect information. The analysis of this information though is still largely a manual process. With advancing technology nodes and reducing half-pitch sizes, a large number of defects are observed; and the detailed knowledge associated, make manual defect review process an arduous task, in addition to adding sensitivity to human errors. Cases where defect information reported by inspection machine is not sufficient, mask shops rely on other tools. Use of CDSEM tools is one such option. However, these additional steps translate into increased costs. Calibre NxDAT based MDPAutoClassify tool provides an automated software alternative to the manual defect review process. Working on defect images generated by inspection machines, the tool extracts and reports additional information such as defect location, useful for defect avoidance[4][5]; defect size, useful in estimating defect printability; and, defect nature e.g. particle, scratch, resist void, etc., useful for process monitoring. The tool makes use of smart and elaborate post-processing algorithms to achieve this. Their elaborateness is a consequence of the variety and complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  18. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16%) and acceptable false positive rate (1.30%); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94%. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service. PMID:26543718

  19. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae.

    PubMed

    el Moualij, B; Duyckaerts, C; Lamotte-Brasseur, J; Sluse, F E

    1997-05-01

    The screening of the open reading frames identified in the whole yeast genome has allowed us to discover 34 proteins belonging to the mitochondrial carrier family. By phylogenetic study, they can be divided into 27 subfamilies including ADP/ATP, phosphate and citrate carriers, putative oxoglutarate and GDC carriers and 22 new subfamilies. Topology predictions using the 'positive inside rule' approach have shown that the yeast carriers are similarly oriented with both extremities exposed to the cytosol. In each subfamily, a strict conservation of the charged residues in the six transmembrane alpha-helices is observed, suggesting a functional role for these residues and the existence of 27 functionally distinct carriers. PMID:9178508

  20. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina

    PubMed Central

    Wang, Q.-M.; Yurkov, A.M.; Göker, M.; Lumbsch, H.T.; Leavitt, S.D.; Groenewald, M.; Theelen, B.; Liu, X.-Z.; Boekhout, T.; Bai, F.-Y.

    2016-01-01

    Most small genera containing yeast species in the Pucciniomycotina (Basidiomycota, Fungi) are monophyletic, whereas larger genera including Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces are polyphyletic. With the implementation of the “One Fungus = One Name” nomenclatural principle these polyphyletic genera were revised. Nine genera, namely Bannoa, Cystobasidiopsis, Colacogloea, Kondoa, Erythrobasidium, Rhodotorula, Sporobolomyces, Sakaguchia and Sterigmatomyces, were emended to include anamorphic and teleomorphic species based on the results obtained by a multi-gene phylogenetic analysis, phylogenetic network analyses, branch length-based methods, as well as morphological, physiological and biochemical comparisons. A new class Spiculogloeomycetes is proposed to accommodate the order Spiculogloeales. The new families Buckleyzymaceae with Buckleyzyma gen. nov., Chrysozymaceae with Chrysozyma gen. nov., Microsporomycetaceae with Microsporomyces gen. nov., Ruineniaceae with Ruinenia gen. nov., Symmetrosporaceae with Symmetrospora gen. nov., Colacogloeaceae and Sakaguchiaceae are proposed. The new genera Bannozyma, Buckleyzyma, Fellozyma, Hamamotoa, Hasegawazyma, Jianyunia, Rhodosporidiobolus, Oberwinklerozyma, Phenoliferia, Pseudobensingtonia, Pseudohyphozyma, Sampaiozyma, Slooffia, Spencerozyma, Trigonosporomyces, Udeniozyma, Vonarxula, Yamadamyces and Yunzhangia are proposed to accommodate species segregated from the genera Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces. Ballistosporomyces is emended and reintroduced to include three Sporobolomyces species of the sasicola clade. A total of 111 new combinations are proposed in this study. PMID:26951631

  1. Phylogenetic classification of Aureobasidium pullulans strains for production of pullulan and xylanase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study tests the hypothesis that phylogenetic classification can predict whether A. pullulans strains will produce useful levels of the commercial polysaccharide, pullulan, or the valuable enzyme, xylanase. To test this hypothesis, 19 strains of A. pullulans with previously described phenotypes...

  2. Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species.

    PubMed

    Avin, Farhat Ahmadi; Bhassu, Subha; Shin, Tan Yee; Sabaratnam, Vikineswary

    2012-07-01

    Morphological identification of edible mushrooms can sometimes prove troublesome, because phenotypic variation in fungi can be affected by substrate and environmental factors. One of the most important problems for mushroom breeders is the lack of a systematic consensus tool to distinguish different species, which are sometimes morphologically identical. Basidiomycetes as one of the largest groups of edible mushrooms have become more important in recent times for their medicinal and nutritional properties. Partial rDNA sequences, including the Internal Transcribed Spacer I-5.8SrDNA-Internal Transcribed Spacer II, were used in this study for molecular identification and assessment of phylogenetic relationships between selected edible species of the Basidiomycetes. Phylogenetic trees showed five distinct clades; each clade belonging to a separate family group. The first clade included all the species belonging to the Pleurotaceae (Pleurotus spp.) family; similarly, the second, third, fourth, and fifth clades consist of species from the Agaricaceae (Agaricus sp.), Lyophllaceae (Hypsigygus sp.), Marasmiaceae (Lentinula edodes sp.) and Physalacriaceae (Flammulina velutipes sp.) families, respectively. Moreover, different species of each family were clearly placed in a distinct sub-cluster and a total of 13 species were taken for analysis. Species differentiation was re-confirmed by AMOVA analysis (among the populations: 99.67%; within: 0.33%), nucleotide divergence, haplotyping and P value. Polymorphism occurred throughout the ITS regions due to insertion-deletion and point mutations, and can be clearly differentiated within the families as well as genera. Moreover, this study proves that the sequence of the ITS region is a superior molecular DNA barcode for taxonomic identification of Basidiomycetes. PMID:22327649

  3. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes.

    PubMed

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Kuske, Cheryl R; Eichorst, Stephanie A; Xie, Gary

    2012-03-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project. PMID:22194300

  4. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.

    PubMed

    Frye, R A

    2000-07-01

    Sirtuins (Sir2-like proteins) are present in prokaryotes and eukaryotes. Here, two new human sirtuins (SIRT6 and SIRT7) are found to be similar to a particular subset of insect, nematode, plant, and protozoan sirtuins. Molecular phylogenetic analysis of 60 sirtuin conserved core domain sequences from a diverse array of organisms (including archaeans, bacteria, yeasts, plants, protozoans, and metazoans) shows that eukaryotic Sir2-like proteins group into four main branches designated here as classes I-IV. Prokaryotic sirtuins include members of classes II and III. A fifth class of sirtuin is present in gram positive bacteria and Thermotoga maritima. Saccharomyces cerevisiae has five class I sirtuins. Caenorhabditis elegans and Drosophila melanogaster have sirtuin genes from classes I, II, and IV. The seven human sirtuin genes include all four classes: SIRT1, SIRT2, and SIRT3 are class I, SIRT4 is class II, SIRT5 is class III, and SIRT6 and SIRT7 are class IV. PMID:10873683

  5. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast ancestrally biciliate clade, named 'bikonts'. The apparently conflicting rRNA and protein trees can be reconciled with each other and this ultrastructural interpretation if long-branch distortions, some mechanistically explicable, are allowed for. Bikonts comprise two groups: corticoflagellates, with a younger anterior cilium, no centrosomal cone and ancestrally a semi-rigid cell cortex with a microtubular band on either side of the posterior mature centriole; and Rhizaria [a new infrakingdom comprising Cercozoa (now including Ascetosporea classis nov.), Retaria phylum nov., Heliozoa and Apusozoa phylum nov.], having a centrosomal cone or radiating microtubules and two microtubular roots and a soft surface, frequently with reticulopodia. Corticoflagellates comprise photokaryotes (Plantae and chromalveolates, both ancestrally with cortical alveoli) and Excavata (a new protozoan infrakingdom comprising Loukozoa, Discicristata and Archezoa, ancestrally with three microtubular roots). All basal eukaryotic radiations were of mitochondrial aerobes; hydrogenosomes evolved polyphyletically from mitochondria long afterwards, the persistence of their double envelope long after their genomes disappeared being a striking instance of membrane heredity. I discuss the relationship between the 13 protozoan phyla recognized here and revise higher protozoan classification by updating as subkingdoms Lankester's 1878 division of Protozoa into Corticata (Excavata, Alveolata; with prominent cortical microtubules and ancestrally localized cytostome--the Parabasalia probably secondarily internalized the cytoskeleton) and Gymnomyxa [infrakingdoms Sarcomastigota (Choanozoa, Amoebozoa) and Rhizaria; both ancestrally with a non-cortical cytoskeleton of radiating singlet microtubules and a relatively soft cell surface with diffused feeding]. As the eukaryote root almost certainly lies within Gymnomyxa, probably among the Sarcomastigota, Corticata are derived. Following the single symbiogenetic origin of chloroplasts in a corticoflagellate host with cortical alveoli, this ancestral plant radiated rapidly into glaucophytes, green plants and red algae. Secondary symbiogeneses subsequently transferred plastids laterally into different hosts, making yet more complex cell chimaeras--probably only thrice: from a red alga to the corticoflagellate ancestor of chromalveolates (Chromista plus Alveolata), from green algae to a secondarily uniciliate cercozoan to form chlorarachneans and independently to a biciliate excavate to yield photosynthetic euglenoids. Tertiary symbiogenesis involving eukaryotic algal symbionts replaced peridinin-containing plastids in two or three dinoflagellate lineages, but yielded no major novel groups. The origin and well-resolved primary bifurcation of eukaryotes probably occurred in the Cryogenian Period, about 850 million years ago, much more recently than suggested by unwarranted backward extrapolations of molecular 'clocks' or dubious interpretations as 'eukaryotic' of earlier large microbial fossils or still more ancient steranes. The origin of chloroplasts and the symbiogenetic incorporation of a red alga into a corticoflagellate to create chromalveolates may both have occurred in a big bang after the Varangerian snowball Earth melted about 580 million years ago, thereby stimulating the ensuing Cambrian explosion of animals and protists in the form of simultaneous, poorly resolved opisthokont and anterokont radiations. PMID:11931142

  6. Use of Spoligotyping for Accurate Classification of Recurrent Tuberculosis

    PubMed Central

    Warren, R. M.; Streicher, E. M.; Charalambous, S.; Churchyard, G.; van der Spuy, G. D.; Grant, A. D.; van Helden, P. D.; Victor, T. C.

    2002-01-01

    The spoligotyping method has become an important tool for the tracking of Mycobacterium tuberculosis strains in different epidemiological settings. In this study, we demonstrate the ability of the spoligotyping technique to accurately determine the pathogenetic mechanism of recurrent disease. This methodology has advantages over conventional restriction fragment length polymorphism methods which may be useful in large- scale intervention studies. PMID:12354898

  7. Structural and phylogenetic basis for the classification of group III phospholipase A2.

    PubMed

    Hariprasad, Gururao; Srinivasan, Alagiri; Singh, Reema

    2013-09-01

    Secretory phospholipase A2 (PLA2) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to liberate arachidonic acid, a precursor of eicosanoids, that are known mediators of inflammation. The group III PLA2 enzymes are present in a wide array of organisms across many species with completely different functions. A detailed understanding of the structure and evolutionary proximity amongst the enzymes was carried out for a meaningful classification of this group. Fifty protein sequences from different species of the group were considered for a detailed sequence, structural and phylogenetic studies. In addition to the conservation of calcium binding motif and the catalytic histidine, the sequences exhibit specific 'amino acid signatures'. Structural analysis reveals that these enzymes have a conserved globular structure with species specific variations seen at the active site, calcium binding loop, hydrophobic channel, the C-terminal domain and the quaternary conformational state. Character and distance based phylogenetic analysis of these sequences are in accordance with the structural features. The outcomes of the structural and phylogenetic analysis lays a convincing platform for the classification the group III PLA2s into (1A) venomous insects; (IB) non-venomous insects; (II) mammals; (IIIA) gila monsters; (IIIB) reptiles, amphibians, fishes, sea anemones and liver fluke, and (IV) scorpions. This classification also helps to understand structure-function relationship, enzyme-substrate specificity and designing of potent inhibitors against the drug target isoforms. PMID:23793742

  8. Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: Infraorder Furnariides)

    USGS Publications Warehouse

    Moyle, R.G.; Chesser, R.T.; Brumfield, R.T.; Tello, J.G.; Marchese, D.J.; Cracraft, J.

    2009-01-01

    The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods. ?? 2009 The Willi Hennig Society.

  9. Molecular phylogenetic perspectives for character classification and convergence: Framing some issues with nematode vulval appendages and telotylenchid tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characters flagged as convergent based on newer molecular phylogenetic trees inform both practical identification and more esoteric classification. Nematode morphological characters such as lateral lines, bullae and laciniae are quite independent structures from those similarly named in other organi...

  10. CSSSCL: a python package that uses combined sequence similarity scores for accurate taxonomic classification of long and short sequence reads

    PubMed Central

    Borozan, Ivan; Ferretti, Vincent

    2016-01-01

    Summary: Sequence comparison of genetic material between known and unknown organisms plays a crucial role in genomics, metagenomics and phylogenetic analysis. The emerging long-read sequencing technologies can now produce reads of tens of kilobases in length that promise a more accurate assessment of their origin. To facilitate the classification of long and short DNA sequences, we have developed a Python package that implements a new sequence classification model that we have demonstrated to improve the classification accuracy when compared with other state of the art classification methods. For the purpose of validation, and to demonstrate its usefulness, we test the combined sequence similarity score classifier (CSSSCL) using three different datasets, including a metagenomic dataset composed of short reads. Availability and implementation: Packages source code and test datasets are available under the GPLv3 license at https://github.com/oicr-ibc/cssscl. Contact: ivan.borozan@oicr.on.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26454281

  11. Phylogenetic analysis and classification of the fungal bHLH domain.

    PubMed

    Sailsbery, Joshua K; Atchley, William R; Dean, Ralph A

    2012-05-01

    The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1-F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH-containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358

  12. Phylogenetic Analysis and Classification of the Fungal bHLH Domain

    PubMed Central

    Sailsbery, Joshua K.; Atchley, William R.; Dean, Ralph A.

    2012-01-01

    The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1–F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH–containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358

  13. Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    PubMed Central

    Voigt, Oliver; Wlfing, Eilika; Wrheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a thorough revision, which cannot be achieved by considering morphology alone or relying on a taxon sampling based on the current classification below the subclass level. PMID:22479395

  14. Rapid phylogenetic and functional classification of short genomic fragments with signature peptides

    PubMed Central

    2012-01-01

    Background Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers. Results At even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read) at the most specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods based on BLASTX against the NR database. Conclusions Classification by exact matching against a precomputed list of signature peptides provides comparable results to existing techniques for reads longer than about 300 bp and does not degrade severely with shorter reads. Orders of magnitude faster than existing methods, the approach is suitable now for inclusion in analysis pipelines and appears to be extensible in several different directions. PMID:22925230

  15. Cloning, in Vitro expression, and novel phylogenetic classification of a channel catfish estrogen receptor

    USGS Publications Warehouse

    Xia, Z.; Patino, R.; Gale, W.L.; Maule, A.G.; Densmore, L.D.

    1999-01-01

    We obtained two channel catfish estrogen receptor (ccER) cDNA from liver of female fish using RT–PCR. The two fragments were identical in sequence except that the smaller one had an out-of-frame deletion in the E domain, suggesting the existence of ccER splice variants. The larger fragment was used to screen a cDNA library from liver of a prepubescent female. A cDNA was obtained that encoded a 581-amino-acid ER with a deduced molecular weight of 63.8 kDa. Extracts of COS-7 cells transfected with ccER cDNA bound estrogen with high affinity (Kd = 4.7 nM) and specificity. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of ccER on the basis of 18 full-length ER sequences. The tree suggested the existence of two major ER branches. One branch contained two clearly divergent clades which included all piscine ER (except Japanese eel ER) and all tetrapod ERα, respectively. The second major branch contained the eel ER and the mammalian ERβ. The high degree of divergence between the eel ER and mammalian ERβ suggested that they also represent distinct piscine and tetrapod ER. These data suggest that ERα and ERβ are present throughout vertebrates and that these two major ER types evolved by duplication of an ancestral ER gene. Sequence alignments with other members of the nuclear hormone receptor superfamily indicated the presence of 8 amino acids in the E domain that align exclusively among ER. Four of these amino acids have not received prior research attention and their function is unknown. The novel finding of putative ER splice variants in a nonmammalian vertebrate and the novel phylogenetic classification of ER offer new perspectives in understanding the diversification and function of ER.

  16. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  17. Phylogenetic Classification at Generic Level in the Absence of Distinct Phylogenetic Patterns of Phenotypical Variation: A Case Study in Graphidaceae (Ascomycota)

    PubMed Central

    Parnmen, Sittiporn; Lcking, Robert; Lumbsch, H. Thorsten

    2012-01-01

    Molecular phylogenies often reveal that taxa circumscribed by phenotypical characters are not monophyletic. While re-examination of phenotypical characters often identifies the presence of characters characterizing clades, there is a growing number of studies that fail to identify diagnostic characters, especially in organismal groups lacking complex morphologies. Taxonomists then can either merge the groups or split taxa into smaller entities. Due to the nature of binomial nomenclature, this decision is of special importance at the generic level. Here we propose a new approach to choose among classification alternatives using a combination of morphology-based phylogenetic binning and a multiresponse permutation procedure to test for morphological differences among clades. We illustrate the use of this method in the tribe Thelotremateae focusing on the genus Chapsa, a group of lichenized fungi in which our phylogenetic estimate is in conflict with traditional classification and the morphological and chemical characters do not show a clear phylogenetic pattern. We generated 75 new DNA sequences of mitochondrial SSU rDNA, nuclear LSU rDNA and the protein-coding RPB2. This data set was used to infer phylogenetic estimates using maximum likelihood and Bayesian approaches. The genus Chapsa was found to be polyphyletic, forming four well-supported clades, three of which clustering into one unsupported clade, and the other, supported clade forming two supported subclades. While these clades cannot be readily separated morphologically, the combined binning/multiresponse permutation procedure showed that accepting the four clades as different genera each reflects the phenotypical pattern significantly better than accepting two genera (or five genera if splitting the first clade). Another species within the Thelotremateae, Thelotrema petractoides, a unique taxon with carbonized excipulum resembling Schizotrema, was shown to fall outside Thelotrema. Consequently, the new genera Astrochapsa, Crutarndina, Pseudochapsa, and Pseudotopeliopsis are described here and 39 new combinations are proposed. PMID:23251515

  18. Towards a Formal Genealogical Classification of the Lezgian Languages (North Caucasus): Testing Various Phylogenetic Methods on Lexical Data

    PubMed Central

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456

  19. Determining suitable image resolutions for accurate supervised crop classification using remote sensing data

    NASA Astrophysics Data System (ADS)

    Lw, Fabian; Duveiller, Grgory

    2013-10-01

    Mapping the spatial distribution of crops has become a fundamental input for agricultural production monitoring using remote sensing. However, the multi-temporality that is often necessary to accurately identify crops and to monitor crop growth generally comes at the expense of coarser observation supports, and can lead to increasingly erroneous class allocations caused by mixed pixels. For a given application like crop classification, the spatial resolution requirement (e.g. in terms of a maximum tolerable pixel size) differs considerably over different landscapes. To analyse the spatial resolution requirements for accurate crop identification via image classification, this study builds upon and extends a conceptual framework established in a previous work1. This framework allows defining quantitatively the spatial resolution requirements for crop monitoring based on simulating how agricultural landscapes, and more specifically the fields covered by a crop of interest, are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, is used to analyse how mixed the pixels can be (as they become coarser), without undermining their capacity to describe the desired surface properties. In this case, this framework has been steered towards answering the question: "What is the spatial resolution requirement for crop identification via supervised image classification, in particular minimum and coarsest acceptable pixel sizes, and how do these requirements change over different landscapes?" The framework is applied over four contrasting agro-ecological landscapes in Middle Asia. Inputs to the experiment were eight multi-temporal images from the RapidEye sensor, the simulated pixel sizes range from 6.5 m to 396.5 m. Constraining parameters for crop identification were defined by setting thresholds for classification accuracy and uncertainty. Different types of crops display marked individuality regarding the pixel size requirements, depending on the spatial structures and cropping pattern in the sites. The coarsest acceptable pixel sizes and corresponding purities for the same type of crop were found to vary from site to site, and some crops could not be identified using pixels coarser than 200 m.

  20. Molecular and morphological data supporting phylogenetic reconstruction of the genus Goniothalamus (Annonaceae), including a reassessment of previous infrageneric classifications

    PubMed Central

    Tang, Chin Cheung; Thomas, Daniel C.; Saunders, Richard M.K.

    2015-01-01

    Data is presented in support of a phylogenetic reconstruction of the species-rich early-divergent angiosperm genus Goniothalamus (Annonaceae) (Tang et al., Mol. Phylogenetic Evol., 2015) [1], inferred using chloroplast DNA (cpDNA) sequences. The data includes a list of primers for amplification and sequencing for nine cpDNA regions: atpB-rbcL, matK, ndhF, psbA-trnH, psbM-trnD, rbcL, trnL-F, trnS-G, and ycf1, the voucher information and molecular data (GenBank accession numbers) of 67 ingroup Goniothalamus accessions and 14 outgroup accessions selected from across the tribe Annoneae, and aligned data matrices for each gene region. We also present our Bayesian phylogenetic reconstructions for Goniothalamus, with information on previous infrageneric classifications superimposed to enable an evaluation of monophyly, together with a taxon-character data matrix (with 15 morphological characters scored for 66 Goniothalamus species and seven other species from the tribe Annoneae that are shown to be phylogenetically correlated). PMID:26286044

  1. A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees.

    PubMed

    Peterson, Paul M; Romaschenko, Konstantin; Johnson, Gabriel

    2010-05-01

    We conducted a molecular phylogenetic study of the subfamily Chloridoideae using six plastid DNA sequences (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) and a single nuclear ITS DNA sequence. Our large original data set includes 246 species (17.3%) representing 95 genera (66%) of the grasses currently placed in the Chloridoideae. The maximum likelihood and Bayesian analysis of DNA sequences provides strong support for the monophyly of the Chloridoideae; followed by, in order of divergence: a Triraphideae clade with Neyraudia sister to Triraphis; an Eragrostideae clade with the Cotteinae (includes Cottea and Enneapogon) sister to the Uniolinae (includes Entoplocamia, Tetrachne, and Uniola), and a terminal Eragrostidinae clade of Ectrosia, Harpachne, and Psammagrostis embedded in a polyphyletic Eragrostis; a Zoysieae clade with Urochondra sister to a Zoysiinae (Zoysia) clade, and a terminal Sporobolinae clade that includes Spartina, Calamovilfa, Pogoneura, and Crypsis embedded in a polyphyletic Sporobolus; and a very large terminal Cynodonteae clade that includes 13 monophyletic subtribes. The Cynodonteae includes, in alphabetical order: Aeluropodinae (Aeluropus); Boutelouinae (Bouteloua); Eleusininae (includes Apochiton, Astrebla with Schoenefeldia embedded, Austrochloris, Brachyachne, Chloris, Cynodon with Brachyachne embedded in part, Eleusine, Enteropogon with Eustachys embedded in part, Eustachys, Chrysochloa, Coelachyrum, Leptochloa with Dinebra embedded, Lepturus, Lintonia, Microchloa, Saugetia, Schoenefeldia, Sclerodactylon, Tetrapogon, and Trichloris); Hilariinae (Hilaria); Monanthochloinae (includes Distichlis, Monanthochloe, and Reederochloa); Muhlenbergiinae (Muhlenbergia with Aegopogon, Bealia, Blepharoneuron, Chaboissaea, Lycurus, Pereilema, Redfieldia, Schaffnerella, and Schedonnardus all embedded); Orcuttiinae (includes Orcuttia and Tuctoria); Pappophorinae (includes Neesiochloa and Pappophorum); Scleropogoninae (includes Blepharidachne, Dasyochloa, Erioneuron, Munroa, Scleropogon, and Swallenia); Traginae (Tragus with Monelytrum, Polevansia, and Willkommia all embedded); Tridentinae (includes Gouinia, Tridens, Triplasis, and Vaseyochloa); Triodiinae (Triodia); and the Tripogoninae (Melanocenchris and Tripogon with Eragrostiella embedded). In our study the Cynodonteae still include 19 genera and the Zoysieae include a single genus that are not yet placed in a subtribe. The tribe Triraphideae and the subtribe Aeluropodinae are newly treated at that rank. We propose a new tribal and subtribal classification for all known genera in the Chloridoideae. The subfamily might have originated in Africa and/or Asia since the basal lineage, the Triraphideae, includes species with African and Asian distribution. PMID:20096795

  2. Fast and Accurate Phylogenetic Reconstruction from High-Resolution Whole-Genome Data and a Novel Robustness Estimator

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard M. E.

    The rapid accumulation of whole-genome data has renewed interest in the study of genomic rearrangements. Comparative genomics, evolutionary biology, and cancer research all require models and algorithms to elucidate the mechanisms, history, and consequences of these rearrangements. However, even simple models lead to NP-hard problems, particularly in the area of phylogenetic analysis. Current approaches are limited to small collections of genomes and low-resolution data (typically a few hundred syntenic blocks). Moreover, whereas phylogenetic analyses from sequence data are deemed incomplete unless bootstrapping scores (a measure of confidence) are given for each tree edge, no equivalent to bootstrapping exists for rearrangement-based phylogenetic analysis.

  3. GPD: a graph pattern diffusion kernel for accurate graph classification with applications in cheminformatics.

    PubMed

    Smalter, Aaron; Huan, Jun Luke; Jia, Yi; Lushington, Gerald

    2010-01-01

    Graph data mining is an active research area. Graphs are general modeling tools to organize information from heterogeneous sources and have been applied in many scientific, engineering, and business fields. With the fast accumulation of graph data, building highly accurate predictive models for graph data emerges as a new challenge that has not been fully explored in the data mining community. In this paper, we demonstrate a novel technique called graph pattern diffusion (GPD) kernel. Our idea is to leverage existing frequent pattern discovery methods and to explore the application of kernel classifier (e.g., support vector machine) in building highly accurate graph classification. In our method, we first identify all frequent patterns from a graph database. We then map subgraphs to graphs in the graph database and use a process we call "pattern diffusion" to label nodes in the graphs. Finally, we designed a graph alignment algorithm to compute the inner product of two graphs. We have tested our algorithm using a number of chemical structure data. The experimental results demonstrate that our method is significantly better than competing methods such as those kernel functions based on paths, cycles, and subgraphs. PMID:20431140

  4. Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene.

    PubMed Central

    Nishizawa, T; Furuhashi, M; Nagai, T; Nakai, T; Muroga, K

    1997-01-01

    A molecular phylogenetic analysis of 25 isolates of fish nodaviruses, the causative agents of viral nervous necrosis of marine fish, was performed based on the nucleotide sequences (427 bases) of the coat protein gene. These fish nodaviruses were classified into four clusters: tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, berfin flounder nervous necrosis virus, and red-spotted grouper nervous necrosis virus. PMID:9097459

  5. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis

    PubMed Central

    2013-01-01

    Background Sequence-based phylogenetic trees are a well-established tool for characterizing diversity of both macroorganisms and microorganisms. Phylogenetic methods have recently been applied to shotgun metagenomic data from microbial communities, particularly with the aim of classifying reads. But the accuracy of gene-family phylogenies that characterize evolutionary relationships among short, non-overlapping sequencing reads has not been thoroughly evaluated. Results To quantify errors in metagenomic read trees, we developed MetaPASSAGE, a software pipeline to generate in silico bacterial communities, simulate a sample of shotgun reads from a gene family represented in the community, orient or translate reads, and produce a profile-based alignment of the reads from which a gene-family phylogenetic tree can be built. We applied MetaPASSAGE to a variety of RNA and protein-coding gene families, built trees using a range of different phylogenetic methods, and compared the resulting trees using topological and branch-length error metrics. We identified read length as one of the major sources of error. Because phylogenetic methods use a reference database of full-length sequences from the gene family to guide construction of alignments and trees, we found that error can also be substantially reduced through increasing the size and diversity of the reference database. Finally, UniFrac analysis, which compares metagenomic samples based on a summary statistic computed over all branches in a read tree, is very robust to the level of error we observe. Conclusions Bacterial community diversity can be quantified using phylogenetic approaches applied to shotgun metagenomic data. As sequencing reads get longer and more genomes across the bacterial tree of life are sequenced, the accuracy of this approach will continue to improve, opening the door to more applications. PMID:23799973

  6. Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing

    USGS Publications Warehouse

    Feldman, S.H.; Wimsatt, J.H.; Green, D.E.

    2005-01-01

    We determined 1,600 base pairs of DNA sequence in the 18S small ribosomal subunit from two geographically distinct isolates of Dermosporidium penneri. Maximum likelihood and parsimony analysis of these sequences place D. penneri in the order Dermocystida of the class Mesomycetozoea. The 18S rRNA sequences from these two isolates only differ within a single region of 16 contiguous nucleotides. Based on the distant phylogenetic relationship of these organisms to Amphibiocystidium ranae and similarity to Sphaerothecum destruens we propose the organism be renamed Amphibiothecum penneri.

  7. Molecular phylogenetic relationships and a revised classification of the subfamily Ericoideae (Ericaceae).

    PubMed

    Gillespie, Emily; Kron, Kathleen

    2010-07-01

    Subfamily Ericoideae (Ericaceae) includes 19 genera in five recognized tribes. Relationships involving the deepest nodes have been difficult to resolve, limiting the potential for further cladistic studies within the Ericoideae. The current study analyses six molecular markers using Bayesian, Maximum Likelihood and Maximum Parsimony methods to improve phylogenetic resolution within the Ericoideae. Two large clades were discovered. One clade includes the Phyllodoceae and Bejaria. The sister clade includes the Empetreae+Diplarche, Ericeae, Rhodoreae, and a clade comprised of Bryanthus and Ledothamnus. The current study improves upon the resolution of the phylogeny of the Ericoideae, particularly demonstrating support for the deepest nodes. Based on these results, we propose to retain the Ericeae, expand the Phyllodoceae to include Bejaria, expand the Empetreae to include Diplarche, retain the Rhodoreae (without Diplarche), dismantle the Bejarieae, and construct a new tribe, Bryantheae (Bryanthus and Ledothamnus). PMID:20193767

  8. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life.

    PubMed Central

    Margulis, L

    1996-01-01

    A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae. Images Fig. 1 PMID:8577716

  9. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life.

    PubMed

    Margulis, L

    1996-02-01

    A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae. PMID:8577716

  10. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1996-01-01

    A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae.

  11. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    PubMed Central

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wrheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). Lithistida, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of lithistid demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous order Lithistida. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 Lithistida families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different lithistid taxa, and microscleres might at least be four times more likely lost than megascleres. Desma spicules occasionally may have undergone secondary losses too. Our study provides a framework for further detailed investigations of this important demosponge group. PMID:25565279

  12. Accurate multi-source forest species mapping using the multiple spectral-spatial classification approach

    NASA Astrophysics Data System (ADS)

    Stavrakoudis, Dimitris; Gitas, Ioannis; Karydas, Christos; Kolokoussis, Polychronis; Karathanassi, Vassilia

    2015-10-01

    This paper proposes an efficient methodology for combining multiple remotely sensed imagery, in order to increase the classification accuracy in complex forest species mapping tasks. The proposed scheme follows a decision fusion approach, whereby each image is first classified separately by means of a pixel-wise Fuzzy-Output Support Vector Machine (FO-SVM) classifier. Subsequently, the multiple results are fused according to the so-called multiple spectral- spatial classifier using the minimum spanning forest (MSSC-MSF) approach, which constitutes an effective post-regularization procedure for enhancing the result of a single pixel-based classification. For this purpose, the original MSSC-MSF has been extended in order to handle multiple classifications. In particular, the fuzzy outputs of the pixel-based classifiers are stacked and used to grow the MSF, whereas the markers are also determined considering both classifications. The proposed methodology has been tested on a challenging forest species mapping task in northern Greece, considering a multispectral (GeoEye) and a hyper-spectral (CASI) image. The pixel-wise classifications resulted in overall accuracies (OA) of 68.71% for the GeoEye and 77.95% for the CASI images, respectively. Both of them are characterized by high levels of speckle noise. Applying the proposed multi-source MSSC-MSF fusion, the OA climbs to 90.86%, which is attributed both to the ability of MSSC-MSF to tackle the salt-and-pepper effect, as well as the fact that the fusion approach exploits the relative advantages of both information sources.

  13. Phylogenetic analysis, genomic diversity and classification of M class gene segments of turkey reoviruses.

    PubMed

    Mor, Sunil K; Marthaler, Douglas; Verma, Harsha; Sharafeldin, Tamer A; Jindal, Naresh; Porter, Robert E; Goyal, Sagar M

    2015-03-23

    From 2011 to 2014, 13 turkey arthritis reoviruses (TARVs) were isolated from cases of swollen hock joints in 2-18-week-old turkeys. In addition, two isolates from similar cases of turkey arthritis were received from another laboratory. Eight turkey enteric reoviruses (TERVs) isolated from fecal samples of turkeys were also used for comparison. The aims of this study were to characterize turkey reovirus (TRV) based on complete M class genome segments and to determine genetic diversity within TARVs in comparison to TERVs and chicken reoviruses (CRVs). Nucleotide (nt) cut off values of 84%, 83% and 85% for the M1, M2 and M3 gene segments were proposed and used for genotype classification, generating 5, 7, and 3 genotypes, respectively. Using these nt cut off values, we propose M class genotype constellations (GCs) for avian reoviruses. Of the seven GCs, GC1 and GC3 were shared between the TARVs and TERVs, indicating possible reassortment between turkey and chicken reoviruses. The TARVs and TERVs were divided into three GCs, and GC2 was unique to TARVs and TERVs. The proposed new GC approach should be useful in identifying reassortant viruses, which may ultimately be used in the design of a universal vaccine against both chicken and turkey reoviruses. PMID:25655814

  14. Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA Molecules

    PubMed Central

    Winters-Hilt, Stephen; Vercoutere, Wenonah; DeGuzman, Veronica S.; Deamer, David; Akeson, Mark; Haussler, David

    2003-01-01

    We introduce a computational method for classification of individual DNA molecules measured by an α-hemolysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was used for better feature selection. PMID:12547778

  15. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis

    PubMed Central

    Eshaghi, Arman; Riyahi-Alam, Sadjad; Saeedi, Roghayyeh; Roostaei, Tina; Nazeri, Arash; Aghsaei, Aida; Doosti, Rozita; Ganjgahi, Habib; Bodini, Benedetta; Shakourirad, Ali; Pakravan, Manijeh; Ghana'ati, Hossein; Firouznia, Kavous; Zarei, Mojtaba; Azimi, Amir Reza; Sahraian, Mohammad Ali

    2015-01-01

    Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS. PMID:25610795

  16. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis.

    PubMed

    Eshaghi, Arman; Riyahi-Alam, Sadjad; Saeedi, Roghayyeh; Roostaei, Tina; Nazeri, Arash; Aghsaei, Aida; Doosti, Rozita; Ganjgahi, Habib; Bodini, Benedetta; Shakourirad, Ali; Pakravan, Manijeh; Ghana'ati, Hossein; Firouznia, Kavous; Zarei, Mojtaba; Azimi, Amir Reza; Sahraian, Mohammad Ali

    2015-01-01

    Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS. PMID:25610795

  17. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera.

    PubMed

    Almeida, Thaís Elias; Hennequin, Sabine; Schneider, Harald; Smith, Alan R; Batista, João Aguiar Nogueira; Ramalho, Aline Joseph; Proite, Karina; Salino, Alexandre

    2016-01-01

    Thelypteridaceae is one of the largest fern families, having about 950 species and a cosmopolitan distribution but with most species occurring in tropical and subtropical regions. Its generic classification remains controversial, with different authors recognizing from one up to 32 genera. Phylogenetic relationships within the family have not been exhaustively studied, but previous studies have confirmed the monophyly of the lineage. Thus far, sampling has been inadequate for establishing a robust hypothesis of infrafamilial relationships within the family. In order to understand phylogenetic relationships within Thelypteridaceae and thus to improve generic reclassification, we expand the molecular sampling, including new samples of Old World taxa and, especially, many additional neotropical representatives. We also explore the monophyly of exclusively or mostly neotropical genera Amauropelta, Goniopteris, Meniscium, and Steiropteris. Our sampling includes 68 taxa and 134 newly generated sequences from two plastid genomic regions (rps4-trnS and trnL-trnF), plus 73 rps4 and 72 trnL-trnF sequences from GenBank. These data resulted in a concatenated matrix of 1980 molecular characters for 149 taxa. The combined data set was analyzed using maximum parsimony and bayesian inference of phylogeny. Our results are consistent with the general topological structure found in previous studies, including two main lineages within the family: phegopteroid and thelypteroid. The thelypteroid lineage comprises two clades; one of these included the segregates Metathelypteris, Coryphopteris, and Amauropelta (including part of Parathelypteris), whereas the other comprises all segregates of Cyclosorus s.l., such as Goniopteris, Meniscium, and Steiropteris (including Thelypteris polypodioides, previously incertae sedis). The three mainly neotropical segregates were found to be monophyletic but nested in a broadly defined Cyclosorus. The fourth mainly neotropical segregate, Amauropelta, was found to include species considered to be part of Parathelypteris. In Old World thelypteroids, which correspond to nearly half the diversity in the family, an increase in sampling is still needed to resolve relationships and circumscription of genera, particularly in the christelloid clade (i.e., Amphineuron, Chingia, Christella, Pneumatopteris, Pronephrium, and Sphaerostephanos). Based on currently available knowledge, we propose the recognition of 16 genera in the family. PMID:26400101

  18. ColorPhylo: A Color Code to Accurately Display Taxonomic Classifications.

    PubMed

    Lespinats, Sylvain; Fertil, Bernard

    2011-01-01

    Color may be very useful to visualise complex data. As far as taxonomy is concerned, color may help observing various species' characteristics in correlation with classification. However, choosing the number of subclasses to display is often a complex task: on the one hand, assigning a limited number of colors to taxa of interest hides the structure imbedded in the subtrees of the taxonomy; on the other hand, differentiating a high number of taxa by giving them specific colors, without considering the underlying taxonomy, may lead to unreadable results since relationships between displayed taxa would not be supported by the color code. In the present paper, an automatic color coding scheme is proposed to visualise the levels of taxonomic relationships displayed as overlay on any kind of data plot. To achieve this goal, a dimensionality reduction method allows displaying taxonomic "distances" onto a Euclidean two-dimensional space. The resulting map is projected onto a 2D color space (the Hue, Saturation, Brightness colorimetric space with brightness set to 1). Proximity in the taxonomic classification corresponds to proximity on the map and is therefore materialised by color proximity. As a result, each species is related to a color code showing its position in the taxonomic tree. The so called ColorPhylo displays taxonomic relationships intuitively and can be combined with any biological result. A Matlab version of ColorPhylo is available at http://sy.lespi.free.fr/ColorPhylo-homepage.html. Meanwhile, an ad-hoc distance in case of taxonomy with unknown edge lengths is proposed. PMID:22253532

  19. Two fast and accurate heuristic RBF learning rules for data classification.

    PubMed

    Rouhani, Modjtaba; Javan, Dawood S

    2016-03-01

    This paper presents new Radial Basis Function (RBF) learning methods for classification problems. The proposed methods use some heuristics to determine the spreads, the centers and the number of hidden neurons of network in such a way that the higher efficiency is achieved by fewer numbers of neurons, while the learning algorithm remains fast and simple. To retain network size limited, neurons are added to network recursively until termination condition is met. Each neuron covers some of train data. The termination condition is to cover all training data or to reach the maximum number of neurons. In each step, the center and spread of the new neuron are selected based on maximization of its coverage. Maximization of coverage of the neurons leads to a network with fewer neurons and indeed lower VC dimension and better generalization property. Using power exponential distribution function as the activation function of hidden neurons, and in the light of new learning approaches, it is proved that all data became linearly separable in the space of hidden layer outputs which implies that there exist linear output layer weights with zero training error. The proposed methods are applied to some well-known datasets and the simulation results, compared with SVM and some other leading RBF learning methods, show their satisfactory and comparable performance. PMID:26797472

  20. Protein clustering and RNA phylogenetic reconstruction of the influenza A [corrected] virus NS1 protein allow an update in classification and identification of motif conservation.

    PubMed

    Sevilla-Reyes, Edgar E; Chavaro-Prez, David A; Piten-Isidro, Elvira; Gutirrez-Gonzlez, Luis H; Santos-Mendoza, Teresa

    2013-01-01

    The non-structural protein 1 (NS1) of influenza A virus (IAV), coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles) A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis. PMID:23667580

  1. Protein Clustering and RNA Phylogenetic Reconstruction of the Influenza a Virus NS1 Protein Allow an Update in Classification and Identification of Motif Conservation

    PubMed Central

    Sevilla-Reyes, Edgar E.; Chavaro-Prez, David A.; Piten-Isidro, Elvira; Gutirrez-Gonzlez, Luis H.; Santos-Mendoza, Teresa

    2013-01-01

    The non-structural protein 1 (NS1) of influenza A virus (IAV), coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles) A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis. PMID:23667580

  2. The classification and phylogenetic status of Jekelius (Reitterius) punctulatus (Jekel, 1866) and Jekelius (Jekelius) brullei (Jekel, 1866) (Coleoptera: Geotrupidae) using molecular data.

    PubMed

    Lobo, Jorge M; Jimnez-Ruiz, Yolanda; Chehlarov, Evgeni; Guorguiev, Borislav; Petrova, Yana; Krl, David; Alonso-Zarazaga, Miguel ngel; Verd, Jos R

    2015-01-01

    The phylogenetic placement of Jekelius brullei (Jekel, 1866) and J. punctulatus (Jekel, 1866) (Coleoptera: Geotrupidae) was assessed using mitochondrial and nuclear molecular data to discern contrasting nomenclatural views provided by Lpez-Coln (1996) and the Catalogue of Palaearctic Coleoptera (Lbl et al. 2006). Our results support both the monophyletic and classification status of the genus Jekelius Lpez-Coln, 1989; and the splitting of the genus into the subgenera Jekelius Lpez-Coln, 1989 and Reitterius Lpez-Coln, 1996. The basal phylogenetic placement of these two species also suggests an oriental origin for Jekelius within the western Palaearctic region. Finally, we include a potential distributional map of Jekelius (Reitterius) punctulatus (Jekel, 1866) based on an exhaustive search of occurrence data. PMID:26624659

  3. A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification.

    PubMed

    Berv, Jacob S; Prum, Richard O

    2014-12-01

    The Neotropical cotingas (Cotingidae: Aves) are a group of passerine birds that are characterized by extreme diversity in morphology, ecology, breeding system, and behavior. Here, we present a comprehensive phylogeny of the Neotropical cotingas based on six nuclear and mitochondrial loci (?7500 bp) for a sample of 61 cotinga species in all 25 genera, and 22 species of suboscine outgroups. Our taxon sample more than doubles the number of cotinga species studied in previous analyses, and allows us to test the monophyly of the cotingas as well as their intrageneric relationships with high resolution. We analyze our genetic data using a Bayesian species tree method, and concatenated Bayesian and maximum likelihood methods, and present a highly supported phylogenetic hypothesis. We confirm the monophyly of the cotingas, and present the first phylogenetic evidence for the relationships of Phibalura flavirostris as the sister group to Ampelion and Doliornis, and the paraphyly of Lipaugus with respect to Tijuca. In addition, we resolve the diverse radiations within the Cotinga, Lipaugus, Pipreola, and Procnias genera. We find no support for Darwin's (1871) hypothesis that the increase in sexual selection associated with polygynous breeding systems drives the evolution of color dimorphism in the cotingas, at least when analyzed at a broad categorical scale. Finally, we present a new comprehensive phylogenetic classification of all cotinga species. PMID:25234241

  4. Phylogenetics, ancestral state reconstruction, and a new infrafamilial classification of the pantropical Ochnaceae (Medusagynaceae, Ochnaceae s.str., Quiinaceae) based on five DNA regions.

    PubMed

    Schneider, Julio V; Bissiengou, Pulcherie; Amaral, Maria do Carmo E; Tahir, Ali; Fay, Michael F; Thines, Marco; Sosef, Marc S M; Zizka, Georg; Chatrou, Lars W

    2014-09-01

    Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system. PMID:24862223

  5. Phylogenetic classification of Escherichia coli O26 strains from human, animals, and environmental origins using nucleotide polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Shiga toxin-producing Escherichia coli (STEC) O26 strains are food-borne pathogens that were recently classified as adulterants in certain beef products. Little is known about their genetic diversity, including whether or not phylogenetic subtypes within the serogroup vary in their assoc...

  6. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions.

    PubMed

    Makimura, K; Mochizuki, T; Hasegawa, A; Uchida, K; Saito, H; Yamaguchi, H

    1998-09-01

    Using internal transcribed spacer 1 (ITS1) region ribosomal DNA sequences from 37 stock strains and clinical isolates provisionally termed Trichophyton mentagrophytes complex in Japan, we demonstrated the mutual phylogenetic relationships of these strains. Members of this complex were classified into 3 ITS1-homologous groups and 13 ITS1-identical groups by their sequences. ITS1-homologous group I consists of Arthroderma vanbreuseghemii, T. mentagrophytes human isolates, and several strains of T. mentagrophytes animal isolates. Five strains of Arthroderma simii form a cluster comprising ITS1-homologous group II. The Americano-European and African races of Arthroderma benhamiae, T. mentagrophytes var. erinacei, and one strain of a T. mentagrophytes animal isolate constitute ITS1-homologous group III. According to the phylogenetic tree constructed with Trichophyton rubrum as an outgroup, ITS1-homologous groups I and II comprised a monophyletic cluster and ITS1-homologous group III constituted another cluster which was rather distant from the others in the complex. This system was applicable to the phylogenetic analysis of closely related strains. Using this technique, human and animal isolates of T. mentagrophytes were also clearly distinguishable from each other. PMID:9705405

  7. Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera).

    PubMed

    Yang, Yong; Hou, Zhuo-Cheng; Qian, Yuan-Huai; Kang, Han; Zeng, Qing-Tao

    2012-01-01

    Previous phylogenetic analyses of the melanogaster species group have led to conflicting hypotheses concerning their relationship; therefore the addition of new sequence data is necessary to discover the phylogeny of this species group. Here we present new data derived from 17 genes and representing 48 species to reconstruct the phylogeny of the melanogaster group. A variety of statistical tests, as well as maximum likelihood mapping analysis, were performed to estimate data quality, suggesting that all genes had a high degree of contribution to resolve the phylogeny. Individual locus was analyzed using maximum likelihood (ML), and the concatenated dataset (12,988 bp) were analyzed using partitioned maximum likelihood (ML) and Bayesian analyses. Separated analysis produced various phylogenetic relationships, however, phylogenetic topologies from ML and Bayesian analysis based on concatenated dataset, at the subgroup level, were completely identical to each other with high levels of support. Our results recovered three major clades: the ananassae subgroup, followed by the montium subgroup, the melanogaster subgroup and the oriental subgroups form the third monophyletic clade, in which melanogaster (takahashii, suzukii) forms one subclade and ficusphila [eugracilis (elegans, rhopaloa)] forms another. However, more data are necessary to determine the phylogenetic position of Drosophila lucipennis which proved difficult to place. PMID:21985965

  8. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses*

    PubMed Central

    Opara, Umezuruike Linus; Jacobson, Dan; Al-Saady, Nadiya Abubakar

    2010-01-01

    Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented. PMID:20443211

  9. DEFLATE Compression Algorithm Corrects for Overestimation of Phylogenetic Diversity by Grantham Approach to Single-Nucleotide Polymorphism Classification

    PubMed Central

    Schlosberg, Arran; Lam, Brian Y. H.; Yeo, Giles S. H.; Clifton-Bligh, Roderick J.

    2014-01-01

    Improvements in speed and cost of genome sequencing are resulting in increasing numbers of novel non-synonymous single nucleotide polymorphisms (nsSNPs) in genes known to be associated with disease. The large number of nsSNPs makes laboratory-based classification infeasible and familial co-segregation with disease is not always possible. In-silico methods for classification or triage are thus utilised. A popular tool based on multiple-species sequence alignments (MSAs) and work by Grantham, Align-GVGD, has been shown to underestimate deleterious effects, particularly as sequence numbers increase. We utilised the DEFLATE compression algorithm to account for expected variation across a number of species. With the adjusted Grantham measure we derived a means of quantitatively clustering known neutral and deleterious nsSNPs from the same gene; this was then used to assign novel variants to the most appropriate cluster as a means of binary classification. Scaling of clusters allows for inter-gene comparison of variants through a single pathogenicity score. The approach improves upon the classification accuracy of Align-GVGD while correcting for sensitivity to large MSAs. Open-source code and a web server are made available at https://github.com/aschlosberg/CompressGV. PMID:24828207

  10. More accurate MK classification using the continuous spectra and average energy distributions for O9-A0 stars

    NASA Astrophysics Data System (ADS)

    Ruban, E. V.

    1985-01-01

    For stars of classes O9-A0, stars that best represent each of the spectral subclasses were chosen so as to obtain the average energy distributions in the spectra on the basis of homogeneous data obtained by the Southern Expedition of the USSR Academy of Sciences from 1971 to 1973. Tabulated information given with the current work includes normal stars with unchanged classifications, normal stars with changed classifications, and stars excluded from the list of normal stars.

  11. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis.

    PubMed

    Anbazhagan, Padmanabhan; Harijan, Rajesh K; Kiema, Tiila R; Janardan, Neelanjana; Murthy, M R N; Michels, Paul A M; Juffer, Andr H; Wierenga, Rik K

    2014-07-01

    Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M.tuberculosis and M.smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M.tuberculosis and M.smegmatis thiolases over the 12 different classes. PMID:24825023

  12. Classification

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  13. Classification

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is

  14. Bacterial classification of fish-pathogenic Mycobacterium species by multigene phylogenetic analyses and MALDI Biotyper identification system.

    PubMed

    Kurokawa, Satoru; Kabayama, Jun; Fukuyasu, Tsuguaki; Hwang, Seong Don; Park, Chan-Il; Park, Seong-Bin; del Castillo, Carmelo S; Hikima, Jun-ichi; Jung, Tae-Sung; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko; Aoki, Takashi

    2013-06-01

    Mycobacterium marinum is difficult to distinguish from other species of Mycobacterium isolated from fish using biochemical methods. Here, we used genetic and proteomic analyses to distinguish three Mycobacterium strains: M. marinum strains MB2 and Europe were isolated from tropical and marine fish in Thailand and Europe, and Mycobacterium sp. 012931 strain was isolated from yellowtail in Japan. In phylogenetic trees based on gyrB, rpoB, and Ag85B genes, Mycobacterium sp. 012931 clustered with M. marinum strains MB2 and Europe, but in trees based on 16S rRNA, hsp65, and Ag85A genes Mycobacterium sp. 012931 did not cluster with the other strains. In proteomic analyses using a Bruker matrix-assisted laser desorption ionization Biotyper, the mass profile of Mycobacterium sp. 012931 differed from the mass profiles of the other two fish M. marinum strains. Therefore, Mycobacterium sp. 012931 is similar to M. marinum but is not the same, suggesting that it could be a subspecies of M. marinum. PMID:23229498

  15. Accurate classification and hemagglutinin amino acid signatures for influenza A virus host-origin association and subtyping.

    PubMed

    ElHefnawi, Mahmoud; Sherif, Fayroz F

    2014-01-20

    Host-origin classification and signatures of influenza A viruses were investigated based on the HA protein for tracking of the HA host of origin. Hidden Markov models (HMMs), decision trees and associative classification for each influenza A virus subtype and its major hosts (human, avian, swine) were generated. Features of the HA protein signatures that were host-and subtype-specific were sought. Host-associated signatures that occurred in different subtypes of the virus were identified. Evaluation of the classification models based on ROC curves and support and confidence ratings for the amino acid class-association rules was performed. Host classification based on the HA subtype achieved accuracies between 91.2% and 100% using decision trees after feature selection. Host-specific class association rules for avian-host origins gave better support and confidence ratings, followed by human and finally swine origin. This finding indicated the lower specificity of the swine host, perhaps pointing to its ability to mix different strains. PMID:24418567

  16. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position.

    PubMed

    Kruys, Asa; Eriksson, Ove E; Wedin, Mats

    2006-05-01

    The purpose of this study was to investigate the natural relationships within the large bitunicate order Pleosporales, with special focus on the coprophilous families Delitschiaceae, Phaeotrichaceae and Sporormiaceae. Parsimony and Bayesian analyses were performed using nSSU, nLSU and mtSSU rDNA sequence data. We also investigated the placement of a number of taxa with uncertain position. Our results showed that Pleosporales, including Delitschiaceae, Sporormiaceae, Zopfiaceae and Testudinaceae, form a monophyletic group with strong support. Although Delitschiaceae has been considered a synonym of Sporormiaceae, the two families do not form one monophyletic group. Similarly, Zopfiaceae and Testudinaceae should be retained as separate families as they did not group together or with Phaeotrichaceae or Sporormiaceae. Zopfiaceae and Delitchiaceae did group together, but without significant support. Eremodothis angulata (currently in Testudinaceae) is closely related to Westerdykella in Sporormiaceae. Phaeotrichaceae and Venturiaceae formed a group with strong BS support on a branch outside Pleosporales, but an alternative topology including Phaeotrichaceae and Venturiaceae within Pleosporales could not be rejected. All taxa in the present study that were placed with uncertain position in Dothideomycetes/Chaetothyriomycetes in the current classification by Eriksson, grouped within the monophyletic Dothideomycetes. PMID:16769507

  17. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms

    PubMed Central

    2011-01-01

    Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system. PMID:21672191

  18. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection.

    PubMed

    Bechet, P; Mitran, R; Munteanu, M

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact. PMID:24007088

  19. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  20. Is the SIOP-2001 Classification of Renal Tumors of Childhood accurate with regard to prognosis? A problem revisited

    PubMed Central

    Taran, Katarzyna; M?ynarski, Wojciech; Sitkiewicz, Anna

    2012-01-01

    Introduction The goal of this study was to analyze morbidity and mortality of Wilms tumor based on the revised SIOP-2001 classification. Material and methods Sixty-four patients with unilateral Wilms tumor, 33 girls (51.5%) and 31 boys (48.5%), aged 1 to 144 months (mean: 42.8 months) were treated between 1993 and 2009. All patients underwent multimodal therapy according to the SIOP protocols. The follow-up period ranged from 2 to 18 years (mean: 11.6 years). Results Thirty-three patients (51.6%) had intermediate-risk, 6 (9.4%) low-risk and 25 (39%) high-risk tumors. Stage I disease was diagnosed in 28 (43.7%), stage II in 19 (29.7%), stage III in 8 (12.5%) and stage IV in 9 patients (14.1%). Event-free survival (EFS) in the entire group was 78.1% and OS was 92.2%. The EFS in stage IV (44.4%) was significantly lower than in stage I (82.1%, p = 0.04), stage II (89.5%, p = 0.02) and in the entire group (78.1%, p = 0.04). Sixteen complications were observed in 14 children (21.9%); metastases in 7 cases (10.9%), 8 relapses (12.5%) and 5 deaths (7.8%). Blastemal (20/24 83.3%) and anaplastic (3/24 12.5%) subtypes were responsible for mortality in high-risk tumors (OS 87.5%), while poorly differentiated epithelial (7/34 20.6%) and regressive (8/34 23.5%) subtypes decreased OS (94.1%) in the intermediate-risk tumors. Conclusions The results of our study show that epithelial and regressive subtypes were responsible for mortality in the intermediate-risk Wilms tumors. PMID:23056081

  1. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the Extreme Learning Machine Algorithm

    PubMed Central

    McDonnell, Mark D.; Tissera, Migel D.; Vladusich, Tony; van Schaik, Andr; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the Extreme Learning Machine (ELM) approach, which also enables a very rapid training time (? 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random receptive field sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems. PMID:26262687

  2. Classification

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2011-01-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. In supervised learning, a set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. This chapter discusses methods to perform machine learning, with examples involving astronomy.

  3. Phylogenetic Status of an Unrecorded Species of Curvularia, C. spicifera, Based on Current Classification System of Curvularia and Bipolaris Group Using Multi Loci

    PubMed Central

    Jeon, Sun Jeong; Nguyen, Thi Thuong Thuong

    2015-01-01

    A seed-borne fungus, Curvularia sp. EML-KWD01, was isolated from an indigenous wheat seed by standard blotter method. This fungus was characterized based on the morphological characteristics and molecular phylogenetic analysis. Phylogenetic status of the fungus was determined using sequences of three loci: rDNA internal transcribed spacer, large ribosomal subunit, and glyceraldehyde 3-phosphate dehydrogenase gene. Multi loci sequencing analysis revealed that this fungus was Curvularia spicifera within Curvularia group 2 of family Pleosporaceae. PMID:26539036

  4. Bacterial Phylogenetic Clusters Revealed by Genome Structure

    PubMed Central

    Liu, Shu-Lin; Schryvers, Anthony B.; Sanderson, Kenneth E.; Johnston, Randal N.

    1999-01-01

    Current bacterial taxonomy is mostly based on phenotypic criteria, which may yield misleading interpretations in classification and identification. As a result, bacteria not closely related may be grouped together as a genus or species. For pathogenic bacteria, incorrect classification or misidentification could be disastrous. There is therefore an urgent need for appropriate methodologies to classify bacteria according to phylogeny and corresponding new approaches that permit their rapid and accurate identification. For this purpose, we have devised a strategy enabling us to resolve phylogenetic clusters of bacteria by comparing their genome structures. These structures were revealed by cleaving genomic DNA with the endonuclease I-CeuI, which cuts within the 23S ribosomal DNA (rDNA) sequences, and by mapping the resulting large DNA fragments with pulsed-field gel electrophoresis. We tested this experimental system on two representative bacterial genera: Salmonella and Pasteurella. Among Salmonella spp., I-CeuI mapping revealed virtually indistinguishable genome structures, demonstrating a high degree of structural conservation. Consistent with this, 16S rDNA sequences are also highly conserved among the Salmonella spp. In marked contrast, the Pasteurella strains have very different genome structures among and even within individual species. The divergence of Pasteurella was also reflected in 16S rDNA sequences and far exceeded that seen between Escherichia and Salmonella. Based on this diversity, the Pasteurella haemolytica strains we analyzed could be divided into 14 phylogenetic groups and the Pasteurella multocida strains could be divided into 9 groups. If criteria for defining bacterial species or genera similar to those used for Salmonella and Escherichia coli were applied, the striking phylogenetic diversity would allow bacteria in the currently recognized species of P. multocida and P. haemolytica to be divided into different species, genera, or even higher ranks. On the other hand, strains of Pasteurella ureae and Pasteurella pneumotropica are very similar to those of P. multocida in both genome structure and 16S rDNA sequence and should be regarded as strains within this species. We conclude that large-scale genome structure can be a sensitive indicator of phylogenetic relationships and that, therefore, I-CeuI-based genomic mapping is an efficient tool for probing the phylogenetic status of bacteria. PMID:10542177

  5. Say goodbye to tribes in the new house fly classification: A new molecular phylogenetic analysis and an updated biogeographical narrative for the Muscidae (Diptera).

    PubMed

    Haseyama, Kirstern L F; Wiegmann, Brian M; Almeida, Eduardo A B; de Carvalho, Claudio J B

    2015-08-01

    House flies are one of the best known groups of flies and comprise about 5000 species worldwide. Despite over a century of intensive taxonomic research on these flies, classification of the Muscidae is still poorly resolved. Here we brought together the most diverse molecular dataset ever examined for the Muscidae, with 142 species in 67 genera representing all tribes and all biogeographic regions. Four protein coding genes were analyzed: mitochondrial CO1 and nuclear AATS, CAD (region 4) and EF1-?. Maximum likelihood and Bayesian approaches were used to analyze five different partitioning schemes for the alignment. We also used Bayes factors to test monophyly of the traditionally accepted tribes and subfamilies. Most subfamilial taxa were not recovered in our analyses, and accordingly monophyly was rejected by Bayes factor tests. Our analysis consistently found three main clades of Muscidae and so we propose a new classification with only three subfamilies without tribes. Additionally, we provide the first timeframe for the diversification of all major lineages of house flies and examine contemporary biogeographic hypotheses in light of this timeframe. We conclude that the muscid radiation began in the Paleocene to Eocene and is congruent with the final stages of the breakup of Gondwana, which resulted in the complete separation of Antarctica, Australia, and South America. With this newly proposed classification and better understanding of the timing of evolutionary events, we provide new perspectives for integrating morphological and ecological evolutionary understanding of house flies, their taxonomy, phylogeny, and biogeography. PMID:25869937

  6. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification.

    PubMed

    Gehrke, B; Bruchler, C; Romoleroux, K; Lundberg, M; Heubl, G; Eriksson, T

    2008-06-01

    Alchemilla (the lady's mantles) is a well known but inconspicuous group in the Rosaceae, notable for its ornamental leaves and pharmaceutical properties. The systematics of Alchemilla has remained poorly understood, most likely due to confusion resulting from apomixis, polyploidisation and hybridisation, which are frequently observed in the group, and which have led to the description of a large number of (micro-) species. A molecular phylogeny of the genus, including all sections of Alchemilla and Lachemilla as well as five representatives of Aphanes, based on the analysis of the chloroplast trnL-trnF and the nuclear ITS regions is presented here. Gene phylogenies reconstructed from the nuclear and chloroplast sequence data were largely congruent. Limited conflict between the data partitions was observed with respect to a small number of taxa. This is likely to be the result of hybridisation/introgression or incomplete lineage sorting. Four distinct clades were resolved, corresponding to major geographical division and life forms: Eurasian Alchemilla, annual Aphanes, South American Lachemilla and African Alchemilla. We argue for a wider circumscription of the genus Alchemilla, including Lachemilla and Aphanes, based on the morphology and the phylogenetic relationships between the different clades. PMID:18479944

  7. Phylogenetic classification of serotype III group B streptococci on the basis of hylB gene analysis and DNA sequences specific to restriction digest pattern type III-3.

    PubMed

    Bohnsack, J F; Takahashi, S; Detrick, S R; Pelinka, L R; Hammitt, L L; Aly, A A; Whiting, A A; Adderson, E E

    2001-06-01

    Previous work divided serotype III group B streptococci (GBS) into 3 major phylogenetic lineages (III-1, III-2, and III-3) on the basis of bacterial DNA restriction digest patterns (RDPs). Most neonatal invasive disease was caused by III-3 strains, which implies that III-3 strains are more virulent than III-2 or III-1 strains. In the current studies, all RDP III-3 and III-1 strains expressed hyaluronate lysase activity; however, all III-2 strains lack hyaluronate lysase activity, because the gene that encodes hyaluronate lysase, hylB, is inactivated by IS1548. Subtractive hybridization was used to identify 9 short DNA sequences that are present in all the III-3 strains but not in any of the III-2 or III-1 strains. With 1 exception, these III-3-specific sequences were not detected in nonserotype III GBS. These data further validate the RDP-based subclassification of GBS and suggest that lineage-specific genes will be identified, which account for the differences in virulence among the lineages. PMID:11343222

  8. Endometriosis fertility index score maybe more accurate for predicting the outcomes of in vitro fertilisation than r-AFS classification in women with endometriosis

    PubMed Central

    2013-01-01

    Background Endometriosis is a common disease. The most widely used staging system of endometriosis is the revised American Fertility Society classification (r-AFS classification) which has limited predictive ability for pregnancy after surgery. The endometriosis fertility index (EFI) is used to predict fecundity after endometriosis surgery. This diagnostic accuracy study was designed to compare the predictive value of the EFI with that of the r-AFS classification for IVF outcomes in patients with endometriosis. Methods 199 women with endometriosis receiving IVF treatment after surgery were analysis. The EFI score and r-AFS classification in their ability to predict these IVF outcomes were compared in the same population. ROC curves were used to analyse the predictive values of the EFI and r-AFS indices for clinical pregnancy, and their accuracies were evaluated by sensitivity, specificity, and the Youdens index. Results The Area Under the Curve (AUC) of the EFI score (AUC?=?0.641, Standard Error(SE)?=?0.039, P?=?0.001, 95% CI?=?0.564-0.717, cut-off score?=?6) was significantly larger than that of the r-AFS classification (AUC?=?0.445, SE?=?0.041, P?=?0.184, and 95% CI?=?0.364-0.526). The antral follicle count, oestradiol level on day of hCG, number of oocytes retrieved, number of oocytes fertilised, and number of cleaved embryos in the greater than or equal to 6 EFI score group was greater than that of the lower than or equal to 5 EFI score group, and the dose of gonadotropin of the greater than or equal to 6 EFI score group were less than that in the lower than or equal to 5 EFI score group. Implantation rate, clinical pregnancy rate, and cumulative pregnancy rate in the greater than or equal to 6 EFI score group were higher than in the lower than or equal to 5 EFI score group. Conclusions It suggests that the EFI has more predictive power for IVF outcomes in endometriosis patients than the r-AFS classification. The clinical pregnancy rate was higher in patients with EFI greater than or equal to 6 score than with EFI lower than or equal to 5 score. PMID:24330552

  9. A preliminary phylogenetic analysis of the New World Helopini (Coleoptera, Tenebrionidae, Tenebrioninae) indicates the need for profound rearrangements of the classification

    PubMed Central

    Cifuentes-Ruiz, Paulina; Zaragoza-Caballero, Santiago; Ochoterena-Booth, Helga; Morn, Miguel ngel

    2014-01-01

    Abstract Helopini is a diverse tribe in the subfamily Tenebrioninae with a worldwide distribution. The New World helopine species have not been reviewed recently and several doubts emerge regarding their generic assignment as well as the naturalness of the tribe and subordinate taxa. To assess these questions, a preliminary cladistic analysis was conducted with emphasis on sampling the genera distributed in the New World, but including representatives from other regions. The parsimony analysis includes 30 ingroup species from America, Europe and Asia of the subtribes Helopina and Cylindrinotina, plus three outgroups, and 67 morphological characters. Construction of the matrix resulted in the discovery of morphological character states not previously reported for the tribe, particularly from the genitalia of New World species. A consensus of the 12 most parsimonious trees supports the monophyly of the tribe based on a unique combination of characters, including one synapomorphy. None of the subtribes or the genera of the New World represented by more than one species (Helops Fabricius, Nautes Pascoe and Tarpela Bates) were recovered as monophyletic. Helopina was recovered as paraphyletic in relation to Cylindrinotina. One Nearctic species of Helops and one Palearctic species of Tarpela (subtribe Helopina) were more closely related to species of Cylindrinotina. A relatively derived clade, mainly composed by Neotropical species, was found; it includes seven species of Tarpela, seven species of Nautes, and three species of Helops, two Nearctic and one Neotropical. Our results reveal the need to deeply re-evaluate the current classification of the tribe and subordinated taxa, but a broader taxon sampling and further character exploration is needed in order to fully recognize monophyletic groups at different taxonomic levels (from subtribes to genera). PMID:25009428

  10. Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters.

    PubMed

    Morales, Sergio E; Cosart, Theodore F; Johnson, Jesse V; Holben, William E

    2009-02-01

    To thoroughly investigate the bacterial community diversity present in a single composite sample from an agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we examined the effects of percent G+C DNA fractionation, sequence length, and degree of coverage of bacterial diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness). We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1 richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic classification might not be as applicable or as general as previously assumed and that such values likely vary between prokaryotic phyla or groups. PMID:19011079

  11. Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data.

    PubMed

    Pruett, John R; Kandala, Sridhar; Hoertel, Sarah; Snyder, Abraham Z; Elison, Jed T; Nishino, Tomoyuki; Feczko, Eric; Dosenbach, Nico U F; Nardos, Binyam; Power, Jonathan D; Adeyemo, Babatunde; Botteron, Kelly N; McKinstry, Robert C; Evans, Alan C; Hazlett, Heather C; Dager, Stephen R; Paterson, Sarah; Schultz, Robert T; Collins, D Louis; Fonov, Vladimir S; Styner, Martin; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Constantino, John N; Estes, Annette M; Petersen, Steven E; Schlaggar, Bradley L; Piven, Joseph

    2015-04-01

    Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization. PMID:25704288

  12. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a nave Bayesian classifier

    PubMed Central

    Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad

    2014-01-01

    Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a nave Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.

  13. The Need for Improved Identification and Accurate Classification of Stages 3–5 Chronic Kidney Disease in Primary Care: Retrospective Cohort Study

    PubMed Central

    Jain, Poorva; Calvert, Melanie; Cockwell, Paul; McManus, Richard J.

    2014-01-01

    Background Around ten percent of the population have been reported as having Chronic Kidney Disease (CKD), which is associated with increased cardiovascular mortality. Few previous studies have ascertained the chronicity of CKD. In the UK, a payment for performance (P4P) initiative incentivizes CKD (stages 3–5) recognition and management in primary care, but the impact of this has not been assessed. Methods and Findings Using data from 426 primary care practices (population 2,707,130), the age standardised prevalence of stages 3–5 CKD was identified using two consecutive estimated Glomerular Filtration Rates (eGFRs) seven days apart. Additionally the accuracy of practice CKD registers and the relationship between accurate identification of CKD and the achievement of P4P indicators was determined. Between 2005 and 2009, the prevalence of stages 3–5 CKD increased from 0.3% to 3.9%. In 2009, 30,440 patients (1.1% unadjusted) fulfilled biochemical criteria for CKD but were not on a practice CKD register (uncoded CKD) and 60,705 patients (2.2% unadjusted) were included on a practice CKD register but did not fulfil biochemical criteria (miscoded CKD). For patients with confirmed CKD, inclusion in a practice register was associated with increasing age, male sex, diabetes, hypertension, cardiovascular disease and increasing CKD stage (p<0.0001). Uncoded CKD patients compared to miscoded patients were less likely to achieve performance indicators for blood pressure (OR 0.84, 95% CI 0.82–0.86 p<0.001) or recorded albumin-creatinine ratio (OR 0.73, 0.70–0.76, p<0.001). Conclusions The prevalence of stages 3–5 CKD, using two laboratory reported eGFRs, was lower than estimates from previous studies. Clinically significant discrepancies were identified between biochemically defined CKD and appearance on practice registers, with misclassification associated with sub-optimal care for some people with CKD. PMID:25115813

  14. Phylogenetic molecular function annotation

    NASA Astrophysics Data System (ADS)

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T.; Brenner, Steven E.

    2009-07-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called "phylogenomics") is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  15. Phylogenetic molecular function annotation

    PubMed Central

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2010-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called phylogenomics) is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods. PMID:20664722

  16. Directional biases in phylogenetic structure quantification: a Mediterranean case study

    PubMed Central

    Molina-Venegas, Rafael; Roquet, Cristina

    2014-01-01

    Recent years have seen an increasing effort to incorporate phylogenetic hypotheses to the study of community assembly processes. The incorporation of such evolutionary information has been eased by the emergence of specialized software for the automatic estimation of partially resolved supertrees based on published phylogenies. Despite this growing interest in the use of phylogenies in ecological research, very few studies have attempted to quantify the potential biases related to the use of partially resolved phylogenies and to branch length accuracy, and no work has examined how tree shape may affect inference of community phylogenetic metrics. In this study, using a large plant community and elevational dataset, we tested the influence of phylogenetic resolution and branch length information on the quantification of phylogenetic structure; and also explored the impact of tree shape (stemminess) on the loss of accuracy in phylogenetic structure quantification due to phylogenetic resolution. For this purpose, we used 9 sets of phylogenetic hypotheses of varying resolution and branch lengths to calculate three indices of phylogenetic structure: the mean phylogenetic distance (NRI), the mean nearest taxon distance (NTI) and phylogenetic diversity (stdPD) metrics. The NRI metric was the less sensitive to phylogenetic resolution, stdPD showed an intermediate sensitivity, and NTI was the most sensitive one; NRI was also less sensitive to branch length accuracy than NTI and stdPD, the degree of sensitivity being strongly dependent on the dating method and the sample size. Directional biases were generally towards type II errors. Interestingly, we detected that tree shape influenced the accuracy loss derived from the lack of phylogenetic resolution, particularly for NRI and stdPD. We conclude that well-resolved molecular phylogenies with accurate branch length information are needed to identify the underlying phylogenetic structure of communities, and also that sensitivity of phylogenetic structure measures to low phylogenetic resolution can strongly differ depending on phylogenetic tree shape. PMID:25076812

  17. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses

    PubMed Central

    2013-01-01

    Background Cymbidium orchids, including some 50 species, are the famous flowers, and they possess high commercial value in the floricultural industry. Furthermore, the values of different orchids are great differences. However, species identification is very difficult. To a certain degree, chloroplast DNA sequence data are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. However, there is no evidence that a short sequence can distinguish all plant species from each other in order to infer phylogenetic relationships. Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Results The complete nucleotide sequences of eight individuals from a total of five Cymbidium species chloroplast (cp) genomes were determined using Illumina sequencing technology of the total DNA via a combination of de novo and reference-guided assembly. The length of the Cymbidium cp genome is about 155kb. The cp genomes contain 123 unique genes, and the IR regions contain 24 duplicates. Although the genomes, including genome structure, gene order and orientation, are similar to those of other orchids, they are not evolutionarily conservative. The cp genome of Cymbidium evolved moderately with more than 3% sequence divergence, which could provide enough information for phylogeny. Rapidly evolving chloroplast genome regions were identified and 11 new divergence hotspot regions were disclosed for further phylogenetic study and species identification in Orchidaceae. Conclusions Phylogenomic analyses were conducted using 10 complete chloroplast genomes from seven orchid species. These data accurately identified the individuals and established the phylogenetic relationships between the species. The results reveal that phylogenomics based on organelle genome sequencing lights the species identificationorganelle-scale barcodes, and is also an effective approach for studying whole populations and phylogenetic characteristics of Cymbidium. PMID:23597078

  18. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  19. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae)

    PubMed Central

    Baker, William J.; Norup, Maria V.; Clarkson, James J.; Couvreur, Thomas L. P.; Dowe, John L.; Lewis, Carl E.; Pintaud, Jean-Christophe; Savolainen, Vincent; Wilmot, Tomas; Chase, Mark W.

    2011-01-01

    Background and Aims The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research. Methods DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping. Key Results and Conclusions Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family. PMID:21325340

  20. On Exploring Genome Rearrangement Phylogenetic Patterns

    NASA Astrophysics Data System (ADS)

    Xu, Andrew Wei

    The study of genome rearrangement is much harder than the corresponding problems on DNA and protein sequences, because of the occurrences of numerous combinatorial structures. By explicitly exploring these combinatorial structures, the recently developed adequate subgraph theory shows that a family of these structures, adequate subgraphs, are informative in finding the optimal solutions to the rearrangement median problem. Its extension gives rise to the tree scoring method GASTS, which provides quick and accurate estimation of the number of rearrangement events, for any given topology. With a similar motivation, this paper discusses and provides solid but somewhat initial results, on combinatorial structures that are informative in phylogenetic inference. These structures, called rearrangement phylogenetic patterns, provide more insights than algorithmic approaches, and may provide statistical significance for inferred phylogenies and lead to efficient and robust phylogenetic inference methods on large sets of taxa.

  1. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  2. The phylogenetic likelihood library.

    PubMed

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL). PMID:25358969

  3. The phylogenetic mixed model.

    PubMed

    Housworth, Elizabeth A; Martins, Emlia P; Lynch, Michael

    2004-01-01

    The phylogenetic mixed model is an application of the quantitative-genetic mixed model to interspecific data. Although this statistical framework provides a potentially unifying approach to quantitative-genetic and phylogenetic analysis, the model has been applied infrequently because of technical difficulties with parameter estimation. We recommend a reparameterization of the model that eliminates some of these difficulties, and we develop a new estimation algorithm for both the original maximum likelihood and new restricted maximum likelihood estimators. The phylogenetic mixed model is particularly rich in terms of the evolutionary insight that might be drawn from model parameters, so we also illustrate and discuss the interpretation of the model parameters in a specific comparative analysis. PMID:14767838

  4. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes.

    PubMed

    Segata, Nicola; Börnigen, Daniela; Morgan, Xochitl C; Huttenhower, Curtis

    2013-01-01

    New microbial genomes are constantly being sequenced, and it is crucial to accurately determine their taxonomic identities and evolutionary relationships. Here we report PhyloPhlAn, a new method to assign microbial phylogeny and putative taxonomy using >400 proteins optimized from among 3,737 genomes. This method measures the sequence diversity of all clades, classifies genomes from deep-branching candidate divisions through closely related subspecies and improves consistency between phylogenetic and taxonomic groupings. PhyloPhlAn improved taxonomic accuracy for existing and newly sequenced genomes, detecting 157 erroneous labels, correcting 46 and placing or refining 130 new genomes. We provide examples of accurate classifications from subspecies (Sulfolobus spp.) to phyla, and of preliminary rooting of deep-branching candidate divisions, including consistent statistical support for Caldiserica (formerly candidate division OP5). PhyloPhlAn will thus be useful for both phylogenetic assessment and taxonomic quality control of newly sequenced genomes. The final phylogenies, conserved protein sequences and open-source implementation are available online. PMID:23942190

  5. [Analysis phylogenetic relationship of Gynostemma (Cucurbitaceae)].

    PubMed

    Qin, Shuang-shuang; Li, Hai-tao; Wang, Zhou-yong; Cui, Zhan-hu; Yu, Li-ying

    2015-05-01

    The sequences of ITS, matK, rbcL and psbA-trnH of 9 Gynostemma species or variety including 38 samples were compared and analyzed by molecular phylogeny method. Hemsleya macrosperma was designated as outgroup. The MP and NJ phylogenetic tree of Gynostemma was built based on ITS sequence, the results of PAUP phylogenetic analysis showed the following results: (1) The eight individuals of G. pentaphyllum var. pentaphyllum were not supported as monophyletic in the strict consensus trees and NJ trees. (2) It is suspected whether G. longipes and G. laxum should be classified as the independent species. (3)The classification of subgenus units of Gynostemma plants is supported. PMID:26323129

  6. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  7. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics--yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms. PMID:19760277

  8. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics—yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms.

  9. The revised classification of eukaryotes

    PubMed Central

    Adl, Sina M.; Simpson, Alastair. G.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matt; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; leGall, Line; Lynn, Denis H.; McManus, Hilary; Mitchell, Edward A. D.; Mozley-Stanridge, Sharon E.; Parfrey, Laura Wegener; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Laura; Schoch, Conrad; Smirnov, Alexey; Spiegel, Frederick W.

    2012-01-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. (2005), retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information. PMID:23020233

  10. ClassyFlu: classification of influenza A viruses with Discriminatively trained profile-HMMs.

    PubMed

    Van der Auwera, Sandra; Bulla, Ingo; Ziller, Mario; Pohlmann, Anne; Harder, Timm; Stanke, Mario

    2014-01-01

    Accurate and rapid characterization of influenza A virus (IAV) hemagglutinin (HA) and neuraminidase (NA) sequences with respect to subtype and clade is at the basis of extended diagnostic services and implicit to molecular epidemiologic studies. ClassyFlu is a new tool and web service for the classification of IAV sequences of the HA and NA gene into subtypes and phylogenetic clades using discriminatively trained profile hidden Markov models (HMMs), one for each subtype or clade. ClassyFlu merely requires as input unaligned, full-length or partial HA or NA DNA sequences. It enables rapid and highly accurate assignment of HA sequences to subtypes H1-H17 but particularly focusses on the finer grained assignment of sequences of highly pathogenic avian influenza viruses of subtype H5N1 according to the cladistics proposed by the H5N1 Evolution Working Group. NA sequences are classified into subtypes N1-N10. ClassyFlu was compared to semiautomatic classification approaches using BLAST and phylogenetics and additionally for H5 sequences to the new "Highly Pathogenic H5N1 Clade Classification Tool" (IRD-CT) proposed by the Influenza Research Database. Our results show that both web tools (ClassyFlu and IRD-CT), although based on different methods, are nearly equivalent in performance and both are more accurate and faster than semiautomatic classification. A retraining of ClassyFlu to altered cladistics as well as an extension of ClassyFlu to other IAV genome segments or fragments thereof is undemanding. This is exemplified by unambiguous assignment to a distinct cluster within subtype H7 of sequences of H7N9 viruses which emerged in China early in 2013 and caused more than 130 human infections. http://bioinf.uni-greifswald.de/ClassyFlu is a free web service. For local execution, the ClassyFlu source code in PERL is freely available. PMID:24404173

  11. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  12. Iteratively Refined Guide Trees Help Improving Alignment and Phylogenetic Inference in the Mushroom Family Bolbitiaceae

    PubMed Central

    Tth, Annamria; Hausknecht, Anton; Krisai-Greilhuber, Irmgard; Papp, Tams; Vgvlgyi, Csaba; Nagy, Lszl G.

    2013-01-01

    Reconciling traditional classifications, morphology, and the phylogenetic relationships of brown-spored agaric mushrooms has proven difficult in many groups, due to extensive convergence in morphological features. Here, we address the monophyly of the Bolbitiaceae, a family with over 700 described species and examine the higher-level relationships within the family using a newly constructed multilocus dataset (ITS, nrLSU rDNA and EF1-alpha). We tested whether the fast-evolving Internal Transcribed Spacer (ITS) sequences can be accurately aligned across the family, by comparing the outcome of two iterative alignment refining approaches (an automated and a manual) and various indel-treatment strategies. We used PRANK to align sequences in both cases. Our results suggest that although PRANK successfully evades overmatching of gapped sites, referred previously to as alignment overmatching it infers an unrealistically high number of indel events with natively generated guide-trees. This 'alignment undermatching' could be avoided by using more rigorous (e.g. ML) guide trees. The trees inferred in this study support the monophyly of the core Bolbitiaceae, with the exclusion of Panaeolus, Agrocybe, and some of the genera formerly placed in the family. Bolbitius and Conocybe were found monophyletic, however, Pholiotina and Galerella require redefinition. The phylogeny revealed that stipe coverage type is a poor predictor of phylogenetic relationships, indicating the need for a revision of the intrageneric relationships within Conocybe. PMID:23418526

  13. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  14. The Phylogenetic Diversity of Metagenomes

    PubMed Central

    Kembel, Steven W.; Eisen, Jonathan A.; Pollard, Katherine S.; Green, Jessica L.

    2011-01-01

    Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context. PMID:21912589

  15. Quantitative developmental data in a phylogenetic framework.

    PubMed

    Giannini, Norberto Pedro

    2014-12-01

    Following the embryonic period of organogenesis, most development is allometric growth, which is thought to produce most of the evolutionary morphological divergence between related species. Bivariate or multivariate coefficients of allometry are used to describe quantitative developmental data and are comparable across taxa; as such, these coefficients are amenable to direct treatment in a phylogenetic framework. Mapping of actual allometric coefficients onto phylogenetic trees is supported on the basis of the evolving nature of growth programs and the type of character (continuous) that they represent. This procedure depicts evolutionary allometry accurately and allows for the generation of reliable reconstructions of ancestral allometry, as shown here with a previously published case study on rodent cranial ontogeny. Results reconstructed the signature allometric patterns of rodents to the root of the phylogeny, which could be traced back into a (minimum) Paleocene age. Both character and statistical dependence need to be addressed, so this approach can be integrated with phylogenetic comparative methods that deal with those issues. It is shown that, in this particular sample of rodents, common ancestry explains little allometric variation given the level of divergence present within, and convergence between, major rodent lineages. Furthermore, all that variation is independent of body mass. Thus, from an evolutionary perspective, allometry appears to have a strong functional and likely adaptive basis. PMID:25130201

  16. Dengue virus type 3 in Brazil: a phylogenetic perspective.

    PubMed

    Arajo, Joslio Maria Galvo de; Bello, Gonzalo; Schatzmayr, Hermann Gonalves; Santos, Flvia Barreto dos; Nogueira, Rita Maria Ribeiro

    2009-05-01

    Circulation of a new dengue virus (DENV)-3 genotype was recently described in Brazil and Colombia, but the precise classification of this genotype has been controversial. Here we perform phylogenetic and nucleotide-distance analyses of the envelope gene, which support the subdivision of DENV-3 strains into five distinct genotypes (GI to GV) and confirm the classification of the new South American genotype as GV. The extremely low genetic distances between Brazilian GV strains and the prototype Philippines/L11423 GV strain isolated in 1956 raise important questions regarding the origin of GV in South America. PMID:19547883

  17. A revision of infrageneric classification in Astelia Banks & Sol. ex R.Br. (Asteliaceae)

    PubMed Central

    Birch, Joanne L.

    2015-01-01

    Abstract Systematic investigations and phylogenetic analyses have indicated that Astelia, as currently circumscribed, is paraphyletic, with Collospermum nested within it. Further, Astelia subgenus Astelia is polyphyletic, and Astelia subgenera Asteliopsis and Tricella are paraphyletic, as currently circumscribed. Revision of the subgeneric classification of Astelia is warranted to ensure classification accurately reflects the evolutionary history of these taxa. Collospermum is relegated to synonymy within Astelia. Astelia is dioecious or polygamodioecious, with a superior ovary, anthers dorsi- or basifixed, pistillodes or pistils that have a single short or poorly defined style, a 3 lobed stigma, and fleshy uni- or trilocular fruit with funicular hairs that are poorly to well developed. Astelia subgenus Collospermum (Skottsb.) Birch is described. A key to Astelia sections is provided. Astelia hastata Colenso, Astelia montana Seem., and Astelia microsperma Colenso pro parte are resurrected and the new combination Astelia samoense (Skottsb.) Birch, comb. nov. is made. PMID:26312037

  18. Map Classification

    ERIC Educational Resources Information Center

    Larsgaard, Mary

    1973-01-01

    Although map classification may seem a somewhat esoteric subject, at least to those who are not map librarians, the enterprising searcher for map classification schemes can find a goodly number from which to choose. (30 references) (Author)

  19. A format for phylogenetic placements.

    PubMed

    Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988

  20. Classification of papillomaviruses.

    PubMed

    de Villiers, Ethel-Michele; Fauquet, Claude; Broker, Thomas R; Bernard, Hans-Ulrich; zur Hausen, Harald

    2004-06-20

    One hundred eighteen papillomavirus (PV) types have been completely described, and a yet higher number of presumed new types have been detected by preliminary data such as subgenomic amplicons. The classification of this diverse group of viruses, which include important human pathogens, has been debated for three decades. This article describes the higher-order PV taxonomy following the general criteria established by the International Committee on the Taxonomy of Viruses (ICTV), reviews the literature of the lower order taxa, lists all known "PV types", and interprets their phylogenetic relationship. PVs are a taxonomic family of their own, Papillomaviridae, unrelated to the polyomaviruses. Higher-order phylogenetic assemblages of PV types, such as the "genital human PVs", are considered a genus, the latter group, for example, the genus "Alpha-Papillomavirus". Lower-order assemblages of PV types within each genus are treated as species because they are phylogenetically closely related, but while they have distinct genomic sequences, they have identical or very similar biological or pathological properties. The taxonomic status of PV types, subtypes, and variants remains unchanged and is based on the traditional criteria that the sequence of their L1 genes should be at least 10%, 2-10%, and maximally 2% dissimilar from one another. PMID:15183049

  1. Phylogenetic and Biogeographic Analysis of Sphaerexochine Trilobites

    PubMed Central

    Congreve, Curtis R.; Lieberman, Bruce S.

    2011-01-01

    Background Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history). Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. Methodology/Principal Findings Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. Conclusions/Significance The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species). By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and the Yangtze block (South China) and between Eastern Laurentia and Avalonia. PMID:21738632

  2. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  3. [Foundations of the new phylogenetics].

    PubMed

    Pavlinov, I Ia

    2004-01-01

    Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into phylistics (Rasnitsyn's term; close to Simpsonian evolutionary taxonomy) belonging rather to the classical realm, and Hennigian cladistics that pays attention to origin of monophyletic taxa exclusively. In early of the 20th century, microevolutionary doctrine became predominating in evolutionary studies. Its core is the population thinking accompanied by the phenetic one based on equation of kinship to overall similarity. They were connected to positivist philosophy and hence were characterized by reductionism at both ontological and epistemological levels. It led to fall of classical phylogenetics but created the prerequisites for the new phylogenetics which also appeared to be full of reductionism. The new rise of phylogenetic (rather than tree) thinking during the last third of the 20th century was caused by lost of explanatory power of population one and by development of the new worldview and new epistemological premises. That new worldview is based on the synergetic (Prigoginian) model of development of non-equilibrium systems: evolution of the biota, a part of which is phylogeny, is considered as such a development. At epistemological level, the principal premise appeared to be fall of positivism which was replaced by post-positivism argumentation schemes. Input of cladistics into new phylogenetics is twofold. On the one hand, it reduced phylogeny to cladistic history lacking any adaptivist interpretation and presuming minimal evolution model. From this it followed reduction of kinship relation to sister-group relation lacking any reference to real time scale and to ancestor-descendant relation. On the other hand, cladistics elaborated methodology of phylogenetic reconstructions based on the synapomorphy principle, the outgroup concept became its part. The both inputs served as premises of incorporation of both numerical techniques and molecular data into phylogenetic reconstruction. Numerical phyletics provided the new phylogenetics with easily manipulated algorithms of cladogram construing and thus made phylogenetic reconstructions o

  4. Phylogenetics and the Human Microbiome

    PubMed Central

    Matsen, Frederick A.

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work. PMID:25102857

  5. A phylogenetic analysis of the myxobacteria: basis for their classification

    NASA Technical Reports Server (NTRS)

    Shimkets, L.; Woese, C. R.

    1992-01-01

    The primary sequence and secondary structural features of the 16S rRNA were compared for 12 different myxobacteria representing all the known cultivated genera. Analysis of these data show the myxobacteria to form a monophyletic grouping consisting of three distinct families, which lies within the delta subdivision of the purple bacterial phylum. The composition of the families is consistent with differences in cell and spore morphology, cell behavior, and pigment and secondary metabolite production but is not correlated with the morphological complexity of the fruiting bodies. The Nannocystis exedens lineage has evolved at an unusually rapid pace and its rRNA shows numerous primary and secondary structural idiosyncrasies.

  6. Phylogenetic Studies and Modern Classification of the Pyraloidea (Lepidoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyraloidea, the third largest superfamily of the Lepidoptera, is comprised of two families - Pyralidae and Crambidae. The history of families previously placed in the Pyraloidea is discussed. The group now includes about 16,000 species worldwide. Morphologically, the superfamily is defined by a b...

  7. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    PubMed Central

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagels ?) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  8. Quantifying phylogenetically structured environmental variation.

    PubMed

    Desdevises, Yves; Legendre, Pierre; Azouzi, Lamia; Morand, Serge

    2003-11-01

    Comparative analysis methods control for the variation linked to phylogeny before attempting to correlate the remaining variation of a trait to present-day conditions (i.e., ecology and/or environment). A portion of the phylogenetic variation of the trait may be related to ecology, however; this portion is called "phylogenetic niche conservatism." We propose a method of variation partitioning that allows users to quantify this portion of the variation, called the "phylogenetically structured environmental variation." The new method is applied to published data to study, in a phylogenetic framework, the link between body mass and population density in 79 species of mammals. The results suggest that an important part of the variation of mammal body mass is related to the common influence of phylogeny and population density. PMID:14686540

  9. A mixed branch length model of heterotachy improves phylogenetic accuracy.

    PubMed

    Kolaczkowski, Bryan; Thornton, Joseph W

    2008-06-01

    Evolutionary relationships are typically inferred from molecular sequence data using a statistical model of the evolutionary process. When the model accurately reflects the underlying process, probabilistic phylogenetic methods recover the correct relationships with high accuracy. There is ample evidence, however, that models commonly used today do not adequately reflect real-world evolutionary dynamics. Virtually all contemporary models assume that relatively fast-evolving sites are fast across the entire tree, whereas slower sites always evolve at relatively slower rates. Many molecular sequences, however, exhibit site-specific changes in evolutionary rates, called "heterotachy." Here we examine the accuracy of 2 phylogenetic methods for incorporating heterotachy, the mixed branch length model--which incorporates site-specific rate changes by summing likelihoods over multiple sets of branch lengths on the same tree--and the covarion model, which uses a hidden Markov process to allow sites to switch between variable and invariable as they evolve. Under a variety of simple heterogeneous simulation conditions, the mixed model was dramatically more accurate than homotachous models, which were subject to topological biases as well as biases in branch length estimates. When data were simulated with strong versions of the types of heterotachy observed in real molecular sequences, the mixed branch length model was more accurate than homotachous techniques. Analyses of empirical data sets confirmed that the mixed branch length model can improve phylogenetic accuracy under conditions that cause homotachous models to fail. In contrast, the covarion model did not improve phylogenetic accuracy compared with homotachous models and was sometimes substantially less accurate. We conclude that a mixed branch length approach, although not the solution to all phylogenetic errors, is a valuable strategy for improving the accuracy of inferred trees. PMID:18319244

  10. Phylogenetic signals in DNA composition: limitations and prospects.

    PubMed

    Mrzek, Jan

    2009-05-01

    The concept of genome signature allows sequence comparisons without alignment. It relies on the premise that oligonucleotide compositions of DNA segments from the same or closely related genomes tend to be more similar than those from distantly related genomes. This concept has been used in detection of lateral gene transfer, phylogenetic classification of metagenome sequences (binning), and in studies of evolution of viruses and plasmids. The goal of this work is to explore limitations of genome signature in phylogenetic classification of DNA sequences and to identify formal representations of genome signature that expose best the phylogenetic relationships among prokaryotes. We found that genome signatures that best represent phylogenetic relationships are those normalized to factor out differences in G + C content and utilizing the standard A-C-G-T alphabet or the degenerate R-Y (purine-pyrimidine) alphabet. The main limitation of all genome signature representations tested is lack of divergence among some distantly related species. "Crowding" of the genome signature space and absence of molecular clock likely contribute to this phenomenon. We introduce "periodicity signatures"--formal representations of periodic sequence patterns related to DNA curvature--which can discriminate between bacterial and archaeal DNA sequences. Interestingly, archaea of the order Halobacteriaceae have periodic signatures similar to bacteria, possibly due to their early divergence from other archaea, extensive lateral gene transfer, or due to their adaptation to high salt environments. Our results have practical implications for development and application of genome signature-based methods for analysis and classification of DNA sequences. PMID:19233962

  11. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted. Taxonomic novelties: New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun & H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C. Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X. Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigmina-platani Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U. Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous, Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis (E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun & Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin; Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge) Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous & K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton; Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo. PMID:24014898

  12. Contextual classification of multispectral image data: Approximate algorithm

    NASA Technical Reports Server (NTRS)

    Tilton, J. C. (Principal Investigator)

    1980-01-01

    An approximation to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.

  13. Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies

    PubMed Central

    Platt, Roy N.; Blanco-Berdugo, Laura; Ray, David A.

    2016-01-01

    Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding—increased recognition of younger TEs—were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo–based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome. PMID:26802115

  14. Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies.

    PubMed

    Platt, Roy N; Blanco-Berdugo, Laura; Ray, David A

    2016-01-01

    Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding-increased recognition of younger TEs-were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo-based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome. PMID:26802115

  15. How Accurate is Psychiatry?

    ERIC Educational Resources Information Center

    Greenburg, Joel

    1977-01-01

    The problems that plague psychiatry; such as poor diagnoses, inappropriate treatment, and outdated resources are detailed. A new, more accurate, Diagnostic and Statistical Manual of Mental Disorders (DSM III) to be adopted in 1978 may alleviate many improper diagnoses and treatments. (BT)

  16. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  17. Fastphylo: Fast tools for phylogenetics

    PubMed Central

    2013-01-01

    Background Distance methods are ubiquitous tools in phylogenetics. Their primary purpose may be to reconstruct evolutionary history, but they are also used as components in bioinformatic pipelines. However, poor computational efficiency has been a constraint on the applicability of distance methods on very large problem instances. Results We present fastphylo, a software package containing implementations of efficient algorithms for two common problems in phylogenetics: estimating DNA/protein sequence distances and reconstructing a phylogeny from a distance matrix. We compare fastphylo with other neighbor joining based methods and report the results in terms of speed and memory efficiency. Conclusions Fastphylo is a fast, memory efficient, and easy to use software suite. Due to its modular architecture, fastphylo is a flexible tool for many phylogenetic studies. PMID:24255987

  18. Phylogenetic reconstruction methods: an overview.

    PubMed

    De Bruyn, Alexandre; Martin, Darren P; Lefeuvre, Pierre

    2014-01-01

    Initially designed to infer evolutionary relationships based on morphological and physiological characters, phylogenetic reconstruction methods have greatly benefited from recent developments in molecular biology and sequencing technologies with a number of powerful methods having been developed specifically to infer phylogenies from macromolecular data. This chapter, while presenting an overview of basic concepts and methods used in phylogenetic reconstruction, is primarily intended as a simplified step-by-step guide to the construction of phylogenetic trees from nucleotide sequences using fairly up-to-date maximum likelihood methods implemented in freely available computer programs. While the analysis of chloroplast sequences from various Vanilla species is used as an illustrative example, the techniques covered here are relevant to the comparative analysis of homologous sequences datasets sampled from any group of organisms. PMID:24415479

  19. [Phylogenetic analysis of Pleurotus species].

    PubMed

    Shnyreva, A A; Shnyreva, A V

    2015-02-01

    We performed phylogenetic analysis for ten Pleurotus species, based on internal transcribed spacer (ITS) sequences of rDNA. A phylogenetic tree was constructed on the basis of 31 oyster fungi strains of different origin and 10 reference sequences from GenBank. Our analysis demonstrates that the tested Pleurotus species are of monophyletic origin. We evaluated the evolutionary distances between these species. Classic genetic analysis of sexual compatibility based on monocaryon (mon)-mon crosses showed no reproductive barriers within the P. cornucopiae-P. euosmus species complex. Thus, despite the divergence (subclustering) between commercial strains and natural isolates of P. ostreatus revealed by phylogenetic analysis, there is no reproductive isolation between these groups. A common allele of the matB locus was identified for the commercial strains Sommer and L/4, supporting the common origin of these strains. PMID:25966583

  20. Two issues in archaeological phylogenetics: taxon construction and outgroup selection.

    PubMed

    O'Brien, Michael J; Lyman, R Lee; Saab, Youssef; Saab, Elias; Darwent, John; Glover, Daniel S

    2002-03-21

    Cladistics is widely used in biology and paleobiology to construct phylogenetic hypotheses, but rarely has it been applied outside those disciplines. There is, however, no reason to suppose that cladistics is not applicable to anything that evolves by cladogenesis and produces a nested hierarchy of taxa. This includes cultural phenomena such as languages and tools recovered from archaeological contexts. Two methodological issues assume primacy in attempts to extend cladistics to archaeological materials: the construction of analytical taxa and the selection of appropriate outgroups. In biology the species is the primary taxonomic unit used, irrespective of the debates that have arisen in phylogenetic theory over the nature of species. Also in biology the phylogenetic history of a group of taxa usually is well enough known that an appropriate taxon can be selected as an outgroup. No analytical unit parallel to the species exists in archaeology, and thus taxa have to be constructed specifically for phylogenetic analysis. One method of constructing taxa is paradigmatic classification, which defines classes (taxa) on the basis of co-occurring, unweighted character states. Once classes have been created, a form of occurrence seriation-an archaeological method based on the theory of cultural transmission and heritability-offers an objective basis for selecting an outgroup. PMID:12051970

  1. Molecular identification of hepatitis B virus genotypes/subgenotypes: Revised classification hurdles and updated resolutions

    PubMed Central

    Pourkarim, Mahmoud Reza; Amini-Bavil-Olyaee, Samad; Kurbanov, Fuat; Van Ranst, Marc; Tacke, Frank

    2014-01-01

    The clinical course of infections with the hepatitis B virus (HBV) substantially varies between individuals, as a consequence of a complex interplay between viral, host, environmental and other factors. Due to the high genetic variability of HBV, the virus can be categorized into different HBV genotypes and subgenotypes, which considerably differ with respect to geographical distribution, transmission routes, disease progression, responses to antiviral therapy or vaccination, and clinical outcome measures such as cirrhosis or hepatocellular carcinoma. However, HBV (sub)genotyping has caused some controversies in the past due to misclassifications and incorrect interpretations of different genotyping methods. Thus, an accurate, holistic and dynamic classification system is essential. In this review article, we aimed at highlighting potential pitfalls in genetic and phylogenetic analyses of HBV and suggest novel terms for HBV classification. Analyzing full-length genome sequences when classifying genotypes and subgenotypes is the foremost prerequisite of this classification system. Careful attention must be paid to all aspects of phylogenetic analysis, such as bootstrapping values and meeting the necessary thresholds for (sub)genotyping. Quasi-subgenotype refers to subgenotypes that were incorrectly suggested to be novel. As many of these strains were misclassified due to genetic differences resulting from recombination, we propose the term “recombino-subgenotype”. Moreover, immigration is an important confounding facet of global HBV distribution and substantially changes the geographic pattern of HBV (sub)genotypes. We therefore suggest the term “immigro-subgenotype” to distinguish exotic (sub)genotypes from native ones. We are strongly convinced that applying these two proposed terms in HBV classification will help harmonize this rapidly progressing field and allow for improved prophylaxis, diagnosis and treatment. PMID:24966586

  2. Interpreting the universal phylogenetic tree.

    PubMed

    Woese, C R

    2000-07-18

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist. PMID:10900003

  3. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  4. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor…

  5. Absolute Pitch in Boreal Chickadees and Humans: Exceptions that Test a Phylogenetic Rule

    ERIC Educational Resources Information Center

    Weisman, Ronald G.; Balkwill, Laura-Lee; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2010-01-01

    This research examined generality of the phylogenetic rule that birds discriminate frequency ranges more accurately than mammals. Human absolute pitch chroma possessors accurately tracked transitions between frequency ranges. Independent tests showed that they used note naming (pitch chroma) to remap the tones into ranges; neither possessors nor

  6. Phylogenetic Analysis of a Spontaneous Cocoa Bean Fermentation Metagenome Reveals New Insights into Its Bacterial and Fungal Community Diversity

    PubMed Central

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly ?-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques. PMID:22666442

  7. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly ?-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques. PMID:22666442

  8. Multiple Sparse Representations Classification

    PubMed Central

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106

  9. Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes).

    PubMed

    Spatafora, Joseph W; Owensby, C Alisha; Douhan, Greg W; Boehm, Eric W A; Schoch, Conrad L

    2012-01-01

    Cenococcum is a genus of ectomycorrhizal Ascomycota that has a broad host range and geographic distribution. It is not known to produce either meiotic or mitotic spores and is known to exist only in the form of hyphae, sclerotia and host-colonized ectomycorrhizal root tips. Due to its lack of sexual and asexual spores and reproductive structures, it has proven difficult to incorporate into traditional classification within Ascomycota. Molecular phylogenetic studies of ribosomal RNA placed Cenococcum in Dothideomycetes, but the definitive identification of closely related taxa remained elusive. Here we report a phylogenetic analysis of five nuclear loci (SSU, LSU, TEF1, RPB1, RPB2) of Dothideomycetes that placed Cenococcum as a close relative of the genus Glonium of Gloniaceae (Pleosporomycetidae incertae sedis) with strong statistical support. Glonium is a genus of saprobic Dothideomycetes that produces darkly pigmented, carbonaceous, hysteriate apothecia and is not known to be biotrophic. Evolution of ectomycorhizae, Cenococcum and Dothideomycetes is discussed. PMID:22453119

  10. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  11. Phylogenetic relationships of sugarcane fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylogenetic positions of Puccinia spp. infecting sugarcane (a complex hybrid of Saccharum spp.) was determined using 42 newly generated rust sequences and 25 sequences from Genbank. Rust specimens on sugarcane were collected from 161 locations in 25 countries and identified based on light micro...

  12. Phylogenetic Relationships Among Lepidium Papilliferum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous phylogenetic analyses of Lepidium included only a few acessions of L. montanum, L. flavum, and L. fremontii to represent western North Amrican species. Two additional species endemic to southwest Idaho have posed both taxonomic and conservation questions regarding their species status. Le...

  13. Functional Basis of Microorganism Classification

    PubMed Central

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with phylogenetic descent. PMID:26317871

  14. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies.

    PubMed

    Agorreta, Ainhoa; San Mauro, Diego; Schliewen, Ulrich; Van Tassell, James L; Kovačić, Marcelo; Zardoya, Rafael; Rüber, Lukas

    2013-12-01

    Gobioidei is one of the largest suborders of teleost fishes, with nearly 2000 extant species currently recognized. They have a worldwide distribution and show a spectacular variety in morphology, ecology, and behavior. Despite their importance, phylogenetic relationships among many groups of gobioids (including some of the major lineages) still remain poorly understood. In this study, we analyze sequence data of five molecular markers (two mitochondrial and three nuclear) averaging 6000 bp for 222 species of gobioids. Our study is the first to include both multiple nuclear and mitochondrial genes to reconstruct a comprehensive multilocus phylogeny of gobioids encompassing most major lineages representing the overall diversity of one of the most speciose vertebrate lineages. Two separate datasets are produced and used to specifically address the phylogenetic placement of Rhyacichthyidae and Odontobutidae, and the phylogenetic relationships among gobioid lineages. Our results strongly support that the initial split in the gobioid tree separated a clade containing Rhyacichthyidae+Odontobutidae as the sister group of all other lineages. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae+Odontobutidae clade, followed by the Butidae as sister group to the Gobiidae. Additionally, several major monophyletic groups are confidently identified within the two major Gobiidae subclades, the gobiine-like gobiids and the gobionelline-like gobiids. Robustness of the phylogenetic trees inferred here is significantly higher than that of previous studies, hence our results provide the most compelling molecular phylogenetic hypothesis of Gobioidei thus far. For the first time, we provide a comprehensive sampling of European gobies that traditionally have been divided into "transverse" gobies and "sand gobies". We show that the European gobies cluster in three distinct lineages, the Pomatoschistus-, Aphia-, and Gobius-lineages. The former resolved within the gobionelline-like gobiids and the latter two within the gobiine-like gobiids. These findings have significant implications for our understanding of the phylogeographic origin of European gobies in the light of the closure of the Paratethys. A rogue taxon analysis identified Kraemeria as an unstable taxon decreasing support at the base of the gobiine-like gobiids. Removal of this rogue taxon significantly increased phylogenetic resolution in that part of the tree and revealed additional insights into early bursts of cladogenesis of the gobiine-like gobiids. PMID:23911892

  15. Cyber-infrastructure for Fusarium (CiF): Three integrated platforms supporting strain identification, phylogenetics, comparative genomics, and knowledge sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...

  16. Detection of Genomic Idiosyncrasies Using Fuzzy Phylogenetic Profiles

    PubMed Central

    Psomopoulos, Fotis E.; Mitkas, Pericles A.; Ouzounis, Christos A.

    2013-01-01

    Phylogenetic profiles express the presence or absence of genes and their homologs across a number of reference genomes. They have emerged as an elegant representation framework for comparative genomics and have been used for the genome-wide inference and discovery of functionally linked genes or metabolic pathways. As the number of reference genomes grows, there is an acute need for faster and more accurate methods for phylogenetic profile analysis with increased performance in speed and quality. We propose a novel, efficient method for the detection of genomic idiosyncrasies, i.e. sets of genes found in a specific genome with peculiar phylogenetic properties, such as intra-genome correlations or inter-genome relationships. Our algorithm is a four-step process where genome profiles are first defined as fuzzy vectors, then discretized to binary vectors, followed by a de-noising step, and finally a comparison step to generate intra- and inter-genome distances for each gene profile. The method is validated with a carefully selected benchmark set of five reference genomes, using a range of approaches regarding similarity metrics and pre-processing stages for noise reduction. We demonstrate that the fuzzy profile method consistently identifies the actual phylogenetic relationship and origin of the genes under consideration for the majority of the cases, while the detected outliers are found to be particular genes with peculiar phylogenetic patterns. The proposed method provides a time-efficient and highly scalable approach for phylogenetic stratification, with the detected groups of genes being either similar to their own genome profile or different from it, thus revealing atypical evolutionary histories. PMID:23341912

  17. Cochlear mechanisms from a phylogenetic viewpoint.

    PubMed

    Manley, G A

    2000-10-24

    The hearing organ of the inner ear was the last of the paired sense organs of amniotes to undergo formative evolution. As a mechanical sensory organ, the inner-ear hearing organ's function depends highly on its physical structure. Comparative studies suggest that the hearing organ of the earliest amniote vertebrates was small and simple, but possessed hair cells with a cochlear amplifier mechanism, electrical frequency tuning, and incipient micromechanical tuning. The separation of the different groups of amniotes from the stem reptiles occurred relatively early, with the ancestors of the mammals branching off first, approximately 320 million years ago. The evolution of the hearing organ in the three major lines of the descendents of the stem reptiles (e.g., mammals, birds-crocodiles, and lizards-snakes) thus occurred independently over long periods of time. Dramatic and parallel improvements in the middle ear initiated papillar elongation in all lineages, accompanied by increased numbers of sensory cells with enhanced micromechanical tuning and group-specific hair-cell specializations that resulted in unique morphological configurations. This review aims not only to compare structure and function across classification boundaries (the comparative approach), but also to assess how and to what extent fundamental mechanisms were influenced by selection pressures in times past (the phylogenetic viewpoint). PMID:11050203

  18. Biometric speaker classification

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas J.; Smith, David C.; Richman, D. J.; Townsend, Goffrey

    2000-10-01

    We address the problem of classification of speakers based on measurements of features obtained from their speech. The process is an adaption of biometric methods used to identify people. The process for speech differs since speech is not stationary. We therefore propose the classification of speakers b y the statistical distributions of parameters which may be accurately estimated by modern signal processing techniques. The intent is to develop a speaker clustering algorithm which is dependent of transmission channel and insensitive to language variations, and which may be re-trained, with minimal data, to include a new speaker. We demonstrate effectiveness on the problem of identification of the speakers gender, and present evidence that the methods may be extended to the general problem of speaker identification.

  19. Phylogenetic diversity of nonmarine picocyanobacteria.

    PubMed

    Callieri, Cristiana; Coci, Manuela; Corno, Gianluca; Macek, Miroslav; Modenutti, Beatriz; Balseiro, Esteban; Bertoni, Roberto

    2013-08-01

    We studied the phylogenetic diversity of nonmarine picocyanobacteria broadening the sequence data set with 43 new sequences of the 16S rRNA gene. The sequences were derived from monoclonal strains isolated from four volcanic high-altitude athalassohaline lakes in Mexico, five glacial ultraoligotrophic North Patagonian lakes and six Italian lakes of glacial, volcanic and morenic origin. The new sequences fall into a number of both novel and previously described clades within the phylogenetic tree of 16S rRNA gene. The new cluster of Lake Nahuel Huapi (North Patagonia) forms a sister clade to the subalpine cluster II and the marine Synechococcus subcluster 5.2. Our finding of the novel clade of 'halotolerants' close to the marine subcluster 5.3 (Synechococcus RCC307) constitutes an important demonstration that euryhaline and marine strains affiliate closely. The intriguing results obtained shed new light on the importance of the nonmarine halotolerants in the phylogenesis of picocyanobacteria. PMID:23528076

  20. Monitor fluid density accurately

    SciTech Connect

    Moon, J. )

    1994-02-01

    Densitometer selection depends on application, performance requirements and budget. Users with a better understanding of operating principles can select the best fit for their plant. Simple equations explain accuracy and reliability functions for a vibrating-tube densitometer. User guidelines detail proving or calibration techniques to eliminate false readings or miscalibration. Used as an accounting function, densitometers provide process information for product quality control, custody transfer, process control or liquid interface detection. Today, many HPI plants rely on densitometers to accurately monitor liquid density. Often, these density measurements are combined with flow data to calculate mass flowrates. This paper describes types of densitometers, vibration theory, vibrating-tube densitometer, signal processing, installation, and densitometer validation.

  1. Sirevirus LTR retrotransposons: phylogenetic misconceptions in the plant world.

    PubMed

    Bousios, Alexandros; Darzentas, Nikos

    2013-01-01

    Sireviruses are an ancient and plant-specific LTR retrotransposon genus. They possess a unique genome structure that is characterized by a plethora of highly conserved sequence motifs in key domains of the non-coding genome, and often, by the presence of an envelope-like gene. Recently, their crucial role in the organization of the maize genome, where Sireviruses occupy approximately 21% of its nuclear content, was revealed, followed by an analysis of their distribution across the plant kingdom. It is now suggested that Sireviruses have been a major mediator of the evolution of many plant genomes. However, the name 'Sirevirus' has caused confusion in the scientific community in regards to their classification within the LTR retrotransposon order and their relationship with viruses - a situation that is not unique to Sireviruses, but also affects other LTR retrotransposon genera. Here, we clarify the phylogenetic position of Sireviruses as typical LTR retrotransposons of the Copia superfamily and explain that the confusion stems from the discrepancy in the categorization of LTR retrotransposons by the two main classification systems: the International Committee on the Taxonomy of Viruses (ICTV) system and the unified classification system for eukaryotic transposable elements. While the name 'Sirevirus' has been given by ICTV, we show that the transposable element system, which is more suitable for eukaryotic genome studies, lacks an appropriate taxonomic level for describing them. We urge for this inconsistency to be addressed. Finally, we provide data suggesting that of the three ICTV-proposed genera of the Pseudoviridae (that is, Copia) family, only Sireviruses form a monophyletic group, while the phylogenetic distinction between Pseudoviruses and Hemiviruses is unclear. We conclude that because of their ongoing important contribution to the classification of transposable elements, these schemes need to be frequently revisited and revised - as shown by the example of the Sirevirus LTR retrotransposon genus. PMID:23452336

  2. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  3. Phylogenetic Analysis of Gene Expression

    PubMed Central

    Dunn, Casey W.; Luo, Xi; Wu, Zhijin

    2013-01-01

    Phylogenetic analyses of gene expression have great potential for addressing a wide range of questions. These analyses will, for example, identify genes that have evolutionary shifts in expression that are correlated with evolutionary changes in morphological, physiological, and developmental characters of interest. This will provide entirely new opportunities to identify genes related to particular phenotypes. There are, however, 3 key challenges that must be addressed for such studies to realize their potential. First, data on gene expression must be measured from multiple species, some of which may be field-collected, and parameterized in such a way that they can be compared across species. Second, it will be necessary to develop comparative phylogenetic methods suitable for large multidimensional datasets. In most phylogenetic comparative studies to date, the number n of independent observations (independent contrasts) has been greater than the number p of variables (characters). The behavior of comparative methods for these classic problems is now well understood under a wide variety of conditions. In studies of gene expression, and in studies based on other high-throughput tools, the number n of samples is dwarfed by the number p of variables. The estimated covariance matrices will be singular, complicating their analysis and interpretation, and prone to spurious results. Third, new approaches are needed to investigate the expression of the many genes whose phylogenies are not congruent with species phylogenies due to gene loss, gene duplication, and incomplete lineage sorting. Here we outline general considerations of project design for phylogenetic analyses of gene expression and suggest solutions to these three categories of challenges. These topics are relevant to high-throughput phenotypic data well beyond gene expression. PMID:23748631

  4. Phylogenetic information improves homology detection.

    PubMed

    Rehmsmeier, M; Vingron, M

    2001-12-01

    We present a database search method that is based on phylogenetic trees (treesearch). The method is used to search a protein sequence database for homologs to a protein family. In preparation for the search, a phylogenetic tree is constructed from a given multiple alignment of the family. During the search, each database sequence is temporarily inserted into the tree, thus adding a new edge to the tree. Homology between family and sequence is then judged from the length of this edge. In a comparison of our method to profiles (ISREC pfsearch), two implementations of hidden Markov models (HMMER hmmsearch and SAM hmmscore), and to the family pairwise search (FPS) method on 43 families from the SCOP database based on minimum false-positive counts (min-FPCs), we found a considerable gain in sensitivity. In 69% of the test cases, treesearch showed a min-FPC of at most 50, whereas the two second best methods (hmmsearch and FPS) showed this performance only in 53% cases. A similar impression holds for a large range of min-FPC thresholds. The results demonstrate that phylogenetic information can significantly improve the detection of distant homologies and justify our method as a useful alternative to existing methods. PMID:11746684

  5. Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny.

    PubMed

    Townsend, Jeffrey P; Su, Zhuo; Tekle, Yonas I

    2012-10-01

    A principal objective for phylogenetic experimental design is to predict the power of a data set to resolve nodes in a phylogenetic tree. However, proactively assessing the potential for phylogenetic noise compared with signal in a candidate data set has been a formidable challenge. Understanding the impact of collection of additional sequence data to resolve recalcitrant internodes at diverse historical times will facilitate increasingly accurate and cost-effective phylogenetic research. Here, we derive theory based on the fundamental unit of the phylogenetic tree, the quartet, that applies estimates of the state space and the rates of evolution of characters in a data set to predict phylogenetic signal and phylogenetic noise and therefore to predict the power to resolve internodes. We develop and implement a Monte Carlo approach to estimating power to resolve as well as deriving a nearly equivalent faster deterministic calculation. These approaches are applied to describe the distribution of potential signal, polytomy, or noise for two example data sets, one recent (cytochrome c oxidase I and 28S ribosomal rRNA sequences from Diplazontinae parasitoid wasps) and one deep (eight nuclear genes and a phylogenomic sequence for diverse microbial eukaryotes including Stramenopiles, Alveolata, and Rhizaria). The predicted power of resolution for the loci analyzed is consistent with the historic use of the genes in phylogenetics. PMID:22389443

  6. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  7. On the nature of global classification

    PubMed Central

    Wheelis, Mark L.; Kandler, Otto; Woese, Carl R.

    1992-01-01

    Molecular sequencing technology has brought biology into the era of global (universal) classification. Methodologically and philosophically, global classification differs significantly from traditional, local classificagtion. The need for uniformity requires that higher level taxa be defined on the molecular level in terms of universally homologous functions. A global classification should reflect both principal dimentions of the evolutionary process: genealogical relationship and quality and extent of divergence within a group. The ultimate purpose of a global classification is not simply information storage and retrieval; such a system should also as an heuristic representation of the evolutionary paradigm that exerts a directing influence on the course of biology. The global system envisioned allows paraphyletic taxa. To retain maximal phylogenetic information in these cases, minor notational amendments in existing taxonomic conventions should be adopted. PMID:11537862

  8. HIV classification using coalescent theory

    SciTech Connect

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T

    2008-01-01

    Algorithms for subtype classification and breakpoint detection of HIV-I sequences are based on a classification system of HIV-l. Hence, their quality highly depend on this system. Due to the history of creation of the current HIV-I nomenclature, the current one contains inconsistencies like: The phylogenetic distance between the subtype B and D is remarkably small compared with other pairs of subtypes. In fact, it is more like the distance of a pair of subsubtypes Robertson et al. (2000); Subtypes E and I do not exist any more since they were discovered to be composed of recombinants Robertson et al. (2000); It is currently discussed whether -- instead of CRF02 being a recombinant of subtype A and G -- subtype G should be designated as a circulating recombination form (CRF) nd CRF02 as a subtype Abecasis et al. (2007); There are 8 complete and over 400 partial HIV genomes in the LANL-database which belong neither to a subtype nor to a CRF (denoted by U). Moreover, the current classification system is somehow arbitrary like all complex classification systems that were created manually. To this end, it is desirable to deduce the classification system of HIV systematically by an algorithm. Of course, this problem is not restricted to HIV, but applies to all fast mutating and recombining viruses. Our work addresses the simpler subproblem to score classifications of given input sequences of some virus species (classification denotes a partition of the input sequences in several subtypes and CRFs). To this end, we reconstruct ancestral recombination graphs (ARG) of the input sequences under restrictions determined by the given classification. These restritions are imposed in order to ensure that the reconstructed ARGs do not contradict the classification under consideration. Then, we find the ARG with maximal probability by means of Markov Chain Monte Carlo methods. The probability of the most probable ARG is interpreted as a score for the classification. To our knowledge, this particular problem was not addressed up to now. The software package Lamarc Kuhner et al. (2000) allows for sampling ARGs, but it assumes that recombination events only involve one breakpoint. However, in HIV recombinants usually have more than one breakpoint. Moreover, Lamarc does not perform an explicit breakpoint detection, but tries to find them by chance. Although this approach is suitable for most situations, it will not lead to satisfying results in case of highly recombining viruses with multiple breakpoints.

  9. Subject Classification.

    ERIC Educational Resources Information Center

    Thompson, Gayle; And Others

    Three newspaper librarians described how they manage the files of newspaper clippings which are a necessary part of their collections. The development of a new subject classification system for the clippings files was outlined. The new subject headings were based on standard subject heading lists and on local need. It was decided to use a computer…

  10. Classifying Classification

    ERIC Educational Resources Information Center

    Novakowski, Janice

    2009-01-01

    This article describes the experience of a group of first-grade teachers as they tackled the science process of classification, a targeted learning objective for the first grade. While the two-year process was not easy and required teachers to teach in a new, more investigation-oriented way, the benefits were great. The project helped teachers and

  11. A Phylogenetic Re-Analysis of Groupers with Applications for Ciguatera Fish Poisoning

    PubMed Central

    Schoelinck, Charlotte; Hinsinger, Damien D.; Dettaï, Agnès; Cruaud, Corinne; Justine, Jean-Lou

    2014-01-01

    Background Ciguatera fish poisoning (CFP) is a significant public health problem due to dinoflagellates. It is responsible for one of the highest reported incidence of seafood-borne illness and Groupers are commonly reported as a source of CFP due to their position in the food chain. With the role of recent climate change on harmful algal blooms, CFP cases might become more frequent and more geographically widespread. Since there is no appropriate treatment for CFP, the most efficient solution is to regulate fish consumption. Such a strategy can only work if the fish sold are correctly identified, and it has been repeatedly shown that misidentifications and species substitutions occur in fish markets. Methods We provide here both a DNA-barcoding reference for groupers, and a new phylogenetic reconstruction based on five genes and a comprehensive taxonomical sampling. We analyse the correlation between geographic range of species and their susceptibility to ciguatera accumulation, and the co-occurrence of ciguatoxins in closely related species, using both character mapping and statistical methods. Results Misidentifications were encountered in public databases, precluding accurate species identifications. Epinephelinae now includes only twelve genera (vs. 15 previously). Comparisons with the ciguatera incidences show that in some genera most species are ciguateric, but statistical tests display only a moderate correlation with the phylogeny. Atlantic species were rarely contaminated, with ciguatera occurrences being restricted to the South Pacific. Conclusions The recent changes in classification based on the reanalyses of the relationships within Epinephelidae have an impact on the interpretation of the ciguatera distribution in the genera. In this context and to improve the monitoring of fish trade and safety, we need to obtain extensive data on contamination at the species level. Accurate species identifications through DNA barcoding are thus an essential tool in controlling CFP since meal remnants in CFP cases can be easily identified with molecular tools. PMID:25093850

  12. Comparison of tree-child phylogenetic networks.

    PubMed

    Cardona, Gabriel; Rossell, Francesc; Valiente, Gabriel

    2009-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at http://bioinfo.uib.es/~recerca/phylonetworks/mudistance/. PMID:19875855

  13. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships

    PubMed Central

    Wilkerson, Richard C.; Linton, Yvonne-Marie; Fonseca, Dina M.; Schultz, Ted R.; Price, Dana C.; Strickman, Daniel A.

    2015-01-01

    The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the “number and nature of the characters that support the branches” subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K’s generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become available. PMID:26226613

  14. Phylogenetic structure and host abundance drive disease pressure in communities.

    PubMed

    Parker, Ingrid M; Saunders, Megan; Bontrager, Megan; Weitz, Andrew P; Hendricks, Rebecca; Magarey, Roger; Suiter, Karl; Gilbert, Gregory S

    2015-04-23

    Pathogens play an important part in shaping the structure and dynamics of natural communities, because species are not affected by them equally. A shared goal of ecology and epidemiology is to predict when a species is most vulnerable to disease. A leading hypothesis asserts that the impact of disease should increase with host abundance, producing a 'rare-species advantage'. However, the impact of a pathogen may be decoupled from host abundance, because most pathogens infect more than one species, leading to pathogen spillover onto closely related species. Here we show that the phylogenetic and ecological structure of the surrounding community can be important predictors of disease pressure. We found that the amount of tissue lost to disease increased with the relative abundance of a species across a grassland plant community, and that this rare-species advantage had an additional phylogenetic component: disease pressure was stronger on species with many close relatives. We used a global model of pathogen sharing as a function of relatedness between hosts, which provided a robust predictor of relative disease pressure at the local scale. In our grassland, the total amount of disease was most accurately explained not by the abundance of the focal host alone, but by the abundance of all species in the community weighted by their phylogenetic distance to the host. Furthermore, the model strongly predicted observed disease pressure for 44 novel host species we introduced experimentally to our study site, providing evidence for a mechanism to explain why phylogenetically rare species are more likely to become invasive when introduced. Our results demonstrate how the phylogenetic and ecological structure of communities can have a key role in disease dynamics, with implications for the maintenance of biodiversity, biotic resistance against introduced weeds, and the success of managed plants in agriculture and forestry. PMID:25903634

  15. Neuromuscular disease classification system

    NASA Astrophysics Data System (ADS)

    Sez, Aurora; Acha, Begoa; Montero-Snchez, Adoracin; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  16. Phylogenetic inference of Indian malaria vectors from multilocus DNA sequences.

    PubMed

    Dixit, Jyotsana; Srivastava, Hemlata; Sharma, Meenu; Das, Manoj K; Singh, O P; Raghavendra, K; Nanda, Nutan; Dash, Aditya P; Saksena, D N; Das, Aparup

    2010-08-01

    Inferences on the taxonomic positions, phylogenetic interrelationships and divergence time among closely related species of medical importance is essential to understand evolutionary patterns among species, and based on which, disease control measures could be devised. To this respect, malaria is one of the important mosquito borne diseases of tropical and sub-tropical parts of the globe. Taxonomic status of malaria vectors has been so far documented based on morphological, cytological and few molecular genetic features. However, utilization of multilocus DNA sequences in phylogenetic inferences are still in dearth. India contains one of the richest resources of mosquito species diversity but little molecular taxonomic information is available in Indian malaria vectors. We herewith utilized the whole genome sequence information of An. gambiae to amplify and sequence three orthologous nuclear genetic regions in six Indian malaria vector species (An. culicifacies, An. minimus, An. sundaicus, An. fluviatilis, An. annularis and An. stephensi). Further, we utilized the previously published DNA sequence information on the COII and ITS2 genes in all the six species, making the total number of loci to five. Multilocus molecular phylogenetic study of Indian anophelines and An. gambiae was conducted at each individual genetic region using Neighbour Joining (NJ), Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian approaches. Although tree topologies with COII, and ITS2 genes were similar, for no other three genetic regions similar tree topologies were observed. In general, the reconstructed phylogenetic status of Indian malaria vectors follows the pattern based on morphological and cytological classifications that was reconfirmed with COII and ITS2 genetic regions. Further, divergence times based on COII gene sequences were estimated among the seven Anopheles species which corroborate the earlier hypothesis on the radiation of different species of the Anopheles genus during the late Cretaceous period. PMID:20435167

  17. Automated analysis of phylogenetic clusters

    PubMed Central

    2013-01-01

    Background As sequence data sets used for the investigation of pathogen transmission patterns increase in size, automated tools and standardized methods for cluster analysis have become necessary. We have developed an automated Cluster Picker which identifies monophyletic clades meeting user-input criteria for bootstrap support and maximum genetic distance within large phylogenetic trees. A second tool, the Cluster Matcher, automates the process of linking genetic data to epidemiological or clinical data, and matches clusters between runs of the Cluster Picker. Results We explore the effect of different bootstrap and genetic distance thresholds on clusters identified in a data set of publicly available HIV sequences, and compare these results to those of a previously published tool for cluster identification. To demonstrate their utility, we then use the Cluster Picker and Cluster Matcher together to investigate how clusters in the data set changed over time. We find that clusters containing sequences from more than one UK location at the first time point (multiple origin) were significantly more likely to grow than those representing only a single location. Conclusions The Cluster Picker and Cluster Matcher can rapidly process phylogenetic trees containing tens of thousands of sequences. Together these tools will facilitate comparisons of pathogen transmission dynamics between studies and countries. PMID:24191891

  18. Phylogenetic Conservatism in Plant Phenology

    NASA Technical Reports Server (NTRS)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  19. Multisensor classification of sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    1988-01-01

    A comparison is made between linear discriminant analysis and supervised classification results based on signatures from the Landsat TM, the Thermal Infrared Multispectral Scanner (TIMS), and airborne SAR, alone and combined into extended spectral signatures for seven sedimentary rock units exposed on the margin of the Wind River Basin, Wyoming. Results from a linear discriminant analysis showed that training-area classification accuracies based on the multisensor data were improved an average of 15 percent over TM alone, 24 percent over TIMS alone, and 46 percent over SAR alone, with similar improvement resulting when supervised multisensor classification maps were compared to supervised, individual sensor classification maps. When training area signatures were used to map spectrally similar materials in an adjacent area, the average classification accuracy improved 19 percent using the multisensor data over TM alone, 2 percent over TIMS alone, and 11 percent over SAR alone. It is concluded that certain sedimentary lithologies may be accurately mapped using a single sensor, but classification of a variety of rock types can be improved using multisensor data sets that are sensitive to different characteristics such as mineralogy and surface roughness.

  20. Reanalysis and Simulation Suggest a Phylogenetic Microarray Does Not Accurately Profile Microbial Communities

    PubMed Central

    Midgley, David J.; Greenfield, Paul; Shaw, Janet M.; Oytam, Yalchin; Li, Dongmei; Kerr, Caroline A.; Hendry, Philip

    2012-01-01

    The second generation (G2) PhyloChip is designed to detect over 8700 bacteria and archaeal and has been used over 50 publications and conference presentations. Many of those publications reveal that the PhyloChip measures of species richness greatly exceed statistical estimates of richness based on other methods. An examination of probes downloaded from Greengenes suggested that the system may have the potential to distort the observed community structure. This may be due to the sharing of probes by taxa; more than 21% of the taxa in that downloaded data have no unique probes. In-silico simulations using these data showed that a population of 64 taxa representing a typical anaerobic subterranean community returned 96 different taxa, including 15 families incorrectly called present and 19 families incorrectly called absent. A study of nasal and oropharyngeal microbial communities by Lemon et al (2010) found some 1325 taxa using the G2 PhyloChip, however, about 950 of these taxa have, in the downloaded data, no unique probes and cannot be definitively called present. Finally, data from Brodie et al (2007), when re-examined, indicate that the abundance of the majority of detected taxa, are highly correlated with one another, suggesting that many probe sets do not act independently. Based on our analyses of downloaded data, we conclude that outputs from the G2 PhyloChip should be treated with some caution, and that the presence of taxa represented solely by non-unique probes be independently verified. PMID:22457798

  1. Zooflagellate phylogeny and classification.

    PubMed

    Cavalier-Smith, T

    1995-01-01

    Zooflagellates are non-photosynthetic flagellates without plastids or cell walls which feed by phagocytosis or endocytosis. They are the most diverse of all eukaryotes and gave rise directly or indirectly to most, if not all, other groups of eukaryotes. They are here classified into thirteen or fourteen phyla, spread across four of the seven eukaryote kingdoms that I now recognize: (1) the probably primitively amitochondrial and entirely non-photosynthetic Archezoa; (2) the usually aerobic but predominantly non-photosynthetic Protozoa; (3) the always aerobic and usually photosynthetic Cryptista; (4) the always aerobic and predominantly photosynthetic Chromista. Whether the few non-photosynthetic haptophytes also lack plastids and thus are zooflagellates in the present sense is unclear. Six phyla (Archamoebae and Metamonada within the Archezoa; Percolozoa, Parabasala, Opalozoa, and Choanozoa within the Protozoa) consist largely or entirely of zooflagellates. One protozoan phylum (Euglenozoa) consists predominantly of zooflagellate families and genera, with a minority only of phytoflagellate genera: the photosynthetic euglenoids are probably all descended from a non-photosynthetic euglenoid which acquired a photosynthetic endosymblont related to the ancestor of green algae. In the phylum Dinozoa (i.e. dinoflagellates and protalveolates) most classes consist purely of zooflagellates, but the majority of species are photosynthetic. The photosynthetic chlorarachneans are related to the sarcomonad zooflagellates and to the filose amoebae, so that the classes Chlorarachnea and Sarcomonadea are now placed in the phylum Rhizopoda, which is also modified by segregating the lobose amoebae as the phylum Amoebozoa. Although most zooflagellates are primitively without photosynthesis, there is good molecular evidence for the secondary origin of the zooflagellate condition by the loss of plastids in the case of the colourless pedinellids. A classification of 62 orders including zooflagellates grouped into 36 classes consisting primarily of zooflagellates, and four classes containing a few zooflagellates is presented; the ultrastructural and molecular evidence for the phylogenetic ideas underlying the classification is summarized. PMID:8868448

  2. New Phylogenetic Groups of Torque Teno Virus Identified in Eastern Taiwan Indigenes.

    PubMed

    Hsiao, Kuang-Liang; Wang, Li-Yu; Lin, Chiung-Ling; Liu, Hsin-Fu

    2016-01-01

    Torque teno virus (TTV) is a single-stranded DNA virus highly prevalent in the world. It has been detected in eastern Taiwan indigenes with a low prevalence of 11% by using N22 region of which known to underestimate TTV prevalence excessively. In order to clarify their realistic epidemiology, we re-analyzed TTV prevalence with UTR region. One hundred and forty serum samples from eastern Taiwanese indigenous population were collected and TTV DNA was detected in 133 (95%) samples. Direct sequencing revealed an extensive mix-infection of different TTV strains within the infected individual. Entire TTV open reading frame 1 was amplified and cloned from a TTV positive individual to distinguish mix-infected strains. Phylogenetic analysis showed eleven isolates were clustered into a monophyletic group that is distinct from all known groups. In addition, another our isolate was clustered with recently described Hebei-1 strain and formed an independent clade. Based on the distribution pattern of pairwise distances, both new clusters were placed at phylogenetic group level, designed as the 6th and 7th phylogenetic group. In present study, we showed a very high prevalence of TTV infection in eastern Taiwan indigenes and indentified new phylogenetic groups from the infected individual. Both intra- and inter-phylogenetic group mix-infections can be found from one healthy person. Our study has further broadened the field of human TTVs and proposed a robust criterion for classification of the major TTV phylogenetic groups. PMID:26901643

  3. New Phylogenetic Groups of Torque Teno Virus Identified in Eastern Taiwan Indigenes

    PubMed Central

    Hsiao, Kuang-Liang; Wang, Li-Yu; Lin, Chiung-Ling; Liu, Hsin-Fu

    2016-01-01

    Torque teno virus (TTV) is a single-stranded DNA virus highly prevalent in the world. It has been detected in eastern Taiwan indigenes with a low prevalence of 11% by using N22 region of which known to underestimate TTV prevalence excessively. In order to clarify their realistic epidemiology, we re-analyzed TTV prevalence with UTR region. One hundred and forty serum samples from eastern Taiwanese indigenous population were collected and TTV DNA was detected in 133 (95%) samples. Direct sequencing revealed an extensive mix-infection of different TTV strains within the infected individual. Entire TTV open reading frame 1 was amplified and cloned from a TTV positive individual to distinguish mix-infected strains. Phylogenetic analysis showed eleven isolates were clustered into a monophyletic group that is distinct from all known groups. In addition, another our isolate was clustered with recently described Hebei-1 strain and formed an independent clade. Based on the distribution pattern of pairwise distances, both new clusters were placed at phylogenetic group level, designed as the 6th and 7th phylogenetic group. In present study, we showed a very high prevalence of TTV infection in eastern Taiwan indigenes and indentified new phylogenetic groups from the infected individual. Both intra- and inter-phylogenetic group mix-infections can be found from one healthy person. Our study has further broadened the field of human TTVs and proposed a robust criterion for classification of the major TTV phylogenetic groups. PMID:26901643

  4. Phylogenetic positions of RH blood group-related genes in cyclostomes.

    PubMed

    Suzuki, Akinori; Endo, Kouhei; Kitano, Takashi

    2014-06-10

    The RH gene family in vertebrates consists of four major genes (RH, RHAG, RHBG, and RHCG). They are thought to have emerged in the common ancestor of vertebrates after two rounds of whole genome duplication (2R-WGD). To analyze the detailed phylogenetic relationships within the RH gene family, we determined three types of cDNA sequence that belong to the RH gene family in lamprey (Lethenteron reissneri) and designated them as RHBG-like, RHCG-like1, and RHCG-like2. Phylogenetic analyses clearly showed that RHCG-like1 and RHCG-like2 genes, which were probably duplicated in the lamprey lineage, are orthologs of gnathostome RHCG. In contrast, the clear phylogenetic position of the RHBG-like gene could not be obtained. Probably some convergent events for cyclostome RHBG-like genes prevented the accurate identification of their phylogenetic positions. PMID:24720951

  5. DNA sequence analysis using hierarchical ART-based classification networks

    SciTech Connect

    LeBlanc, C.; Hruska, S.I.; Katholi, C.R.; Unnasch, T.R.

    1994-12-31

    Adaptive resonance theory (ART) describes a class of artificial neural network architectures that act as classification tools which self-organize, work in real-time, and require no retraining to classify novel sequences. We have adapted ART networks to provide support to scientists attempting to categorize tandem repeat DNA fragments from Onchocerca volvulus. In this approach, sequences of DNA fragments are presented to multiple ART-based networks which are linked together into two (or more) tiers; the first provides coarse sequence classification while the sub- sequent tiers refine the classifications as needed. The overall rating of the resulting classification of fragments is measured using statistical techniques based on those introduced to validate results from traditional phylogenetic analysis. Tests of the Hierarchical ART-based Classification Network, or HABclass network, indicate its value as a fast, easy-to-use classification tool which adapts to new data without retraining on previously classified data.

  6. Phylogenetic Network of the mtDNA Haplogroup U in Northern Finland Based on Sequence Analysis of the Complete Coding Region by Conformation-Sensitive Gel Electrophoresis

    PubMed Central

    Finnil, Saara; Hassinen, Ilmo E.; Ala-Kokko, Leena; Majamaa, Kari

    2000-01-01

    Mutations in mtDNA have accumulated sequentially, and maternal lineages have diverged to form population-specific genotypes. Classification of the genotypes has been made based on differences found in restriction fragment analysis of the coding region or in the sequence of the hypervariable segment I. Both methods have shortcomings, as the former may not detect all the important polymorphisms and the latter makes use of a segment containing hypervariable nucleotide positions. Here, we have used conformation-sensitive gel electrophoresis (CSGE) to detect polymorphisms within the coding region of mtDNA from 22 Finns belonging to haplogroup U. Sixty-three overlapping PCR fragments covering the entire coding region were analyzed by CSGE, and the fragments that differed in their migration pattern were sequenced. CSGE proved to be a sensitive and specific method for identifying mtDNA substitutions. The phylogenetic network of the 22 coding-region sequences constituted a perfect tree, free of homoplasy, and provided several previously unidentified common polymorphisms characterizing subgroups of U. After contrasting this data with that of hypervariable segment I, we concluded that position 16192 seems to be prone to recurrent mutations and that position 16270 has experienced a back mutation. Interestingly, all 22 samples were found to belong to subcluster U5, suggesting that this subcluster is more frequent in Finns than in other European populations. Complete sequence data of the mtDNA yield a more reliable phylogenetic network and a more accurate classification of the haplogroups than previous ones. In medical genetics, such networks may help to decide between a rare polymorphism and a pathogenic mutation; in population genetics, the networks may enable more detailed analyses of population history and mtDNA evolution. PMID:10712215

  7. Phylogenetic signal dissection identifies the root of starfishes.

    PubMed

    Feuda, Roberto; Smith, Andrew B

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors--Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution--have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  8. Phylogenetic Signal Dissection Identifies the Root of Starfishes

    PubMed Central

    Feuda, Roberto; Smith, Andrew B.

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors - Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution – have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  9. Re-thinking the classification of corticioid fungi.

    PubMed

    Larsson, Karl-Henrik

    2007-09-01

    Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi are distributed among all major clades within Agaricomycetes. There is a relative consensus concerning the higher order classification of basidiomycetes down to order. This paper presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative families were identified from published phylogenies and preliminary analyses of unpublished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phylogenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly supported and three unsupported clades were identified. These clades are treated as families in a Linnean hierarchical classification and each family is briefly described. Three additional families not covered by the phylogenetic analyses are also included in the classification. All accepted corticioid genera are either referred to one of the families or listed as incertae sedis. PMID:17981020

  10. Classification in Australia.

    ERIC Educational Resources Information Center

    McKinlay, John

    Despite some inroads by the Library of Congress Classification and short-lived experimentation with Universal Decimal Classification and Bliss Classification, Dewey Decimal Classification, with its ability in recent editions to be hospitable to local needs, remains the most widely used classification system in Australia. Although supplemented at…

  11. Propionibacterium acnes Types I and II Represent Phylogenetically Distinct Groups

    PubMed Central

    McDowell, Andrew; Valanne, Susanna; Ramage, Gordon; Tunney, Michael M.; Glenn, Josephine V.; McLorinan, Gregory C.; Bhatia, Ajay; Maisonneuve, Jean-Francois; Lodes, Michael; Persing, David H.; Patrick, Sheila

    2005-01-01

    Although two phenotypes of the opportunistic pathogen Propionibacterium acnes (types I and II) have been described, epidemiological investigations of their roles in different infections have not been widely reported. Using immunofluorescence microscopy with monoclonal antibodies (MAbs) QUBPa1 and QUBPa2, specific for types I and II, respectively, we investigated the prevalences of the two types among 132 P. acnes isolates. Analysis of isolates from failed prosthetic hip implants (n = 40) revealed approximately equal numbers of type I and II organisms. Isolates from failed prosthetic hip-associated bone (n = 6) and tissue (n = 38) samples, as well as isolates from acne (n = 22), dental infections (n = 8), and skin removed during surgical incision (n = 18) were predominately of type I. A total of 11 (8%) isolates showed atypical MAb labeling and could not be conclusively identified. Phylogenetic analysis of P. acnes by nucleotide sequencing revealed the 16S rRNA gene to be highly conserved between types I and II. In contrast, sequence analysis of recA and a putative hemolysin gene (tly) revealed significantly greater type-specific polymorphisms that corresponded to phylogenetically distinct cluster groups. All 11 isolates with atypical MAb labeling were identified as type I by sequencing. Within the recA and tly phylogenetic trees, nine of these isolates formed a cluster distinct from other type I organisms, suggesting a further phylogenetic subdivision within type I. Our study therefore demonstrates that the phenotypic differences between P. acnes types I and II reflect deeper differences in their phylogeny. Furthermore, nucleotide sequencing provides an accurate method for identifying the type status of P. acnes isolates. PMID:15634990

  12. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  13. Measuring inconsistency in phylogenetic trees.

    PubMed

    Willson, S J

    1998-01-01

    Suppose that we seek a tree T giving the phylogenetic relationships among the species in a set S. A common method selects for such a tree a maximum parsimony tree using the genome of the species in S. Suppose that K is a proper subset of S. Then T induces a tree U which gives the same relationships among the species in K but omits the species of S which are not in K. Unfortunately, when T is a maximum parsimony tree for the species in S, then U need not be a maximum parsimony tree for the species in K. This phenomenon exhibits an inconsistency in the criterion of maximum parsimony-maximum parsimony trees for different groups of species may be "inconsistent". It implies that the addition of a new species scan change relationships already "established" for prior species if the trees are obtained by the criterion of maximum parsimony. The phenomenon occurs both in artificial examples and with real data. An alternative method for generating phylogenetic trees seeks to minimize such inconsistencies. For each group J consisting of four of the species, we find a tree T(J) describing the relationship only among the four species in J, for example by the use of maximum parsimony on those four species alone. In favorable cases one may combine all the trees T(J) into a single tree T that is consistent with all the trees T(J). If such a tree T exists, then it is unique, and there is a computationally efficient algorithm for finding the tree T. In unfavorable bases such a tree T does not exist, but there may still be a tree containing only "mild" inconsistencies with the trees T(J). A numerical measure is given for the inconsistency I(T) of a tree T in terms of the treelengths of the various trees with set J of leaves in comparison with the tree T. We may then seek a "minimally inconsistent tree T" that minimizes the inconsistency I(T). We describe procedures which find a tree T with low inconsistency I(T). Examples are provided using both artificial strings and data from the complete mitochondrial DNA sequences for 16 species. In particular, minimally inconsistent trees are identified for the 16 species. The definition permits a proof that the trees are in fact minimally inconsistent. The criterion can be applied in both a relative and an absolute sense. PMID:9473388

  14. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus.

    PubMed

    Creason, Allison L; Davis, Edward W; Putnam, Melodie L; Vandeputte, Olivier M; Chang, Jeff H

    2014-01-01

    The accurate diagnosis of diseases caused by pathogenic bacteria requires a stable species classification. Rhodococcus fascians is the only documented member of its ill-defined genus that is capable of causing disease on a wide range of agriculturally important plants. Comparisons of genome sequences generated from isolates of Rhodococcus associated with diseased plants revealed a level of genetic diversity consistent with them representing multiple species. To test this, we generated a tree based on more than 1700 homologous sequences from plant-associated isolates of Rhodococcus, and obtained support from additional approaches that measure and cluster based on genome similarities. Results were consistent in supporting the definition of new Rhodococcus species within clades containing phytopathogenic members. We also used the genome sequences, along with other rhodococcal genome sequences to construct a molecular phylogenetic tree as a framework for resolving the Rhodococcus genus. Results indicated that Rhodococcus has the potential for having 20 species and also confirmed a need to revisit the taxonomic groupings within Rhodococcus. PMID:25237311

  15. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus

    PubMed Central

    Creason, Allison L.; Davis, Edward W.; Putnam, Melodie L.; Vandeputte, Olivier M.; Chang, Jeff H.

    2014-01-01

    The accurate diagnosis of diseases caused by pathogenic bacteria requires a stable species classification. Rhodococcus fascians is the only documented member of its ill-defined genus that is capable of causing disease on a wide range of agriculturally important plants. Comparisons of genome sequences generated from isolates of Rhodococcus associated with diseased plants revealed a level of genetic diversity consistent with them representing multiple species. To test this, we generated a tree based on more than 1700 homologous sequences from plant-associated isolates of Rhodococcus, and obtained support from additional approaches that measure and cluster based on genome similarities. Results were consistent in supporting the definition of new Rhodococcus species within clades containing phytopathogenic members. We also used the genome sequences, along with other rhodococcal genome sequences to construct a molecular phylogenetic tree as a framework for resolving the Rhodococcus genus. Results indicated that Rhodococcus has the potential for having 20 species and also confirmed a need to revisit the taxonomic groupings within Rhodococcus. PMID:25237311

  16. Molecular phylogenetics and character evolution of morphologically diverse groups, Dendrobium section Dendrobium and allies

    PubMed Central

    Takamiya, Tomoko; Wongsawad, Pheravut; Sathapattayanon, Apirada; Tajima, Natsuko; Suzuki, Shunichiro; Kitamura, Saki; Shioda, Nao; Handa, Takashi; Kitanaka, Susumu; Iijima, Hiroshi; Yukawa, Tomohisa

    2014-01-01

    It is always difficult to construct coherent classification systems for plant lineages having diverse morphological characters. The genus Dendrobium, one of the largest genera in the Orchidaceae, includes ∼1100 species, and enormous morphological diversification has hindered the establishment of consistent classification systems covering all major groups of this genus. Given the particular importance of species in Dendrobium section Dendrobium and allied groups as floriculture and crude drug genetic resources, there is an urgent need to establish a stable classification system. To clarify phylogenetic relationships in Dendrobium section Dendrobium and allied groups, we analysed the macromolecular characters of the group. Phylogenetic analyses of 210 taxa of Dendrobium were conducted on DNA sequences of internal transcribed spacer (ITS) regions of 18S–26S nuclear ribosomal DNA and the maturase-coding gene (matK) located in an intron of the plastid gene trnK using maximum parsimony and Bayesian methods. The parsimony and Bayesian analyses revealed 13 distinct clades in the group comprising section Dendrobium and its allied groups. Results also showed paraphyly or polyphyly of sections Amblyanthus, Aporum, Breviflores, Calcarifera, Crumenata, Dendrobium, Densiflora, Distichophyllae, Dolichocentrum, Holochrysa, Oxyglossum and Pedilonum. On the other hand, the monophyly of section Stachyobium was well supported. It was found that many of the morphological characters that have been believed to reflect phylogenetic relationships are, in fact, the result of convergence. As such, many of the sections that have been recognized up to this point were found to not be monophyletic, so recircumscription of sections is required. PMID:25107672

  17. Molecular and Morphological Analyses Reveal Phylogenetic Relationships of Stingrays Focusing on the Family Dasyatidae (Myliobatiformes)

    PubMed Central

    Lim, Kean Chong; Lim, Phaik-Eem; Chong, Ving Ching; Loh, Kar-Hoe

    2015-01-01

    Elucidating the phylogenetic relationships of the current but problematic Dasyatidae (Order Myliobatiformes) was the first priority of the current study. Here, we studied three molecular gene markers of 43 species (COI gene), 33 species (ND2 gene) and 34 species (RAG1 gene) of stingrays to draft out the phylogenetic tree of the order. Nine character states were identified and used to confirm the molecularly constructed phylogenetic trees. Eight or more clades (at different hierarchical level) were identified for COI, ND2 and RAG1 genes in the Myliobatiformes including four clades containing members of the present Dasyatidae, thus rendering the latter non-monophyletic. The uncorrected p-distance between these four ‘Dasytidae’ clades when compared to the distance between formally known families confirmed that these four clades should be elevated to four separate families. We suggest a revision of the present classification, retaining the Dasyatidae (Dasyatis and Taeniurops species) but adding three new families namely, Neotrygonidae (Neotrygon and Taeniura species), Himanturidae (Himantura species) and Pastinachidae (Pastinachus species). Our result indicated the need to further review the classification of Dasyatis microps. By resolving the non-monophyletic problem, the suite of nine character states enables the natural classification of the Myliobatiformes into at least thirteen families based on morphology. PMID:25867639

  18. Identifying Less Accurately Measured Students

    ERIC Educational Resources Information Center

    Moen, Ross; Liu, Kristi; Thurlow, Martha; Lekwa, Adam; Scullin, Sarah; Hausmann, Kristin

    2009-01-01

    Some students are less accurately measured by typical reading tests than other students. By asking teachers to identify students whose performance on state reading tests would likely underestimate their reading skills, this study sought to learn about characteristics of less accurately measured students while also evaluating how well teachers can

  19. Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data

    PubMed Central

    de Boer, Hugo J.; Thulin, Mats

    2012-01-01

    Abstract The snake gourd genus, Trichosanthes, is the largest genus in the Cucurbitaceae family, with over 90 species. Recent molecular phylogenetic data have indicated that the genus Gymnopetalum is to be merged with Trichosanthes to maintain monophyly. A revised infrageneric classification of Trichosanthes including Gymnopetalum is proposed with two subgenera, (I) subg. Scotanthus comb. nov. and (II) subg. Trichosanthes, eleven sections, (i) sect. Asterospermae, (ii) sect. Cucumeroides, (iii) sect. Edulis, (iv) sect. Foliobracteola, (v) sect. Gymnopetalum, (vi) sect. Involucraria, (vii) sect. Pseudovariifera sect. nov., (viii) sect. Villosae stat. nov., (ix) sect. Trichosanthes, (x) sect. Tripodanthera, and (xi) sect. Truncata. A synopsis of Trichosanthes with the 91 species recognized here is presented, including four new combinations, Trichosanthes orientalis, Trichosanthes tubiflora, Trichosanthes scabra var. pectinata, Trichosanthes scabra var. penicaudii, and a clarified nomenclature of Trichosanthes costata and Trichosanthes scabra. PMID:22645411

  20. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  1. Classification and knowledge

    NASA Technical Reports Server (NTRS)

    Kurtz, Michael J.

    1989-01-01

    Automated procedures to classify objects are discussed. The classification problem is reviewed, and the relation of epistemology and classification is considered. The classification of stellar spectra and of resolved images of galaxies is addressed.

  2. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    PubMed

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches. PMID:26283320

  3. Optimizing phylogenetic diversity under constraints.

    PubMed

    Moulton, Vincent; Semple, Charles; Steel, Mike

    2007-05-01

    Phylogenetic diversity (PD) is a measure of the extent to which different subsets of taxa span an evolutionary tree, and provides a quantitative tool for studying biodiversity conservation. Recently, it was shown that the problem of finding subsets of taxa of given size to maximize PD can be efficiently solved by a greedy algorithm. In this paper, we extend this earlier work, beginning with a more explicit description of the underlying combinatorial structure of the problem and its connection to greedoid theory. Next we show that an extension of the PD optimization problem to a phylogeographic setting is NP-hard, although a special case has a polynomial-time solution based on the greedy algorithm. We also show how the greedy algorithm can be used to solve some special cases of the PD optimization problem when the sets that are restricted to are ecologically 'viable'. Finally, we show that three measures related to PD fail to be optimized by a greedy algorithm. PMID:17275037

  4. Phylogenetic mapping of bacterial morphology

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Fox, G. E.

    1998-01-01

    The availability of a meaningful molecular phylogeny for bacteria provides a context for examining the historical significance of various developments in bacterial evolution. Herein, the classical morphological descriptions of selected members of the domain Bacteria are mapped upon the genealogical ancestry deduced from comparison of small-subunit rRNA sequences. For the species examined in this study, a distinct pattern emerges which indicates that the coccus shape has arisen and accumulated independently multiple times in separate lineages and typically survived as a persistent end-state morphology. At least two other morphologies persist but have evolved only once. This study demonstrates that although bacterial morphology is not useful in defining bacterial phylogeny, it is remarkably consistent with that phylogeny once it is known. An examination of the experimental evidence available for morphogenesis as well as microbial fossil evidence corroborates these findings. It is proposed that the accumulation of persistent morphologies is a result of the biophysical properties of peptidoglycan and their genetic control, and that an evolved body-plan strategy based on peptidoglycan may have been a fate-sealing step in the evolution of Bacteria. More generally, this study illustrates that significant evolutionary insights can be obtained by examining biological and biochemical data in the context of a reliable phylogenetic structure.

  5. Soil classifications systems review. Final report

    SciTech Connect

    1997-11-01

    Systems used to classify soils are discussed and compared. Major types of classification systems that are reviewed include natural systems, technical systems, the FAO/UNESCO world soil map, soil survey map units, and numerical taxonomy. Natural Classification systems discussed in detail are the United States system, Soil Taxonomy, and the Russian and Canadian systems. Included in the section on technical classification systems are reviews on the AASHO and Unified (ASTM) classification systems. The review of soil classification systems was conducted to establish improved availability of accurate ground thermal conductivity and other heat transfer related properties information. These data are intended to help in the design of closed-loop ground heat exchange systems.

  6. Phylogenetic Relationships Matter: Antifungal Susceptibility among Clinically Relevant Yeasts

    PubMed Central

    Schmalreck, A. F.; Becker, K.; Fegeler, W.; Czaika, V.; Ulmer, H.; Lass-Flörl, C.

    2014-01-01

    The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1α, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n = 13; Basidiomycota, n = 4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management. PMID:24366735

  7. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  8. Phylogenetic analysis of mitochondrial outer membrane ?-barrel channels.

    PubMed

    Wojtkowska, Ma?gorzata; J?kalski, Marcin; Pie?kowska, Joanna R; Stobienia, Olgierd; Karachitos, Andonis; Przytycka, Teresa M; Weiner, January; Kmita, Hanna; Maka?owski, Wojciech

    2012-01-01

    Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have ?-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial ?-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane ?-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta. PMID:22155732

  9. Feature utility in polarimetric radar image classification

    NASA Technical Reports Server (NTRS)

    Cumming, Ian G.; Van Zyl, Jakob J.

    1989-01-01

    The information content in polarimetric SAR images is examined, and the polarimetric image variables containing the information that is important to the classification of terrain features in the images are determined. It is concluded that accurate classification can be done when just over half of the image variables are retained. A reduction in image data dimensionality gives storage savings, and can lead to the improvement of classifier performance. In addition, it is shown that a simplified radar system with only phase-calibrated CO-POL or SINGLE TX channels can give classification performance which approaches that of a fully polarimetric radar.

  10. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences

    PubMed Central

    Kapitonov, Vladimir V.; Tempel, Sébastien; Jurka, Jerzy

    2009-01-01

    Rapidly growing number of sequenced genomes requires fast and accurate computational tools for analysis of different transposable elements (TEs). In this paper we focus on rapid and reliable procedure for classification of autonomous non-LTR retrotransposons based on alignment and clustering of their reverse transcriptase (RT) domains. Typically, the RT domain protein sequences encoded by different non-LTR retrotransposons are similar to each other in terms of significant BLASTP E-values. Therefore, they can be easily detected by the routine BLASTP searches of genomic DNA sequences coding for proteins similar to the RT domains of known non-LTR retrotransposons. However, detailed classification of non-LTR retrotransposons, i.e. their assignment to specific clades, is a slow and complex procedure that is not formalized or integrated as a standard set of computational methods and data. Here we describe a tool (RTclass1) designed for the fast and accurate automated assignment of novel non-LTR retrotransposons to known or novel clades using phylogenetic analysis of the RT domain protein sequences. RTclass1 classifies a particular non-LTR retrotransposon based on its RT domain in less than 10 minutes on a standard desktop computer and achieves 99.5% accuracy. RT1class1 works either as a standalone program installed locally or as a web-server that can be accessed distantly by uploading sequence data through the internet (http://www.girinst.org/RTphylogeny/RTclass1). PMID:19651192

  11. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  12. Selecting Species Traits for Biomonitoring Applications in light of Phylogenetic Relationships among Lotic Insects

    NASA Astrophysics Data System (ADS)

    Poff, N.; Vieira, N. K.; Simmons, M. P.; Olden, J. D.; Kondratieff, B. C.; Finn, D. S.

    2005-05-01

    The use of species traits as indicators of environmental disturbance is being considered for biomonitoring programs globally. As such, methods to select relevant and informative traits for inclusion in biometrics need to be developed. In this research, we identified 20 traits of aquatic insects within six trait groups: morphology, mobility, life-history strategy, thermal tolerance, feeding guild and ecology (e.g., habitat preference). We constructed phylogenetic trees for 1) all lotic insect species of North America and 2) all Ephemeroptera, Plecoptera and Trichoptera species based on morphology- and molecular-based analyses and classifications. We then measured variability (i.e., plasticity) of the 20 traits and six trait groups across the two phylogenetic trees. Traits with higher degrees of plasticity indicated traits that were less phylogenetically constrained, and were considered informative for biomonitoring purposes. Thermal tolerance, rheophily, body size at maturity and feeding guild showed the highest plasticity across both phylogenetic trees. Two mobility traits, occurrence in drift and adult dispersal distance, showed moderate plasticity. By contrast, adult exiting ability, degree of attachment, adult lifespan and body shape showed low variability and were thus less informative. Plastic species traits that are less phylogenetically constrained may be most useful in detecting community change along environmental gradients.

  13. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes.

    PubMed

    Ramos, Gustavo; de Lima, Haroldo Cavalcante; Prenner, Gerhard; de Queiroz, Luciano Paganucci; Zartman, Charles E; Cardoso, Domingos

    2016-04-01

    Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology. PMID:26748266

  14. Discriminating the effects of phylogenetic hypothesis, tree resolution and clade age estimates on phylogenetic signal measurements.

    PubMed

    Seger, G D S; Duarte, L D S; Debastiani, V J; Kindel, A; Jarenkow, J A

    2013-09-01

    Understanding how species traits evolved over time is the central question to comprehend assembly rules that govern the phylogenetic structure of communities. The measurement of phylogenetic signal (PS) in ecologically relevant traits is a first step to understand phylogenetically structured community patterns. The different methods available to estimate PS make it difficult to choose which is most appropriate. Furthermore, alternative phylogenetic tree hypotheses, node resolution and clade age estimates might influence PS measurements. In this study, we evaluated to what extent these parameters affect different methods of PS analysis, and discuss advantages and disadvantages when selecting which method to use. We measured fruit/seed traits and flowering/fruiting phenology of endozoochoric species occurring in Southern Brazilian Araucaria forests and evaluated their PS using Mantel regressions, phylogenetic eigenvector regressions (PVR) and K statistic. Mantel regressions always gave less significant results compared to PVR and K statistic in all combinations of phylogenetic trees constructed. Moreover, a better phylogenetic resolution affected PS, independently of the method used to estimate it. Morphological seed traits tended to show higher PS than diaspores traits, while PS in flowering/fruiting phenology depended mostly on the method used to estimate it. This study demonstrates that different PS estimates are obtained depending on the chosen method and the phylogenetic tree resolution. This finding has implications for inferences on phylogenetic niche conservatism or ecological processes determining phylogenetic community structure. PMID:23368095

  15. Phylogenetics of Lophodermium from pine.

    PubMed

    Ortiz-García, Sol; Gernandt, David S; Stone, Jeffrey K; Johnston, Peter R; Chapela, Ignacio H; Salas-Lizana, Rodolfo; Alvarez-Buylla, Elena R

    2003-01-01

    Lophodermium comprises ascomycetous fungi that are both needle-cast pathogens and asymptomatic endophytes on a diversity of plant hosts. It is distinguished from other genera in the family Rhytismataceae by its filiform ascospores and ascocarps that open by a longitudinal slit. Nucleotide sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA were used to infer phylogenetic relationships within Lophodermium. Twenty-nine sequences from approximately 11 species of Lophodermium were analyzed together with eight sequences from isolates thought to represent six other genera of Rhytismataceae: Elytroderma, Lirula, Meloderma, Terriera, Tryblidiopsis and Colpoma. Two putative Meloderma desmazieresii isolates occurred within the Lophodermium clade but separate from one another, one grouped with L. indianum and the other with L. nitens. An isolate of Elytroderma deformans also occurred within the Lophodermium clade but on a solitary branch. The occurrence of these genera within the Lophodermium clade might be due to problems in generic concepts in Rhytismataceae, such as emphasis on spore morphology to delimit genera, to difficulty of isolating Rhytismataceae needle pathogens from material that also is colonized by Lophodermium or to a combination of both factors. We also evaluated the congruence of host distribution and several morphological characters on the ITS phylogeny. Lophodermium species from pine hosts formed a monophyletic sister group to Lophodermium species from more distant hosts from the southern hemisphere, but not to L. piceae from Picea. The ITS topology indicated that Lophodermium does not show strict cospeciation with pines at deeper branches, although several closely related isolates have closely related hosts. Pathogenic species occupy derived positions in the pine clade, suggesting that pathogenicity has evolved from endophytism. A new combination is proposed, Terriera minor (Tehon) P.R. Johnst. PMID:21148992

  16. Automated Ribotyping Provides Rapid Phylogenetic Subgroup Affiliation of Clinical Extraintestinal Pathogenic Escherichia coli Strains

    PubMed Central

    Clermont, Olivier; Cordevant, Christophe; Bonacorsi, Stephane; Marecat, Armelle; Lange, Marc; Bingen, Edouard

    2001-01-01

    Using the automated Riboprinter system, we have initiated the construction of an electronic Riboprint database composed of 72 ECOR reference strains and 15 archetypal virulent strains in order to provide a new simple molecular characterization method. More than 90% of the ECOR strains clustered in their original phylogenetic group. All but one of the archetypal virulent strains had a profile identical to that of one of the ECOR strains and could be easily affiliated with a phylogenetic group. This method appears to be an accurate and practical tool especially for investigating the genetic relationship between clinical extraintestinal pathogenic strains and B2 subgroup ECOR strains or archetypal pathotype strains. PMID:11724881

  17. Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha.

    PubMed

    Keeling, P J; Poulsen, N; McFadden, G I

    1998-01-01

    The phylogenetic diversity of parabasalian flagellates from termite hindguts has been examined by small subunit ribosomal RNA (rRNA) amplification and sequencing. Two species of particular interest, the giant trichomonad Pseudotrypanosoma giganteum and the hypermastigote Trichonympha magna, were isolated from the gut of Porotermes adamsoni by micropipetting, and the rRNA genes from these small populations amplified and sequenced. rRNA genes representing Hypermastigida and the Trichomonadida families Devescovinidae and Trichomonadidae, were also recovered by amplification from whole hindguts of three termites, P. adamsoni, Cryptotermes brevis, and Cryptotermes dudleyi. The parabasalian rRNA genes from C. brevis were found to comprise a unique and extremely heterogeneous lineage with no clear affinities to any known parabasalian rRNAs. In addition, one of the sequences isolated from P. adamsoni was found to be similar to another uncharacterised rRNA gene from Reticulitermes flavipes. The phylogeny of all known parabasalian small subunit rRNAs was examined with these new sequences. We find many taxonomic groups to be supported by rRNA, but not all. We have found the root of parabasalia to be very difficult to discern accurately, but have nevertheless identified several possible positions. PMID:9864854

  18. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  19. Classification of the acanthocephala.

    PubMed

    Amin, Omar M

    2013-09-01

    In 1985, Amin presented a new system for the classification of the Acanthocephala in Crompton and Nickol's (1985) book 'Biology of the Acanthocephala' and recognized the concepts of Meyer (1931, 1932, 1933) and Van Cleave (1936, 1941, 1947, 1948, 1949, 1951, 1952). This system became the standard for the taxonomy of this group and remains so to date. Many changes have taken place and many new genera and species, as well as higher taxa, have been described since. An updated version of the 1985 scheme incorporating new concepts in molecular taxonomy, gene sequencing and phylogenetic studies is presented. The hierarchy has undergone a total face lift with Amin's (1987) addition of a new class, Polyacanthocephala (and a new order and family) to remove inconsistencies in the class Palaeacanthocephala. Amin and Ha (2008) added a third order (and a new family) to the Palaeacanthocephala, Heteramorphida, which combines features from the palaeacanthocephalan families Polymorphidae and Heteracanthocephalidae. Other families and subfamilies have been added but some have been eliminated, e.g. the three subfamilies of Arythmacanthidae: Arhythmacanthinae Yamaguti, 1935; Neoacanthocephaloidinae Golvan, 1960; and Paracanthocephaloidinae Golvan, 1969. Amin (1985) listed 22 families, 122 genera and 903 species (4, 4 and 14 families; 13, 28 and 81 genera; 167, 167 and 569 species in Archiacanthocephala, Eoacanthocephala and Palaeacanthocephala, respectively). The number of taxa listed in the present treatment is 26 families (18% increase), 157 genera (29%), and 1298 species (44%) (4, 4 and 16; 18, 29 and 106; 189, 255 and 845, in the same order), which also includes 1 family, 1 genus and 4 species in the class Polyacanthocephala Amin, 1987, and 3 genera and 5 species in the fossil family Zhijinitidae. PMID:24261131

  20. Phylogenetic relationships of Chinese Adiantum based on five plastid markers.

    PubMed

    Lu, Jin-Mei; Wen, Jun; Lutz, Sue; Wang, Yi-Ping; Li, De-Zhu

    2012-03-01

    Adiantum consists of about 150-200 species mostly with a pantropical distribution, yet the classifications of Adiantum have been based primarily on regional studies. Confounding the clarity of reconstructing the evolutionary history of Adiantum is that previous molecular phylogenetic studies suggest that a separate and distinctive clade, the vittarioids, may be derived from within Adiantum. Five plastid markers (atpA, atpB, rbcL, trnL-F and rps4-trnS) are employed to assess the monophyly of Adiantum, and construct the molecular phylogeny of Chinese Adiantum. Our analyses support the monophyly of Adiantum. All temperate Adiantum species form a clade nested within the pantropical grade, suggesting a tropical origin of Adiantum. Six main clades are supported within Chinese Adiantum, which are only partially consistent with Lin's classification of the genus. Series Caudata is polyphyletic with series Gravesiana nested within one subgroup of series Caudata. The prolonged whip-like stolon at the apex of the fronds is the defining character for series Caudata, but it may have evolved multiple times. Adiantum reniforme with the simple fronds is sister to series Venusta, which has a decompound lamina with many flabellate to cuneate segments. Series Veneri-capilliformia is not monophyletic, with A. capillus-veneris sister to series Flabellulata except for A. diaphanum, and A. edentulum sister to series Pedata. Series Flabellulata is biphyletic with A. diaphanum nested within the pantropical grade. The phylogeny suggests that convergent evolution in frond architecture has occurred in Adiantum. PMID:21809178

  1. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  2. Maximizing the phylogenetic diversity of seed banks.

    PubMed

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. PMID:25196170

  3. A Practical Guide to Phylogenetics for Nonexperts

    PubMed Central

    O'Halloran, Damien

    2014-01-01

    Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts.We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteriaand finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studiesand also serve as an educational resource that could be incorporated into a classroom or teaching-lab. PMID:24562012

  4. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  5. Phylogenetic diversity measures based on Hill numbers

    PubMed Central

    Chao, Anne; Chiu, Chun-Huo; Jost, Lou

    2010-01-01

    We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on ‘effective number of species’ or Hill numbers) to take into account species relatedness, and also generalizes the traditional phylogenetic approach (based on ‘total phylogenetic length’) to incorporate species abundances. The proposed measure quantifies ‘the mean effective number of species’ over any time interval of interest, or the ‘effective number of maximally distinct lineages’ over that time interval. The product of the measure and the interval length quantifies the ‘branch diversity’ of the phylogenetic tree during that interval. The new measures generalize and unify many existing measures and lead to a natural definition of taxonomic diversity as a special case. The replication principle (or doubling property), an important requirement for species-neutral diversity, is generalized to PD. The widely used Rao's quadratic entropy and the phylogenetic entropy do not satisfy this essential property, but a simple transformation converts each to our measures, which do satisfy the property. The proposed approach is applied to forest data for interpreting the effects of thinning. PMID:20980309

  6. Support Vector Machine Classification Trees.

    PubMed

    de Boves Harrington, Peter

    2015-11-01

    Proteomic and metabolomic studies based on chemical profiling require powerful classifiers to model accurately complex collections of data. Support vector machines (SVMs) are advantageous in that they provide a maximum margin of separation for the classification hyperplane. A new method for constructing classification trees, for which the branches comprise SVMs, has been devised. The novel feature is that the distribution of the data objects is used to determine the SVM encoding. The variance and covariance of the data objects are used for determining the bipolar encoding required for the SVM. The SVM that yields the lowest entropy of classification becomes the branch of the tree. The SVM-tree classifier has the added advantage that nonlinearly separable data may be accurately classified without optimization of the cost parameter C or searching for a correct higher dimensional kernel transform. It compares favorably to a regularized linear discriminant analysis, SVMs in a one against all multiple classifier, and a fuzzy rule-building expert system, a tree classifier with a fuzzy margin of separation. SVMs offer a speed advantage, especially for data sets that have more measurements than objects. PMID:26461495

  7. Explaining diversity in metagenomic datasets by phylogenetic-based feature weighting.

    PubMed

    Albanese, Davide; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio

    2015-03-01

    Metagenomics is revolutionizing our understanding of microbial communities, showing that their structure and composition have profound effects on the ecosystem and in a variety of health and disease conditions. Despite the flourishing of new analysis methods, current approaches based on statistical comparisons between high-level taxonomic classes often fail to identify the microbial taxa that are differentially distributed between sets of samples, since in many cases the taxonomic schema do not allow an adequate description of the structure of the microbiota. This constitutes a severe limitation to the use of metagenomic data in therapeutic and diagnostic applications. To provide a more robust statistical framework, we introduce a class of feature-weighting algorithms that discriminate the taxa responsible for the classification of metagenomic samples. The method unambiguously groups the relevant taxa into clades without relying on pre-defined taxonomic categories, thus including in the analysis also those sequences for which a taxonomic classification is difficult. The phylogenetic clades are weighted and ranked according to their abundance measuring their contribution to the differentiation of the classes of samples, and a criterion is provided to define a reduced set of most relevant clades. Applying the method to public datasets, we show that the data-driven definition of relevant phylogenetic clades accomplished by our ranking strategy identifies features in the samples that are lost if phylogenetic relationships are not considered, improving our ability to mine metagenomic datasets. Comparison with supervised classification methods currently used in metagenomic data analysis highlights the advantages of using phylogenetic information. PMID:25815895

  8. Hyperspectral image classification for mapping agricultural tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal f...

  9. Terrain classification for a UGV

    NASA Astrophysics Data System (ADS)

    Sarwal, Alok; Baker, Chris; Rosenblum, Mark

    2005-05-01

    This work addresses the issue of Terrain Classification that can be applied for path planning for an Unmanned Ground Vehicle (UGV) platform. We are interested in classification of features such as rocks, bushes, trees and dirt roads. Currently, the data is acquired from a color camera mounted on the UGV as we can add range data from a second sensor in the future. The classification is accomplished by first, coarse segmenting a frame and then refining the initial segmentations through a convenient user interface. After the first frame, temporal information is exploited to improve the quality of the image segmentation and help classification adapt to changes due to ambient lighting, shadows, and scene changes as the platform moves. The Mean Shift Classifier algorithm provides segmentation of the current frame data. We have tested the above algorithms with four sequence of frames acquired in an environment with terrain representative of the type we expect to see in the field. A comparison of the results from this algorithm was done with accurate manually-segmented (ground-truth) data, for each frame in the sequence.

  10. [Characteristics and phylogenetic analysis of mitochondrial genome in the gobies].

    PubMed

    Jin, Xiao-Xiao; Sun, Yue-Na; Wang, Ri-Xin; Tang, Da; Zhao, Sheng-Long; Xu, Tian-Jun

    2013-12-01

    The vast number of species, small size and high variation of morphology make the morphological identification and classification of gobies very difficult. In this study, the complete mitochondrial genome (mitogenome) of 26 species of gobies was analyzed, aiming at accumulating the molecular information on the identification, classification and molecular evolution of gobies. The results showed that the gene composition and arrangement of mitogenome of gobies are similar to most vertebrates. Due to various degrees of repetitive sequences in the control region, the mitogenome of 26 gobies exhibits a great variation in length. The A+T content of the mitogenome is greater than 50% and the lowest frequency is for G among the four bases. Thirty-seven coding gene sequences were used to calculate the average Kimura 2-parameter genetic distance of 26 species of gobies. Acanthogobius hasta and A. ommaturus, Glossogobius olivaceus and G circumspectus were synonyms, respectively. By comparing the control region sequences of 26 gobies, the terminal associated sequences, central conserved sequence block and conserved sequence block were identified, respectively. Thirty-six coding gene sequences of 26 gobies were used to construct the phylogenetic tree and the results were different from the traditional morphological classification. The five subfamilies of Gobiidae were obviously evolved: Amblyopinae, Oxudercinae and Sicydiinae were clustered into a group and then formed a sister group with Gobionellinae; the fishes of Gobiinae had distant relationship with the four subfamilies and formed a group alone. Molecular clock analysis estimated that gobies probably originated in the late Eocene to Oligocene time and further evolved into modern characteristic gobies in the Miocene. PMID:24645349

  11. Trends and concepts in fern classification

    PubMed Central

    Christenhusz, Maarten J. M.; Chase, Mark W.

    2014-01-01

    Background and Aims Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. Scope An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. Key Results Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called ‘fern allies’ (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called ‘monilophytes’), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. Conclusions Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns. PMID:24532607

  12. Euclidean nature of phylogenetic distance matrices.

    PubMed

    de Vienne, Damien M; Aguileta, Gabriela; Ollier, Sbastien

    2011-12-01

    Phylogenies are fundamental to comparative biology as they help to identify independent events on which statistical tests rely. Two groups of phylogenetic comparative methods (PCMs) can be distinguished: those that take phylogenies into account by introducing explicit models of evolution and those that only consider phylogenies as a statistical constraint and aim at partitioning trait values into a phylogenetic component (phylogenetic inertia) and one or multiple specific components related to adaptive evolution. The way phylogenetic information is incorporated into the PCMs depends on the method used. For the first group of methods, phylogenies are converted into variance-covariance matrices of traits following a given model of evolution such as Brownian motion (BM). For the second group of methods, phylogenies are converted into distance matrices that are subsequently transformed into Euclidean distances to perform principal coordinate analyses. Here, we show that simply taking the elementwise square root of a distance matrix extracted from a phylogenetic tree ensures having a Euclidean distance matrix. This is true for any type of distances between species (patristic or nodal) and also for trees harboring multifurcating nodes. Moreover, we illustrate that this simple transformation using the square root imposes less geometric distortion than more complex transformations classically used in the literature such as the Cailliez method. Given the Euclidean nature of the elementwise square root of phylogenetic distance matrices, the positive semidefinitiveness of the phylogenetic variance-covariance matrix of a trait following a BM model, or related models of trait evolution, can be established. In that way, we build a bridge between the two groups of statistical methods widely used in comparative analysis. These results should be of great interest for ecologists and evolutionary biologists performing statistical analyses incorporating phylogenies. PMID:21804094

  13. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Hhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, MetropolisHastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  14. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  15. Classification challenges in perfectionism.

    PubMed

    Rice, Kenneth G; Richardson, Clarissa M E

    2014-10-01

    High performance expectations are central to perfectionism, but because most participants endorse high standards, it becomes difficult for practitioners and researchers to accurately screen for perfectionists. We addressed problems linked to the measurement and classification of perfectionism by testing various strategies aimed at broadening the range and skew of scores on the Standards subscale from the Almost Perfect Scale-Revised (APS-R; Slaney, Mobley, Trippi, Ashby, & Johnson, 1996). Randomly assigned participants (N = 506) completed the APS-R following standard instructions or 1 of 2 variations, one prompting participants to consider their responses in light of a normal distribution of scores and another in which participants used a visual analog (slider) scale. The visual analog scale produced more differentiated scores, but range restrictions and skewed distributions remained for all 3 variations. Statistical transformations improved skew. Factor mixture modeling was conducted using transformed and nontransformed perfectionism scores along with criterion indicators of emotion regulation (reappraisal or suppression), perceived stress, and depression. Results supported a 3-class model, although more balanced distributions of classes emerged than were previously reported. Perfectionists were differentiated from nonperfectionists by their higher standards scores. Maladaptive perfectionists scored highest among the classes on most self-critical perfectionism indicators, suppression, perceived stress, and depression. Adaptive perfectionists had the lowest levels of perceived stress and depression and scored highest on reappraisal. Both perfectionist classes had generally comparable concerns about mistakes, but criterion indicators suggested those were more problematic for maladaptive perfectionists. Results supported the value of incorporating adaptive and maladaptive criterion indicators in classification models. PMID:25111705

  16. Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology

    PubMed Central

    Cardillo, Marcel

    2011-01-01

    Phylogenetic community ecology seeks to explain the processes involved in the formation of species assemblages by analysing their phylogenetic structure, and to date has focused primarily on local-scale communities. Macroecology, on the other hand, is concerned with the structure of assemblages at large geographical scales, but has remained largely non-phylogenetic. Analysing the phylogenetic structure of large-scale assemblages provides a link between these two research programmes. In this paper, I ask whether we should expect large-scale assemblages to show significant phylogenetic structure, by outlining some of the ecological and macroevolutionary processes that may play a role in assemblage formation. As a case study, I then explore the phylogenetic structure of carnivore assemblages within the terrestrial ecoregions of Africa. Many assemblages at these scales are indeed phylogenetically non-random (either clustered or overdispersed). One interpretation of the observed patterns of phylogenetic structure is that many clades underwent rapid biome-filling radiations, followed by diversification slowdown and competitive sorting as niche space became saturated. PMID:21807735

  17. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify

  18. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  19. Prioritizing Populations for Conservation Using Phylogenetic Networks

    PubMed Central

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O.

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  20. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Mikls; Foster, Jeffrey T.; Dn, dm; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Hfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Ss, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; Gonzlez-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdlyi, Kroly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  1. Effect of genetic convergence on phylogenetic inference.

    PubMed

    Christin, Pascal-Antoine; Besnard, Guillaume; Edwards, Erika J; Salamin, Nicolas

    2012-03-01

    Phylogenetic reconstructions are a major component of many studies in evolutionary biology, but their accuracy can be reduced under certain conditions. Recent studies showed that the convergent evolution of some phenotypes resulted from recurrent amino acid substitutions in genes belonging to distant lineages. It has been suggested that these convergent substitutions could bias phylogenetic reconstruction toward grouping convergent phenotypes together, but such an effect has never been appropriately tested. We used computer simulations to determine the effect of convergent substitutions on the accuracy of phylogenetic inference. We show that, in some realistic conditions, even a relatively small proportion of convergent codons can strongly bias phylogenetic reconstruction, especially when amino acid sequences are used as characters. The strength of this bias does not depend on the reconstruction method but varies as a function of how much divergence had occurred among the lineages prior to any episodes of convergent substitutions. While the occurrence of this bias is difficult to predict, the risk of spurious groupings is strongly decreased by considering only 3rd codon positions, which are less subject to selection, as long as saturation problems are not present. Therefore, we recommend that, whenever possible, topologies obtained with amino acid sequences and 3rd codon positions be compared to identify potential phylogenetic biases and avoid evolutionarily misleading conclusions. PMID:22197805

  2. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  3. Genomic repeat abundances contain phylogenetic signal.

    PubMed

    Dodsworth, Steven; Chase, Mark W; Kelly, Laura J; Leitch, Ilia J; Macas, Ji?; Novk, Petr; Piednol, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  4. Worldwide phylogenetic relationship of avian poxviruses.

    PubMed

    Gyuranecz, Mikls; Foster, Jeffrey T; Dn, dm; Ip, Hon S; Egstad, Kristina F; Parker, Patricia G; Higashiguchi, Jenni M; Skinner, Michael A; Hfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M; Solt, Szabolcs; Ss, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; Gonzlez-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdlyi, Kroly

    2013-05-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  5. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  6. Models for automatic classification of video sequences

    NASA Astrophysics Data System (ADS)

    Iyengar, Giridharan; Lippman, Andrew B.

    1997-12-01

    In this paper, we explore a technique for automatic classification of video sequences, (such as a TV broadcast, movies). This technique analyzes the incoming video sequences and classifies them into categories. It can be viewed as an on-line parser for video signals. We present two techniques for automatic classification. In the first technique, the incoming video sequence is analyzed to extract the motion information. This information is optimally projected onto a single dimension. This projection information is then used to train Hidden Markov Models (HMMs) that efficiently and accurately classify the incoming video sequence. Preliminary results with 50 different test sequences (25 Sports and 25 News sequences) indicae a classification accuracy of 90% by the HMM models. In the second technique, 24 full-length motion picture trailers are classified using HMMs. This classification is compared with the internet movie database and we find that they correlate well. Only two out of 24 trailers were classified incorrectly.

  7. The Transporter Classification Database (TCDB): recent advances

    PubMed Central

    Saier, Milton H.; Reddy, Vamsee S.; Tsu, Brian V.; Ahmed, Muhammad Saad; Li, Chun; Moreno-Hagelsieb, Gabriel

    2016-01-01

    The Transporter Classification Database (TCDB; http://www.tcdb.org) is a freely accessible reference database for transport protein research, which provides structural, functional, mechanistic, evolutionary and disease/medical information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB). It consists of more than 10 000 non-redundant transport systems with more than 11 000 reference citations, classified into over 1000 transporter families. Transporters in TCDB can be single or multi-component systems, categorized in a functional/phylogenetic hierarchical system of classes, subclasses, families, subfamilies and transport systems. TCDB also includes updated software designed to analyze the distinctive features of transport proteins, extending its usefulness. Here we present a comprehensive update of the database contents and features and summarize recent discoveries recorded in TCDB. PMID:26546518

  8. Phylogenetic inference under varying proportions of indel-induced alignment gaps

    PubMed Central

    Dwivedi, Bhakti; Gadagkar, Sudhindra R

    2009-01-01

    Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong almost deterministic relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "ML?, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data presence/absence, or as in the ML? method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the phylogenetic signal in indels are developed for distance methods too. When the true homology is known and the amount of gaps is 20 percent of the alignment length or less, the methods used in this study are likely to yield trees with 90100 percent accuracy. PMID:19698168

  9. Characterization of a branch of the phylogenetic tree.

    PubMed

    Samuel, Stuart A; Weng, Gezhi

    2003-02-21

    We use a combination of analytic models and computer simulations to gain insight into the dynamics of evolution. Our results suggest that certain interesting phenomena should eventually emerge from the fossil record. For example, there should be a "tortoise and hare effect": those genera with the smallest species death rate are likely to survive much longer than genera with large species birth and death rates. A complete characterization of the behavior of a branch of the phylogenetic tree corresponding to a genus and accurate mathematical representations of the various stages are obtained. We apply our results to address certain controversial issues that have arisen in paleontology such as the importance of punctuated equilibrium and whether unique Cambrian phyla have survived to the present. PMID:12623281

  10. Characterization of a branch of the phylogenetic tree

    SciTech Connect

    Samuel, Stuart A.; Weng, Gezhi

    2003-04-11

    We use a combination of analytic models and computer simulations to gain insight into the dynamics of evolution. Our results suggest that certain interesting phenomena should eventually emerge from the fossil record. For example, there should be a ''tortoise and hare effect'': Those genera with the smallest species death rate are likely to survive much longer than genera with large species birth and death rates. A complete characterization of the behavior of a branch of the phylogenetic tree corresponding to a genus and accurate mathematical representations of the various stages are obtained. We apply our results to address certain controversial issues that have arisen in paleontology such as the importance of punctuated equilibrium and whether unique Cambrian phyla have survived to the present.

  11. Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection

    PubMed Central

    Xie, Wangang; Lewis, Paul O.; Fan, Yu; Kuo, Lynn; Chen, Ming-Hui

    2011-01-01

    The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenetics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TI) method is much more accurate than the HM method but requires more computation. In this paper, we introduce a new method, steppingstone sampling (SS), which uses importance sampling to estimate each ratio in a series (the “stepping stones”) bridging the posterior and prior distributions. We compare the performance of the SS approach to the TI and HM methods in simulation and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of the HM method, despite the extra computation needed. PMID:21187451

  12. A Bayesian Phylogenetic Method to Estimate Unknown Sequence Ages

    PubMed Central

    Shapiro, Beth; Drummond, Alexei J.; Suchard, Marc A.; Pybus, Oliver G.; Rambaut, Andrew

    2011-01-01

    Heterochronous data sets comprise molecular sequences sampled at different points in time. If the temporal range of the sampled sequences is large relative to the rate of mutation, the sampling times can directly calibrate evolutionary rates to calendar time. Here, we extend this calibration process to provide a full probabilistic method that utilizes temporal information in heterochronous data sets to estimate sampling times (leaf-ages) for sequenced for which this information unavailable. Our method is similar to relaxing the constraints of the molecular clock on specific lineages within a phylogenetic tree. Using a combination of synthetic and empirical data sets, we demonstrate that the method estimates leaf-ages reliably and accurately. Potential applications of our approach include incorporating samples of uncertain or radiocarbon-infinite age into ancient DNA analyses, evaluating the temporal signal in a particular sequence or data set, and exploring the reliability of sequence ages that are somehow contentious. PMID:20889726

  13. Computational Prediction of Phylogenetically Conserved Sequence Motifs for Five Different Candidate Genes in Type II Diabetic Nephropathy

    PubMed Central

    Sindhu, T; Rajamanikandan, S; Srinivasan, P

    2012-01-01

    Background: Computational identification of phylogenetic motifs helps to understand the knowledge about known functional features that includes catalytic site, substrate binding epitopes, and protein-protein interfaces. Furthermore, they are strongly conserved among orthologs, indicating their evolutionary importance. The study aimed to analyze five candidate genes involved in type II diabetic nephropathy and to predict phylogenetic motifs from their corresponding orthologous protein sequences. Methods: AKR1B1, APOE, ENPP1, ELMO1 and IGFBP1 are the genes that have been identified as an important target for type II diabetic nephropathy through experimental studies. Their corresponding protein sequences, structures, orthologous sequences were retrieved from UniprotKB, PDB, and PHOG database respectively. Multiple sequence alignments were constructed using ClustalW and phylogenetic motifs were identified using MINER. The occurrence of amino acids in the obtained phylogenetic motifs was generated using WebLogo and false positive expectations were calculated against phylogenetic similarity. Results: In total, 17 phylogenetic motifs were identified from the five proteins and the residues such as glycine, leucine, tryptophan, aspartic acid were found in appreciable frequency whereas arginine identified in all the predicted PMs. The result implies that these residues can be important to the functional and structural role of the proteins and calculated false positive expectations implies that they were generally conserved in traditional sense. Conclusion: The prediction of phylogenetic motifs is an accurate method for detecting functionally important conserved residues. The conserved motifs can be used as a potential drug target for type II diabetic nephropathy. PMID:23113206

  14. Construction of the Platform for Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Meng, Zhen; Lin, Xiaoguang; He, Xing; Gao, Yanping; Liu, Hongmei; Liu, Yong; Zhou, Yuanchun; Li, Jianhui; Chen, Zhiduan; Zhang, Shouzhou; Li, Yong

    Based on discussing the history of advancement to building the tree of life using genetic and genomic information, effective strategies and methods for the construction of the tree of life, this paper carried out business process analysis and application design. It implements a phylogenetic analysis platform for the land plants based on this analysis. The platform extracts molecular data from the international public databases in batch, which is automated acquisition, cleaning function for users to understand the situation of peer data. The process of phylogenetic reconstruction includes several public modes and tools, such as batch extraction, multiple sequence alignment, cleaning & editing, tree reconstruction, phylogeny evaluation and visualization. All these procedures demand a number of interactive interfaces for phylogenetic tree automatic generation and decision-making aids experiment.

  15. Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology.

    PubMed

    Hemmrich, Georg; Anokhin, Boris; Zacharias, Helmut; Bosch, Thomas C G

    2007-07-01

    Among the earliest diverging animal phyla are the Cnidaria. Freshwater polyps of the genus Hydra (Cnidaria, Hydrozoa) have long been of general interest because different species of Hydra reveal fundamental principles that underlie development, differentiation, regeneration and also symbiosis. The phylogenetic relationships among the Hydra species most commonly used in current research are not resolved yet. Here we estimate the phylogenetic relations among eight scientifically important members of the genus Hydra with molecular data from two nuclear (18S rDNA, 28S rDNA) and two mitochondrial (16S rRNA, cytochrome oxidase subunit I (COI)) genes. The phylogenetic trees obtained by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods were generally compatible with present morphological classification patterns. However, the present analysis also bears on several long-standing questions about Hydra systematics and reveals some characteristics of the phylogenetic relationships of this genus that were unknown so far. It indicates that Hydra viridissima, the only species in Hydra, which contains symbiotic algae, might be considered as the sister group to all other species within this genus. Analyses of both nuclear and mitochondrial sequences support the view that Hydra oligactis and Hydra circumcincta are sisters to all other Hydra species. Unexpectedly, we also find that in contrast to its initial description, the strain used for making transgenic Hydra, Hydra vulgaris (strain AEP) is more closely related to Hydra carnea than to other species of Hydra. PMID:17174108

  16. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction

    PubMed Central

    Chang, Jia-Ming; Di Tommaso, Paolo; Lefort, Vincent; Gascuel, Olivier; Notredame, Cedric

    2015-01-01

    This article introduces the Transitive Consistency Score (TCS) web server; a service making it possible to estimate the local reliability of protein multiple sequence alignments (MSAs) using the TCS index. The evaluation can be used to identify the aligned positions most likely to contain structurally analogous residues and also most likely to support an accurate phylogenetic reconstruction. The TCS scoring scheme has been shown to be accurate predictor of structural alignment correctness among commonly used methods. It has also been shown to outperform common filtering schemes like Gblocks or trimAl when doing MSA post-processing prior to phylogenetic tree reconstruction. The web server is available from http://tcoffee.crg.cat/tcs. PMID:25855806

  17. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction.

    PubMed

    Chang, Jia-Ming; Di Tommaso, Paolo; Lefort, Vincent; Gascuel, Olivier; Notredame, Cedric

    2015-07-01

    This article introduces the Transitive Consistency Score (TCS) web server; a service making it possible to estimate the local reliability of protein multiple sequence alignments (MSAs) using the TCS index. The evaluation can be used to identify the aligned positions most likely to contain structurally analogous residues and also most likely to support an accurate phylogenetic reconstruction. The TCS scoring scheme has been shown to be accurate predictor of structural alignment correctness among commonly used methods. It has also been shown to outperform common filtering schemes like Gblocks or trimAl when doing MSA post-processing prior to phylogenetic tree reconstruction. The web server is available from http://tcoffee.crg.cat/tcs. PMID:25855806

  18. Accurate photometric redshift probability density estimation - method comparison and application

    NASA Astrophysics Data System (ADS)

    Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-10-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case, this improvement reaches 50 per cent for high-redshift objects (z ? 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used methods. The cosmological analyses we examine and find improvement upon are the following: gravitational lensing cluster mass estimates, modelling of angular correlation functions and modelling of cosmic shear correlation functions.

  19. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dvalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats. PMID:22891620

  20. The phylogenetic significance of colour patterns in marine teleost larvae.

    PubMed

    Baldwin, Carole C

    2013-07-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. PMID:24039297

  1. The phylogenetic significance of colour patterns in marine teleost larvae

    PubMed Central

    Baldwin, Carole C

    2013-01-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. PMID:24039297

  2. Phylogenetic Analysis of Mitochondrial Outer Membrane β-Barrel Channels

    PubMed Central

    Wojtkowska, Małgorzata; Jąkalski, Marcin; Pieńkowska, Joanna R.; Stobienia, Olgierd; Karachitos, Andonis; Przytycka, Teresa M.; Weiner, January; Kmita, Hanna; Makałowski, Wojciech

    2012-01-01

    Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta. PMID:22155732

  3. Spectral-spatial hyperspectral classification based on multi-center SAM and MRF

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Liu, Zhi; Xiao, Xiaoyan; Nie, Mingyu; Chang, Jun; Jiang, Wei; Li, Xiaomei; Zheng, Chengyun

    2015-12-01

    In this paper, a novel framework for an accurate spectral-spatial classification of hyperspectral images is proposed to address nonlinear classification problems. The algorithm is based on the spectral angle mapper (SAM), which is achieved by introducing the multi-center model and Markov random fields (MRF) into a probabilistic decision framework to obtain an accurate classification. Experimental comparisons between several traditional classification methods and the proposed MSAM-MRF algorithm have demonstrated that the performance of the proposed MSAM-MRF algorithm outperforms the traditional classification algorithms.

  4. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference

    PubMed Central

    Guindon, Stéphane; Lethiec, Franck; Duroux, Patrice; Gascuel, Olivier

    2005-01-01

    PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at . PMID:15980534

  5. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  6. Shower Classification Software

    NASA Astrophysics Data System (ADS)

    Zloczewski, K.; Wisniewski, M.; Lelit, M.; Polakowski, K.

    2009-06-01

    We describe the Shower Classification Software (SCS) which makes an automatic shower classification of plotted meteors. This tool is developed to help observers make shower classification procedure fast and allows them to check calculations done by hand. The programme is available for Linux and Windows operating systems and can be obtained from http://www.pkim.org/?q=pl/scs.

  7. Government Classification: An Overview.

    ERIC Educational Resources Information Center

    Brown, Karen M.

    Classification of government documents (confidential, secret, top secret) is a system used by the executive branch to, in part, protect national security and foreign policy interests. The systematic use of classification markings with precise definitions was established during World War I, and since 1936 major changes in classification have

  8. Classification of articulators.

    PubMed

    Rihani, A

    1980-03-01

    A simple classification in familiar terms with definite, clear characteristics can be adopted. This classification system is based on the number of records used and the adjustments necessary for the articulator to accept these records. The classification divides the articulators into nonadjustable, semiadjustable, and fully adjustable articulators (Table I). PMID:6928204

  9. More accurate time from the Heathkit most accurate clock

    NASA Astrophysics Data System (ADS)

    Tollefson, M. V.; Bloomer, R. H., Jr.

    1986-05-01

    The addition of an auxiliary circuit to the Heathkit GC-1000 clock is described. The circuit, which consists of two integrated circuits, two resistors, and three capacitors, will supply a more accurate timing pulse to the computer. The circuit contains two input signals and produces one output; the inputs are multiplexed seven-digit displays (two digits for hour, minute, and second, and one for tenths of a second) and the output appears as a string of about 10 low-going pulses about 1.25 ms in duration. Low pass filters (R1 and C1) are utilized to eliminate extraneous pulses. The materials and procedures for attaching the circuit to the clock are examined. The software for the data set ready signal, and the method for accurate timing of data collection are discussed. The accuracy of the clock is evaluated and it is observed that the circuit improves the correct time provided by the clock from + or - 29 ms to + or - 5 ms.

  10. Cirrhosis Classification Based on Texture Classification of Random Features

    PubMed Central

    Shao, Ying; Guo, Dongmei; Zheng, Yuanjie; Zhao, Zuowei; Qiu, Tianshuang

    2014-01-01

    Accurate staging of hepatic cirrhosis is important in investigating the cause and slowing down the effects of cirrhosis. Computer-aided diagnosis (CAD) can provide doctors with an alternative second opinion and assist them to make a specific treatment with accurate cirrhosis stage. MRI has many advantages, including high resolution for soft tissue, no radiation, and multiparameters imaging modalities. So in this paper, multisequences MRIs, including T1-weighted, T2-weighted, arterial, portal venous, and equilibrium phase, are applied. However, CAD does not meet the clinical needs of cirrhosis and few researchers are concerned with it at present. Cirrhosis is characterized by the presence of widespread fibrosis and regenerative nodules in the hepatic, leading to different texture patterns of different stages. So, extracting texture feature is the primary task. Compared with typical gray level cooccurrence matrix (GLCM) features, texture classification from random features provides an effective way, and we adopt it and propose CCTCRF for triple classification (normal, early, and middle and advanced stage). CCTCRF does not need strong assumptions except the sparse character of image, contains sufficient texture information, includes concise and effective process, and makes case decision with high accuracy. Experimental results also illustrate the satisfying performance and they are also compared with typical NN with GLCM. PMID:24707317

  11. Threat Diversity Will Erode Mammalian Phylogenetic Diversity in the Near Future

    PubMed Central

    Jono, Clémentine M. A.; Pavoine, Sandrine

    2012-01-01

    To reduce the accelerating rate of phylogenetic diversity loss, many studies have searched for mechanisms that could explain why certain species are at risk, whereas others are not. In particular, it has been demonstrated that species might be affected by both extrinsic threat factors as well as intrinsic biological traits that could render a species more sensitive to extinction; here, we focus on extrinsic factors. Recently, the International Union for Conservation of Nature developed a new classification of threat types, including climate change, urbanization, pollution, agriculture and aquaculture, and harvesting/hunting. We have used this new classification to analyze two main factors that could explain the expected future loss of mammalian phylogenetic diversity: 1. differences in the type of threats that affect mammals and 2. differences in the number of major threats that accumulate for a single species. Our results showed that Cetartiodactyla, Diprotodontia, Monotremata, Perissodactyla, Primates, and Proboscidea could lose a high proportion of their current phylogenetic diversity in the coming decades. In contrast, Chiroptera, Didelphimorphia, and Rodentia could lose less phylogenetic diversity than expected if extinctions were random. Some mammalian clades, including Marsupiala, Chiroptera, and a subclade of Primates, are affected by particular threat types, most likely due solely to their geographic locations and associations with particular habitats. However, regardless of the geography, habitat, and taxon considered, it is not the threat type, but the threat diversity that determines the extinction risk for species and clades. Thus, some mammals might be randomly located in areas subjected to a large diversity of threats; they might also accumulate detrimental traits that render them sensitive to different threats, which is a characteristic that could be associated with large body size. Any action reducing threat diversity is expected to have a significant impact on future mammalian phylogeny. PMID:23029443

  12. Threat diversity will erode mammalian phylogenetic diversity in the near future.

    PubMed

    Jono, Clémentine M A; Pavoine, Sandrine

    2012-01-01

    To reduce the accelerating rate of phylogenetic diversity loss, many studies have searched for mechanisms that could explain why certain species are at risk, whereas others are not. In particular, it has been demonstrated that species might be affected by both extrinsic threat factors as well as intrinsic biological traits that could render a species more sensitive to extinction; here, we focus on extrinsic factors. Recently, the International Union for Conservation of Nature developed a new classification of threat types, including climate change, urbanization, pollution, agriculture and aquaculture, and harvesting/hunting. We have used this new classification to analyze two main factors that could explain the expected future loss of mammalian phylogenetic diversity: 1. differences in the type of threats that affect mammals and 2. differences in the number of major threats that accumulate for a single species. Our results showed that Cetartiodactyla, Diprotodontia, Monotremata, Perissodactyla, Primates, and Proboscidea could lose a high proportion of their current phylogenetic diversity in the coming decades. In contrast, Chiroptera, Didelphimorphia, and Rodentia could lose less phylogenetic diversity than expected if extinctions were random. Some mammalian clades, including Marsupiala, Chiroptera, and a subclade of Primates, are affected by particular threat types, most likely due solely to their geographic locations and associations with particular habitats. However, regardless of the geography, habitat, and taxon considered, it is not the threat type, but the threat diversity that determines the extinction risk for species and clades. Thus, some mammals might be randomly located in areas subjected to a large diversity of threats; they might also accumulate detrimental traits that render them sensitive to different threats, which is a characteristic that could be associated with large body size. Any action reducing threat diversity is expected to have a significant impact on future mammalian phylogeny. PMID:23029443

  13. High-accurate and noise-tolerant texture descriptor

    NASA Astrophysics Data System (ADS)

    Akoushideh, Alireza; Mazloom-Nezhad Maybodi, Babak

    2015-02-01

    In this paper, we extend pyramid transform domain approach on local binary pattern (PLBP) to make a high-accurate and noise-tolerant texture descriptor. We combine PLBP information of sub-band images, which are attained using wavelet transform, in different resolution and make some new descriptors. Multi-level and -resolution LBP(MPR_LBP), multi-level and -band LBP (MPB_LBP), and multi-level, -band and -resolution LBP (MPBR_LBP) are our proposed descriptors that are applied to unsupervised classification of texture images on Outex, UIUC, and Scene-13 data sets. Experimental results show that the proposed descriptors not only demonstrate acceptable texture classification accuracy with significantly lower feature length, but also they are more noise-robustness to a number of recent state-of-the-art LBP extensions.

  14. Phylogenetic and phylogenomic overview of the Polyporales.

    PubMed

    Binder, Manfred; Justo, Alfredo; Riley, Robert; Salamov, Asaf; Lopez-Giraldez, Francesc; Sjkvist, Elisabet; Copeland, Alex; Foster, Brian; Sun, Hui; Larsson, Ellen; Larsson, Karl-Henrik; Townsend, Jeffrey; Grigoriev, Igor V; Hibbett, David S

    2013-01-01

    We present a phylogenetic and phylogenomic overview of the Polyporales. The newly sequenced genomes of Bjerkandera adusta, Ganoderma sp., and Phlebia brevispora are introduced and an overview of 10 currently available Polyporales genomes is provided. The new genomes are 39 500 000-49 900 00 bp and encode for 12 910-16 170 genes. We searched available genomes for single-copy genes and performed phylogenetic informativeness analyses to evaluate their potential for phylogenetic systematics of the Polyporales. Phylogenomic datasets (25, 71, 356 genes) were assembled for the 10 Polyporales species with genome data and compared with the most comprehensive dataset of Polyporales to date (six-gene dataset for 373 taxa, including taxa with missing data). Maximum likelihood and Bayesian phylogenetic analyses of genomic datasets yielded identical topologies, and the corresponding clades also were recovered in the 373-taxa dataset although with different support values in some datasets. Three previously recognized lineages of Polyporales, antrodia, core polyporoid and phlebioid clades, are supported in most datasets, while the status of the residual polyporoid clade remains uncertain and certain taxa (e.g. Gelatoporia, Grifola, Tyromyces) apparently do not belong to any of the major lineages of Polyporales. The most promising candidate single-copy genes are presented, and nodes in the Polyporales phylogeny critical for the suprageneric taxonomy of the order are identified and discussed. PMID:23935031

  15. Molecular Epidemiology of PRRSV: A Phylogenetic Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its first discovery two decades ago, porcine reproductive and respiratory syndrome virus (PRRSV) has been the subject of intensive research due to its huge impact on the worldwide swine industry. Thanks to phylogenetic analyses, much has been learned about the genetic diversity and evolution h...

  16. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a two-layer compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  17. Quantifying MCMC Exploration of Phylogenetic Tree Space

    PubMed Central

    Whidden, Chris; Matsen, Frederick A.

    2015-01-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. PMID:25631175

  18. Quantifying MCMC exploration of phylogenetic tree space.

    PubMed

    Whidden, Chris; Matsen, Frederick A

    2015-05-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. PMID:25631175

  19. Efficient and accurate fragmentation methods.

    PubMed

    Pruitt, Spencer R; Bertoni, Colleen; Brorsen, Kurt R; Gordon, Mark S

    2014-09-16

    Conspectus Three novel fragmentation methods that are available in the electronic structure program GAMESS (general atomic and molecular electronic structure system) are discussed in this Account. The fragment molecular orbital (FMO) method can be combined with any electronic structure method to perform accurate calculations on large molecular species with no reliance on capping atoms or empirical parameters. The FMO method is highly scalable and can take advantage of massively parallel computer systems. For example, the method has been shown to scale nearly linearly on up to 131?000 processor cores for calculations on large water clusters. There have been many applications of the FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to materials that are used as heterogeneous catalysts. The effective fragment potential (EFP) method is a model potential approach that is fully derived from first principles and has no empirically fitted parameters. Consequently, an EFP can be generated for any molecule by a simple preparatory GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been applied successfully to the study of liquid water, ?-stacking in substituted benzenes and in DNA base pairs, solvent effects on positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear excited state properties. The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions replace fully quantum mechanical calculations on fragment-fragment (dimer) interactions. The EFMO method is both more accurate and more computationally efficient than the most commonly used FMO implementation (FMO2), in which all dimers are explicitly included in the calculation. While the FMO2 method itself does not incorporate three-body interactions, such interactions are included in the EFMO method via the EFP self-consistent induction term. Several applications (ranging from clusters to proteins) of the three methods are discussed to demonstrate their efficacy. The EFMO method will be especially exciting once the analytic gradients have been completed, because this will allow geometry optimizations, the prediction of vibrational spectra, reaction path following, and molecular dynamics simulations using the method. PMID:24810424

  20. [Phylogenetic thinking in the modern biology].

    PubMed

    Pavlinov, I Ia

    2007-01-01

    Any research activity is conducted within the framework of a cognitive situation which is defined by certain basic assumptions about ontology of the portion of the objective world under investigation. From the standpoint of the non-classical scientific epistemology, a part of that situation is constituted by personal knowledge which is formed by a set of thinking (cognitive) styles. The scholastic thinking existing in taxonomy and phylogenetics is considered as an example showing unavoidability of such styles in the natural history knowledge. It is initially rooted in the antic, mythological by its essence, persuasion of isomorphism between movements of the objective reality and of the mind. The instrumentalism entailed by scholastic thinking is based on the mythologeme according to which the "right method" par excellence can lead to the "right knowledge". That is why any disputes between different numerical methods of phylogenetic reconstructions are vain: their validity could be assessed not formally but within particular cognitive situations formed by particular basic models of the phylogenesis. Phylogenetic thinking is of the key importance in evolutionary biology and has great impact on various fields of biology based on it. It is pretty mythological because of non-observability of the phylogenesis: the latter is rather "thinked-in" in the objective world then is induced from the observed facts. It constitutes a part of the evolutionary thinking considering mainly macroevolutionary trends and stressing the initial causes in the structure of causal relations in the analyses of the diversity of organisms. The "tree thinking" of O'Hara is its rough operational equivalent. Relation between phylogenetic thinking and some other styles are considered, which are population, phenetic, typological, and epigenetic ("developmental" of O'Hara). Phylogenetic thinking makes it obliged inclusion of the initial causes in the explanatory models which underlie adaptive and functional peculiarities of organisms, as well as of the entire structure of the biodiversity. It manifests itself in such kind of models through uncovering the phylogenetic signal. This thinking style has great effect on understanding of the ontology of taxa and acknowledges the objective status of the phylogenetic pattern. It is intrinsically included in the argumentation schemes of constructional morphology, comparative phylogenetics. The central metaphor of the phylogenetics is the Tree of Life. Emagination of its unity and uniquiness is of naturphilosophical nature. From the contemporary epistemological standpoint, it should be considered as a generalization upon partial hypotheses of evolution of particular structures each corresponding to certain consideration aspect of the global phylogenesis. Acknowledging of multi-aspectness of the phylogenesis constitutes one of the important points of modern phylogenetic thinking. As different semogeneses are incompletely congruent, the Tree of Life is less certain than each of the initial hypotheses. Any attempt to make it more resolved would lead to its reduction to any of the particular semogenetic scheme (i.e. to a "gene tree") or to its "decay" into several trees each corresponding to a particular consideration aspect of the global Tree. PMID:17338264

  1. Cnidarian phylogenetic relationships as revealed by mitogenomics

    PubMed Central

    2013-01-01

    Background Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria. PMID:23302374

  2. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

    PubMed

    Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier

    2003-01-01

    The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com. PMID:12520017

  3. Analysis of the peroxiredoxin family: using active site structure and sequence information for global classification and residue analysis

    PubMed Central

    Nelson, Kimberly J.; Knutson, Stacy T.; Soito, Laura; Klomsiri, Chananat; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2010-01-01

    Peroxiredoxins (Prxs) are a widespread and highly expressed family of cysteine-based peroxidases that react very rapidly with H2O2, organic peroxides, and peroxynitrite. Correct subfamily classification has been problematic since Prx subfamilies are frequently not correlated with phylogenetic distribution and diverge in their preferred reductant, oligomerization state, and tendency towards overoxidation. We have developed a method that uses the Deacon Active Site Profiler (DASP) tool to extract functional site profiles from structurally characterized proteins, to computationally define subfamilies, and to identify new Prx subfamily members from GenBank(nr). For the 58 literature-defined Prx test proteins, 57 were correctly assigned and none were assigned to the incorrect subfamily. The >3500 putative Prx sequences identified were then used to analyze residue conservation in the active site of each Prx subfamily. Our results indicate that the existence and location of the resolving cysteine varies in some subfamilies (e.g. Prx5) to a greater degree than previously appreciated and that interactions at the A interface (common to Prx5, Tpx and higher order AhpC/Prx1 structures) are important for stabilization of the correct active site geometry. Interestingly, this method also allows us to further divide the AhpC/Prx1 into four groups that are correlated with functional characteristics. The DASP method provides more accurate subfamily classification than PSI-BLAST for members of the Prx family and can now readily be applied to other large protein families. PMID:21287625

  4. Identification and Classification of Rhizobia by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    PubMed Central

    Jia, Rui Zong; Zhang, Rong Juan; Wei, Qing; Chen, Wen Feng; Cho, Il Kyu; Chen, Wen Xin; Li, Qing X

    2015-01-01

    Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour. PMID:26500417

  5. Gallstone Classification in Western Countries.

    PubMed

    Cariati, Andrea

    2015-12-01

    In order to compare gallstone disease data from India and Asian countries with Western countries, it is fundamental to follow a common gallstone classification. Gallstone disease has afflicted humans since the time of Egyptian kings, and gallstones have been found during autopsies on mummies. Gallstone prevalence in adult population ranges from 10 to 15%. Gallstones in Western countries are distinguished into the following classes: cholesterol gallstones that contain more than 50% of cholesterol (nearly 75% of gallstones) and pigment gallstones that contain less than 30% of cholesterol by weight, which can be subdivided into black pigment gallstones and brown pigment gallstones. It has been shown that ultrastructural analysis with scanning electron microscopy is useful in the classification and study of pigment gallstones. Moreover, x-ray diffractometry analysis and infrared spectroscopy of gallstones are of fundamental importance for an accurate stone analysis. An accurate study of gallstones is useful to understand gallstone pathogenesis. In fact, bacteria are not important in cholesterol gallstone nucleation and growth, but they are important in brown pigment gallstone formation. On the contrary, calcium bilirubinate is fundamental in black pigment gallstone formation and probably also plays an important role in cholesterol gallstone nucleation and growth. PMID:26730029

  6. A new measure to study phylogenetic relations in the brown algal order Ectocarpales: the "codon impact parameter".

    PubMed

    Das, Smarajit; Chakrabarti, Jayprokas; Ghosh, Zhumur; Sahoo, Satyabrata; Mallick, Bibekanand

    2005-12-01

    We analyse forty-seven chloroplast genes of the large subunit of RuBisCO, from the algal order Ectocarpales, sourced from GenBank. Codon-usage weighted by the nucleotide base-bias defines our score called the codon-impact-parameter. This score is used to obtain phylogenetic relations amongst the 47 Ectocarpales. We compare our classification with the ones done earlier. PMID:16388144

  7. Missing Data and Influential Sites: Choice of Sites for Phylogenetic Analysis Can Be As Important As Taxon Sampling and Model Choice

    PubMed Central

    Shavit Grievink, Liat; Penny, David; Holland, Barbara R.

    2013-01-01

    Phylogenetic studies based on molecular sequence alignments are expected to become more accurate as the number of sites in the alignments increases. With the advent of genomic-scale data, where alignments have very large numbers of sites, bootstrap values close to 100% and posterior probabilities close to 1 are the norm, suggesting that the number of sites is now seldom a limiting factor on phylogenetic accuracy. This provokes the question, should we be fussy about the sites we choose to include in a genomic-scale phylogenetic analysis? If some sites contain missing data, ambiguous character states, or gaps, then why not just throw them away before conducting the phylogenetic analysis? Indeed, this is exactly the approach taken in many phylogenetic studies. Here, we present an example where the decision on how to treat sites with missing data is of equal importance to decisions on taxon sampling and model choice, and we introduce a graphical method for illustrating this. PMID:23471508

  8. Acute pancreatitis: international classification and nomenclature.

    PubMed

    Bollen, T L

    2016-02-01

    The incidence of acute pancreatitis (AP) is increasing and it is associated with a major healthcare concern. New insights in the pathophysiology, better imaging techniques, and novel treatment options for complicated AP prompted the update of the 1992 Atlanta Classification. Updated nomenclature for pancreatic collections based on imaging criteria is proposed. Adoption of the newly Revised Classification of Acute Pancreatitis 2012 by radiologists should help standardise reports and facilitate accurate conveyance of relevant findings to referring physicians involved in the care of patients with AP. This review will clarify the nomenclature of pancreatic collections in the setting of AP. PMID:26602933

  9. Hydrometor classification from 2 dimensional videodisdrometer data

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Monhart, S.; Schneebeli, M.; Raupach, T.; Berne, A.

    2014-02-01

    This paper presents a hydrometeor classification technique based on two-dimensional video disdrometer (2DVD) data. The method provides an estimate of the dominant hydrometeor type falling over time intervals of 60 s during precipitation, using as input the statistical behavior of a set of particle descriptors, calculated for each particle image. The employed supervised algorithm is a support vector machine (SVM), trained over precipitation time steps labeled by visual inspection. In this way, 8 dominant hydrometeor classes could be discriminated. The algorithm achieves accurate classification performances, with median overall accuracies (Cohen's K) of 90% (0.88), and with accuracies higher than 84% for each hydrometeor class.

  10. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi

    PubMed Central

    Telleria, Jenny; Biron, David G.; Brizard, Jean-Paul; Demettre, Edith; Sveno, Martial; Barnab, Christian; Ayala, Francisco J.; Tibayrenc, Michel

    2010-01-01

    We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzisubspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10?4) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens. PMID:21059959

  11. Systematics of Euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences.

    PubMed

    Desfeux, C; Lejeune, B

    1996-04-01

    The generic boundaries within the sub-family Silenoideae (Caryophyllaceae), and especially within the complex Silene-Lychnis-Melandrium have long been controversial. These 3 genes are now grouped in a single genus: Silene. In order to test the monophyly of this genus and to clarify intra-generic phylogenetic relationships, we compared ITS sequences of 22 species of Euromediterranean Silene chosen throughout the classification, and 4 putative outgroup species. The genus Silene in its current circumscription formed a well-supported monophyletic group. Lychnis and Melandrium species are scattered within the genus Silene. The monotypic genus Cucubalus also fell within the Silene clade. PMID:18383631

  12. Draft genome sequences for the obligate bacterial predators Bacteriovorax spp. of four phylogenetic clusters

    PubMed Central

    2015-01-01

    Bacteriovorax is the halophilic genus of the obligate bacterial predators, Bdellovibrio and like organisms. The predators are known for their unique biphasic life style in which they search for and attack their prey in the free living phase; penetrate, grow, multiply and lyse the prey in the intraperiplasmic phase. Bacteriovorax isolates representing four phylogenetic clusters were selected for genomic sequencing. Only one type strain genome has been published so far from the genus Bacteriovorax. We report the genomes from non-type strains isolated from aquatic environments. Here we describe and compare the genomic features of the four strains, together with the classification and annotation. PMID:26203326

  13. Post-Mortem evaluation of amyloid-dopamine terminal positron emission tomography dementia classifications.

    PubMed

    Albin, Roger L; Fisher-Hubbard, Amanda; Shanmugasundaram, Krithika; Koeppe, Robert A; Burke, James F; Camelo-Piragua, Sandra; Lieberman, Andrew P; Giordani, Bruno; Frey, Kirk A

    2015-11-01

    Clinical classification of early dementia and mild cognitive impairment (MCI) is imprecise. We reported previously that molecular imaging classification of early dementia and MCI with dual amyloid and dopamine terminal positron emission tomography differs significantly from expert clinical classification. We now report pathological diagnoses in a substantial subset of our previously imaged subjects. Among 36 subjects coming to autopsy, imaging classifications and pathological diagnosis were concordant in 33 cases (??=?0.85). This approach enhanced specificity of Alzheimer's disease diagnosis. The strong concordance of imaging-based classifications and pathological diagnoses suggests that this imaging approach will be useful in establishing more accurate and convenient classification biomarkers for dementia research. PMID:26183692

  14. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  15. A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex

    PubMed Central

    Berge, Odile; Monteil, Caroline L.; Bartoli, Claudia; Chandeysson, Charlotte; Guilbaud, Caroline; Sands, David C.; Morris, Cindy E.

    2014-01-01

    The Pseudomonas syringae complex is composed of numerous genetic lineages of strains from both agricultural and environmental habitats including habitats closely linked to the water cycle. The new insights from the discovery of this bacterial species in habitats outside of agricultural contexts per se have led to the revelation of a wide diversity of strains in this complex beyond what was known from agricultural contexts. Here, through Multi Locus Sequence Typing (MLST) of 216 strains, we identified 23 clades within 13 phylogroups among which the seven previously described P. syringae phylogroups were included. The phylogeny of the core genome of 29 strains representing nine phylogroups was similar to the phylogeny obtained with MLST thereby confirming the robustness of MLST-phylogroups. We show that phenotypic traits rarely provide a satisfactory means for classification of strains even if some combinations are highly probable in some phylogroups. We demonstrate that the citrate synthase (cts) housekeeping gene can accurately predict the phylogenetic affiliation for more than 97% of strains tested. We propose a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. Finally, our analysis leads to predictions about the diversity of P. syringae that is yet to be discovered. We present here an expandable framework mainly based on cts genetic analysis into which more diversity can be integrated. PMID:25184292

  16. A phylogenetic analysis of the brassicales clade based on an alignment-free sequence comparison method.

    PubMed

    Hatje, Klas; Kollmar, Martin

    2012-01-01

    Phylogenetic analyses reveal the evolutionary derivation of species. A phylogenetic tree can be inferred from multiple sequence alignments of proteins or genes. The alignment of whole genome sequences of higher eukaryotes is a computational intensive and ambitious task as is the computation of phylogenetic trees based on these alignments. To overcome these limitations, we here used an alignment-free method to compare genomes of the Brassicales clade. For each nucleotide sequence a Chaos Game Representation (CGR) can be computed, which represents each nucleotide of the sequence as a point in a square defined by the four nucleotides as vertices. Each CGR is therefore a unique fingerprint of the underlying sequence. If the CGRs are divided by grid lines each grid square denotes the occurrence of oligonucleotides of a specific length in the sequence (Frequency Chaos Game Representation, FCGR). Here, we used distance measures between FCGRs to infer phylogenetic trees of Brassicales species. Three types of data were analyzed because of their different characteristics: (A) Whole genome assemblies as far as available for species belonging to the Malvidae taxon. (B) EST data of species of the Brassicales clade. (C) Mitochondrial genomes of the Rosids branch, a supergroup of the Malvidae. The trees reconstructed based on the Euclidean distance method are in general agreement with single gene trees. The Fitch-Margoliash and Neighbor joining algorithms resulted in similar to identical trees. Here, for the first time we have applied the bootstrap re-sampling concept to trees based on FCGRs to determine the support of the branchings. FCGRs have the advantage that they are fast to calculate, and can be used as additional information to alignment based data and morphological characteristics to improve the phylogenetic classification of species in ambiguous cases. PMID:22952468

  17. A Phylogenetic Analysis of the Brassicales Clade Based on an Alignment-Free Sequence Comparison Method

    PubMed Central

    Hatje, Klas; Kollmar, Martin

    2012-01-01

    Phylogenetic analyses reveal the evolutionary derivation of species. A phylogenetic tree can be inferred from multiple sequence alignments of proteins or genes. The alignment of whole genome sequences of higher eukaryotes is a computational intensive and ambitious task as is the computation of phylogenetic trees based on these alignments. To overcome these limitations, we here used an alignment-free method to compare genomes of the Brassicales clade. For each nucleotide sequence a Chaos Game Representation (CGR) can be computed, which represents each nucleotide of the sequence as a point in a square defined by the four nucleotides as vertices. Each CGR is therefore a unique fingerprint of the underlying sequence. If the CGRs are divided by grid lines each grid square denotes the occurrence of oligonucleotides of a specific length in the sequence (Frequency Chaos Game Representation, FCGR). Here, we used distance measures between FCGRs to infer phylogenetic trees of Brassicales species. Three types of data were analyzed because of their different characteristics: (A) Whole genome assemblies as far as available for species belonging to the Malvidae taxon. (B) EST data of species of the Brassicales clade. (C) Mitochondrial genomes of the Rosids branch, a supergroup of the Malvidae. The trees reconstructed based on the Euclidean distance method are in general agreement with single gene trees. The FitchMargoliash and Neighbor joining algorithms resulted in similar to identical trees. Here, for the first time we have applied the bootstrap re-sampling concept to trees based on FCGRs to determine the support of the branchings. FCGRs have the advantage that they are fast to calculate, and can be used as additional information to alignment based data and morphological characteristics to improve the phylogenetic classification of species in ambiguous cases. PMID:22952468

  18. [It is normal for classification approaches to be diverse].

    PubMed

    Pavlinov, I Ia

    2003-01-01

    It is asserted that the postmodern concept of science, unlike the classical ideal, presumes necessary existence of various classification approaches (schools) in taxonomy, each corresponding to a particular aspect of consideration of the "taxic reality". They are set up by diversity of initial epistemological and ontological backgrounds which fix in a certain way a) fragments of that reality allowable for investigation, and b) allowable methods of exploration of the fragments being fixed. It makes it possible to define a taxonomic school as a unity of the above backgrounds together with consideration aspect delimited by them. Two extreme positions of these backgrounds could be recognized in recent taxonomic thought. One of them follows the scholastic tradition of elaboration of a formal and, hence, universal classificatory method ("new typology", numerical phenetics, pattern cladistics). Another one asserts dependence of classificatory approach on the judgment of the nature of taxic reality (natural philosophy, evolutionary schools of taxonomy). Some arguments are put forward in favor of significant impact of evolutionary thinking onto the theory of modern taxonomy. This impact is manifested by the correspondence principle which makes classificatory algorithms (and hence resulting classifications) depending onto initial assumptions about causes of taxic diversity. It is asserted that criteria of "quality" of both classifications proper and classificatory methods can be correctly formulated within the framework of a particular consideration aspect only. For any group of organisms, several particular classifications are rightful to exist, each corresponding to a particular consideration aspect. These classifications could not be arranged along the "better-worse" scale, as they reflect different fragments of the taxic reality. Their mutual interpretation depends on degree of compatibility of background assumptions and of the tasks being resolved. Extensionally, classifications are compatible as much as they coincide by context and hierarchical structure of included taxa. Intentionally, typological classifications are compatible if included taxa are comparable by their diagnoses, while phylogenetic classifications are compatible if the included taxa are ascribed monophyletic status. A brief consideration is given to the "new phylogenetics" (= "genophyletics") as to a classificatory approach aimed at elaboration of parsimonious phylogenetic hypotheses based on molecular biology data and employing numerical methods of cladistic analysis. This approach is shown to borrows some phenetic ideas and revives scholastic principle of unified classificatory basis. It is supposed that, in a time, biological classification would get escaping from plethora of positivistic ideas (including those being developed by nowaday cladistics) and would assimilate (revive) more actively holistic worldview. PMID:14524225

  19. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195199)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  20. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195193)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  1. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195200)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  2. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195201)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  3. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195195)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  4. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195202)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  5. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195198)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  6. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195194)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  7. MOLECULAR PHYLOGENETIC RELATIONSHIPS AMONG DIABROTICA SPECIES (ACCESSION NO. AF195196)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn rootworms of the genus Diabrotica (Coleoptera: Chrysomelidae) are the most serious pest of corn in midwestern United States. Despite their economic importance, phylogenetic relationships within the genus remain unclear. Phylogenetic analysis of five Diabrotica was undertaken using DNA sequences...

  8. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids

    PubMed Central

    Jansen, Robert K; Kaittanis, Charalambos; Saski, Christopher; Lee, Seung-Bum; Tomkins, Jeffrey; Alverson, Andrew J; Daniell, Henry

    2006-01-01

    Background The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. Results The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place Cucumis as sister to the Myrtales and therefore do not support the monophyly of the eurosid I clade. Conclusion Phylogenies based on DNA sequences from complete chloroplast genome sequences provide strong support for the position of the Vitaceae as the earliest diverging lineage of rosids. Our phylogenetic analyses support recent assertions that inadequate taxon sampling and incorrect model specification for concatenated multi-gene data sets can mislead phylogenetic inferences when using whole chloroplast genomes for phylogeny reconstruction. PMID:16603088

  9. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  10. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. PMID:26894444

  11. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  12. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  13. Security classification of information

    SciTech Connect

    Quist, A.S.

    1993-04-01

    This document is the second of a planned four-volume work that comprehensively discusses the security classification of information. The main focus of Volume 2 is on the principles for classification of information. Included herein are descriptions of the two major types of information that governments classify for national security reasons (subjective and objective information), guidance to use when determining whether information under consideration for classification is controlled by the government (a necessary requirement for classification to be effective), information disclosure risks and benefits (the benefits and costs of classification), standards to use when balancing information disclosure risks and benefits, guidance for assigning classification levels (Top Secret, Secret, or Confidential) to classified information, guidance for determining how long information should be classified (classification duration), classification of associations of information, classification of compilations of information, and principles for declassifying and downgrading information. Rules or principles of certain areas of our legal system (e.g., trade secret law) are sometimes mentioned to .provide added support to some of those classification principles.

  14. Cloud field classification based on textural features

    NASA Technical Reports Server (NTRS)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.

  15. Consensus Protein Design Without Phylogenetic Bias

    PubMed Central

    Jckel, Christian; Bloom, Jesse D; Kast, Peter; Arnold, Frances H; Hilvert, Donald

    2010-01-01

    Consensus design is an appealing strategy for the stabilization of proteins. It exploits amino acid conservation in sets of homologous proteins to identify likely beneficial mutations. Nevertheless, its success depends on the phylogenetic diversity of the sequence set available. Here we show that randomization of a single protein represents a reliable alternative source of sequence diversity essentially free of phylogenetic bias. A small number of functional protein sequences selected from binary-patterned libraries suffices as input for consensus design of active enzymes that are easier to produce and substantially more stable than individual members of the starting data set. Although catalytic activity correlates less consistently with sequence conservation in these extensively randomized proteins, less extreme mutagenesis strategies might be adopted in practice to augment stability while maintaining function. PMID:20433850

  16. Morphological Phylogenetics in the Genomic Age.

    PubMed

    Lee, Michael S Y; Palci, Alessandro

    2015-10-01

    Evolutionary trees underpin virtually all of biology, and the wealth of new genomic data has enabled us to reconstruct them with increasing detail and confidence. While phenotypic (typically morphological) traits are becoming less important in reconstructing evolutionary trees, they still serve vital and unique roles in phylogenetics, even for living taxa for which vast amounts of genetic information are available. Morphology remains a powerful independent source of evidence for testing molecular clades, and - through fossil phenotypes - the primary means for time-scaling phylogenies. Morphological phylogenetics is therefore vital for transforming undated molecular topologies into dated evolutionary trees. However, if morphology is to be employed to its full potential, biologists need to start scrutinising phenotypes in a more objective fashion, models of phenotypic evolution need to be improved, and approaches for analysing phenotypic traits and fossils together with genomic data need to be refined. PMID:26439355

  17. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    PubMed

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable. PMID:18436782

  18. An Integrated Perspective on Phylogenetic Workflows.

    PubMed

    Guang, August; Zapata, Felipe; Howison, Mark; Lawrence, Charles E; Dunn, Casey W

    2016-02-01

    Molecular phylogenetics is the study of evolutionary relationships between biological sequences, often to infer the evolutionary relationships of organisms. These studies require many analysis components, including sequence assembly, identification of homologous sequences, gene tree inference, and species tree inference. At present, each component is usually treated as a single step in a linear analysis, where the output of each component is passed as input to the next as a point estimate. Here we outline a generative model that helps clarify assumptions that are implicit to phylogenetic workflows, focusing on the assumption of low relative entropy. This perspective unifies currently disparate advances, and will help investigators evaluate which steps would benefit the most from additional computation and future methods development. PMID:26775796

  19. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  20. Phylogenetic diversity of termite gut spirochaetes.

    PubMed

    Lilburn, T G; Schmidt, T M; Breznak, J A

    1999-08-01

    A molecular phylogenetic analysis was done of not-yet-cultured spirochaetes inhabiting the gut of the termite, Reticulitermes flavipes (Kollar). Ninety-eight clones of near-full-length spirochaetal 16S rDNA genes were classified by ARDRA pattern and by partial sequencing. All clones grouped within the genus Treponema, and at least 21 new species of Treponema were recognized within R. flavipes alone. Analysis of 190 additional clones from guts of Coptotermes formosanus Shiraki and Zootermopsis angusticollis (Hagen), as well as published data on clones from Cryptotermes domesticus (Haviland), Mastotermes darwiniensis Froggatt, Nasutitermes lujae (Wasmann) and Reticulitermes speratus(Kolbe), revealed a similar level of novel treponemal phylogenetic diversity in these representatives of five of the seven termite families. None of the clones was closely related (i.e. all bore < or = 91% sequence similarity) to any previously recognized treponeme. The data also revealed the existence of two major phylogenetic groups of treponemes: one containing all of the currently known isolates of Treponema and a large number of phylotypes from the human gingival crevice, but only a minority of the termite gut spirochaete clones; another containing the majority of termite spirochaete clones and two Spirochaeta (S. caldaria and S. stenostrepta), which, although free living, group within the genus Treponema on the basis of 16S rRNA sequence. Signature nucleotides that almost perfectly distinguished the latter group, herein referred to as the 'termite cluster', occurred at the following (E. coli numbering) positions: 289-G x C-311; A at 812; and an inserted nucleotide at 1273. The emerging picture is that the long-recognized and striking morphological diversity of termite gut spirochaetes is paralleled by their phylogenetic diversity and may reflect substantial physiological diversity as well. PMID:11207751

  1. A phylogenetic analysis of Aquifex pyrophilus

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Olsen, G. J.; Stetter, K. O.; Woese, C. R.

    1992-01-01

    The 16S rRNA of the bacterion Aquifex pyrophilus, a microaerophilic, oxygen-reducing hyperthermophile, has been sequenced directly from the the PCR amplified gene. Phylogenetic analyses show the Aq. pyrophilus lineage to be probably the deepest (earliest) in the (eu)bacterial tree. The addition of this deep branching to the bacterial tree further supports the argument that the Bacteria are of thermophilic ancestry.

  2. Phylogenetic signal in amphibian sensitivity to copper sulfate relative to experimental temperature.

    PubMed

    Chiari, Ylenia; Glaberman, Scott; Serén, Nina; Carretero, Miguel A; Capellini, Isabella

    2015-04-01

    The release of large quantities of chemicals into the environment represents a major source of environmental disturbance. In recent years, the focus of ecotoxicology has shifted from describing the effects of chemical contaminants on individual species to developing more integrated approaches for predicting and evaluating long term effects of chemicals across species and ecosystems. Traditional ecotoxicology is typically based on data of sensitivity to a contaminant of a few surrogate species and often considers little variability in chemical sensitivity within and among taxonomic groups. This approach assumes that evolutionary history and phylogenetic relatedness among species have little or no impact on species' sensitivity to chemical compounds. Few studies have tested this assumption. Using phylogenetic comparative methods and published data for amphibians, we show that sensitivity to copper sulfate, a commonly used pesticide, exhibits a strong phylogenetic signal when controlling for experimental temperature. Our results indicate that evolutionary history needs to be accounted for to make accurate predictions of amphibian sensitivity to this contaminant under different temperature scenarios. Since physiological and metabolic traits showing high phylogenetic signal likely underlie variation in species sensitivity to chemical stressors, future studies should evaluate and predict species vulnerability to pollutants using evolutionarily informed approaches. PMID:26214907

  3. Sequence exploration reveals information bias among molecular markers used in phylogenetic reconstruction for Colletotrichum species.

    PubMed

    Rampersad, Sephra N; Hosein, Fazeeda N; Carrington, Christine Vf

    2014-01-01

    The Colletotrichum gloeosporioides species complex is among the most destructive fungal plant pathogens in the world, however, identification of isolates of quarantine importance to the intra-specific level is confounded by a number of factors that affect phylogenetic reconstruction. Information bias and quality parameters were investigated to determine whether nucleotide sequence alignments and phylogenetic trees accurately reflect the genetic diversity and phylogenetic relatedness of individuals. Sequence exploration of GAPDH, ACT, TUB2 and ITS markers indicated that the query sequences had different patterns of nucleotide substitution but were without evidence of base substitution saturation. Regions of high entropy were much more dispersed in the ACT and GAPDH marker alignments than for the ITS and TUB2 markers. A discernible bimodal gap in the genetic distance frequency histograms was produced for the ACT and GAPDH markers which indicated successful separation of intra- and inter-specific sequences in the data set. Overall, analyses indicated clear differences in the ability of these markers to phylogenetically separate individuals to the intra-specific level which coincided with information bias. PMID:25392785

  4. The Independent Evolution Method Is Not a Viable Phylogenetic Comparative Method

    PubMed Central

    2015-01-01

    Phylogenetic comparative methods (PCMs) use data on species traits and phylogenetic relationships to shed light on evolutionary questions. Recently, Smaers and Vinicius suggested a new PCM, Independent Evolution (IE), which purportedly employs a novel model of evolution based on Felsenstein’s Adaptive Peak Model. The authors found that IE improves upon previous PCMs by producing more accurate estimates of ancestral states, as well as separate estimates of evolutionary rates for each branch of a phylogenetic tree. Here, we document substantial theoretical and computational issues with IE. When data are simulated under a simple Brownian motion model of evolution, IE produces severely biased estimates of ancestral states and changes along individual branches. We show that these branch-specific changes are essentially ancestor-descendant or “directional” contrasts, and draw parallels between IE and previous PCMs such as “minimum evolution”. Additionally, while comparisons of branch-specific changes between variables have been interpreted as reflecting the relative strength of selection on those traits, we demonstrate through simulations that regressing IE estimated branch-specific changes against one another gives a biased estimate of the scaling relationship between these variables, and provides no advantages or insights beyond established PCMs such as phylogenetically independent contrasts. In light of our findings, we discuss the results of previous papers that employed IE. We conclude that Independent Evolution is not a viable PCM, and should not be used in comparative analyses. PMID:26683838

  5. Classification images: A review.

    PubMed

    Murray, Richard F

    2011-01-01

    Classification images have recently become a widely used tool in visual psychophysics. Here, I review the development of classification image methods over the past fifteen years. I provide some historical background, describing how classification images and related methods grew out of established statistical and mathematical frameworks and became common tools for studying biological systems. I describe key developments in classification image methods: use of optimal weighted sums based on the linear observer model, formulation of classification images in terms of the generalized linear model, development of statistical tests, use of priors to reduce dimensionality, methods for experiments with more than two response alternatives, a variant using multiplicative noise, and related methods for examining nonlinearities in visual processing, including second-order Volterra kernels and principal component analysis. I conclude with a selective review of how classification image methods have led to substantive findings in three representative areas of vision research, namely, spatial vision, perceptual organization, and visual search. PMID:21536726

  6. DNA barcoding and phylogenetic relationships in Anatidae.

    PubMed

    Huang, Zuhao; Yang, Chengzhong; Ke, Dianhua

    2016-03-01

    Mitochondrial cytochrome c oxidase subunit I (COI) has been used as a powerful marker in a variety of phylogenetic studies. According to studies of bird species, the 694-bp sequence of the mitochondrial gene encoding COI is extremely useful for species identification and phylogeny. In the present study, we analyzed the COI barcodes of 79 species from 26 genera belonging to the Anatidae family. Sixty-six species (83.54%) of the species were identified correctly from their DNA barcodes. The remaining 13 species shared barcodes sequences with closely related species. Kimura two-parameter (K2P) distances were calculated between barcodes. The average genetic distance between species was 41 times higher compared to the average genetic distance within species. Neighbor-joining method was used to construct a phylogenetic tree, which grouped all of the genera into three divergent clades. Dendrocygna and Nomonyx + Oxyura were identified as early offshoots of the Anatidae. All the remaining taxa fell into two clades that correspond to the two subfamilies Anserinae and Anatiane. Based on our results, DNA barcoding is an effective molecular tool for Anatidae species identification and phylogenetic inference. PMID:24938090

  7. The phylogenetic affinities of the extinct glyptodonts.

    PubMed

    Delsuc, Frédéric; Gibb, Gillian C; Kuch, Melanie; Billet, Guillaume; Hautier, Lionel; Southon, John; Rouillard, Jean-Marie; Fernicola, Juan Carlos; Vizcaíno, Sergio F; MacPhee, Ross D E; Poinar, Hendrik N

    2016-02-22

    Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition [1] were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies [2]). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved [3,4]. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae [5]. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age. PMID:26906483

  8. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The GelfandGhosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  9. Phylogenetic Stochastic Mapping Without Matrix Exponentiation

    PubMed Central

    Irvahn, Jan; Minin, Vladimir N.

    2014-01-01

    Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812

  10. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastin; Frey, Amy; Alfaro-Nez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. PMID:22750111

  11. A consistent phylogenetic backbone for the fungi.

    PubMed

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-05-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data-a common practice in phylogenomic analyses-introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  12. A Consistent Phylogenetic Backbone for the Fungi

    PubMed Central

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded dataa common practice in phylogenomic analysesintroduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  13. New substitution models for rooting phylogenetic trees

    PubMed Central

    Williams, Tom A.; Heaps, Sarah E.; Cherlin, Svetlana; Nye, Tom M. W.; Boys, Richard J.; Embley, T. Martin

    2015-01-01

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. PMID:26323766

  14. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families

    PubMed Central

    Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C.; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A.G.; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis; Sipman, Harrie J.M.; Burgaz, Ana Rosa; Thell, Arne; Passo, Alfredo; Myllys, Leena; Goward, Trevor; Fernández-Brime, Samantha; Hestmark, Geir; Lendemer, James; Lumbsch, H. Thorsten; Schmull, Michaela; Schoch, Conrad; Sérusiaux, Emmanuël; Maddison, David R.; Arnold, A. Elizabeth; Lutzoni, François; Stenroos, Soili

    2014-01-01

    The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, ‘Candelariomycetidae’). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module (“Hypha”) of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach. PMID:24747130

  15. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families.

    PubMed

    Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A G; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis; Sipman, Harrie J M; Burgaz, Ana Rosa; Thell, Arne; Passo, Alfredo; Myllys, Leena; Goward, Trevor; Fernández-Brime, Samantha; Hestmark, Geir; Lendemer, James; Lumbsch, H Thorsten; Schmull, Michaela; Schoch, Conrad L; Sérusiaux, Emmanuël; Maddison, David R; Arnold, A Elizabeth; Lutzoni, François; Stenroos, Soili

    2014-10-01

    The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach. PMID:24747130

  16. Sea floor classification from airborne lidar data

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. Michael; Vahlberg, Claes; Axelsson, Andreas; Karlsson, Henrik; Jonsson, Peter

    2007-10-01

    Airborne depth sounding lidar has proven to be a valuable sensor for rapid and accurate sounding of shallow areas. The received lidar pulse echo contains information of the sea floor depth, but also other data can be extracted. We currently perform work on bottom classification and water turbidity estimation based on lidar data. In this paper we present the theoretical background and experimental results on bottom classification. The algorithms are developed from simulations and then tested on experimental data from the operational airborne lidar system Hawk Eye II. We compare the results to field data taken from underwater video recordings. Our results indicate that bottom classification from airborne lidar data can be made with high accuracy.

  17. AGN Zoo and Classifications of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  18. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723

  19. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach.

    PubMed

    Erickson, David L; Jones, Frank A; Swenson, Nathan G; Pei, Nancai; Bourg, Norman A; Chen, Wenna; Davies, Stuart J; Ge, Xue-Jun; Hao, Zhanqing; Howe, Robert W; Huang, Chun-Lin; Larson, Andrew J; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D; Fang-Sun, I; Wright, S Joseph; Wolf, Amy T; Ye, W; Xing, Dingliang; Zimmerman, Jess K; Kress, W John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723

  20. Evaluating Support for the Current Classification of Eukaryotic Diversity

    PubMed Central

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-01-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223

  1. Ultrahighly accurate 3D profilometer

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hideki; Yoshizumi, Keiichi; Takeuchi, Hiroyuki

    2005-02-01

    We have developed an Ultrahigh-Accurate 3-D Profilometer (UA3P), which, using a new, in-house-developed atomic force probe, has an accuracy of 10 nm. It is capable of measuring corners as small as 2 micro meter in radius and can cover an area up to 400 x 400 x 90 (mm), providing a powerful boost to nano-level processing. A commercial product was introduced in 1994. Examples of the key components made possible by this technology include aspherical lenses (used for a Blu-ray Disc device, a next-generation DVD, digital cameras, cellular phones, optical communications), free form lenses (used for frennel lens common to CD and DVD, laser printer lens, multi focus glass lens, cubic phase plate to extend depth of focus), gigabit semiconductor wafers, hard discs, air conditioner scroll vanes, DVC cylinders. The premiere ultra high-precision three-dimensional profilometer delivers superb performance using a variety of micro-measurements for a wide range of applications.

  2. An updated evolutionary classification of CRISPR-Cas systems.

    PubMed

    Makarova, Kira S; Wolf, Yuri I; Alkhnbashi, Omer S; Costa, Fabrizio; Shah, Shiraz A; Saunders, Sita J; Barrangou, Rodolphe; Brouns, Stan J J; Charpentier, Emmanuelle; Haft, Daniel H; Horvath, Philippe; Moineau, Sylvain; Mojica, Francisco J M; Terns, Rebecca M; Terns, Michael P; White, Malcolm F; Yakunin, Alexander F; Garrett, Roger A; van der Oost, John; Backofen, Rolf; Koonin, Eugene V

    2015-11-01

    The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized. PMID:26411297

  3. Classification of HIV-1 sequences using profile Hidden Markov Models.

    PubMed

    Dwivedi, Sanjiv K; Sengupta, Supratim

    2012-01-01

    Accurate classification of HIV-1 subtypes is essential for studying the dynamic spatial distribution pattern of HIV-1 subtypes and also for developing effective methods of treatment that can be targeted to attack specific subtypes. We propose a classification method based on profile Hidden Markov Model that can accurately identify an unknown strain. We show that a standard method that relies on the construction of a positive training set only, to capture unique features associated with a particular subtype, can accurately classify sequences belonging to all subtypes except B and D. We point out the drawbacks of the standard method; namely, an arbitrary choice of threshold to distinguish between true positives and true negatives, and the inability to discriminate between closely related subtypes. We then propose an improved classification method based on construction of a positive as well as a negative training set to improve discriminating ability between closely related subtypes like B and D. Finally, we show how the improved method can be used to accurately determine the subtype composition of Common Recombinant Forms of the virus that are made up of two or more subtypes. Our method provides a simple and highly accurate alternative to other classification methods and will be useful in accurately annotating newly sequenced HIV-1 strains. PMID:22623958

  4. Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry.

    PubMed

    Abreu, Lucas M; Moreira, Glucia M; Ferreira, Douglas; Rodrigues-Filho, Edson; Pfenning, Ludwig H

    2014-12-01

    We assessed the species diversity among 45 strains of Clonostachys from different substrates and localities in Brazil using molecular phylogenetics, and compared the results with the phenotypic classification of strains obtained from matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analyses were based on beta tubulin (Tub), ITS-LSU rDNA, and a combined Tub-ITS DNA dataset. MALDI-TOF MS analyses were performed using intact conidia and conidiophores of strains cultivated on oatmeal agar and 4% malt extract agar. Six known species were identified: Clonostachys byssicola, Clonostachys candelabrum, Clonostachys pseudochroleuca, Clonostachys rhizophaga, Clonostachys rogersoniana, and Clonostachys rosea. Two clades and two singleton lineages did not correspond to known species represented in the reference DNA dataset and were identified as Clonostachys sp. 1-4. Multivariate cluster analyses of MALDI-TOF MS data classified the strains into eight clusters and three singletons, corresponding to the ten identified species plus one additional cluster containing two strains of C. rogersoniana that split from the other co-specific strains. The consistent results of MALDI-TOF MS supported the identification of strains assigned to C. byssicola and C. pseudochroleuca, which did not form well supported clades in all phylogenetic analyses, but formed distinct clusters in the MALDI-TOF dendrograms. PMID:25457948

  5. DNA sequence support for a close phylogenetic relationship between some storks and New World vultures.

    PubMed Central

    Avise, J C; Nelson, W S; Sibley, C G

    1994-01-01

    Nucleotide sequences from the mitochondrial cytochrome b gene were used to address a controversial suggestion that New World vultures are related more closely to storks than to Old World vultures. Phylogenetic analyses of 1-kb sequences from 18 relevant avian species indicate that the similarities in morphology and behavior between New World and Old World vultures probably manifest convergent adaptations associated with carrion-feeding, rather than propinquity of descent. Direct sequence evidence for a close phylogenetic alliance between at least some New World vultures and storks lends support to conclusions reached previously from DNA.DNA hybridization methods and detailed morphology-based appraisals, and it illustrates how mistaken assumptions of homology for organismal adaptations can compromise biological classifications. However, there was a lack of significant resolution for most other branches in the cytochrome b phylogenetic reconstructions. This irresolution is most likely attributable to a close temporal clustering of nodes, rather than to ceiling effects (mutational saturation) producing an inappropriate window of resolution for the cytochrome b sequences. Images PMID:8197203

  6. mtDNA Diversity and Phylogenetic State of Korean Cattle Breed, Chikso

    PubMed Central

    Kim, Jae-Hwan; Byun, Mi Jeong; Kim, Myung-Jick; Suh, Sang Won; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Kim, Eun Sung; Yu, Dae Jung; Kim, Woo Hyun; Choi, Seong-Bok

    2013-01-01

    In order to analyze the genetic diversity and phylogenetic status of the Korean Chikso breed, we determined sequences of mtDNA cytochrome b (cyt b) gene and performed phylogenetic analysis using 239 individuals from 5 Chikso populations. Five non-synonymous mutations of a total of 15 polymorphic sites were identified among 239 cyt b coding sequences. Thirteen haplotypes were defined, and haplotype diversity was 0.4709 ranging from 0.2577 to 0.6114. Thirty-five haplotypes (C1C35) were classified among 9 Asia and 3 European breeds. C2 was a major haplotype that contained 206 sequences (64.6%) from all breeds used. C3C13 haplotypes were Chikso-specific haplotypes. C1 and C2 haplotypes contained 80.5% of cyt b sequences of Hanwoo, Yanbian, Zaosheng and JB breeds. In phylogenetic analyses, the Chikso breed was contained into B. taurus lineage and was genetically more closely related to two Chinese breeds than to Korean brown cattle, Hanwoo. These results suggest that Chikso and Hanwoo have a genetic difference based on the mtDNA cyt b gene as well as their coat color, sufficient for classification as a separate breed. PMID:25049772

  7. Molecular phylogenetics and historical biogeography amid shifting continents in the cockles and giant clams (Bivalvia: Cardiidae).

    PubMed

    Herrera, Nathanael D; Ter Poorten, Jan Johan; Bieler, Rüdiger; Mikkelsen, Paula M; Strong, Ellen E; Jablonski, David; Steppan, Scott J

    2015-12-01

    Reconstructing historical biogeography of the marine realm is complicated by indistinct barriers and, over deeper time scales, a dynamic landscape shaped by plate tectonics. Here we present the most extensive examination of model-based historical biogeography among marine invertebrates to date. We conducted the largest phylogenetic and molecular clock analyses to date for the bivalve family Cardiidae (cockles and giant clams) with three unlinked loci for 110 species representing 37 of the 50 genera. Ancestral ranges were reconstructed using the dispersal-extinction-cladogenesis (DEC) method with a time-stratified paleogeographic model wherein dispersal rates varied with shifting tectonics. Results were compared to previous classifications and the extensive paleontological record. Six of the eight prior subfamily groupings were found to be para- or polyphyletic. Cardiidae originated and subsequently diversified in the tropical Indo-Pacific starting in the Late Triassic. Eastern Atlantic species were mainly derived from the tropical Indo-Mediterranean region via the Tethys Sea. In contrast, the western Atlantic fauna was derived from Indo-Pacific clades. Our phylogenetic results demonstrated greater concordance with geography than did previous phylogenies based on morphology. Time-stratifying the DEC reconstruction improved the fit and was highly consistent with paleo-ocean currents and paleogeography. Lastly, combining molecular phylogenetics with a rich and well-documented fossil record allowed us to test the accuracy and precision of biogeographic range reconstructions. PMID:26234273

  8. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers

    PubMed Central

    Hu, Lifang; Liu, Shiqiang

    2011-01-01

    Members of the ERF transcription-factor family participate in a number of biological processes, viz., responses to hormones, adaptation to biotic and abiotic stress, metabolism regulation, beneficial symbiotic interactions, cell differentiation and developmental processes. So far, no tissue-expression profile of any cucumber ERF protein has been reported in detail. Recent completion of the cucumber full-genome sequence has come to facilitate, not only genome-wide analysis of ERF family members in cucumbers themselves, but also a comparative analysis with those in Arabidopsis and rice. In this study, 103 hypothetical ERF family genes in the cucumber genome were identified, phylogenetic analysis indicating their classification into 10 groups, designated I to X. Motif analysis further indicated that most of the conserved motifs outside the AP2/ERF domain, are selectively distributed among the specific clades in the phylogenetic tree. From chromosomal localization and genome distribution analysis, it appears that tandem-duplication may have contributed to CsERF gene expansion. Intron/exon structure analysis indicated that a few CsERFs still conserved the former intron-position patterns existent in the common ancestor of monocots and eudicots. Expression analysis revealed the widespread distribution of the cucumber ERF gene family within plant tissues, thereby implying the probability of their performing various roles therein. Furthermore, members of some groups presented mutually similar expression patterns that might be related to their phylogenetic groups. PMID:22215967

  9. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  10. Molecular phylogenetic analysis of mudflat snails (Gastropoda: Euthyneura: Amphiboloidea) supports an Australasian centre of origin.

    PubMed

    Golding, Rosemary E

    2012-04-01

    Amphiboloidea is a small but widespread group of snails found exclusively, and often abundantly, in mudflat and associated salt marsh or mangrove habitat. This study uses molecular data from three loci (COI, 16S and 28S) to infer phylogenetic relationships in Amphiboloidea and examine its position in Euthyneura. All but two of the named extant species of Amphiboloidea and additional undescribed taxa from across Southeast Asia and the Arabian Gulf were sampled. In contrast to the current morphology-based classification dividing Amphiboloidea into three families, analysis of molecular data supports revision of the classification to comprise two families. Maningrididae is a monotypic family basal to Amphibolidae, which is revised to comprise three subfamilies: Amphibolinae, Phallomedusinae and Salinatorinae. Sequence divergence between Asian populations of Naranjia is relatively large and possibly indicative of species complexes divergent across the Strait of Malacca. Salinatorrosacea and Salinator burmana do not cluster with other Salinator species, and require generic reassignment. In addition, sequences were obtained from an undescribed species of Lactiforis from the Malay Peninsula. Reconstruction of ancestral distributions indicates a plesiomorphic distribution and centre of origin in Australasia, with two genera subsequently diversifying throughout Asia. Increasing the sampling density of amphiboloid taxa in a phylogenetic analysis of Euthyneura did not resolve the identity of the sister taxon to Amphibolidae, but confirmed its inclusion in Pulmonata/Panpulmonata. PMID:22210412

  11. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA.

    PubMed

    Lee, S; Wen, J

    2001-01-01

    The economically important plum or cherry genus (PRUNUS:) and the subfamily Amygdaloideae of the Rosaceae have a controversial taxonomic history due to the lack of a phylogenetic framework. Phylogenetic analysis using the ITS sequences of nuclear ribosomal DNA (nrDNA) was conducted to construct the evolutionary history and evaluate the historical classifications of PRUNUS: and the Amygdaloideae. The analyses suggest two major groups within the Amygdaloideae: (1) PRUNUS: s.l. (sensu lato) and MADDENIA:, and (2) EXOCHORDA:, Oemleria, and PRINSEPIA: The ITS phylogeny supports the recent treatment of including EXOCHORDA: (formerly in the Spiraeoideae) in the Amygdaloideae. MADDENIA: is found to be nested within PRUNUS: s.l. in the parsimony and distance analyses, but basal to PRUNUS: s.l. in the maximum likelihood analysis. Within PRUNUS:, two major groups are recognizable: (1) the AMYGDALUS:-PRUNUS: group, and (2) the CERASUS:-LAUROCERASUS:-PADUS: group. The clades in the ITS phylogeny are not congruent with most subgeneric groups in the widely used classification of PRUNUS: by Rehder. A broadly defined PRUNUS: is supported. PMID:11159135

  12. Complete mitochondrial genomes elucidate phylogenetic relationships of the deep-sea octocoral families Coralliidae and Paragorgiidae

    NASA Astrophysics Data System (ADS)

    Figueroa, Diego F.; Baco, Amy R.

    2014-01-01

    In the past decade, molecular phylogenetic analyses of octocorals have shown that the current morphological taxonomic classification of these organisms needs to be revised. The latest phylogenetic analyses show that most octocorals can be divided into three main clades. One of these clades contains the families Coralliidae and Paragorgiidae. These families share several taxonomically important characters and it has been suggested that they may not be monophyletic; with the possibility of the Coralliidae being a derived branch of the Paragorgiidae. Uncertainty exists not only in the relationship of these two families, but also in the classification of the two genera that make up the Coralliidae, Corallium and Paracorallium. Molecular analyses suggest that the genus Corallium is paraphyletic, and it can be divided into two main clades, with the Paracorallium as members of one of these clades. In this study we sequenced the whole mitochondrial genome of five species of Paragorgia and of five species of Corallium to use in a phylogenetic analysis to achieve two main objectives; the first to elucidate the phylogenetic relationship between the Paragorgiidae and Coralliidae and the second to determine whether the genera Corallium and Paracorallium are monophyletic. Our results show that other members of the Coralliidae share the two novel mitochondrial gene arrangements found in a previous study in Corallium konojoi and Paracorallium japonicum; and that the Corallium konojoi arrangement is also found in the Paragorgiidae. Our phylogenetic reconstruction based on all the protein coding genes and ribosomal RNAs of the mitochondrial genome suggest that the Coralliidae are not a derived branch of the Paragorgiidae, but rather a monophyletic sister branch to the Paragorgiidae. While our manuscript was in review a study was published using morphological data and several fragments from mitochondrial genes to redefine the taxonomy of the Coralliidae. Paracorallium was subsumed into Corallium and the genus Hemicorallium was resurrected. This left two disjunct clades as Corallium, making that genus paraphyletic. One of the clades includes the type specimens of Corallium, indicating that clade should remain Corallium. For the other clade, we support the resurrection of the genus Pleurocorallium to fix the paraphyly of Corallium. Based on congruent phylogenies in both studies, the genus Pleurocorallium includes the species C. secundum, C. kishinouyei, C. konojoi, C. elatius, and C. niveum.

  13. Multilocus phylogeny of the New-World mud turtles (Kinosternidae) supports the traditional classification of the group.

    PubMed

    Spinks, Phillip Q; Thomson, Robert C; Gidiş, Müge; Bradley Shaffer, H

    2014-07-01

    A goal of modern taxonomy is to develop classifications that reflect current phylogenetic relationships and are as stable as possible given the inherent uncertainties in much of the tree of life. Here, we provide an in-depth phylogenetic analysis, based on 14 nuclear loci comprising 10,305 base pairs of aligned sequence data from all but two species of the turtle family Kinosternidae, to determine whether recent proposed changes to the group's classification are justified and necessary. We conclude that those proposed changes were based on (1) mtDNA gene tree anomalies, (2) preliminary analyses that do not fully capture the breadth of geographic variation necessary to motivate taxonomic changes, and (3) changes in rank that are not motivated by non-monophyletic groups. Our recommendation, for this and other similar cases, is that taxonomic changes be made only when phylogenetic results that are statistically well-supported and corroborated by multiple independent lines of genetic evidence indicate that non-monophyletic groups are currently recognized and need to be corrected. We hope that other members of the phylogenetics community will join us in proposing taxonomic changes only when the strongest phylogenetic data demand such changes, and in so doing that we can move toward stable, phylogenetically informed classifications of lasting value. PMID:24704303

  14. Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes

    PubMed Central

    Rasmussen, Matthew D.; Kellis, Manolis

    2007-01-01

    Comparative genomics provides a general methodology for discovering functional DNA elements and understanding their evolution. The availability of many related genomes enables more powerful analyses, but requires rigorous phylogenetic methods to resolve orthologous genes and regions. Here, we use 12 recently sequenced Drosophila genomes and nine fungal genomes to address the problem of accurate gene-tree reconstruction across many complete genomes. We show that existing phylogenetic methods that treat each gene tree in isolation show large-scale inaccuracies, largely due to insufficient phylogenetic information in individual genes. However, we find that gene trees exhibit common properties that can be exploited for evolutionary studies and accurate phylogenetic reconstruction. Evolutionary rates can be decoupled into gene-specific and species-specific components, which can be learned across complete genomes. We develop a phylogenetic reconstruction methodology that exploits these properties and achieves significantly higher accuracy, addressing the species-level heterotachy and enabling studies of gene evolution in the context of species evolution. PMID:17989260

  15. Linear Classification Functions.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Smith, Jerry D.

    Linear classification functions (LCFs) arise in a predictive discriminant analysis for the purpose of classifying experimental units into criterion groups. The relative contribution of the response variables to classification accuracy may be based on LCF-variable correlations for each group. It is proved that, if the raw response measures are…

  16. 2-Stage Classification Modeling

    Energy Science and Technology Software Center (ESTSC)

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore »most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less

  17. An Alignment-Free Approach for Eukaryotic ITS2 Annotation and Phylogenetic Inference

    PubMed Central

    Hidalgo-Yanes, Pedro I.; Prez-Castillo, Yunierkis; Molina-Ruiz, Reinaldo; Marchal, Kathleen; Vasconcelos, Vtor; Antunes, Agostinho

    2011-01-01

    The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate. PMID:22046320

  18. An alignment-free approach for eukaryotic ITS2 annotation and phylogenetic inference.

    PubMed

    Agero-Chapin, Guillermin; Snchez-Rodrguez, Aminael; Hidalgo-Yanes, Pedro I; Prez-Castillo, Yunierkis; Molina-Ruiz, Reinaldo; Marchal, Kathleen; Vasconcelos, Vtor; Antunes, Agostinho

    2011-01-01

    The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate. PMID:22046320

  19. Phylogenetic and Biological Significance of Evolutionary Elements from Metazoan Mitochondrial Genomes

    PubMed Central

    Yuan, Jianbo; Zhu, Qingming; Liu, Bin

    2014-01-01

    The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between evolution and processes of speciation. PMID:24465405

  20. Impacts of Terraces on Phylogenetic Inference.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Stamatakis, Alexandros; Zwickl, Derrick J; Steel, Mike

    2015-09-01

    Terraces are sets of trees with precisely the same likelihood or parsimony score, which can be induced by missing sequences in partitioned multi-locus phylogenetic data matrices. The potentially large set of trees on a terrace can be characterized by enumeration algorithms or consensus methods that exploit the pattern of partial taxon coverage in the data, independent of the sequence data themselves. Terraces can add ambiguity and complexity to phylogenetic inference, particularly in settings where inference is already challenging: data sets with many taxa and relatively few loci. In this article we present five new findings about terraces and their impacts on phylogenetic inference. First, we clarify assumptions about partitioning scheme model parameters that are necessary for the existence of terraces. Second, we explore the dependence of terrace size on partitioning scheme and indicate how to find the partitioning scheme associated with the largest terrace containing a given tree. Third, we highlight the impact of terrace size on bootstrap estimates of confidence limits in clades, and characterize the surprising result that the bootstrap proportion for a clade, as it is usually calculated, can be entirely determined by the frequency of bipartitions on a terrace, with some bipartitions receiving high support even when incorrect. Fourth, we dissect some effects of prior distributions of edge lengths on the computed posterior probabilities of clades on terraces, to understand an example in which long edges "attract" each other in Bayesian inference. Fifth, we describe how assuming relationships between edge-lengths of different loci, as an attempt to avoid terraces, can also be problematic when taxon coverage is partial, specifically when heterotachy is present. Finally, we discuss strategies for remediation of some of these problems. One promising approach finds a minimal set of taxa which, when deleted from the data matrix, reduces the size of a terrace to a single tree. PMID:25999395

  1. Modularized evolution in archaeal methanogens phylogenetic forest.

    PubMed

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C

    2014-12-01

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species. PMID:25502908

  2. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnil, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  3. CTEP Simplified Disease Classification Overview

    Cancer.gov

    CTEP Simplified Disease Classification Overview The CTEP Simplified Disease Classification (CTEP SDC) v1.0 is a restructured, more intuitive classification of diseases, designed to meet the needs of CTEP while still allowing reporting based on the

  4. The genetic code can cause systematic bias in simple phylogenetic models.

    PubMed

    Whelan, Simon

    2008-12-27

    Phylogenetic analysis depends on inferential methodology estimating accurately the degree of divergence between sequences. Inaccurate estimates can lead to misleading evolutionary inferences, including incorrect tree topology estimates and poor dating of historical species divergence. Protein coding sequences are ubiquitous in phylogenetic inference, but many of the standard methods commonly used to describe their evolution do not explicitly account for the dependencies between sites in a codon induced by the genetic code. This study evaluates the performance of several standard methods on datasets simulated under a simple substitution model, describing codon evolution under a range of different types of selective pressures. This approach also offers insights into the relative performance of different phylogenetic methods when there are dependencies acting between the sites in the data. Methods based on statistical models performed well when there was no or limited purifying selection in the simulated sequences (low degree of dependency between sites in a codon), although more biologically realistic models tended to outperform simpler models. Phylogenetic methods exhibited greater variability in performance for sequences simulated under strong purifying selection (high degree of the dependencies between sites in a codon). Simple models substantially underestimate the degree of divergence between sequences, and underestimation was more pronounced on the internal branches of the tree. This underestimation resulted in some statistical methods performing poorly and exhibiting evidence for systematic bias in tree inference. Amino acid-based and nucleotide models that contained generic descriptions of spatial and temporal heterogeneity, such as mixture and temporal hidden Markov models, coped notably better, producing more accurate estimates of evolutionary divergence and the tree topology. PMID:18852102

  5. Hyperspectral Data Classification Using Factor Graphs

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Mller, R.; Palubinskas, G.; Reinartz, P.

    2012-07-01

    Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired tasks of hyperspectral data use. The objective of this paper is to develop a new method for hyperspectral data classification ensuring the classification model properties like transferability, generalization, probabilistic interpretation, etc. While factor graphs (undirected graphical models) are unfortunately not widely employed in remote sensing tasks, these models possess important properties such as representation of complex systems to model estimation/decision making tasks. In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting of variables and factor vertices) allows factorization of a more complex function leading to definition of variables (employed to store input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on training data of the model allows calculating a parameter set for the model to bridge the input data to a class. The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the posterior probability. Variational inference (Mean field) allows to obtain plausible results with a low calculation time. Calculating the posterior probability for each class and comparison of the probabilities leads to classification. Since the factor graphs operate on input data represented on an alphabet (the represented data transferred into multinomial distribution) the number of training samples can be relatively low. Classification assessment on Salinas hyperspectral data benchmark allowed to obtain a competitive accuracy of classification. Employment of training data consisting of 20 randomly selected points for a class allowed to obtain the overall classification accuracy equal to 85.32% and Kappa equal to 0.8358. Representation of input data on a finite domain discards the curse of dimensionality problem allowing to use large hyperspectral data with a moderately high number of bands.

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. A geometric approach to support vector machine (SVM) classification.

    PubMed

    Mavroforakis, Michael E; Theodoridis, Sergios

    2006-05-01

    The geometric framework for the support vector machine (SVM) classification problem provides an intuitive ground for the understanding and the application of geometric optimization algorithms, leading to practical solutions of real world classification problems. In this work, the notion of "reduced convex hull" is employed and supported by a set of new theoretical results. These results allow existing geometric algorithms to be directly and practically applied to solve not only separable, but also nonseparable classification problems both accurately and efficiently. As a practical application of the new theoretical results, a known geometric algorithm has been employed and transformed accordingly to solve nonseparable problems successfully. PMID:16722171

  11. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences.

    PubMed

    Moncalvo, J M; Lutzoni, F M; Rehner, S A; Johnson, J; Vilgalys, R

    2000-06-01

    Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets. PMID:12118409

  12. Phylogenetic relationships of Malaysia's long-tailed macaques, Macaca fascicularis, based on cytochrome b sequences.

    PubMed

    Abdul-Latiff, Muhammad Abu Bakar; Ruslin, Farhani; Fui, Vun Vui; Abu, Mohd-Hashim; Rovie-Ryan, Jeffrine Japning; Abdul-Patah, Pazil; Lakim, Maklarin; Roos, Christian; Yaakop, Salmah; Md-Zain, Badrul Munir

    2014-01-01

    Phylogenetic relationships among Malaysia's long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo's population was distinguished from Peninsula's population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia's M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia. PMID:24899832

  13. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea).

    PubMed

    McCord, Charlene L; Westneat, Mark W

    2016-01-01

    The triggerfishes (family Balistidae) and filefishes (family Monacanthidae) comprise a charismatic superfamily (Balistoidea) within the diverse order Tetraodontiformes. This group of largely marine fishes occupies an impressive ecological range across the world's oceans, and is well known for its locomotor and feeding diversity, unusual body shapes, small genome size, and ecological and economic importance. In order to investigate the evolutionary history of these important fish families, we used multiple phylogenetic methods to analyze molecular data from 86 species spanning the extant biodiversity of Balistidae and Monacanthidae. In addition to three gene regions that have been used extensively in phylogenetic analyses, we include sequence data for two mitochondrial regions, two nuclear markers, and the growth factor gene bmp4, which is involved with cranial development. Phylogenetic analyses strongly support the monophyly of the superfamily Balistoidea, the sister-family relationship of Balistidae and Monacanthidae, as well as three triggerfish and four filefish clades that are well resolved. A new classification for the Balistidae is proposed based on phylogenetic groups. Bayesian topology, as well as the timing of major cladogenesis events, is largely congruent with previous hypotheses of balistid phylogeny. However, we present a novel topology for major clades in the filefish family that illustrate the genera Aluterus and Stephanolepis are more closely related than previously posited. Molecular rates suggest a Miocene and Oligocene origin for the families Balistidae and Monacanthidae, respectively, and significant divergence of species in both families within the past 5 million years. A second key finding of this study is that, relative to the other protein-coding gene regions in our DNA supermatrix, bmp4 shows a rapid accumulation of both synonymous and non-synonymous substitutions, especially within the family Monacanthidae. Overall substitution patterns in bmp4 support the hypothesis of stabilizing selection during the evolutionary history of regulatory genes, with a small number of isolated examples of accelerated non-synonymous changes detected in our phylogeny. PMID:26408967

  14. Automated protein subfamily identification and classification.

    PubMed

    Brown, Duncan P; Krishnamurthy, Nandini; Sjölander, Kimmen

    2007-08-01

    Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/. PMID:17708678

  15. Automated Protein Subfamily Identification and Classification

    PubMed Central

    Brown, Duncan P; Krishnamurthy, Nandini; Sjlander, Kimmen

    2007-01-01

    Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/. PMID:17708678

  16. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation

    PubMed Central

    Roger, Andrew J; Hug, Laura A

    2006-01-01

    Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes. PMID:16754613

  17. Methodology for hyperspectral image classification using novel neural network

    SciTech Connect

    Subramanian, S., Gat, N., Sheffield, M.,; Barhen, J.; Toomarian, N.

    1997-04-01

    A novel feed forward neural network is used to classify hyperspectral data from the AVIRIS sector. The network applies an alternating direction singular value decomposition technique to achieve rapid training times (few seconds per class). Very few samples (10-12) are required for training. 100% accurate classification is obtained using test data sets. The methodology combines this rapid training neural network together with data reduction and maximal feature separation techniques such as principal component analysis and simultaneous diagonalization of covariance matrices, for rapid and accurate classification of large hyperspectral images. The results are compared to those of standard statistical classifiers. 21 refs., 3 figs., 5 tabs.

  18. Homologies in phylogenetic analyses--concept and tests.

    PubMed

    Richter, Stefan

    2005-11-01

    Analyzing morphological characters in a phylogenetic context comprises two steps, character analysis and cladistic analysis, which are equivalent to two independent tests for hypotheses on homology. The concept of homology concerns comparable parts of the same or different organisms if their correspondences are the consequence of the same genetic or epigenetic information, and consequently of the same origin. The concept of homology is more inclusive than the character concept. Characters are seen as parts of transformation series. In the first step of morphological character analyses correspondences and non-correspondences between two characters are analyzed. A range of different examination methods and accurate study contribute to the severity of test. The hypothesis that two characters are homologous is corroborated if the correspondences outweigh the non-correspondences because the non-correspondences contradict the homology hypothesis whereas the correspondences contradict the analogy hypothesis. Complex characters possess a higher empirical content than less complex characters because they are more severely testable. The cladistic analysis tests characters against other characters which have all passed the first test. Characters which are congruent with the most parsimonious topology are further corroborated; incongruent characters are not seen as 'falsified' but as not further corroborated and subject to re-analysis. To test both homologies and topologies repeatedly is consistent with Popperian testability, and it is in such cycles of research that hypotheses will be critically re-evaluated. PMID:17046351

  19. Ultrametric networks: a new tool for phylogenetic analysis

    PubMed Central

    2013-01-01

    Background The large majority of optimization problems related to the inference of distance?based trees used in phylogenetic analysis and classification is known to be intractable. One noted exception is found within the realm of ultrametric distances. The introduction of ultrametric trees in phylogeny was inspired by a model of evolution driven by the postulate of a molecular clock, now dismissed, whereby phylogeny could be represented by a weighted tree in which the sum of the weights of the edges separating any given leaf from the root is the same for all leaves. Both, molecular clocks and rooted ultrametric trees, fell out of fashion as credible representations of evolutionary change. At the same time, ultrametric dendrograms have shown good potential for purposes of classification in so far as they have proven to provide good approximations for additive trees. Most of these approximations are still intractable, but the problem of finding the nearest ultrametric distance matrix to a given distance matrix with respect to the L? distance has been long known to be solvable in polynomial time, the solution being incarnated in any minimum spanning tree for the weighted graph subtending to the matrix. Results This paper expands this subdominant ultrametric perspective by studying ultrametric networks, consisting of the collection of all edges involved in some minimum spanning tree. It is shown that, for a graph with n vertices, the construction of such a network can be carried out by a simple algorithm in optimal time O(n2) which is faster by a factor of n than the direct adaptation of the classical O(n3) paradigm by Warshall for computing the transitive closure of a graph. This algorithm, called UltraNet, will be shown to be easily adapted to compute relaxed networks and to support the introduction of artificial points to reduce the maximum distance between vertices in a pair. Finally, a few experiments will be discussed to demonstrate the applicability of subdominant ultrametric networks. Availability http://www.dei.unipd.it/~ciompin/main/Ultranet/Ultranet.html PMID:23497437

  20. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae.

    PubMed

    Liu, Hui; Xu, Qiuyuan; He, Pengcheng; Santiago, Louis S; Yang, Keming; Ye, Qing

    2015-01-01

    The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae. PMID:26179320

  1. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae

    PubMed Central

    Liu, Hui; Xu, Qiuyuan; He, Pengcheng; Santiago, Louis S.; Yang, Keming; Ye, Qing

    2015-01-01

    The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae. PMID:26179320

  2. Phylogenetic skew: an index of community diversity.

    PubMed

    Chen, Hungyen; Shao, Kwang-Tsao; Kishino, Hirohisa

    2015-02-01

    The distribution of divergence times between member species of a community reflects the pattern of species composition. In this study, we contrast the species composition of a community against the meta-community, which we define as the species composition of a set of target communities. We regard the collection of species that comprise a community as a sample from the set of member species of the meta-community, and interpret the pattern of the community species composition in terms of the type of species sampled from the meta-community. A newly defined effective species sampling proportion explains the amount of the difference between the divergence time distributions of the community and that of the meta-community, assuming random sampling. We propose a new index of phylogenetic skew (PS), as the ratio of the maximum-likelihood estimate of the effective species sampling proportion to the observed sampling proportion. A PS value of 1 is interpreted as random sampling. If the value is >1, the sampling is suspected to be phylogenetically skewed. If it is <1, systematic thinning of species is likely. Unlike other indices, the PS does not depend on species richness as long as the community has more than a few members of a species. Because it is possible to compare partially observed communities, the index may be effectively used in exploratory analysis to detect candidate communities with unique species compositions from a large number of communities. PMID:25580733

  3. Phylogenetic analysis of ancient DNA using BEAST.

    PubMed

    Ho, Simon Y W

    2012-01-01

    Under exceptional circumstances, it is possible to obtain DNA sequences from samples that are up to hundreds of thousands of years old. These data provide an opportunity to look directly at past genetic diversity, to trace the evolutionary process through time, and to infer demographic and phylogeographic trends. Ancient DNA (aDNA) data sets have some degree of intrinsic temporal structure because the sequences have been obtained from samples of different ages. When analyzing these data sets, it is usually necessary to take the sampling times into account. A number of phylogenetic methods have been designed with this purpose in mind. Here I describe the steps involved in Bayesian phylogenetic analysis of aDNA data. I outline a procedure that can be used to co-estimate the genealogical relationships, mutation rate, evolutionary timescale, and demographic history of the study species in a single analytical framework. A number of modifications to the methodology can be made in order to deal with complicating factors such as postmortem damage, sequences from undated samples, and data sets with low information content. PMID:22237538

  4. Phylogenetics in the Bioinformatics Culture of Understanding

    PubMed Central

    Allaby, Robin G.

    2004-01-01

    Bioinformatics, as a relatively young discipline, has grown up in a world of high-throughput large volume data that requires automatic analysis to enable us to stay on top of it all. As a response, the bioinformatics discipline has developed strategies to find patterns in a low signal : noise ratio environment. While the need to process large amounts of information and extract hypotheses is both laudable and inescapable, the pressures that such requirements have introduced can lead to short cuts and misapprehensions. This is particularly the case with reference to assumptions about the underlying evolutionary theories that are implicitly invoked by the algorithms utilised in the analysis pipelines. The classic example is the misuse of the term homologous to mean similar or even functionally similar, rather than the correct definition of having the same evolutionary origin, which may or may not imply similarity of function. In this review, we outline some of the common phylogenetic questions from a bioinformatics perspective that can be better addressed with a deeper understanding of evolutionary principles and show, with examples from the amidohydrolase and Toll families, that quite different conclusions can be drawn if such approaches are taken. This review focuses on the importance of the underlying evolutionary biology, rather than assessing the merits of different phylogenetic techniques. The relative merits of a priori and a posteriori inclusion of biological information are discussed. PMID:18629061

  5. Phylogenetic relationships among megabats, microbats, and primates.

    PubMed

    Mindell, D P; Dick, C W; Baker, R J

    1991-11-15

    We present 744 nucleotide base positions from the mitochondrial 12S rRNA gene and 236 base positions from the mitochondrial cytochrome oxidase subunit I gene for a microbat, Brachyphylla cavernarum, and a megabat, Pteropus capestratus, in phylogenetic analyses with homologous DNA sequences from Homo sapiens, Mus musculus (house mouse), and Gallus gallus (chicken). We use information on evolutionary rate differences for different types of sequence change to establish phylogenetic character weights, and we consider alternative rRNA alignment strategies in finding that this mtDNA data set clearly supports bat monophyly. This result is found despite variations in outgroup used, gap coding scheme, and order of input for DNA sequences in multiple alignment bouts. These findings are congruent with morphological characters including details of wing structure as well as cladistic analyses of amino acid sequences for three globin genes and indicate that neurological similarities between megabats and primates are due to either retention of primitive characters or to convergent evolution rather than to inheritance from a common ancestor. This finding also indicates a single origin for flight among mammals. PMID:1658803

  6. Face shape differs in phylogenetically related populations.

    PubMed

    Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter

    2014-11-01

    3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study. PMID:24398794

  7. A phylogenetic blueprint for a modern whale.

    PubMed

    Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R

    2013-02-01

    The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life. PMID:23103570

  8. Phylogenetic hypotheses for the turtle family Geoemydidae.

    PubMed

    Spinks, Phillip Q; Shaffer, H Bradley; Iverson, John B; McCord, William P

    2004-07-01

    The turtle family Geoemydidae represents the largest, most diverse, and most poorly understood family of turtles. Little is known about this group, including intrafamilial systematics. The only complete phylogenetic hypothesis for this family positions geoemydids as paraphyletic with respect to tortoises, but this arrangement has not been accepted by many workers. We compiled a 79-taxon mitochondrial and nuclear DNA data set to reconstruct phylogenetic relationships for 65 species and subspecies representing all 23 genera of the Geoemydidae. Maximum parsimony (MP) and maximum-likelihood (ML) analyses and Bayesian analysis produced similar, well-resolved trees. Our analyses identified three main clades comprising the tortoises (Testudinidae), the old-world Geoemydidae, and the South American geoemydid genus Rhinoclemmys. Within Geoemydidae, many nodes were strongly supported, particularly based on Bayesian posterior probabilities of the combined three-gene dataset. We found that adding data for a subset of taxa improved resolution of some deeper nodes in the tree. Several strongly supported groupings within the Geoemydidae demonstrate non-monophyly of some genera and possible interspecific hybrids, and we recommend several taxonomic revisions based on available evidence. PMID:15186805

  9. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  10. Phylogenetic relationships of Termitomyces and related taxa.

    PubMed

    Frslev, Tobias G; Aanen, Duur K; Laesse, Thomas; Rosendahl, Sren

    2003-11-01

    Phylogenetic relationships of termitophilic fungi were estimated with Bayesian as well as other phylogenetic methods from partial sequences of the nuclear encoded large subunit ribosomal DNA (nLSU-rDNA) and the mitochondrial encoded small subunit ribosomal DNA (mtSSU-rDNA). Sequences were obtained from basidiomes covering the morphological, taxonomical, and geographical span of termitophilic mushroom-forming fungi, and analysed together with sequences from termite nests and termite guts from most known genera of fungus growing termites from geographically diverse regions. Topologies of trees resulting from the combined analyses of the two ribosomal genes generally show no positive conflicts with those obtained from separate analyses. We show that termitophilic fungi constitute a strongly supported monophyletic group within lyophylloid species. The genera Sinotermitomyces and Podabrella are derived within Termitomyces, and do not form monophyletic groups. Identical sequences were frequently found among samples of basidiomes from the same continents and among fungi utilized by termites from the same continent. However, only two sequences were identical between basidiome samples and termite nest/gut samples suggesting fruiting species do not form a representative sample of termitophilic fungi. No sequences were identical between samples from Asia and Africa indicating some geographic differentiation between these continents. PMID:15000230

  11. Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes).

    PubMed

    Giraldo, A; Gen, J; Sutton, D A; Madrid, H; Cano, J; Crous, P W; Guarro, J

    2014-06-01

    Numerous members of Ascomycota and Basidiomycota produce only poorly differentiated arthroconidial asexual morphs in culture. These arthroconidial fungi are grouped in genera where the asexual-sexual connections and their taxonomic circumscription are poorly known. In the present study we explored the phylogenetic relationships of two of these ascomycetous genera, Arthrographis and Arthropsis. Analysis of D1/D2 sequences of all species of both genera revealed that both are polyphyletic, with species being accommodated in different orders and classes. Because genetic variability was detected among reference strains and fresh isolates resembling the genus Arthrographis, we carried out a detailed phenotypic and phylogenetic analysis based on sequence data of the ITS region, actin and chitin synthase genes. Based on these results, four new species are recognised, namely Arthrographis chlamydospora, A. curvata, A. globosa and A. longispora. Arthrographis chlamydospora is distinguished by its cerebriform colonies, branched conidiophores, cuboid arthroconidia and terminal or intercalary globose to subglobose chlamydospores. Arthrographis curvata produced both sexual and asexual morphs, and is characterised by navicular ascospores and dimorphic conidia, namely cylindrical arthroconidia and curved, cashewnut-shaped conidia formed laterally on vegetative hyphae. Arthrographis globosa produced membranous colonies, but is mainly characterised by doliiform to globose arthroconidia. Arthrographis longispora also produces membranous colonies, but has poorly differentiated conidiophores and long arthroconidia. Morphological variants are described for A. kalrae and our results also revealed that Eremomyces langeronii and A. kalrae, traditionally considered the sexual and asexual morphs of the same species, are not conspecific. PMID:25264385

  12. Association of Virulence Genotype with Phylogenetic Background in Comparison to Different Seropathotypes of Shiga Toxin-Producing Escherichia coli Isolates

    PubMed Central

    Girardeau, Jean Pierre; Dalmasso, Alessandra; Bertin, Yolande; Ducrot, Christian; Bord, Sverine; Livrelli, Valrie; Vernozy-Rozand, Christine; Martin, Christine

    2005-01-01

    The distribution of virulent factors (VFs) in 287 Shiga toxin-producing Escherichia coli (STEC) strains that were classified according to Karmali et al. into five seropathotypes (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003) was investigated. The associations of VFs with phylogenetic background were assessed among the strains in comparison with the different seropathotypes. The phylogenetic analysis showed that STEC strains segregated mainly in phylogenetic group B1 (70%) and revealed the substantial prevalence (19%) of STEC belonging to phylogenetic group A (designated STEC-A). The presence of virulent clonal groups in seropathotypes that are associated with disease and their absence from seropathotypes that are not associated with disease support the concept of seropathotype classification. Although certain VFs (eae, stx2-EDL933, stx2-vha, and stx2-vhb) were concentrated in seropathotypes associated with disease, others (astA, HPI, stx1c, and stx2-NV206) were concentrated in seropathotypes that are not associated with disease. Taken together with the observation that the STEC-A group was exclusively composed of strains lacking eae recovered from seropathotypes that are not associated with disease, the atypical virulence pattern suggests that STEC-A strains comprise a distinct category of STEC strains. A practical benefit of our phylogenetic analysis of STEC strains is that phylogenetic group A status appears to be highly predictive of nonvirulent seropathotypes. PMID:16333104

  13. Acoustic classification of zooplankton

    NASA Astrophysics Data System (ADS)

    Martin Traykovski, Linda V.

    1998-11-01

    Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 kHz-750 kHz) insonifications of live zooplankton collected on Georges Bank and the Gulf of Maine to determine scatterer class. CMVC techniques were also applied to echoes from fluid-like zooplankton (Antarctic krill) to invert for angle of orientation using generic and animal-specific theoretical and empirical models. Application of these inversion techniques in situ will allow correct apportionment of backscattered energy to animal biomass, significantly improving estimates of zooplankton biomass based on acoustic surveys. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Phylogenomics of zygomycete fungi: impacts on a phylogenetic classification of Kingdom Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The zygomycetous fungi (”zygomycetes”) mark the major transition from zoosporic life histories of the common ancestor of Fungi and the earliest diverging chytrid lineages (Chytridiomycota and Blastocladiomycota). Their ecological and economic importance range from the earliest documented symbionts o...

  15. The Impact of Plant Enemies Shows a Phylogenetic Signal

    PubMed Central

    Gilbert, Gregory S.; Briggs, Heather M.; Magarey, Roger

    2015-01-01

    The host ranges of plant pathogens and herbivores are phylogenetically constrained, so that closely related plant species are more likely to share pests and pathogens. Here we conducted a reanalysis of data from published experimental studies to test whether the severity of host-enemy interactions follows a similar phylogenetic signal. The impact of herbivores and pathogens on their host plants declined steadily with phylogenetic distance from the most severely affected focal hosts. The steepness of this phylogenetic signal was similar to that previously measured for binary-response host ranges. Enemy behavior and development showed similar, but weaker phylogenetic signal, with oviposition and growth rates declining with evolutionary distance from optimal hosts. Phylogenetic distance is an informative surrogate for estimating the likely impacts of a pest or pathogen on potential plant hosts, and may be particularly useful in early assessing risk from emergent plant pests, where critical decisions must be made with incomplete host records. PMID:25893581

  16. Phylogenetic relatedness and the determinants of competitive outcomes.

    PubMed

    Godoy, Oscar; Kraft, Nathan J B; Levine, Jonathan M

    2014-07-01

    Recent hypotheses argue that phylogenetic relatedness should predict both the niche differences that stabilise coexistence and the average fitness differences that drive competitive dominance. These still largely untested predictions complicate Darwin's hypothesis that more closely related species less easily coexist, and challenge the use of community phylogenetic patterns to infer competition. We field parameterised models of competitor dynamics with pairs of 18 California annual plant species, and then related species' niche and fitness differences to their phylogenetic distance. Stabilising niche differences were unrelated to phylogenetic distance, while species' average fitness showed phylogenetic structure. This meant that more distant relatives had greater competitive asymmetry, which should favour the coexistence of close relatives. Nonetheless, coexistence proved unrelated to phylogeny, due in part to increasing variance in fitness differences with phylogenetic distance, a previously overlooked property of such relationships. Together, these findings question the expectation that distant relatives should more readily coexist. PMID:24766326

  17. Best Practices for Data Sharing in Phylogenetic Research

    PubMed Central

    Cranston, Karen; Harmon, Luke J.; O'Leary, Maureen A.; Lisle, Curtis

    2014-01-01

    As phylogenetic data becomes increasingly available, along with associated data on species’ genomes, traits, and geographic distributions, the need to ensure data availability and reuse become more and more acute. In this paper, we provide ten “simple rules” that we view as best practices for data sharing in phylogenetic research. These rules will help lead towards a future phylogenetics where data can easily be archived, shared, reused, and repurposed across a wide variety of projects. PMID:24987572

  18. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  19. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group

    PubMed Central

    Clermont, Olivier; Bonacorsi, Stphane; Bingen, Edouard

    2000-01-01

    Phylogenetic analysis has shown that Escherichia coli is composed of four main phylogenetic groups (A, B1, B2, and D) and that virulent extra-intestinal strains mainly belong to groups B2 and D. Actually, phylogenetic groups can be determined by multilocus enzyme electrophoresis or ribotyping, both of which are complex, time-consuming techniques. We describe a simple and rapid phylogenetic grouping technique based on triplex PCR. The method, which uses a combination of two genes (chuA and yjaA) and an anonymous DNA fragment, was tested with 230 strains and showed excellent correlation with reference methods. PMID:11010916

  20. A Contextual Classification Approach for Remote Sensing Image Classification of Hyperspatial Imagery

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Ramirez, C.; Amboy, N.; Mundis, S.; Greenberg, J. A.

    2014-12-01

    One of the most important tasks of remote sensing is the use of imagery to classify and delineate different objects on the earth's surface. Conventional methods of pixel-based classification classify each pixel independently by only considering its spectral properties. These pixel-based techniques are most applicable to medium and coarse-scale remote sensing, but often become less accurate at high spatial resolutions (pixels <= 1m) as the scene objects become larger than a pixel. Contextual classification techniques use not only the spectral properties of the pixel, but also the local spatial information to improve pixel labeling and classification. In this study, we use a focal pixel as predictor variables to use with a machine learning classifier. We applied this technique to a set of remotely sensed, multispectral hyperspatial imagery (Worldview-2) to map the type, distribution, and structure of vegetation in a Sierra Nevada forest.

  1. Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of rockfowls (genus Picathartes) to crows and ravens (Corvidae).

    PubMed

    Treplin, Simone; Tiedemann, Ralph

    2007-04-01

    While the monophyly of the order Passeriformes as well as its suborders suboscines (Tyranni) and oscines (Passeri) is well established, both on morphological and molecular grounds, lower phylogenetic relationships have been a continuous matter of debate, especially within oscines. This is particularly true for the rockfowls (genus Picathartes), which phylogenetic classification has been an ongoing puzzle. Sequence-based molecular studies failed in deriving unambiguously resolved and supported hypotheses. We present here a novel approach: use of retrotransposon insertions as phylogenetic markers in passerine birds. Chicken repeat 1 (CR1) is the most important non-LTR retrotransposon in birds. We present two truncated CR1 loci in passerine birds, not only found in representatives of Corvinae (jays, crows and allies), but also in the West-African Picathartes species which provide new evidence for a closer relationship of these species to Corvidae than has previously been thought. Additionally, we show that not only the absence/presence pattern of a CR1 insertion, but also the CR1 sequences themselves contain phylogenetic information. PMID:17174112

  2. Phylogenetic Interrelationships of Ginglymodian Fishes (Actinopterygii: Neopterygii)

    PubMed Central

    López-Arbarello, Adriana

    2012-01-01

    The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic ginglymodians and the re-evaluation of several hypotheses of homology are essential to test the hypotheses of the Halecostomi vs. the Holostei, which is one of the major topics in the evolution of Mesozoic vertebrates and the origin of modern fish faunas. PMID:22808031

  3. Periscope video ship classification

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.; OSullivan, Jack

    1996-05-01

    Automatic classification of surface ships by means of imaging sensors through the submarine's periscope is of interest to the naval underwater warfare center of the US Navy. In this paper we discuss a testbed designed for periscope video ship classification based on model-based automatic target recognition paradigm, will present the performance results for the application of some of the existing algorithms and will present a sequential tree based technique for ship recognition.

  4. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification.

    PubMed

    Valastro, Viviana; Holmes, Edward C; Britton, Paul; Fusaro, Alice; Jackwood, Mark W; Cattoli, Giovanni; Monne, Isabella

    2016-04-01

    Infectious bronchitis virus (IBV) is the causative agent of a highly contagious disease that results in severe economic losses to the global poultry industry. The virus exists in a wide variety of genetically distinct viral types, and both phylogenetic analysis and measures of pairwise similarity among nucleotide or amino acid sequences have been used to classify IBV strains. However, there is currently no consensus on the method by which IBV sequences should be compared, and heterogeneous genetic group designations that are inconsistent with phylogenetic history have been adopted, leading to the confusing coexistence of multiple genotyping schemes. Herein, we propose a simple and repeatable phylogeny-based classification system combined with an unambiguous and rationale lineage nomenclature for the assignment of IBV strains. By using complete nucleotide sequences of the S1 gene we determined the phylogenetic structure of IBV, which in turn allowed us to define 6 genotypes that together comprise 32 distinct viral lineages and a number of inter-lineage recombinants. Because of extensive rate variation among IBVs, we suggest that the inference of phylogenetic relationships alone represents a more appropriate criterion for sequence classification than pairwise sequence comparisons. The adoption of an internationally accepted viral nomenclature is crucial for future studies of IBV epidemiology and evolution, and the classification scheme presented here can be updated and revised novel S1 sequences should become available. PMID:26883378

  5. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  6. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.

  7. Phylogenetic and Ontogenetic View of Erythroblastic Islands

    PubMed Central

    Giger, Katie M.; Kalfa, Theodosia A.

    2015-01-01

    Erythroblastic islands are a hallmark of mammalian erythropoiesis consisting of a central macrophage surrounded by and interacting closely with the maturing erythroblasts. The macrophages are thought to serve many functions such as supporting erythroblast proliferation, supplying iron for hemoglobin, promoting enucleation, and clearing the nuclear debris; moreover, inhibition of erythroblastic island formation is often detrimental to erythropoiesis. There is still much not understood about the role that macrophages and microenvironment play in erythropoiesis and insights may be gleaned from a comparative analysis with erythropoietic niches in nonmammalian vertebrates which, unlike mammals, have erythrocytes that retain their nucleus. The phylogenetic development of erythroblastic islands in mammals in which the erythrocytes are anucleate underlines the importance of the macrophage in erythroblast enucleation. PMID:26557707

  8. Dating human cultural capacity using phylogenetic principles

    PubMed Central

    Lind, J.; Lindenfors, P.; Ghirlanda, S.; Lidén, K.; Enquist, M.

    2013-01-01

    Humans have genetically based unique abilities making complex culture possible; an assemblage of traits which we term “cultural capacity”. The age of this capacity has for long been subject to controversy. We apply phylogenetic principles to date this capacity, integrating evidence from archaeology, genetics, paleoanthropology, and linguistics. We show that cultural capacity is older than the first split in the modern human lineage, and at least 170,000 years old, based on data on hyoid bone morphology, FOXP2 alleles, agreement between genetic and language trees, fire use, burials, and the early appearance of tools comparable to those of modern hunter-gatherers. We cannot exclude that Neanderthals had cultural capacity some 500,000 years ago. A capacity for complex culture, therefore, must have existed before complex culture itself. It may even originated long before. This seeming paradox is resolved by theoretical models suggesting that cultural evolution is exceedingly slow in its initial stages. PMID:23648831

  9. TIME-INTEGRATED EXPOSURE MEASURES TO IMPROVE THE PREDICTIVE POWER OF EXPOSURE CLASSIFICATION FOR EPIDEMIOLOGIC STUDIES

    EPA Science Inventory

    Accurate exposure classification tools are required to link exposure with health effects in epidemiological studies. Although long-term integrated exposure measurements are a critical component of exposure assessment, the ability to include these measurements into epidemiologic...

  10. INVENTORY AND CLASSIFICATION OF GREAT LAKES COASTAL WETLANDS FOR MONITORING AND ASSESSMENT AT LARGE SPATIAL SCALES

    EPA Science Inventory

    Monitoring aquatic resources for regional assessments requires an accurate and comprehensive inventory of the resource and useful classification of exosystem similarities. Our research effort to create an electronic database and work with various ways to classify coastal wetlands...

  11. Accurate heart rate estimation from camera recording via MUSIC algorithm.

    PubMed

    Fouladi, Seyyed Hamed; Balasingham, Ilangko; Ramstad, Tor Audun; Kansanen, Kimmo

    2015-08-01

    In this paper, we propose an algorithm to extract heart rate frequency from video camera using the Multiple SIgnal Classification (MUSIC) algorithm. This leads to improved accuracy of the estimated heart rate frequency in cases the performance is limited by the number of samples and frame rate. Monitoring vital signs remotely can be exploited for both non-contact physiological and psychological diagnosis. The color variation recorded by ordinary cameras is used for heart rate monitoring. The orthogonality between signal space and noise space is used to find more accurate heart rate frequency in comparison with traditional methods. It is shown via experimental results that the limitation of previous methods can be overcome by using subspace methods. PMID:26738015

  12. Novel multisample scheme for inferring phylogenetic markers from whole genome tumor profiles.

    PubMed

    Subramanian, Ayshwarya; Shackney, Stanley; Schwartz, Russell

    2013-01-01

    Computational cancer phylogenetics seeks to enumerate the temporal sequences of aberrations in tumor evolution, thereby delineating the evolution of possible tumor progression pathways, molecular subtypes, and mechanisms of action. We previously developed a pipeline for constructing phylogenies describing evolution between major recurring cell types computationally inferred from whole-genome tumor profiles. The accuracy and detail of the phylogenies, however, depend on the identification of accurate, high-resolution molecular markers of progression, i.e., reproducible regions of aberration that robustly differentiate different subtypes and stages of progression. Here, we present a novel hidden Markov model (HMM) scheme for the problem of inferring such phylogenetically significant markers through joint segmentation and calling of multisample tumor data. Our method classifies sets of genome-wide DNA copy number measurements into a partitioning of samples into normal (diploid) or amplified at each probe. It differs from other similar HMM methods in its design specifically for the needs of tumor phylogenetics, by seeking to identify robust markers of progression conserved across a set of copy number profiles. We show an analysis of our method in comparison to other methods on both synthetic and real tumor data, which confirms its effectiveness for tumor phylogeny inference and suggests avenues for future advances. PMID:24407301

  13. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus.

    PubMed

    Kwok, A Y; Su, S C; Reynolds, R P; Bay, S J; Av-Gay, Y; Dovichi, N J; Chow, A W

    1999-07-01

    The phylogenetic relationships among 36 validly described species or subspecies within the genus Staphylococcus were investigated by cloning and sequencing their 60 kDa heat-shock protein (HSP60) genes using a set of universal degenerate HSP60 PCR primers. The cloned partial HSP60 DNA sequences from nine Staphylococcus aureus strains were highly conserved (97-100% DNA sequence similarity; mean 98%), indicating that the HSP60 gene of multiple isolates within the same species have little microheterogeneity. At the subspecies level, DNA sequence similarity among members of S. aureus, Staphylococcus schleiferi, Staphylococcus cohnii and Staphylococcus capitis ranged from 91 to 98%. At the interspecies level, sequence similarity among 23 distinct species of staphylococci ranged from 74 to 93% (mean 82%). By comparison, the highest sequence similarity of Bacillus subtilis and Escherichia coli with members within the genus Staphylococcus was only 70 and 59%, respectively. Importantly, phylogenetic analysis based on the neighbour-joining distance method revealed remarkable concordance between the tree derived from partial HSP60 gene sequences and that based on genomic DNA-DNA hybridization, while 16S rRNA gene sequences correlated less well. The results demonstrate that DNA sequences from the highly conserved and ubiquitous HSP60 gene offer a convenient and accurate tool for species-specific identification and phylogenetic analysis of staphylococci. PMID:10425778

  14. A simple shortcut to unsupervised alignment-free phylogenetic genome groupings, even from unassembled sequencing reads.

    PubMed

    Maurer-Stroh, Sebastian; Gunalan, Vithiagaran; Wong, Wing-Cheong; Eisenhaber, Frank

    2013-12-01

    We propose an extension to alignment-free approaches that can produce reasonably accurate phylogenetic groupings starting from unaligned genomes, for example, as fast as 1 min on a standard desktop computer for 25 bacterial genomes. A 6-fold speed-up and 11-fold reduction in memory requirements compared to previous alignment-free methods is achieved by reducing the comparison space to a representative sample of k-mers of optimal length and with specific tag motifs. This approach was applied to the test case of fitting the enterohemorrhagic O104:H4 E.coli strain from the 2011 outbreak in Germany into the phylogenetic network of previously known E.coli-related strains and extend the method to allow assigning any new strain to the correct phylogenetic group even directly from unassembled short sequence reads from next generation sequencing data. Hence, this approach is also useful to quickly identify the most suitable reference genome for subsequent assembly steps. PMID:24372034

  15. Novel multi-sample scheme for inferring phylogenetic markers from whole genome tumor profiles

    PubMed Central

    Subramanian, Ayshwarya; Shackney, Stanley; Schwartz, Russell

    2013-01-01

    Computational cancer phylogenetics seeks to enumerate the temporal sequences of aberrations in tumor evolution, thereby delineating the evolution of possible tumor progression pathways, molecular subtypes and mechanisms of action. We previously developed a pipeline for constructing phylogenies describing evolution between major recurring cell types computationally inferred from whole-genome tumor profiles. The accuracy and detail of the phylogenies, however, depends on the identification of accurate, high-resolution molecular markers of progression, i.e., reproducible regions of aberration that robustly differentiate different subtypes and stages of progression. Here we present a novel hidden Markov model (HMM) scheme for the problem of inferring such phylogenetically significant markers through joint segmentation and calling of multi-sample tumor data. Our method classifies sets of genome-wide DNA copy number measurements into a partitioning of samples into normal (diploid) or amplified at each probe. It differs from other similar HMM methods in its design specifically for the needs of tumor phylogenetics, by seeking to identify robust markers of progression conserved across a set of copy number profiles. We show an analysis of our method in comparison to other methods on both synthetic and real tumor data, which confirms its effectiveness for tumor phylogeny inference and suggests avenues for future advances. PMID:24407301

  16. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution

    PubMed Central

    Broughton, Richard E.; Betancur-R., Ricardo; Li, Chenhong; Arratia, Gloria; Ort, Guillermo

    2013-01-01

    Over half of all vertebrates are fishes, which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group. PMID:23788273

  17. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses.

    PubMed

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  18. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  19. Local feature weighting in nearest prototype classification.

    PubMed

    Fernandez, Fernando; Isasi, Pedro

    2008-01-01

    The distance metric is the corner stone of nearest neighbor (NN)-based methods, and therefore, of nearest prototype (NP) algorithms. That is because they classify depending on the similarity of the data. When the data is characterized by a set of features which may contribute to the classification task in different levels, feature weighting or selection is required, sometimes in a local sense. However, local weighting is typically restricted to NN approaches. In this paper, we introduce local feature weighting (LFW) in NP classification. LFW provides each prototype its own weight vector, opposite to typical global weighting methods found in the NP literature, where all the prototypes share the same one. Providing each prototype its own weight vector has a novel effect in the borders of the Voronoi regions generated: They become nonlinear. We have integrated LFW with a previously developed evolutionary nearest prototype classifier (ENPC). The experiments performed both in artificial and real data sets demonstrate that the resulting algorithm that we call LFW in nearest prototype classification (LFW-NPC) avoids overfitting on training data in domains where the features may have different contribution to the classification task in different areas of the feature space. This generalization capability is also reflected in automatically obtaining an accurate and reduced set of prototypes. PMID:18269937

  20. SVM texture classification for tropical vegetation mapping

    NASA Astrophysics Data System (ADS)

    Chabrier, Sebastien; Stoll, Benoit; Goujon, Jean-Baptiste

    2012-11-01

    Nowadays, remote sensing is an essential science in French Polynesia because of its extended territory and the remoteness of its 120 islands. There is a strong need to study the vegetation cover and its evolution (biodiversity threat, invasive species, etc.). A growing satellite images database has been acquired throughout, giving access to very high resolution optical images such as Quickbird data. These data allow accessing the vegetation canopy spectral and contextual information, texture classification has proved to be an efficient tool to map the complex vegetation found in tropical regions. The main goal of this paper is to propose an optimized SVM multispectral-texture classification method for tropical vegetation mapping. One of the texture computation drawbacks is the window treatment size, which is related to the largest texture element size. In complex tropical vegetation cover, this parameter leads to very small ground truth learning database, inducing a significant degradation of the classifications accuracy. We propose to increase the thumbnail numbers using an under-sampling method, optimizing the size and the number of the thumbnails. The other drawback is the high dimensionality of the problem when dealing with multispectral textures. We thus propose to rank and select the most pertinent textures attributes in order to reduce the dimensionality without reducing the classification accuracy. We first introduce the study context, before exposing preliminary studies on tuning the SVM learning method. The adapted method is then accurately exposed and the interesting experimental results as well as a sample of applications are presented before to conclude.

  1. Drug classification: science, politics, both or neither?

    PubMed

    Kalant, Harold

    2010-07-01

    Governments currently classify illicit drugs for various purposes: to guide courts in the sentencing of convicted violators of drug control laws, to prioritize targets of prevention measures and to educate the public about relative risks of the various drugs. It has been proposed that classification should be conducted by scientists and drug experts rather than by politicians, so that it will reflect only accurate factual knowledge of drug effects and risks rather than political biases. Although this is an appealing goal, it is inherently impossible because rank-ordering of the drugs inevitably requires value judgements concerning the different types of harm. Such judgements, even by scientists, depend upon subjective personal criteria and not only upon scientific facts. Moreover, classification that is meant to guide the legal system in controlling dangerous drug use can function only if it is in harmony with the values and sentiments of the public. In some respects, politicians may be better attuned to public attitudes and wishes, and to what policies the public will support, than are scientific experts. The problems inherent in such drug classification are illustrated by the examples of cannabis and of salvinorin A. They raise the question as to whether the classification process really serves any socially beneficial purpose. PMID:20148796

  2. Randomized clustering forests for image classification.

    PubMed

    Moosmann, Frank; Nowak, Eric; Jurie, Frederic

    2008-09-01

    Some of the most effective recent methods for content-based image classification work by quantizing image descriptors, and accumulating histograms of the resulting visual word codes. Large numbers of descriptors and large codebooks are required for good results and this becomes slow using k-means. We introduce Extremely Randomized Clustering Forests ensembles of randomly created clustering trees and show that they provide more accurate results, much faster training and testing, and good resistance to background clutter. Second, an efficient image classification method is proposed. It combines ERC-Forests and saliency maps very closely with the extraction of image information. For a given image, a classifier builds a saliency map online and uses it to classify the image. We show in several state-of-the-art image classification tasks that this method can speed up the classification process enormously. Finally, we show that the proposed ERC-Forests can also be used very successfully for learning distance between images. The distance computation algorithm consists of learning the characteristic differences between local descriptors sampled from pairs of same or different objects. These differences are vector quantized by ERC-Forests and the similarity measure is computed from this quantization. The similarity measure has been evaluated on four very different datasets and always outperforms the state-of-the-art competitive approaches. PMID:18617720

  3. Applying species-tree analyses to deep phylogenetic histories: challenges and potential suggested from a survey of empirical phylogenetic studies.

    PubMed

    Lanier, Hayley C; Knowles, L Lacey

    2015-02-01

    Coalescent-based methods for species-tree estimation are becoming a dominant approach for reconstructing species histories from multi-locus data, with most of the studies examining these methodologies focused on recently diverged species. However, deeper phylogenies, such as the datasets that comprise many Tree of Life (ToL) studies, also exhibit gene-tree discordance. This discord may also arise from the stochastic sorting of gene lineages during the speciation process (i.e., reflecting the random coalescence of gene lineages in ancestral populations). It remains unknown whether guidelines regarding methodologies and numbers of loci established by simulation studies at shallow tree depths translate into accurate species relationships for deeper phylogenetic histories. We address this knowledge gap and specifically identify the challenges and limitations of species-tree methods that account for coalescent variance for deeper phylogenies. Using simulated data with characteristics informed by empirical studies, we evaluate both the accuracy of estimated species trees and the characteristics associated with recalcitrant nodes, with a specific focus on whether coalescent variance is generally responsible for the lack of resolution. By determining the proportion of coalescent genealogies that support a particular node, we demonstrate that (1) species-tree methods account for coalescent variance at deep nodes and (2) mutational variance - not gene-tree discord arising from the coalescent - posed the primary challenge for accurate reconstruction across the tree. For example, many nodes were accurately resolved despite predicted discord from the random coalescence of gene lineages and nodes with poor support were distributed across a range of depths (i.e., they were not restricted to a particular recent divergences). Given their broad taxonomic scope and large sampling of taxa, deep level phylogenies pose several potential methodological complications including difficulties with MCMC convergence and estimation of requisite population genetic parameters for coalescent-based approaches. Despite these difficulties, the findings generally support the utility of species-tree analyses for the estimation of species relationships throughout the ToL. We discuss strategies for successful application of species-tree approaches to deep phylogenies. PMID:25450097

  4. Considering external information to improve the phylogenetic comparison of microbial communities: a new approach based on constrained Double Principal Coordinates Analysis (cDPCoA).

    PubMed

    Dray, S; Pavoine, S; Aguirre de Cárcer, D

    2015-03-01

    The use of next-generation sequencing technologies is revolutionizing microbial ecology by allowing a deep phylogenetic coverage of tens to thousands of samples simultaneously. Double Principal Coordinates Analysis (DPCoA) is a multivariate method, developed in community ecology, able to integrate a distance matrix describing differences among species (e.g. phylogenetic distances) in the analysis of a species abundance matrix. This ordination technique has been used recently to describe microbial communities taking into account phylogenetic relatedness. In this work, we extend DPCoA to integrate the information of external variables measured on communities. The constrained Double Principal Coordinates Analysis (cDPCoA) is able to enforce a priori classifications to retrieve subtle differences and (or) remove the effect of confounding factors. We describe the main principles of this new approach and demonstrate its usefulness by providing application examples based on published 16S rRNA gene data sets. PMID:24974884

  5. Phylogenetic relationships of South American lizards of the genus Stenocercus (Squamata: Iguania): A new approach using a general mixture model for gene sequence data.

    PubMed

    Torres-Carvajal, Omar; Schulte, James A; Cadle, John E

    2006-04-01

    The South American iguanian lizard genus Stenocercus includes 54 species occurring mostly in the Andes and adjacent lowland areas from northern Venezuela and Colombia to central Argentina at elevations of 0-4000m. Small taxon or character sampling has characterized all phylogenetic analyses of Stenocercus, which has long been recognized as sister taxon to the Tropidurus Group. In this study, we use mtDNA sequence data to perform phylogenetic analyses that include 32 species of Stenocercus and 12 outgroup taxa. Monophyly of this genus is strongly supported by maximum parsimony and Bayesian analyses. Evolutionary relationships within Stenocercus are further analyzed with a Bayesian implementation of a general mixture model, which accommodates variability in the pattern of evolution across sites. These analyses indicate a basal split of Stenocercus into two clades, one of which receives very strong statistical support. In addition, we test previous hypotheses using non-parametric and parametric statistical methods, and provide a phylogenetic classification for Stenocercus. PMID:16269252

  6. Consistency between molecular phylogeny and morphological classification of the Salix matsudana Koidz. complex (Salicaceae).

    PubMed

    Du, S H; Wang, Z S; Li, Y X; Wang, D S; Zhang, J G

    2015-01-01

    The morphological species concept is based on morpho-logical traits, which are often subject to subjectivity or artifact. Molecular evidence is needed to test the reliability of morphological classification of taxa that are controversial and to provide appropriate taxonomic de-limitation. In this study, we used 15 single-copy nuclear loci and 2 chloroplast fragments to verify the morphological classification of the Salix matsudana Koidz. complex using phylogenetic approaches. Complete sequence alignment showed slight diversification in nuclear sequences and no variety in chloroplast DNA fragments. Phylogenetic trees revealed a monophyletic group consisting of all individuals of S. matsudana and 2 clades within this group, with a 100% bootstrap support value and 1.00 posterior probability. The topology of the phylogenetic trees was highly consistent with the morphological classification of the S. matsudana complex. Verifying the genetic background of these classification units based on remarkable morphological differences will provide a foundation for future studies of Salix and the breeding of new horticultural varieties. PMID:26345798

  7. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    ERIC Educational Resources Information Center

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  8. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    ERIC Educational Resources Information Center

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa

  9. Exploration of phylogenetic data using a global sequence analysis method

    PubMed Central

    Chapus, Charles; Dufraigne, Christine; Edwards, Scott; Giron, Alain; Fertil, Bernard; Deschavanne, Patrick

    2005-01-01

    Background Molecular phylogenetic methods are based on alignments of nucleic or peptidic sequences. The tremendous increase in molecular data permits phylogenetic analyses of very long sequences and of many species, but also requires methods to help manage large datasets. Results Here we explore the phylogenetic signal present in molecular data by genomic signatures, defined as the set of frequencies of short oligonucleotides present in DNA sequences. Although violating many of the standard assumptions of traditional phylogenetic analyses in particular explicit statements of homology inherent in character matrices the use of the signature does permit the analysis of very long sequences, even those that are unalignable, and is therefore most useful in cases where alignment is questionable. We compare the results obtained by traditional phylogenetic methods to those inferred by the signature method for two genes: RAG1, which is easily alignable, and 18S RNA, where alignments are often ambiguous for some regions. We also apply this method to a multigene data set of 33 genes for 9 bacteria and one archea species as well as to the whole genome of a set of 16 ?-proteobacteria. In addition to delivering phylogenetic results comparable to traditional methods, the comparison of signatures for the sequences involved in the bacterial example identified putative candidates for horizontal gene transfers. Conclusion The signature method is therefore a fast tool for exploring phylogenetic data, providing not only a pretreatment for discovering new sequence relationships, but also for identifying cases of sequence evolution that could confound traditional phylogenetic analysis. PMID:16280081

  10. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges

    PubMed Central

    Faith, Daniel P.; Baker, Andrew M.

    2007-01-01

    Biodiversity conservation addresses information challenges through estimations encapsulated in measures of diversity. A quantitative measure of phylogenetic diversity, “PD”, has been defined as the minimum total length of all the phylogenetic branches required to span a given set of taxa on the phylogenetic tree (Faith 1992a). While a recent paper incorrectly characterizes PD as not including information about deeper phylogenetic branches, PD applications over the past decade document the proper incorporation of shared deep branches when assessing the total PD of a set of taxa. Current PD applications to macroinvertebrate taxa in streams of New South Wales, Australia illustrate the practical importance of this definition. Phylogenetic lineages, often corresponding to new, “cryptic”, taxa, are restricted to a small number of stream localities. A recent case of human impact causing loss of taxa in one locality implies a higher PD value for another locality, because it now uniquely represents a deeper branch. This molecular-based phylogenetic pattern supports the use of DNA barcoding programs for biodiversity conservation planning. Here, PD assessments side-step the contentious use of barcoding-based “species” designations. Bio-informatics challenges include combining different phylogenetic evidence, optimization problems for conservation planning, and effective integration of phylogenetic information with environmental and socio-economic data. PMID:19455206

  11. Different Relationships between Temporal Phylogenetic Turnover and Phylogenetic Similarity and in Two Forests Were Detected by a New Null Model

    PubMed Central

    Huang, Jian-Xiong; Zhang, Jian; Shen, Yong; Lian, Ju-yu; Cao, Hong-lin; Ye, Wan-hui; Wu, Lin-fang; Bin, Yue

    2014-01-01

    Background Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. Methods/Principle Findings We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. Conclusions/Significance The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model. PMID:24748022

  12. Segmentation Assisted Food Classification for Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Schap, TusaRebecca; Khanna, Nitin; Ebert, David S.; Boushey, Carol J.; Delp, Edward J.

    2011-01-01

    Accurate methods and tools to assess food and nutrient intake are essential for the association between diet and health. Preliminary studies have indicated that the use of a mobile device with a built-in camera to obtain images of the food consumed may provide a less burdensome and more accurate method for dietary assessment. We are developing methods to identify food items using a single image acquired from the mobile device. Our goal is to automatically determine the regions in an image where a particular food is located (segmentation) and correctly identify the food type based on its features (classification or food labeling). Images of foods are segmented using Normalized Cuts based on intensity and color. Color and texture features are extracted from each segmented food region. Classification decisions for each segmented region are made using support vector machine methods. The segmentation of each food region is refined based on feedback from the output of classifier to provide more accurate estimation of the quantity of food consumed. PMID:22128304

  13. Segmentation assisted food classification for dietary assessment

    NASA Astrophysics Data System (ADS)

    Zhu, Fengqing; Bosch, Marc; Schap, TusaRebecca; Khanna, Nitin; Ebert, David S.; Boushey, Carol J.; Delp, Edward J.

    2011-03-01

    Accurate methods and tools to assess food and nutrient intake are essential for the association between diet and health. Preliminary studies have indicated that the use of a mobile device with a built-in camera to obtain images of the food consumed may provide a less burdensome and more accurate method for dietary assessment. We are developing methods to identify food items using a single image acquired from the mobile device. Our goal is to automatically determine the regions in an image where a particular food is located (segmentation) and correctly identify the food type based on its features (classification or food labeling). Images of foods are segmented using Normalized Cuts based on intensity and color. Color and texture features are extracted from each segmented food region. Classification decisions for each segmented region are made using support vector machine methods. The segmentation of each food region is refined based on feedback from the output of classifier to provide more accurate estimation of the quantity of food consumed.

  14. Target classification strategies

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2015-05-01

    Target classification algorithms have generally kept pace with developments in the academic and commercial sectors since the 1970s. However, most recently, investment into object classification by internet companies and various Human Brain Projects have far outpaced that of the defense sector. Implications are noteworthy. There are some unique characteristics of the military classification problem. Target classification is not solely an algorithm design problem, but is part of a larger system design task. The design flows down from a concept of operations (ConOps) and key performance parameters (KPPs). Inputs are image and/or signal data and time-synchronized metadata. The operation is real-time. The implementation minimizes size, weight and power (SWaP). The output must be conveyed to a time-strapped operator who understands the rules of engagement. It is assumed that the adversary is actively trying to defeat recognition. The target list is often mission dependent, not necessarily a closed set, and may change on a daily basis. It is highly desirable to obtain sufficiently comprehensive training and testing data sets, but costs of doing so are very high and data on certain target types are scarce. The training data may not be representative of battlefield conditions suggesting the avoidance of highly tuned designs. A number of traditional and emerging target classification strategies are reviewed in the context of the military target problem.

  15. Proteomic applications of automated GPCR classification.

    PubMed

    Davies, Matthew N; Gloriam, David E; Secker, Andrew; Freitas, Alex A; Mendao, Miguel; Timmis, Jon; Flower, Darren R

    2007-08-01

    The G-protein coupled receptor (GPCR) superfamily fulfils various metabolic functions and interacts with a diverse range of ligands. There is a lack of sequence similarity between the six classes that comprise the GPCR superfamily. Moreover, most novel GPCRs found have low sequence similarity to other family members which makes it difficult to infer properties from related receptors. Many different approaches have been taken towards developing efficient and accurate methods for GPCR classification, ranging from motif-based systems to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of their amino acid sequences. This review describes the inherent difficulties in developing a GPCR classification algorithm and includes techniques previously employed in this area. PMID:17639603

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4.46 Section 4.46 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement....

  17. Preprocessing remotely-sensed data for efficient analysis and classification

    SciTech Connect

    Kelly, P.M.; White, J.M.

    1993-02-01

    Interpreting remotely-sensed data typically requires expensive, specialized computing machinery capable of storing and manipulating large amounts of data quickly. In this paper, we present a method for accurately analyzing and categorizing remotely-sensed data on much smaller, less expensive platforms. Data size is reduced in such a way an efficient, interactive method of data classification.

  18. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  19. Open reading frame phylogenetic analysis on the cloud.

    PubMed

    Hung, Che-Lun; Lin, Chun-Yuan

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  20. Site-specific time heterogeneity of the substitution process and its impact on phylogenetic inference

    PubMed Central

    2011-01-01

    Background Model violations constitute the major limitation in inferring accurate phylogenies. Characterizing properties of the data that are not being correctly handled by current models is therefore of prime importance. One of the properties of protein evolution is the variation of the relative rate of substitutions across sites and over time, the latter is the phenomenon called heterotachy. Its effect on phylogenetic inference has recently obtained considerable attention, which led to the development of new models of sequence evolution. However, thus far focus has been on the quantitative heterogeneity of the evolutionary process, thereby overlooking more qualitative variations. Results We studied the importance of variation of the site-specific amino-acid substitution process over time and its possible impact on phylogenetic inference. We used the CAT model to define an infinite mixture of substitution processes characterized by equilibrium frequencies over the twenty amino acids, a useful proxy for qualitatively estimating the evolutionary process. Using two large datasets, we show that qualitative changes in site-specific substitution properties over time occurred significantly. To test whether this unaccounted qualitative variation can lead to an erroneous phylogenetic tree, we analyzed a concatenation of mitochondrial proteins in which Cnidaria and Porifera were erroneously grouped. The progressive removal of the sites with the most heterogeneous CAT profiles across clades led to the recovery of the monophyly of Eumetazoa (Cnidaria+Bilateria), suggesting that this heterogeneity can negatively influence phylogenetic inference. Conclusion The time-heterogeneity of the amino-acid replacement process is therefore an important evolutionary aspect that should be incorporated in future models of sequence change. PMID:21235782

  1. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  2. Convolutional Neural Networks for patient-specific ECG classification.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef

    2015-08-01

    We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). PMID:26736826

  3. Application of fuzzy classification in modern primary dental care.

    PubMed

    Veryha, Yauheni; Adamczyk, Katarzyna

    2005-01-01

    This paper describes a framework for implementing fuzzy classifications in primary dental care services. Dental practices aim to provide the highest quality services for their patients. To achieve this, it is important that dentists are able to obtain patients' opinions about their experiences in the dental practice and are able to accurately evaluate this. We propose the use of fuzzy classification to combine various assessment criteria into one general measure to assess patients' satisfaction with primary dental care services. The proposed framework can be used in conventional dental practice information systems and easily integrated with those already used. The benefits of using the proposed fuzzy classification approach include more flexible and accurate analysis of patients' feedback, combining verbal and numeric data. To confirm our theory, a prototype was developed based on the Microsoft SQL Server database management system for two criteria used in dental practices, namely making an appointment with a dentist and waiting time for dental care services. PMID:15949172

  4. Using minimum DNA marker loci for accurate population classification in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using few DNA markers to classify genetic background of a germplasm pool will help breeders make a quick decision while saving time and resources. WHICHLOCI is a computer program that selects the best combination of loci for population assignment through empiric analysis of molecular marker data. Th...

  5. Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources

    NASA Astrophysics Data System (ADS)

    Novakovskaia, E.; Hayes, C.; Collier, C.

    2014-12-01

    The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.

  6. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordstrm, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  7. Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi

    PubMed Central

    Feau, Nicolas; Decourcelle, Thibaut; Husson, Claude; Desprez-Loustau, Marie-Laure; Dutech, Cyril

    2011-01-01

    Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species. PMID:21533204

  8. Accurate histological terminology for small intestine carcinoid tumors

    PubMed Central

    Pusiol, Teresa; Morini, Alice; Piscioli, Irene; Scialpi, Michele

    2013-01-01

    The recent WHO Classification of Tumours of the Digestive System reflects the views of a Working Group that convened for an Editorial and Consensus Conference at the International Agency for Research on Cancer (IARC), Lyon, 10 December 2009 [1]. In this classification, the neuroendocrine neoplasms of the small intestine include neuroendocrine tumor (NET), neuroendocrine carcinoma (NEC), mixed adenoneuroendocrine carcinoma, EC cell, serotonin-producing NET, gangliocytic paraganglioma, gastrinoma, L cell, glucagon-like peptide-producing, PP/PYY-producing NETs, and somostatin-producing NET. Carcinoid tumor is the generic term traditionally applied to low-grade malignant neoplasms originating from the diffuse endocrine system exclusive of the pancreas and the thyroid C-cell, a term being progressively replaced by well-differentiated (neuro)endocrine tumors/carcinomas. It is now acknowledged that they represent a group of related neoplasms, not single pathologic entity. In the WHO classification, the NET includes NET G1 and NET G2, and the term carcinoid is used as a synonym of NET G1. We believed that the term carcinoid tumor is generic; consequently, the term should be avoided. We have read with great interest the paper by Lee et al. Multiple carcinoid tumor of the small intestine preoperatively diagnosed by double-balloon endoscopy [2]. In the paper, Lee et al. wrote: Histologic examination of the biopsy sample obtained by endoscopy confirmed the diagnosis of a carcinoid tumor. The tumor was composed of small uniform epithelial cells, which stained positively for chromogranin A and synaptophysin. We believe that the histological diagnosis of carcinoid tumor is not correct. The description is typical of NET G1, according to the new WHO classification. The authors wrote: These small tumors were diagnosed as carcinoid tumors by endoscopic findings, whereas histologic examination could not make this diagnosis Microscopically, the tumors were composed of small uniform epithelial cells which stained positively for chromogranin A and synaptophysin. Furthermore, the largest tumor had invaded the muscularis propria. MIB-1 index was less than 1%. It is evident that histological diagnosis was not reported. In conclusion, accurate histological diagnosis is necessary for the evaluation of treatment impact in the management of neuroendocrine tumors of the small intestine. PMID:23507937

  9. Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein-Uhlenbeck Model.

    PubMed

    Cressler, Clayton E; Butler, Marguerite A; King, Aaron A

    2015-11-01

    Phylogenetic comparative analysis is an approach to inferring evolutionary process from a combination of phylogenetic and phenotypic data. The last few years have seen increasingly sophisticated models employed in the evaluation of more and more detailed evolutionary hypotheses, including adaptive hypotheses with multiple selective optima and hypotheses with rate variation within and across lineages. The statistical performance of these sophisticated models has received relatively little systematic attention, however. We conducted an extensive simulation study to quantify the statistical properties of a class of models toward the simpler end of the spectrum that model phenotypic evolution using Ornstein-Uhlenbeck processes. We focused on identifying where, how, and why these methods break down so that users can apply them with greater understanding of their strengths and weaknesses. Our analysis identifies three key determinants of performance: a discriminability ratio, a signal-to-noise ratio, and the number of taxa sampled. Interestingly, we find that model-selection power can be high even in regions that were previously thought to be difficult, such as when tree size is small. On the other hand, we find that model parameters are in many circumstances difficult to estimate accurately, indicating a relative paucity of information in the data relative to these parameters. Nevertheless, we note that accurate model selection is often possible when parameters are only weakly identified. Our results have implications for more sophisticated methods inasmuch as the latter are generalizations of the case we study. PMID:26115662

  10. Classification of Variable Stars Using Thick-Pen Transform Method

    NASA Astrophysics Data System (ADS)

    Park, M.; Oh, H.-S.; Kim, D.

    2013-04-01

    A suitable classification of variable stars is an important task for understanding galaxy structure and evaluating stellar evolution. Most traditional approaches for classification have used various features of variable stars such as period, amplitude, color index, and Fourier coefficients. Recently, by focusing only on the light curve shape, Deb and Singh proposed a classification method based on multivariate principal component analysis (PCA). They applied the PCA method to light curves and compared its results with those obtained by Fourier coefficients. In this article, we propose a new procedure based on the thick-pen transform for obtaining accurate information on the light curve shape as well as for improving the accuracy of classification. The proposed method is applied to the data sets of variable stars from the Stellar Astrophysics and Research on Exoplanets (STARE) project and a small number of stars from Massive Compact Halo Objects (MACHO).

  11. Flying insect detection and classification with inexpensive sensors.

    PubMed

    Chen, Yanping; Why, Adena; Batista, Gustavo; Mafra-Neto, Agenor; Keogh, Eamonn

    2014-01-01

    An inexpensive, noninvasive system that could accurately classify flying insects would have important implications for entomological research, and allow for the development of many useful applications in vector and pest control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts devoted to this task. To date, however, none of this research has had a lasting impact. In this work, we show that pseudo-acoustic optical sensors can produce superior data; that additional features, both intrinsic and extrinsic to the insect's flight behavior, can be exploited to improve insect classification; that a Bayesian classification approach allows to efficiently learn classification models that are very robust to over-fitting, and a general classification framework allows to easily incorporate arbitrary number of features. We demonstrate the findings with large-scale experiments that dwarf all previous works combined, as measured by the number of insects and the number of species considered. PMID:25350921

  12. Land Cover Classification Using ALOS Imagery For Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Sim, C. K.; Abdullah, K.; MatJafri, M. Z.; Lim, H. S.

    2014-02-01

    This paper presents the potential of integrating optical and radar remote sensing data to improve automatic land cover mapping. The analysis involved standard image processing, and consists of spectral signature extraction and application of a statistical decision rule to identify land cover categories. A maximum likelihood classifier is utilized to determine different land cover categories. Ground reference data from sites throughout the study area are collected for training and validation. The land cover information was extracted from the digital data using PCI Geomatica 10.3.2 software package. The variations in classification accuracy due to a number of radar imaging processing techniques are studied. The relationship between the processing window and the land classification is also investigated. The classification accuracies from the optical and radar feature combinations are studied. Our research finds that fusion of radar and optical significantly improved classification accuracies. This study indicates that the land cover/use can be mapped accurately by using this approach.

  13. Improvement of the classification system for wheelchair rugby: athlete priorities.

    PubMed

    Altmann, Viola C; Hart, Anne L; van Limbeek, Jacques; Vanlandewijck, Yves C

    2014-10-01

    A representative sample (N=302) of the wheelchair rugby population responded to a survey about the classification system based on prioritized items by International Wheelchair Rugby Federation members. Respondents stated, "The classification system is accurate but needs adjustments" (56%), "Any athlete with tetraequivalent impairment should be allowed to compete" (72%), "Athletes with cerebral palsy and other coordination impairments should be classified with a system different than the current one" (75%), and "The maximal value for trunk should be increased from 1.0 to 1.5" (67%). A minority stated, "Wheelchair rugby should only be open to spinal cord injury and other neurological conditions" (36%) and "There should be a 4.0 class" (33%). Results strongly indicated that athletes and stakeholders want adjustments to the classification system in two areas: a focus on evaluation of athletes with impairments other than loss of muscle power caused by spinal cord injury and changes in classification of trunk impairment. PMID:25211483

  14. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  15. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei Joo Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  16. Application of COI Sequences in Studies of Phylogenetic Relationships Among 40 Apionidae Species

    PubMed Central

    Ptaszyńska, Aneta A.; Łętowski, Jacek; Gnat, Sebastian; Małek, Wanda

    2012-01-01

    The systematics of the family Apionidae, as well as the superfamily Curculionoidea, is currently in a state of flux. The comparative analyses of COI sequences from our studies shed some light on the systematics of these weevils. To study the relationship among the organisms of the family Apionidae, we determined the COI sequences of representatives of 23 species and 15 genera, i.e., Apion, Betulapion, Catapion, Ceratapion, Cyanapion, Eutrichapion, Exapion, Hemitrichapion, Holotrichapion, Ischnopterapion, Protapion, Pseudoperapion, Psudoprotapion, Pseudostenapion, and Stenopterapion. Then, they were compared with the COI sequences of 19 species and eight genera from GenBank (Aspidapion, Ceratapion, Exapion, Ischnopterapion, Lepidapion, Omphalapion, Oxystoma, and Protapion). The phylogenetic relationships inferred from molecular data are similar to the classification system developed by Alonso-Zarazaga and Lyal (1999), with some exceptions within the tribe Oxystomatini, and genera Ceratapion and Exapion. PMID:22934614

  17. Mayaro virus: complete nucleotide sequence and phylogenetic relationships with other alphaviruses.

    PubMed

    Lavergne, Anne; de Thoisy, Benot; Lacoste, Vincent; Pascalis, Herv; Pouliquen, Jean-Franois; Mercier, Vronique; Tolou, Hugues; Dussart, Philippe; Morvan, Jacques; Talarmin, Antoine; Kazanji, Mirdad

    2006-05-01

    Mayaro (MAY) virus is a member of the genus Alphavirus in the family Togaviridae. Alphaviruses are distributed throughout the world and cause a wide range of diseases in humans and animals. Here, we determined the complete nucleotide sequence of MAY from a viral strain isolated from a French Guianese patient. The deduced MAY genome was 11,429 nucleotides in length, excluding the 5' cap nucleotide and 3' poly(A) tail. Nucleotide and amino acid homologies, as well as phylogenetic analyses of the obtained sequence confirmed that MAY is not a recombinant virus and belongs to the Semliki Forest complex according to the antigenic complex classification. Furthermore, analyses based on the E1 region revealed that MAY is closely related to Una virus, the only other South American virus clustering with the Old World viruses. On the basis of our results and of the alphaviruses diversity and pathogenicity, we suggest that alphaviruses may have an Old World origin. PMID:16343676

  18. Comparative phylogenetic study of Stichotrichia (Alveolata: Ciliophora: Spirotrichea) based on 18S-rDNA sequences.

    PubMed

    Paiva, T S; Borges, B N; Harada, M L; Silva-Neto, I D

    2009-01-01

    Since molecular phylogenies of stichotrich ciliates started to be published, some remarkable contradictions to morphology-based classifications have been reported, such as the Convergent Evolution of Urostylids and Uroleptids (CEUU) hypothesis, the Halteria paradox, the polyphyly of Oxytricha and of Stichotrichia. We hypothesized the internal phylogeny of 18S-rDNA from 53 morphological species of stichotrichs and their relationships with Hypotrichia and Oligotrichia using parsimony and neighbor-joining methods, including new data from Pseudouroleptus caudatus and Strongylidium pseudocrassum. Competing phylogenetic scenarios were compared using statistical tests, and the results suggest the reconsideration of both CEUU and the position of Halteria among flexible-body oxytrichids. The polyphyly of Oxytricha was not rejected and the monophyly of Stichotrichia was accepted based on parsimony analysis if Pseudoamphisiella is considered an external (discocephalid related) taxon. PMID:19291871

  19. Identification of two phylogenetic lineages of equine hepacivirus and high prevalence in Brazil.

    PubMed

    Figueiredo, Andreza Soriano; Lampe, Elisabeth; do Esprito-Santo, Mrcia Paschoal; Mello, Francisco Campello do Amaral; de Almeida, Fernando Queiroz; de Lemos, Elba Regina Sampaio; Godoi, Tatianne Leme Oliveira Santos; Dimache, Luana Avila Giorgia; Dos Santos, Debora Regina Lopes; Villar, Livia Melo

    2015-12-01

    Non-primate hepacivirus (NPHV), as described in horses, is the virus most genetically related to hepatitis C virus (HCV). Although detected worldwide, limited data on genomic variability and distribution of NPHV are available in Latin America. The aim of this study was to investigate the genetic diversity and prevalence of equine NPHV in Brazil. Thirteen percent of 202 equines from three Brazilian states were positive for NPHV genome by reverse transcriptase PCR. Nucleotide sequences of the partial NS5B genome presented the greatest diversity described to date (25.6%), which is comparable to the upper limit of diversity for HCV subtype classification for the same region. Phylogenetic analysis revealed that Brazilian NPHV sequences along with isolates worldwide form two strongly supported clades (pp?=?1.0) suggesting the existence of two distinct lineages. PMID:26545848

  20. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  1. Can triaxial accelerometry accurately recognize inclined walking terrains?

    PubMed

    Wang, Ning; Redmond, Stephen J; Ambikairajah, Eliathamby; Celler, Branko G; Lovell, Nigel H

    2010-10-01

    The standard method for the analysis of body accelerations cannot accurately estimate the energy expenditure (EE) of uphill or downhill walking. The ability to recognize the grade of the walking surface will most likely improve upon the accuracy of the EE estimates for daily physical activities. This paper investigates the benefits of automatic gait analysis approaches including step-by-step gait segmentation and heel-strike recognition of the accelerometry signal in classifying various gradients. Triaxial accelerometry signals were collected from 12 subjects, performing walking on seven different gradient surfaces: 1) 92 m of 0() flat ground; 2) 85 m of 2.70() inclined ramp; 3) 24 m of 9.86() inclined ramp; and 4) 6-m pitch line of 28.03() rake of stairway. Validity studies performed on a group of randomly selected healthy subjects showed high agreement scores between the automated heel-strike recognition markers, manual gait annotation markers, and video-based gait-segmentation markers. Thirteen subset features were found using a subset-selection search procedure from 57 extracted features which maximize the classification accuracy, performed with a Gaussian mixture model classifier, as estimated using sixfold cross-validation. An overall walking pattern-recognition accuracy of 82.46% was achieved on seven different inclined terrains using the 13 selected features. This system should, therefore, improve the accuracy of daily EE estimates with accurate measures on terrain inclinations. PMID:20460200

  2. Interpretation of bootstrap values in phylogenetic analysis.

    PubMed

    Wiesemller, Bernhard; Rothe, Hartmut

    2006-06-01

    Bootstrap Analysis is a common tool in cladistics, and consequently many authors tend to believe that it could be close to a test of monophyly. In fact, it is only a procedure to calculate the redundancy of a certain character pattern among taxa. To demonstrate this, we set up a study with questionable data: Four skulls of great apes and humans were digitally photographed, and the pixels' brightness values were simply transformed to a one-zero-matrix, which was then used to calculate a Wagner tree with PHYLIP. As a rule, the higher the resolution of the photos is, the higher are the bootstrap values of supported taxa (and the lower are the bootstrap values of non-supported data). Redundancy of intertaxic information might indeed be an indicator of phylogenetic relationship, but can also be due to other reasons, like functional-adaptive needs in morphology, or semantic needs in a DNA-code. As a result, we tend to believe that high bootstrap values are actually less important than low ones. It is safer, based on a low bootstrap value, to claim that a certain taxon is not well supported by certain data. Therefore, we recommend discussions of low bootstrap values in future publications. PMID:16850767

  3. Taxonomic review and phylogenetic analysis of Enchodontoidei.

    PubMed

    Silva, Hilda M A; Gallo, Valria

    2011-06-01

    Enchodontoidei are extinct marine teleost fishes with a long temporal range and a wide geographic distribution. As there has been no comprehensive phylogenetic study of this taxon, we performed a parsimony analysis using a data matrix with 87 characters, 31 terminal taxa for ingroup, and three taxa for outgroup. The analysis produced 93 equally parsimonious trees (L = 437 steps; CI = 0. 24; RI = 0. 49). The topology of the majority rule consensus tree was: (Sardinioides + Hemisaurida + (Nardorex + (Atolvorator + (Protostomias + Yabrudichthys ) + (Apateopholis + (Serrilepis + (Halec + Phylactocephalus ) + (Cimolichthys + (Prionolepis + ( (Eurypholis + Saurorhamphus ) + (Enchodus + (Paleolycus + Parenchodus ))))))) + ( (Ichthyotringa + Apateodus ) + (Rharbichthys + (Trachinocephalus + ( (Apuliadercetis + Brazilodercetis ) + (Benthesikyme + (Cyranichthys + Robertichthys ) + (Dercetis + Ophidercetis )) + (Caudadercetis + (Pelargorhynchus + (Nardodercetis + (Rhynchodercetis + (Dercetoides + Hastichthys )))))). The group Enchodontoidei is not monophyletic. Dercetidae form a clade supported by the presence of very reduced neural spines and possess a new composition. Enchodontidae are monophyletic by the presence of middorsal scutes, and Rharbichthys was excluded. Halecidae possess a new composition, with the exclusion of Hemisaurida. This taxon and Nardorex are Aulopiformes incertae sedis. PMID:21670874

  4. Phylogenetic biodiversity assessment based on systematic nomenclature

    PubMed Central

    Crozier, Ross H; Dunnett, Lisa J; Agapow, Paul-Michael

    2007-01-01

    Biodiversity assessment demands objective measures, because ultimately conservation decisions must prioritize the use of limited resources for preserving taxa. The most general framework for the objective assessment of conservation worth are those that assess evolutionary distinctiveness, e.g. Genetic (Crozier 1992) and Phylogenetic Diversity (Faith 1992), and Evolutionary History (Nee & May 1997). These measures all attempt to assess the conservation worth of any scheme based on how much of the encompassing phylogeny of organisms is preserved. However, their general applicability is limited by the small proportion of taxa that have been reliably placed in a phylogeny. Given that phylogenizaton of many interesting taxa or important is unlikely to occur soon, we present a framework for using taxonomy as a reasonable surrogate for phylogeny. Combining this framework with exhaustive searches for combinations of sites containing maximal diversity, we provide a proof-of-concept for assessing conservation schemes for systematized but un-phylogenised taxa spread over a series of sites. This is illustrated with data from four studies, on North Queensland flightless insects (Yeates et al. 2002), ants from a Florida Transect (Lubertazzi & Tschinkel 2003), New England bog ants (Gotelli & Ellison 2002) and a simulated distribution of the known New Zealand Lepidosauria (Daugherty et al. 1994). The results support this approach, indicating that species, genus and site numbers predict evolutionary history, to a degree depending on the size of the data set. PMID:19325850

  5. A phylogenetic overview of the Agaricomycotina.

    PubMed

    Hibbett, David S

    2006-01-01

    The Agaricomycotina contains about one-third of the described species of Fungi, including mushrooms, jelly fungi and basidiomycetous yeasts. Recent phylogenetic analyses by P. Matheny and colleagues combining nuclear rRNA genes with the protein-coding genes rpb1, rpb2 and tef1 support the division of Agaricomycotina into Tremellomycetes, Dacrymycetes and Agaricomycetes. There is strong support for the monophyly of the Tremellomycetes, and its position as the sister group of the rest of the Agaricomycotina. Dacrymycetes and Agaricomycetes also are supported strongly, and together they form a clade that is equivalent to the Hymenomycetidae of Swann and Taylor. The deepest nodes in the Agaricomycetes, which are supported only by Bayesian measures of confidence, suggest that the Sebacinales, Cantharellales and Auriculariales are among the most ancient lineages. For the first time, the Polyporales are strongly supported as monophyletic and are placed as the sister group of the Thelephorales. The Agaricales, Boletales and Atheliales are united as the Agaricomycetidae, and the Russulales might be its sister group. There are still some problematical nodes that will require more loci to be resolved. Phylogenomics has promise for reconstructing these difficult backbone nodes, but current genome projects are limited mostly to the Agaricales, Boletales and Polyporales. Genome sequences from other major lineages, especially the early diverging clades, are needed to resolve the most ancient nodes and to assess deep homology in ecological characters in the Agaricomycotina. PMID:17486968

  6. A phylogenetic re-evaluation of Arthrinium.

    PubMed

    Crous, Pedro W; Groenewald, Johannes Z

    2013-07-01

    Although the genus Arthrinium (sexual morph Apiospora) is commonly isolated as an endophyte from a range of substrates, and is extremely interesting for the pharmaceutical industry, its molecular phylogeny has never been resolved. Based on morphology and DNA sequence data of the large subunit nuclear ribosomal RNA gene (LSU, 28S) and the internal transcribed spacers (ITS) and 5.8S rRNA gene of the nrDNA operon, the genus Arthrinium is shown to belong to Apiosporaceae in Xylariales. Arthrinium is morphologically and phylogenetically circumscribed, and the sexual genus Apiospora treated as synonym on the basis that Arthinium is older, more commonly encountered, and more frequently used in literature. An epitype is designated for Arthrinium pterospermum, and several well-known species are redefined based on their morphology and sequence data of the translation elongation factor 1-alpha (TEF), beta-tubulin (TUB) and internal transcribed spacer (ITS1, 5.8S, ITS2) gene regions. Newly described are A. hydei on Bambusa tuldoides from Hong Kong, A. kogelbergense on dead culms of Restionaceae from South Africa, A. malaysianum on Macaranga hullettii from Malaysia, A. ovatum on Arundinaria hindsii from Hong Kong, A. phragmites on Phragmites australis from Italy, A. pseudospegazzinii on Macaranga hullettii from Malaysia, A. pseudosinense on bamboo from The Netherlands, and A. xenocordella from soil in Zimbabwe. Furthermore, the genera Pteroconium and Cordella are also reduced to synonymy, rejecting spore shape and the presence of setae as characters of generic significance separating them from Arthrinium. PMID:23898419

  7. The phylogenetic profile of mast cells.

    PubMed

    Crivellato, Enrico; Travan, Luciana; Ribatti, Domenico

    2015-01-01

    Mast cells (MCs) are tissue-based immune cells that participate to both innate and adaptive immunities as well as to tissue-remodelling processes. Their evolutionary history appears as a fascinating process, whose outline we can only partly reconstruct according to current remnant evidence. MCs have been identified in all vertebrate classes, and a cell population with the overall characteristics of higher vertebrate MCs is identifiable even in the most evolutionarily advanced fish species. In invertebrates, cells related to vertebrate MCs have been recognized in ascidians, a class of urochordates which appeared approximately 500 million years ago. These comprise the granular hemocyte with intermediate characteristics of basophils and MCs and the "test cell" (see below). Both types of cells contain histamine and heparin, and provide defensive functions. The test cell releases tryptase after stimulation with compound 48/80. A leukocyte ancestor operating in the context of a primitive local innate immunity probably represents the MC phylogenetic progenitor. This cell was likely involved in phagocytic and killing activity against pathogens and operated as a general inducer of inflammation. This early type of defensive cell possibly expressed concomitant tissue-reparative functions. With the advent of recombinase activating gene (RAG)-mediated adaptive immunity in the Cambrian era, some 550 million years ago, and the emergence of early vertebrates, MC progenitors differentiated towards a more complex cellular entity. Early MCs probably appeared in the last common ancestor we shared with hagfish, lamprey, and sharks about 450-500 million years ago. PMID:25388242

  8. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicols; Nisa-Martnez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (?85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  9. Flotation classification of ultrafine particles -- A novel classification approach

    SciTech Connect

    Qiu Guanzhou; Luo Lin; Hu Yuehua; Xu Jin; Wang Dianzuo

    1995-12-31

    This paper introduces a novel classification approach named the flotation classification approach which works by controlling interactions between particles. It differs considerably from the conventional classification processes operating on mechanical forces. In the present test, the micro-bubble flotation technology is grafted onto hydro-classification. Selective aggregation and dispersion of ultrafine particles are achieved through governing the interactions in the classification process. A series of laboratory classification tests for {minus}44 gm kaolin have been conducted on a classification column. As a result, about 92% recovery for minus 2 {micro}m size fraction Kaolin in the final product is obtained. In addition, two criteria for the classification are set up. Finally, a principle of classifying and controlling the interactions between particles is discussed in terms of surface thermodynamics and hydrodynamics.

  10. Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes

    PubMed Central

    Hill, Malcolm S.; Hill, April L.; Lopez, Jose; Peterson, Kevin J.; Pomponi, Shirley; Diaz, Maria C.; Thacker, Robert W.; Adamska, Maja; Boury-Esnault, Nicole; Cárdenas, Paco; Chaves-Fonnegra, Andia; Danka, Elizabeth; De Laine, Bre-Onna; Formica, Dawn; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Klontz, Sarah; Morrow, Christine C.; Patel, Jignasa; Picton, Bernard; Pisani, Davide; Pohlmann, Deborah; Redmond, Niamh E.; Reed, John; Richey, Stacy; Riesgo, Ana; Rubin, Ewelina; Russell, Zach; Rützler, Klaus; Sperling, Erik A.; di Stefano, Michael; Tarver, James E.; Collins, Allen G.

    2013-01-01

    Background Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets. PMID:23372644

  11. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    PubMed Central

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial genomes becomes commonplace in evolutionary studies. "The human factor in classification is nowhere more evident than in dealing with this superfamily (Rhinocerotoidea)." G. G. Simpson (1945) PMID:19432984

  12. Molecular phylogenetics, species diversity, and biogeography of the Andean lizards of the genus Proctoporus (Squamata: Gymnophthalmidae).

    PubMed

    Goicoechea, Noemí; Padial, José M; Chaparro, Juan C; Castroviejo-Fisher, Santiago; De la Riva, Ignacio

    2012-12-01

    The family Gymnophthalmidae comprises ca. 220 described species of Neotropical lizards distributed from southern Mexico to Argentina. It includes 36 genera, among them Proctoporus, which contains six currently recognized species occurring across the yungas forests and wet montane grasslands of the Amazonian versant of the Andes from central Peru to central Bolivia. Here, we investigate the phylogenetic relationships and species limits of Proctoporus and closely related taxa by analyzing 2121 base pairs of mitochondrial (12S, 16S, and ND4) and nuclear (c-mos) genes. Our taxon sampling of 92 terminals includes all currently recognized species of Proctoporus and 15 additional species representing the most closely related groups to the genus. Maximum parsimony, maximum likelihood and Bayesian phylogene