Den, Takuya S.; Frey, Hans-Martin; Leutwyler, Samuel
2014-11-21
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational constant of hexafluorobenzene is determined as B{sub 0} = 1029.740(28) MHz (2σ uncertainty) from RR-RCS transients measured in a pulsed seeded supersonic jet, where essentially only the v = 0 state is populated. Using this B{sub 0} value, RR-RCS measurements in a room temperature gas cell give the rotational constants B{sub v} of the five lowest-lying thermally populated vibrationally excited states ν{sub 7/8}, ν{sub 9}, ν{sub 11/12}, ν{sub 13}, and ν{sub 14/15}. Their B{sub v} constants differ from B{sub 0} by between −1.02 MHz and +2.23 MHz. Combining the B{sub 0} with the results of all-electron coupled-cluster CCSD(T) calculations of Demaison et al. [Mol. Phys. 111, 1539 (2013)] and of our own allow to determine the C-C and C-F semi-experimental equilibrium bond lengths r{sub e}(C-C) = 1.3866(3) Å and r{sub e}(C-F) = 1.3244(4) Å. These agree with the CCSD(T)/wCVQZ r{sub e} bond lengths calculated by Demaison et al. within ±0.0005 Å. We also calculate the semi-experimental thermally averaged bond lengths r{sub g}(C-C)=1.3907(3) Å and r{sub g}(C-F)=1.3250(4) Å. These are at least ten times more accurate than two sets of experimental gas-phase electron diffraction r{sub g} bond lengths measured in the 1960s.
NASA Astrophysics Data System (ADS)
Teale, Andrew M.; Lutnæs, Ola B.; Helgaker, Trygve; Tozer, David J.; Gauss, Jürgen
2013-01-01
Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], 10.1063/1.3242081, it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.
Formulas for determining rotational constants
NASA Astrophysics Data System (ADS)
Guelachvili, G.
This document is part of Subvolume B `Linear Triatomic Molecules', Part 9, of Volume 20 `Molecular Constants mostly from Infrared Spectroscopy' of Landolt-Börnstein Group II `Molecules and Radicals'. Part of the introduction, it states formulas for determining rotational constants, band center, band origin, and quadrupole coupling. Specific comments relate to BHO (HBO) and COS (OCS).
Accurate far-infrared rotational frequencies of carbon monoxide
NASA Technical Reports Server (NTRS)
Varberg, Thomas D.; Evenson, Kenneth M.
1992-01-01
This study presents high-resolution measurements of the pure rotational absorption spectrum of CO in its ground state for the range J arcsec - 5-37. A least-squares fit to this data set, augmented by previous microwave measurements of the J arcsec = 0-4 rotational transitions in the literature, determined accurate values for the molecular constants. A table of calculated CO rotational frequencies is provided for the range J arcsec = 0-45.
Accurate lineshape spectroscopy and the Boltzmann constant
Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.
2015-01-01
Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085
Accurate lineshape spectroscopy and the Boltzmann constant.
Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N
2015-01-01
Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085
Microfabricated microengine with constant rotation rate
Romero, Louis A.; Dickey, Fred M.
1999-01-01
A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.
Spin-rotation and NMR shielding constants in HCl
Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz
2013-12-21
The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl} = −53.914 kHz and C{sub H} = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.
History and progress on accurate measurements of the Planck constant
NASA Astrophysics Data System (ADS)
Steiner, Richard
2013-01-01
The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved
History and progress on accurate measurements of the Planck constant.
Steiner, Richard
2013-01-01
The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the
Rotating and accelerating black holes with a cosmological constant
NASA Astrophysics Data System (ADS)
Chen, Yu; Ng, Cheryl; Teo, Edward
2016-08-01
We propose a new form of the rotating C-metric with cosmological constant, which generalizes the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.
Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing
NASA Astrophysics Data System (ADS)
He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin
In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds
A priori predictions of the rotational constants for protonated formaldehyde and protonated methanol
NASA Technical Reports Server (NTRS)
Defrees, D. J.; Mclean, A. D.
1986-01-01
Protonated formaldehyde and protonated methanol are candidate interstellar molecules and models for classes of protonated oxygen compounds. Ab initio molecular orbital theory has been used to compute rotational constants to guide spectroscopic searches both in the laboratory and in space. The ab initio results are empirically correct to account for systematic deficiencies in the theory and zero-point vibrational effects; they are expected to be accurate to about + or - 2 percent. For H2COH(+) the resultant constants are (in GHz) A = 194.3, B = 34.28, and C = 29.14; for H3COH2(+) A = 103.7, B = 21.18, and C = 20.30.
Ground-state rotational constants of 12CH 3D
NASA Astrophysics Data System (ADS)
Chackerian, C.; Guelachvili, G.
1980-12-01
An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.
Running Newton constant, improved gravitational actions, and galaxy rotation curves
NASA Astrophysics Data System (ADS)
Reuter, M.; Weyer, H.
2004-12-01
A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton’s constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a “cutoff identification” which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton’s constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton’s constant with a small exponent of the order 10-6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo.
NASA Astrophysics Data System (ADS)
Najib, Hamid
2015-06-01
Several accurate experimental values of the rovibrational interaction constants αC and αB, the harmonic wave-number parameters ωij, and the anharmonicity xij and gij constants have been extracted from the most recent high-resolution Fourier transform infrared (FTIR), centimeter-wave (CMW) and millimeter-wave (MMW) measurements in the spectra of the oblate symmetric top molecule 14NF3. The data used are those of the four fundamental, the overtone, the combination and the hot bands identified and analyzed in the range between 400 cm-1 and 2000 cm-1. Combining the recent experimental values of the constants αC and αB, with the accurate experimental ground state rotational constants C0 and B0, new equilibrium rotational constants have been evaluated: Ce = 0.1968006 (26) cm-1 and Be = 0.358981442 (43) cm-1 for the pyramidal molecule NF3, from which the following equilibrium structure is obtained: re(F-N) = 1.36757 (58) Å; θe(FNF) = 101.8513 (10)°. This experimental equilibrium geometry is in excellent agreement with the recent structure determined by ab initio calculations at the CCSD(T)/aug-cc-pVQZ level of theory.
Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives
NASA Technical Reports Server (NTRS)
Park, Michael A.; Green, Lawrence L.
2000-01-01
Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.
Accurate rotational rest-frequencies of CH2NH at submillimetre wavelengths
NASA Astrophysics Data System (ADS)
Dore, L.; Bizzocchi, L.; Degli Esposti, C.
2012-08-01
Context. Methanimine (CH2NH) has been detected in different astronomical sources, both galactic (as in several "hot cores", the circumstellar enevolope IRC+10216, and the L183 pre-stellar core) and extragalactic, and is considered a pre-biotic interstellar molecule. Its ground-state rotational spectrum has been studied in the laboratory up to 172 GHz, well below the spectral ranges covered by Herschel/HIFI and the ALMA bands 9 and 10. Aims: In this laboratory study, we extend into the submillimetre-wave region the detection of the rotational spectrum of CH2NH in its vibrational ground state. Methods: The investigation was carried out using a source-modulation microwave spectrometer equipped with a cell coupled to a pyrolysis apparatus working at 1150 °C. The spectrum was recorded in the frequency range 329-629 GHz, with the detection of 58 transitions. Results: The newly measured transition frequencies, along with those available from previous microwave studies, allow us to determine fairly accurate rotational constants of CH2NH and the complete sets of quartic and sextic centrifugal distortion constants, in addition to two octic constants. Several transitions have an hyperfine structure due to the 14N nucleus, which was accounted for in the analysis. Conclusions: The determined spectroscopic constants make it possible to build a list of very accurate rest-frequencies for astrophysical purposes in the THz region with 1σ uncertainties lower than 0.01 km s-1 in radial equivalent velocity. Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A19
Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)
1995-01-01
It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.
Fast and accurate determination of the Wigner rotation matrices in the fast multipole method.
Dachsel, Holger
2006-04-14
In the rotation based fast multipole method the accurate determination of the Wigner rotation matrices is essential. The combination of two recurrence relations and the control of the error accumulations allow a very precise determination of the Wigner rotation matrices. The recurrence formulas are simple, efficient, and numerically stable. The advantages over other recursions are documented. PMID:16626188
Quick and accurate estimation of the elastic constants using the minimum image method
NASA Astrophysics Data System (ADS)
Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.
2015-04-01
A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
NASA Astrophysics Data System (ADS)
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
NASA Astrophysics Data System (ADS)
Kisiel, Z.; Desyatnyk, O.; Pszczółkowski, L.; Charnley, S. B.; Ehrenfreund, P.
2003-01-01
Rotational spectra of quinoline and of isoquinoline have been observed in the centimeter- and millimeter-wave regions. The spectra were assigned on the basis of bands formed by high- J transitions, which were measured up to J″⩽128 and ν⩽234 GHz. Complementary measurements were also made on low- J, centimeter-wave spectra observed in supersonic expansion and with fully resolved nuclear quadrupole hyperfine structure. Accurate rotational, centrifugal distortion and hyperfine splitting constants for the ground states of both molecules are reported. The electric dipole moments for the two molecules were also determined from Stark effect measurements and are μa=0.14355(19), μb=2.0146(17), μtot=2.0197(17) D for quinoline, and μa=2.3602(21), μb=0.9051(14), μtot=2.5278(20) D for isoquinoline. The experimental observables were found to be rather accurately predicted by MP2/6-31G** ab initio calculations, and corresponding molecular geometries are also reported.
NASA Astrophysics Data System (ADS)
Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.
2015-06-01
Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.
Accurate measurements of the dielectric constant of seawater at L band
NASA Astrophysics Data System (ADS)
Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David
2016-01-01
This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0°C to 35°C in 5°C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.
Accurate Measurements of the Dielectric Constant of Seawater at L Band
NASA Technical Reports Server (NTRS)
Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David
2016-01-01
This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.
Accurate Measurements of the Dielectric Constant of Seawater at L Band
NASA Technical Reports Server (NTRS)
Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.
2010-01-01
This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.
Effective Torsion and Spring Constants in a Hybrid Translational-Rotational Oscillator
ERIC Educational Resources Information Center
Nakhoda, Zein; Taylor, Ken
2011-01-01
A torsion oscillator is a vibrating system that experiences a restoring torque given by [tau] = -[kappa][theta] when it experiences a rotational displacement [theta] from its equilibrium position. The torsion constant [kappa] (kappa) is analogous to the spring constant "k" for the traditional translational oscillator (for which the restoring force…
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
NASA Astrophysics Data System (ADS)
Den, Takuya; Frey, Hans-Martin; Felker, Peter M.; Leutwyler, Samuel
2015-10-01
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 103-104 times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ˜2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J -, K -, A -, and C-type transients, as well as a novel transient (S-type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants A0 = 5637.68(20) MHz, B0 = 1428.23(37) MHz, and C0 = 1138.90(48) MHz (1σ uncertainties). Combining the A0, B0, and C0 constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths re(C1-C2) = 1.3849(4) Å, re(C2-C3) = 1.3917(4) Å, re(C-F) = 1.3422(3) Å, and re(C2-H2) = 1.0791(5) Å.
A priori predictions of the rotational constants for HC13N, HC15N, C5O
NASA Technical Reports Server (NTRS)
DeFrees, D. J.; McLean, A. D.
1989-01-01
Ab initio molecular orbital theory is used to estimate the rotational constant for several carbon-chain molecules that are candidates for discovery in interstellar space. These estimated rotational constants can be used in laboratory or astronomical searches for the molecules. The rotational constant for HC13N is estimated to be 0.1073 +/- 0.0002 GHz and its dipole moment 5.4 D. The rotational constant for HC15N is estimated to be 0.0724 GHz, with a somewhat larger uncertainty. The rotational constant of C5O is estimated to be 1.360 +/- 2% GHz and its dipole moment 4.4. D.
Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.
Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro
2016-01-12
The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy. PMID:26605696
Rotating black holes in a Randall-Sundrum brane with a cosmological constant
NASA Astrophysics Data System (ADS)
Neves, J. C. S.; Molina, C.
2012-12-01
In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences.
NASA Astrophysics Data System (ADS)
Sow, P. L. T.; Merji, S.; Tokunaga, S. K.; Lemarchand, C.; Triki, M.; Borde, C.; Chardonnet, C.; Darquie, B.; Daussy, C.
2013-06-01
Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 μm enables a determination of the Boltzmann constant k_{{B}}. We report on our latest measurements. The main systematic effects, including the temperature control, will be discussed and an error budget will be presented in which the global uncertainty on systematic effects is at the level of a few ppm. This is valid provided that data is recorded under the optimized experimental conditions determined by the studies of systematic effects and provided that spectra are fitted to the speed-dependent Voigt profile, identified as the most suitable lineshape for our measurements. A determination of k_{{B}} by Doppler spectroscopy with a combined uncertainty of a few ppm is within reach. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k_{{B}} determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the Kelvin by fixing k_{{B}}, an exciting prospect considering the upcoming redefinition of the International System of Units (SI). C. Lemarchand, M. Triki, B. Darquié, C. J. Bordé, C. Chardonnet and C. Daussy, New J. Phys. 13, 073028 (2011). M. Triki, C. Lemarchand, B. Darquié, P. L. T. Sow, V. Roncin, C. Chardonnet, and C. Daussy, Phys. Rev. A 85, 062510 (2012).
Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał
2014-05-21
We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.
Rotational Spectroscopy of HB 33S: The Quadrupole Coupling Constant of 33S in Thioborine
NASA Astrophysics Data System (ADS)
Bizzocchi, L.; Degli Esposti, C.; Dore, L.
2002-10-01
The unstable HBS molecule has been produced in the gas phase by a high-temperature reaction between crystalline boron and hydrogen sulfide. Ground state rotational spectra have been observed in the millimeter-wave region, from 75 to 460 GHz, for the previously unobserved H 11B 33S and H 10B 33S isotopic species. The analysis of the hyperfine structure produced by the 10/11B and 33S nuclear spins in the low- J rotational transitions has yielded the first evaluation of the quadrupole coupling constant of 33S in the thioborine molecule, which was 6.361(15) MHz in H 11B 33S and 6.329(17) MHz in H 10B 33S. In addition, further measurements have been performed for the most abundant isotopomers H 10/11B 32/34S, for which improved values of rotational, centrifugal, and hyperfine structure constants have been determined.
A Method for Achieving Constant Rotation Rates in a Micro-Orthogonal Linkage System
Dickey, F.M.; Holswade, S.C.; Romero, L.A.
1999-05-12
Silicon micromachine designs include engines that consist of orthog- onally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {micro}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Generally, these en- gines will run with non-uniform rotation rates if the drive signals are not properly designed and maintained over a range of system parameters. We present a method for producing constant rotation rates in a micro-engine driven by an orthogonal linkage system. We show that provided the val- ues of certain masses, springs, damping factors, and lever arms are in the right proportions, the system behaves as though it were symmetrical. We will refer to systems built in this way as being quasi-symmetrical. We show that if a system is built quasi-symmetrically , then it is possible to achieve constant rotation rates even if one does not know the form of the friction function, or the value of the friction. We analyze this case in some detail.
Accurate calculations of the high-pressure elastic constants based on the first-principles
NASA Astrophysics Data System (ADS)
Wang, Chen-Ju; Gu, Jian-Bing; Kuang, Xiao-Yu; Yang, Xiang-Dong
2015-08-01
The energy term corresponding to the first order of the strain in Taylor series expansion of the energy with respect to strain is always ignored when high-pressure elastic constants are calculated. Whether the modus operandi would affect the results of the high-pressure elastic constants is still unsolved. To clarify this query, we calculate the high-pressure elastic constants of tantalum and rhenium when the energy term mentioned above is considered and neglected, respectively. Results show that the neglect of the energy term corresponding to the first order of the strain indeed would influence the veracity of the high-pressure elastic constants, and this influence becomes larger with pressure increasing. Therefore, the energy term corresponding to the first-order of the strain should be considered when the high-pressure elastic constants are calculated. Project supported by the National Natural Science Foundation of China (Grant No. 11274235), the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11104190), and the Doctoral Education Fund of Education Ministry of China (Grant Nos. 20100181110086 and 20110181120112).
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated. PMID:26374014
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control. PMID:24517806
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-01-01
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650
Thompson, Andrew R; Binder, Benjamin P; McCaffrey, Jesse E; Svensson, Bengt; Thomas, David D
2015-01-01
While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination. PMID:26477249
NASA Astrophysics Data System (ADS)
Singh, Malkiat; Bettenhausen, Michael H.
2011-08-01
Faraday rotation changes the polarization plane of linearly polarized microwaves which propagate through the ionosphere. To correct for ionospheric polarization error, it is necessary to have electron density profiles on a global scale that represent the ionosphere in real time. We use raytrace through the combined models of ionospheric conductivity and electron density (ICED), Bent, and Gallagher models (RIBG model) to specify the ionospheric conditions by ingesting the GPS data from observing stations that are as close as possible to the observation time and location of the space system for which the corrections are required. To accurately calculate Faraday rotation corrections, we also utilize the raytrace utility of the RIBG model instead of the normal shell model assumption for the ionosphere. We use WindSat data, which exhibits a wide range of orientations of the raypath and a high data rate of observations, to provide a realistic data set for analysis. The standard single-shell models at 350 and 400 km are studied along with a new three-shell model and compared with the raytrace method for computation time and accuracy. We have compared the Faraday results obtained with climatological (International Reference Ionosphere and RIBG) and physics-based (Global Assimilation of Ionospheric Measurements) ionospheric models. We also study the impact of limitations in the availability of GPS data on the accuracy of the Faraday rotation calculations.
Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4
NASA Astrophysics Data System (ADS)
Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.
2013-06-01
We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).
Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ
NASA Technical Reports Server (NTRS)
Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.
2008-01-01
Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.
Translational and Rotational Diffusion Constants of Tobacco Mosaic Virus from Rayleigh Linewidths
Cummins, Herman Z.; Carlson, Francis D.; Herbert, Thomas J.; Woods, Gary
1969-01-01
The translational and rotational diffusion constants of tobacco mosaic virus (TMV) have been determined from homodyne and heterodyne measurements of the spectrum of laser light scattered from dilute aqueous solutions of TMV. Our results for the translational and rotational constants respectively, reduced to 20°C, are: DT = 0.280 ± 0.006 × 10-7 cm2/sec, and DR = 320 ± 18 sec-1. We include a theoretical derivation of the spectrum of light scattered from rod-shaped molecules which reproduces results obtained previously by Pecora, but which is specialized at the outset to the problem of dilute solutions so that simple single-particle correlation functions may be utilized. An analysis of the photocurrent spectrum for both the homodyne and heterodyne detection schemes is given. Various data reduction schemes utilized in the analysis of our spectra are described in some detail, and our results are compared with values of the diffusion constants obtained from other experiments. PMID:5778184
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
NASA Astrophysics Data System (ADS)
Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang
2016-08-01
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.
2005-01-01
Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.
NASA Astrophysics Data System (ADS)
Lee, Timothy J.; Huang, Xinchuan; Fortenberry, Ryan C.; Schwenke, David W.
2013-06-01
Theoretical chemists have been computing vibrational and rovibrational spectra of small molecules for more than 40 years, but over the last decade the interest in this application has grown significantly. The increased interest in computing accurate rotational and rovibrational spectra for small molecules could not come at a better time, as NASA and ESA have begun to acquire a mountain of high-resolution spectra from the Herschel mission, and soon will from the SOFIA and JWST missions. In addition, the ground-based telescope, ALMA, has begun to acquire high-resolution spectra in the same time frame. Hence the need for highly accurate line lists for many small molecules, including their minor isotopologues, will only continue to increase. I will present the latest developments from our group on using the "Best Theory + High-Resolution Experimental Data" strategy to compute highly accurate rotational and rovibrational spectra for small molecules, including NH3, CO2, and SO2. I will also present the latest work from our group in producing purely ab initio line lists and spectroscopic constants for small molecules thought to exist in various astrophysical environments, but for which there is either limited or no high-resolution experimental data available. These more limited line lists include purely rotational transitions as well as rovibrational transitions for bands up through a few combination/overtones.
ERIC Educational Resources Information Center
Yilmaz, Ilker; Konukman, Ferman; Birkan, Binyamin; Ozen, Arzu; Yanardag, Mehmet; Camursoy, Ilhan
2010-01-01
Effects of a constant time delay procedure on the Halliwick's method of swimming rotation skills (i.e., vertical and lateral rotation) for children with autism were investigated. A single subject multiple baseline model across behaviors with probe conditions was used. Participants were three boys, 8-9 years old. Data were collected over a 10-week…
NASA Astrophysics Data System (ADS)
Stuhlmann, Benjamin; Gmerek, Felix; Krügler, Daniel; Schmitt, Michael
2014-08-01
Single vibronic level fluorescence spectra of the electronic origin and of seven vibronic bands between 0,0 and 0,0 + 1265 cm-1 have been measured and analyzed by means of a combined Franck-Condon/rotational constants fit. The rotational constants in ground and lowest electronically excited singlet state of four different isotopologues have been taken from previous rotationally resolved measurements of Schmitt et al. (2006). The intensities of 182 vibronic emission bands and of 8 rotational constants have been used for a fit of the complete heavy atom geometry changes upon electronic excitation. Vibronic modes, about 1000 cm-1 above the electronic origin, show strong deviations from Franck-Condon behavior in emission. Herzberg-Teller coupling contributes to this effect. 1300 cm-1 above the origin, we observe the onset of intramolecular vibrational redistribution in the emission spectra.
Mechanical Analysis and Hierarchies of Multi-digit Synergies during Accurate Object Rotation
Zhang, Wei; Olafsdottir, Halla B.; Zatsiorsky, Vladimir M.; Latash, Mark L.
2009-01-01
We studied the mechanical variables (the grip force and the total moment of force) and multi-digit synergies at two levels (the virtual finger-thumb level, VF-TH, and the individual finger level, IMRL) of a hypothetical control hierarchy during accurate rotation of a hand-held instrumented handle. Synergies were defined as co-varied changes in elemental variables (forces and moments of force) that stabilize the output at a particular level. Indices of multi-digit synergies showed higher values at the hierarchically higher level (VF-TH) for both normal and tangential forces. The moment of force was stabilized at both hierarchical levels during the steady-state phases but not during the movement. The results support the principles of superposition and of mechanical advantage. They also support an earlier hypothesis on an inherent trade-off between synergies at the two hierarchical levels, although the controller showed more subtle and versatile synergic control than the one hypothesized earlier. PMID:19799165
Shear-thinning and constant viscosity predictions for rotating sphere flows
NASA Astrophysics Data System (ADS)
Garduño, Isaías E.; Tamaddon-Jahromi, Hamid R.; Webster, Michael F.
2016-02-01
The steady motion of a rotating sphere is analysed through two contrasting viscoelastic models, a constant viscosity (FENE-CR) model and a shear-thinning (LPTT) model. Giesekus (Rheol. Acta 9:30-38, 1970) presented an intriguing rotating viscoelastic flow, which to date has not been completely explained. In order to investigate this flow, sets of parameters have been explored to analyse the significant differences introduced with the proposed models, while the momentum-continuity-stress equations are solved through a hybrid finite-element/finite volume numerical scheme. Solutions are discussed for first, sphere angular velocity increase (\\varOmega), and second, through material velocity-scale increase (α). Numerical predictions for different solvent-ratios (β) show significant differences as the sphere angular velocity increases. It is demonstrated that an emerging equatorial anticlockwise vortex emerges in a specific range of \\varOmega. As such, this solution matches closely with the Giesekus experimental findings. Additionally, inside the emerging inertial vortex, a contrasting positive second normal stress-difference (N2 ( dot{γ} ) = τ_{rr} - τ_{θθ}) region is found compared against the negative N2-enveloping layer.
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
1991-01-01
The invention disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The invention replaces the synchro and drive motor in a synchro-resolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
1992-01-01
The invention herein disclosed is a digital circuit which emulates a synchro signal in a synchro-resolver follower system for precise control of shaft position and rotation at very low rotational rates. The subject invention replaces the synchro and drive motor in a synchroresolver follower system with a digital and analog synchro emulation circuit for generating the resolver control signal. The synchro emulation circuit includes amplitude modulation means to provide relatively high frequency resolver excitation signals for accurate resolver response even with very low shaft rotation rates.
Demissie, Taye Beyene
2016-01-28
The nuclear spin-rotation (NSR) and absolute nuclear magnetic resonance (NMR) shielding tensors of the nuclei in the series of X(77)Se and X(125)Te (X = (29)Si, (73)Ge, (119)Sn and (207)Pb) are calculated using four-component relativistic density functional theory (DFT) and coupled-cluster singles-doubles with a perturbative triples correction (CCSD(T)). The results for the NSR constants are compared to available experimental data. The best theoretical estimates are obtained when relativistic corrections from DFT are added to the accurate non-relativistic CCSD(T) results. All the calculated NSR constants are in excellent agreement with the corresponding experimental values. Even though there are previously estimated absolute shielding constants and spans from experimental NSR tensors, new accurate values are reported following the same approach used to calculate the NSR constants in this study. The main reasons for the discrepancy between the previously reported NMR properties and the accurate results obtained in this study are also discussed. PMID:26741559
Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana
2015-01-14
The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes. PMID:25591363
ERIC Educational Resources Information Center
Beare, R. A.
2008-01-01
Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…
Huang, Xinchuan; Taylor, Peter R; Lee, Timothy J
2011-05-19
High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C(3)H(3)(+) molecular cation, referred to as c-C(3)H(3)(+) and l-C(3)H(3)(+). Specifically, the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants by use of both vibrational second-order perturbation theory and variational methods to solve the nuclear Schrödinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C(3)H(3)(+), obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C(3)H(3)(+) and l-C(3)H(3)(+) are the most reliable available for the free gas-phase species, and it is hoped that these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations. PMID:21510653
NASA Technical Reports Server (NTRS)
Huang, Xinchuan; Taylor, Peter R.; Lee, Timothy J.
2011-01-01
High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the C H + molecular cation, referred to as c-C H + and I-C H +. Specifically the 33 3333 singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), has been used in conjunction with extrapolation to the one-particle basis set limit and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants using both vibrational 2nd-order perturbation theory and variational methods to solve the nuclear Schroedinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of C H +, 33 obtaining 27.9 kcal/mol at 0 K, which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for c-C H + 33 and I-C H + are the most reliable available for the free gas-phase species and it is hoped that 33 these will be useful in the assignment of future high-resolution laboratory experiments or astronomical observations.
An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System
Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide
2015-01-01
Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983
An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.
Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide
2015-01-01
Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983
Yang, Songqiu; Han, Keli
2016-07-14
The understanding of the interplay between microenvironment and molecular rotors is helpful for designing and developing of molecular sensors of local physical properties. We present a study on the two rotational relaxation paths of excited 9-(dicyanovinyl) julolidine in several solvents. One rotational path (C-C single-bond rotation, τb) quickly leads to the formation of a twisted state. The other path (C═C double-bond rotation, τc) shows that the populations go back to the ground state directly via a conical intersection between the S1 and ground state. The increase in the solvent dielectric constant shows little effect on the τb lifetime for its small energy barrier (<0.01 eV), but τc lifetime is increased in larger dielectric constant solvents due to the larger energy gap at conical intersection. Both τb and τc are increased greatly with the increased solvent viscosity. τb is more sensitive to viscosity than τc may be due to its larger rotational moiety. PMID:26886050
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-08-01
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems.
Keppler, S; Hornung, M; Bödefeld, R; Kahle, M; Hein, J; Kaluza, M C
2012-08-27
We present the setup of a polarization rotating device and its adaption for high-power short-pulse laser systems. Compared to conventional halfwave plates, the all-reflective principle using three zero-phase shift mirrors provides a higher accuracy and a higher damage threshold. Since plan-parallel plates, e.g. these halfwave plates, generate postpulses, which could lead to the generation of prepulses during the subsequent laser chain, the presented device avoids parasitic pulses and is therefore the preferable alternative for high-contrast applications. Moreover the device is easily scalable for large beam diameters and its spectral reflectivity can be adjusted by an appropriate mirror coating to be well suited for ultra-short laser pulses. PMID:23037123
NASA Technical Reports Server (NTRS)
Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj
2011-01-01
Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.
2015-11-01
Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.
Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W
2016-04-14
The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state. PMID:27083725
Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.
2016-04-14
Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less
NASA Astrophysics Data System (ADS)
Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.
2016-04-01
The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.
Igata, Takahisa; Ishihara, Hideki; Koike, Tatsuhiko
2011-03-15
We discuss constants of motion of a particle under an external field in a curved spacetime, taking into account the Hamiltonian constraint, which arises from the reparametrization invariance of the particle orbit. As the necessary and sufficient condition for the existence of a constant of motion, we obtain a set of equations with a hierarchical structure, which is understood as a generalization of the Killing tensor equation. It is also a generalization of the conventional argument in that it includes the case when the conservation condition holds only on the constraint surface in the phase space. In that case, it is shown that the constant of motion is associated with a conformal Killing tensor. We apply the hierarchical equations and find constants of motion in the case of a charged particle in an electromagnetic field in black hole spacetimes. We also demonstrate that gravitational and electromagnetic fields exist in which a charged particle has a constant of motion associated with a conformal Killing tensor.
Shul'man, Z.P.; Zal'tsgendler, E.A.; Husid, B.M.
1988-07-01
The intensity of flow of a magnetorheological suspension in a magnetic field depends on the radial and axial viscosity as well as the magnetic stress. These values are determined by the microstructure of the suspension, characterized by two quantities: the form parameter and the orientation angle. This paper derives expressions for determining these values, and uses them to construct equations for the viscosity and stress parameters. Using these parameters, the rotation hydrodynamics of magnetorheological suspensions are then considered for two cases: the first, where the free-surface effect is absent, and the suspension fills the clearance between infinite concentric cylindrical surfaces, and the second, where the free-surface effect is taken into account and the suspension is contained in a rotating cylindrical vessel. Expressions for angular flow velocity, intensity, and discharge are derived.
Lafferty, Walter; Flaud, Jean-marie; Ngom, El Hadji A.; Sams, Robert L.
2009-01-02
High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm-1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1+ν3)=2475.828004(29), ν0(ν1+ν2+ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1+ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower lying vibrational states [ W.J. Lafferty, J.-M. Flaud, R.L. Sams and EL Hadjiabib, in press] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud and W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.
Jumah, R.Y.; Mujumdar, A.S.; Raghavan, G.S.V.
1996-05-01
A diffusion-based mathematical model is presented for batch drying of corn in a novel rotating jet spouted bed device under constant as well as intermittent drying conditions. Such a device is suited for drying of large particles (e.g. grains, beans, seeds, etc.) for which internal heat and mass transfer rates control the drying kinetics. Based on literature data for moisture diffusivities the model predictions are compared with experimental data for both continuous and time-dependent air supply and/or heat input. Effects of relevant parameters are evaluated and discussed in the light of potential practical applications. 44 refs.
NASA Astrophysics Data System (ADS)
Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.
2013-12-01
Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound residence time in the atmosphere for a majority of trace gases. In case of very short lived compounds their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the purpose of comprehensive atmospheric modeling of compound's impact on the atmosphere, such as in ozone depletion (ODP) and climate change (GWP). The currently recommended uncertainties of OH reaction rate constants (NASA/JPL Publications and IUPAC Publications) exceed 10% at room temperature for the majority of compounds to be larger at lower temperatures of atmospheric interest. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions may constitute a major source of uncertainty in estimating the compound's environmental impact. We will present the higher accuracy results of OH reaction rate constant determinations between 220 K and 370 K. A statistical analysis of the data will be discussed. The high precision of kinetic measurements performed at low temperatures allows reliable determination of temperature dependences of the rate constants. This is especially important because we found that many OH reactions exhibit the curvature of the Arrhenius plots. A detailed inventory of sources of instrumental uncertainties related to our experiment proves a total uncertainty of the OH reaction rate constant to be as small as ~2-3%. The estimation of the atmospheric lifetime of a compound based on its OH reaction rate constant will be discussed.
NASA Astrophysics Data System (ADS)
Halse, Meghan E.; Zagdoun, Alexandre; Dumez, Jean-Nicolas; Emsley, Lyndon
2015-05-01
A method for quantitatively calculating nuclear spin diffusion constants directly from crystal structures is introduced. This approach uses the first-principles low-order correlations in Liouville space (LCL) method to simulate spin diffusion in a box, starting from atomic geometry and including both magic-angle spinning (MAS) and powder averaging. The LCL simulations are fit to the 3D diffusion equation to extract quantitative nuclear spin diffusion constants. We demonstrate this method for the case of 1H spin diffusion in ice and L-histidine, obtaining diffusion constants that are consistent with literature values for 1H spin diffusion in polymers and that follow the expected trends with respect to magic-angle spinning rate and the density of nuclear spins. In addition, we show that this method can be used to model 13C spin diffusion in diamond and therefore has the potential to provide insight into applications such as the transport of polarization in non-protonated systems.
Haskell, E.H.; Hayes, R.B.; Kenner, G.H.
1996-01-01
We report here a rapid method of electron paramagnetic resonance (EPR) dosimetry of dental enamel which will allow screening of whole deciduous teeth of children following a nuclear accident. The technique requires virtually no sample preparation and is capable of measuring doses of less than 100 mGy. Teeth may be scanned for threshold dose levels without the need for added calibration doses and those of particular interest may be more accurately examined using the additive dose method. The success of the technique lies in the elimination of anisotropic effects by rotation of spectra from the empty cavity and a standard background tooth. Normalization using in- cavity Mn++ standards is also employed.
Fortenberry, Ryan C; Huang, Xinchuan; Schwenke, David W; Lee, Timothy J
2014-02-01
In this work, computational procedures are employed to compute the rotational and rovibrational spectra and line lists for H2O, CO2, and SO2. Building on the established use of quartic force fields, MP2 and CCSD(T) Dipole Moment Surfaces (DMSs) are computed for each system of study in order to produce line intensities as well as the transition energies. The computed results exhibit a clear correlation to reference data available in the HITRAN database. Additionally, even though CCSD(T) DMSs produce more accurate intensities as compared to experiment, the use of MP2 DMSs results in reliable line lists that are still comparable to experiment. The use of the less computationally costly MP2 method is beneficial in the study of larger systems where use of CCSD(T) would be more costly. PMID:23692860
Demissie, Taye B.
2015-12-31
This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.
NMR shielding and spin-rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules
NASA Astrophysics Data System (ADS)
Demissie, Taye B.
2015-12-01
This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.
NASA Astrophysics Data System (ADS)
Dolgonosov, A. M.; Prudkovskii, A. G.
2008-05-01
A distribution for the rigid and nonrigid adsorbed molecule forms was found. Adsorbed molecule rigidity failure was shown to be accompanied by a weak nonlinear effect, which manifested itself as a temperature dependence of the Henry constant. A method for the determination of the barrier to intramolecular rotation from the temperature dependence of the molecule adsorption constant was suggested. Barriers to rotation about the C-C and C-O bonds were determined for several molecules.
Huang Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.
2013-05-10
Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C{sub 3}H{sup +}. In an effort to corroborate this finding, we employed state-of-the-art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 {yields} 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C{sub 3}H{sup +} is questionable.
NASA Astrophysics Data System (ADS)
Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.
2013-05-01
Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the-art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 → 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.
NASA Technical Reports Server (NTRS)
Huang, Xinchuan; Fortenberry, Ryan Clifton; Lee, Timothy J.
2013-01-01
Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 yields 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.
NASA Astrophysics Data System (ADS)
MacDonald, D. A.
2003-11-01
For time t¯<0 viscous fluid is in slow flow through a long straight axially symmetric tube whose radius, ā(x¯), varies slowly with axial distance, x¯. When t¯=0 the tube is impulsively rotated about its axis with angular velocity, Ω¯, at which angular speed it is thereafter maintained. When Re=Wa/ν=O(1) and ɛ=W¯ā02/νL¯→0, λ=Ωa/W→∞ with Γ=ɛλ2 finite, MacDonald [Phys. Fluids 12, 3168 (2000)] has shown that during the transition from zero angular velocity to solid body rotation the flow in the tube is strikingly different for a diverging and a converging tube, when Γ is sufficiently large. Here, ɛ is the Blasius parameter for slowly varying tubes and ā0 and W denote a reference radius and velocity, respectively. When the tube is diverging, a bubble of recirculating fluid, centered on the axis can occur. This bubble satisfies the definitions of vortex breakdown. When the tube is converging, a toroid of recirculating fluid can occur adjacent to the wall of the tube. Streamlines for each of these cases have been presented [D. A. MacDonald, Phys. Fluids 12, 3168 (2000)]. In this article we shall determine Γ0, the lowest value of Γ for which the toroid will occur, and t¯0, the corresponding instant of time at which it first appears in converging tubes. The wall shear stress is shown to become of large magnitude and graphs of its behavior with x¯/L, where L is a representative length in the axial direction, are presented, when νt¯/ā02=0.1, for representative wall profiles. It is found that incipient flow reversal at the walls of the converging tube ā=(ā0/2)[3-tanh(x¯/L)] occurs at x¯/L=-0.5750, and the critical swirl and the time of occurrence are determined. A figure showing the wall stress against axial distance is also presented for a typical diverging tube when t≡t¯ν/ā02=0.1.
Długosz, Maciej; Antosiewicz, Jan M
2015-07-01
Proper treatment of hydrodynamic interactions is of importance in evaluation of rigid-body mobility tensors of biomolecules in Stokes flow and in simulations of their folding and solution conformation, as well as in simulations of the translational and rotational dynamics of either flexible or rigid molecules in biological systems at low Reynolds numbers. With macromolecules conveniently modeled in calculations or in dynamic simulations as ensembles of spherical frictional elements, various approximations to hydrodynamic interactions, such as the two-body, far-field Rotne-Prager approach, are commonly used, either without concern or as a compromise between the accuracy and the numerical complexity. Strikingly, even though the analytical Rotne-Prager approach fails to describe (both in the qualitative and quantitative sense) mobilities in the simplest system consisting of two spheres, when the distance between their surfaces is of the order of their size, it is commonly applied to model hydrodynamic effects in macromolecular systems. Here, we closely investigate hydrodynamic effects in two and three-body systems, consisting of bead-shell molecular models, using either the analytical Rotne-Prager approach, or an accurate numerical scheme that correctly accounts for the many-body character of hydrodynamic interactions and their short-range behavior. We analyze mobilities, and translational and rotational velocities of bodies resulting from direct forces acting on them. We show, that with the sufficient number of frictional elements in hydrodynamic models of interacting bodies, the far-field approximation is able to provide a description of hydrodynamic effects that is in a reasonable qualitative as well as quantitative agreement with the description resulting from the application of the virtually exact numerical scheme, even for small separations between bodies. PMID:26068580
Kim, Yong-Hyun; Kim, Ki-Hyun
2016-01-01
A novel technique is developed to determine the Henry's law constants (HLCs) of seven volatile fatty acids (VFAs) with significantly high solubility using a combined application of thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS). In light of the strong sorptive properties of these semi-volatile organic compounds (SVOCs), their HLCs were determined by properly evaluating the fraction lost on the surface of the materials used to induce equilibrium (vial, gas-tight syringe, and sorption tube). To this end, a total of nine repeated experiments were conducted in a closed (static) system at three different gas/liquid volume ratios. The best estimates for HLCs (M/atm) were thus 7,200 (propionic acid), 4,700 (i-butyric acid), 4,400 (n-butyric acid), 2,700 (i-valeric acid), 2,400 (n-valeric acid), 1,000 (hexanoic acid), and 1,500 (heptanoic acid). The differences in the HLC values between this study and previous studies, if assessed in terms of the percent difference, ranged from 9.2% (n-valeric acid) to 55.7% (i-valeric acid). We overcame the main cause of errors encountered in previous studies by performing the proper correction of the sorptive losses of the SVOCs that inevitably took place, particularly on the walls of the equilibration systems (mainly the headspace vial and/or the glass tight syringe). PMID:26577086
Skokov, S.; Peterson, K.A.; Bowman, J.M.
1998-08-01
Accurate {ital ab initio} multireference configuration interaction (CI) calculations with large correlation-consistent basis sets are performed for HOCl. After extrapolation to the complete basis set limit, the {ital ab initio} data are precisely fit to give a semiglobal three-dimensional potential energy surface to describe HOCl{r_arrow}Cl+OH from high overtone excitation of the OH-stretch. The average absolute deviation between the {ital ab initio} and fitted energies is 4.2thinspcm{sup {minus}1} for energies up to 60 kcal/mol relative to the HOCl minimum. Vibrational energies of HOCl including the six overtones of the OH-stretch are computed using a vibrational-Cl method on the fitted potential and also on a slightly adjusted potential. Near-spectroscopic accuracy is obtained using the adjusted potential; the average absolute deviation between theory and experiment for 19 experimentally reported states is 4.8thinspcm{sup {minus}1}. Very good agreement with experiment is also obtained for numerous rotational energies for the ground vibrational state, the ClO-stretch fundamental, and the fifth overtone of the OH-stretch. {copyright} {ital 1998 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.
2012-12-01
The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of
NASA Astrophysics Data System (ADS)
Guo, Haotian; Duan, Fajie; Wang, Meng
2016-01-01
In this article, a blade synchronous vibration measurement method based on tip-timing at constant rotating speed is presented. This method requires no once-per revolution sensor, which makes it more generally applicable, especially for high pressure compressors of the dual rotor engines. The vibration amplitude and engine order are identified with this method. The theoretical analysis is presented, and the least square method is utilized for vibration parameter identification. The method requires at least four tip-timing sensors if the Campbell diagram is previously known and five sensors if the Campbell diagram is unknown. The method has no strict requirement on the angles among sensors which facilitate the installation of the sensors in the measurement. In some special conditions the method will fail and these conditions are analyzed. Experiments are conducted on a high speed rotor with a fiber based tip-timing system, and the experimental results indicate that the theoretical analysis is correct and the method is feasible.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor. PMID:26574455
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-08-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R(1ρ)) and transverse (R(2ρ)) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R(1ρ) and R(2ρ) values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R(1ρ) and R(2ρ) values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R(1ρ) and R(2ρ) values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R(1ρ) and R(2ρ) values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R(1ρ) and R(2ρ) values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-01-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R1ρ) and transverse (R2ρ) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R1ρ and R2ρ values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R1ρ and R2ρ values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R1ρ and R2ρ values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R1ρ and R2ρ values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R1ρ and R2ρ values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-03-01
The exact analytic solution is introduced for the rotational motion of a rigid body having three equal principal moments of inertia and subjected to an external torque vector which is constant for an observer fixed with the body, and to arbitrary initial angular velocity. In the paper a parametrization of the rotation by three complex numbers is used. In particular, the rows of the rotation matrix are seen as elements of the unit sphere and projected, by stereographic projection, onto points on the complex plane. In this representation, the kinematic differential equation reduces to an equation of Riccati type, which is solved through appropriate choices of substitutions, thereby yielding an analytic solution in terms of confluent hypergeometric functions. The rotation matrix is recovered from the three complex rotation variables by inverse stereographic map. The results of a numerical experiment confirming the exactness of the analytic solution are reported. The newly found analytic solution is valid for any motion time length and rotation amplitude. The present paper adds a further element to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
Rotational constants of linear and/or bent Cn+1H+ and CnN+(n = 1-6): A DFT study
NASA Astrophysics Data System (ADS)
Aoki, Kozo
2014-10-01
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1-6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.
Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J
2010-12-28
One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar
Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał
2015-10-28
We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.
Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2015-10-28
We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517
NASA Astrophysics Data System (ADS)
Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2015-10-01
We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.
NASA Astrophysics Data System (ADS)
Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.
2014-09-01
In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.
Connecting Fundamental Constants
Di Mario, D.
2008-05-29
A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.
NASA Astrophysics Data System (ADS)
Ben Abdallah, D.; Hammami, K.; Najar, F.; Jaidane, N.; Ben Lakhdar, Z.; Senent, M. L.; Chambaud, G.; Hochlaf, M.
2008-10-01
The low-temperature rotational (de-) excitation of C3 (X1Σg+) by collisions with He (1S) is studied using an ab initio potential energy surface (PES). This PES has been calculated using the single- and double-excitation coupled-cluster approach with noniterative perturbational treatment of triple excitations [CCSD(T)] and the augmented correlation-consistent triple-ζ basis set (aug-cc-pVTZ) with bond functions. This PES is then incorporated in full close-coupling quantum scattering calculations for collision energies between 0.1 and 50 cm-1 in order to deduce the rate constants for rotational levels of C3 up to j = 10, covering the temperature range 5-15 K.
NASA Astrophysics Data System (ADS)
Fasci, Eugenio; Domenica De Vizia, Maria; Merlone, Andrea; Moretti, Luigi; Castrillo, Antonio; Gianfrani, Livio
2015-10-01
We report on complementary tests and measurements regarding our recent determination of the Boltzmann constant, kB, by means of Doppler broadening thermometry, also providing additional information as compared to previous articles. A revised uncertainty budget is illustrated, including some new components that were ignored in previous spectroscopic experiments, and better quantifying other components that were estimated to be negligible. In particular, we consider the relativistic Doppler effect, the perturbation caused by the finite bandwidth of the detection system and the influence of the spontaneous emission content of the probe laser. These new components do not increase the global uncertainty which still amounts to 24 ppm. Our value for the Boltzmann constant is 1.380 631 (33) × 10-23 J K-1, which is the best determination reported so far by using an optical method.
Accurate decay-constant ratios fB*/fB and fBs*/fBs from Borel QCD sum rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2015-06-01
We present our analysis of the decay constants of the beauty vector mesons B* and Bs* within the framework of dispersive sum rules for the two-point correlator of vector currents in QCD. While the decay constants of the vector mesons fB* and fBs* —similar to the decay constants of the pseudoscalar mesons fB and fBs—individuallyhave large uncertainties induced by theory parameters not known with a satisfactory precision, these uncertainties almost entirely cancel out in the ratios of vector over pseudoscalar decay constants. These ratios, thus, may be predicted with very high accuracy due to the good control over the systematic uncertainties of the decay constants gained upon application of our hadron-parameter extraction algorithm. Our final results read fB*/fB=0.944 ±0.01 1OPE±0.01 8syst and fBs*/fB s=0.947 ±0.02 3OPE±0.02 0syst . Thus, both fB*/fB and fBs*/fBs are less than unity at 2.5 σ and 2 σ level, respectively.
Godinho, Glaydson Gomes; França, Flavio de Oliveira; Alves, Freitas José Marcio; Watanabe, Fábio Nagato; Nobre, Leonardo Oliveira; De Almeida Neto, Manoel Augusto; Mendes Da Silva, Marcos André
2015-01-01
Objective: To evaluate the functional and anatomical results from surgical treatment via arthroscopy in cases of complete rupture of the rotator cuff, using ultrasound images and the Constant and Murley functional index to investigate the correlation between them. Methods: 100 patients (110 shoulders) were evaluated. The mean follow-up was 48.8 ± 33.28 months (12 to 141 months). The mean age was 60.25 ± 10.09 (36 to 81 years). Rupture of the supraspinal tendon alone occurred in 85 cases (77%), and in association with the infraspinatus in 20 cases (18%) and subscapularis in four shoulders (4%). An association of supraspinatus, infraspinatus and subscapularis lesions was found in one shoulder (1%). The lesions were classified according to DeOrio and Cofield scores as small/medium in 85 shoulders (77%) and large/extensive in 25 (23%). The clinical results were assessed in accordance with the Constant and Murley criteria. The ultrasound results relate to reports issued by different radiologists. Statistical analysis was carried out using the chi-square test, Fisher's exact test, Student's t test, Pearson's correlation, Kruskal-Wallis correlation and logistic regression (significance: p < 0.05). Results: The mean Constant evaluation was 85.3 ± 10.06 in the normal shoulders and 83.96 ± 8.67 in the operated shoulders (p = 0.224). Excellent and good results were found in 74 shoulders (67%), satisfactory and moderate results in 32 (29%) and poor results in four (4%). The ultrasound evaluation showed 38 shoulders with re-rupture (35%) and absence of rupture in 71 (65%). Among the 74 shoulders (67%) with excellent/good results, 22 (30%) presented re-rupture in the ultrasound report (p = 0.294). Among the four shoulders (4%) with poor results, two (50%) presented reports of intact tendons (p = 0.294). Conclusion: There was no statistically valid correlation between the ultrasound diagnosis and the clinical evaluation of results among the patients who underwent arthroscopic
Deridder, Sander; Desmet, Gert
2012-02-01
Using computational fluid dynamics (CFD), the effective B-term diffusion constant γ(eff) has been calculated for four different random sphere packings with different particle size distributions and packing geometries. Both fully porous and porous-shell sphere packings are considered. The obtained γ(eff)-values have subsequently been used to determine the value of the three-point geometrical constant (ζ₂) appearing in the 2nd-order accurate effective medium theory expression for γ(eff). It was found that, whereas the 1st-order accurate effective medium theory expression is accurate to within 5% over most part of the retention factor range, the 2nd-order accurate expression is accurate to within 1% when calculated with the best-fit ζ₂-value. Depending on the exact microscopic geometry, the best-fit ζ₂-values typically lie in the range of 0.20-0.30, holding over the entire range of intra-particle diffusion coefficients typically encountered for small molecules (0.1 ≤ D(pz)/D(m) ≤ 0.5). These values are in agreement with the ζ₂-value proposed by Thovert et al. for the random packing they considered. PMID:22236565
NASA Astrophysics Data System (ADS)
Desforges, Jean; Deschamps, Clément; Gauvin, Serge
2015-08-01
The determination of the complex refractive index of thin films usually requires the highest accuracy. In this paper, we report on a new and accurate method based on a spectral rectifying process of a single transmittance curve. The agreements with simulated and real experimental data show the helpfulness of the method. The case of materials having arbitrary absorption bands at midpoint in spectral range, such as pigments in guest-host polymers, is also encompassed by this method.
NASA Astrophysics Data System (ADS)
Zhang, Ying-Ying; Xie, Ting-Xian; Li, Ze-Rui; Shi, Ying; Jin, Ming-Xing
2015-03-01
A quasi-classical trajectory (QCT) calculation is used to investigate the vector and scalar properties of the D + BrO → DBr + O reaction based on an ab initio potential energy surface (X1A’ state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region (T<100 K). Meanwhile, three product angular distributions P(θr), P(ϕr), and P(θr, ϕr) are presented, which reflect the positive effect on the rotational angular momentum j’ polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections (PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence. Project supported by the Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069).
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liang, Chunlei
2015-08-01
This paper presents a simple, efficient, and high-order accurate sliding-mesh interface approach to the spectral difference (SD) method. We demonstrate the approach by solving the two-dimensional compressible Navier-Stokes equations on quadrilateral grids. This approach is an extension of the straight mortar method originally designed for stationary domains [7,8]. Our sliding method creates curved dynamic mortars on sliding-mesh interfaces to couple rotating and stationary domains. On the nonconforming sliding-mesh interfaces, the related variables are first projected from cell faces to mortars to compute common fluxes, and then the common fluxes are projected back from the mortars to the cell faces to ensure conservation. To verify the spatial order of accuracy of the sliding-mesh spectral difference (SSD) method, both inviscid and viscous flow cases are tested. It is shown that the SSD method preserves the high-order accuracy of the SD method. Meanwhile, the SSD method is found to be very efficient in terms of computational cost. This novel sliding-mesh interface method is very suitable for parallel processing with domain decomposition. It can be applied to a wide range of problems, such as the hydrodynamics of marine propellers, the aerodynamics of rotorcraft, wind turbines, and oscillating wing power generators, etc.
Bytautas, Laimutis; Matsunaga, Nikita; Ruedenberg, Klaus
2010-02-21
In the first paper of this series, a very accurate ab initio potential energy curve of the (3)Sigma(g)(-) ground state of O(2) has been determined in the approximation that all valence shell electron correlations were calculated at the complete basis set limit. In the present study, the corrections arising from core electron correlations and relativity effects, viz., spin-orbit coupling and scalar relativity, are determined and added to the potential energy curve. From the 24 points calculated on this curve, an analytical expression in terms of even-tempered Gaussian functions is determined and, from it, the vibrational and rotational energy levels are calculated by means of the discrete variable representation. We find 42 vibrational levels. Experimental data (from the Schumann-Runge band system) only yield the lowest 36 levels due to significant reduction in the transition intensities of higher levels. For the 35 term values G(v), the mean absolute deviation between theoretical and experimental data is 12.8 cm(-1). The dissociation energy with respect to the lowest vibrational energy is calculated within 25 cm(-1) of the experimental value of 41,268.2+/-3 cm(-1). The theoretical crossing between the (3)Sigma(g)(-) state and the (1)Sigma(g)(+) state is found to occur at 2.22 A and the spin-orbit coupling in this region is analyzed. PMID:20170227
NASA Astrophysics Data System (ADS)
Yu, Bingwu; van Ingen, Hugo; Freedberg, Darón I.
2013-03-01
Strong 1H-1H coupling can significantly reduce the accuracy of 1JCH measured from frequency differences in coupled HSQC spectra. Although accurate 1JCH values can be extracted from spectral simulation, it would be more convenient if the same accurate 1JCH values can be obtained experimentally. Furthermore, simulations reach their limit for residual dipolar coupling (RDC) measurement, as many significant, but immeasurable RDCs are introduced into the spin system when a molecule is weakly aligned, thus it is impossible to have a model spin system that truly represents the real spin system. Here we report a new J modulated method, constant-time INEPT CT-HSQC (CTi-CT-HSQC), to accurately measure one-bond scalar coupling constant and RDCs without strong coupling interference. In this method, changing the spacing between the two 180° pulses during a constant time INEPT period selectively modulates heteronuclear coupling in quantitative J fashion. Since the INEPT delays for measuring one-bond carbon-proton spectra are short compared to 3JHH, evolution due to (strong) 1H-1H coupling is marginal. The resulting curve shape is practically independent of 1H-1H coupling and only correlated to the heteronuclear coupling evolution. Consequently, an accurate 1JCH can be measured even in the presence of strong coupling. We tested this method on N-acetyl-glucosamine and mannose whose apparent isotropic 1JCH values are significantly affected by strong coupling with other methods. Agreement to within 0.5 Hz or better is found between 1JCH measured by this method and previously published simulation data. We further examined the strong coupling effects on RDC measurements and observed an error up to 100% for one bond RDCs using coupled HSQC in carbohydrates. We demonstrate that RDCs can be obtained with higher accuracy by CTi-CT-HSQC, which compensates the limitation of simulation method.
The Isotope Effect of the O(sub 2)a(sup 1)(sub g) Rotational Constant
NASA Technical Reports Server (NTRS)
Cohen, E. A.; Okunishi, M.; Oh, J. J.
1994-01-01
The pure rotational spectrum of a(sup 1)(sub g) oxygen in its first excited vibrational state as well as the ground vibrational state rotational spectra of (sup 16)O(sup 18)O and (sup 18)O(sub 2) in their a states have been observed.
Kim, Yong-Hyun; Kim, Ki-Hyun
2014-05-16
Accurate values for the Henry's law constants are essential to describe the environmental dynamics of a solute, but substantial errors are recognized in many reported data due to practical difficulties in measuring solubility and/or vapor pressure. Despite such awareness, validation of experimental approaches has scarcely been made. An experimental approach based on thermal desorption-gas chromatography-mass spectrometery (TD-GC-MS) method was developed to concurrently allow the accurate determination of target compounds from the headspace and aqueous samples in closed equilibrated system. The analysis of six aromatics and eight non-aromatic oxygenates was then carried out in a static headspace mode. An estimation of the potential bias and mass balance (i.e., sum of mass measured individually from gas and liquid phases vs. the mass initially added to the system) demonstrates compound-specific phase dependency so that the best results are obtained by aqueous (less soluble aromatics) and headspace analysis (more soluble non-aromatics). Accordingly, we were able to point to the possible sources of biases in previous studies and provide the best estimates for the Henry's constants (Matm(-1)): benzene (0.17), toluene (0.15), p-xylene (0.13), m-xylene (0.13), o-xylene (0.19), styrene (0.27); propionaldehyde (9.26), butyraldehyde (6.19), isovaleraldehyde (2.14), n-valeraldehyde (3.98), methyl ethyl ketone (10.5), methyl isobutyl ketone (3.93), n-butyl acetate (2.41), and isobutyl alcohol (22.2). PMID:24704185
NASA Astrophysics Data System (ADS)
Walker, Olivier; Varadan, Ranjani; Fushman, David
2004-06-01
We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here, we use an efficient Levenberg-Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches [Biochemistry 38 (1999) 10225; J. Magn. Reson. 149 (2001) 214]. This method is demonstrated on a computer-generated and real protein systems. We also address the issue of sensitivity of the diffusion tensor determination from 15N relaxation measurements to experimental errors in the relaxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.
NASA Astrophysics Data System (ADS)
Bakr, A. A.
2011-02-01
This paper concerns with studying the steady and unsteady MHD micropolar flow and mass transfers flow with constant heat source in a rotating frame of reference in the presence chemical reaction of the first-order, taking an oscillatory plate velocity and a constant suction velocity at the plate. The plate velocity is assumed to oscillate in time with a constant frequency; it is thus assumed that the solutions of the boundary layer are the same oscillatory type. The governing dimensionless equations are solved analytically after using small perturbation approximation. The effects of the various flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. Numerical results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. The results show that there exists completely oscillating behavior in the velocity distribution.
The cosmological constant problem
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.
NASA Astrophysics Data System (ADS)
Danilov, M. I.; Yastrebov, S. S.
2012-04-01
Experimental data on the electrical and optical properties of a thin layer of a magnetodielectric colloid obtained by Kozhevnikov et al. (Tech. Phys. 51 (7), 946 (2006)), are analyzed. Using a three-layer hierarchical model, the possible structure and properties of near-electrode layers are determined, the formation mechanisms of dynamic structures are described, and the variation of the electrical properties of the magnetodielectric colloid layer with time and constant electric field strength are discussed.
NASA Technical Reports Server (NTRS)
Neyshtadt, A. I.; Pivovarov, M. L.
1979-01-01
The change in the modulus of the vector of the kinetic moment of a satellite which is noted during the determination of the actual orientation of an artificial earth is discussed. The change is due to the presence of a small perturbing moment, which is constant in fixed axes relative to the satellite. It is also shown that the averaged equations in this problem can be integrated.
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C
1945-01-01
A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.
NASA Technical Reports Server (NTRS)
Green, S.; Truhlar, D. G.
1979-01-01
Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.
Quantitative rotating frame relaxometry methods in MRI.
Gilani, Irtiza Ali; Sepponen, Raimo
2016-06-01
Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27100142
Accurate equilibrium structures of fluoro- and chloroderivatives of methane
NASA Astrophysics Data System (ADS)
Vogt, Natalja; Demaison, Jean; Rudolph, Heinz Dieter
2014-11-01
This work is a systematic study of molecular structure of fluoro-, chloro-, and fluorochloromethanes. For the first time, the accurate ab initio structure is computed for 10 molecules (CF4, CClF3, CCl2F2, CCl3F, CHClF2, CHCl2F, CH2F2, CH2ClF, CH2Cl2, and CCl4) at the coupled cluster level of electronic structure theory including single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [CCSD(T)] with all electrons being correlated and Gaussian basis sets of at least quadruple-ζ quality. Furthermore, when possible, namely for the molecules CH2F2, CH2Cl2, CH2ClF, CHClF2, and CCl2F2, accurate semi-experimental equilibrium (rSEe) structure has also been determined. This is achieved through a least-squares structural refinement procedure based on the equilibrium rotational constants of all available isotopomers, determined by correcting the experimental ground-state rotational constants with computed ab initio vibration-rotation interaction constants and electronic g-factors. The computed and semi-experimental equilibrium structures are in excellent agreement with each other, but the rSEe structure is generally more accurate, in particular for the CF and CCl bond lengths. The carbon-halogen bond length is discussed within the framework of the ligand close-packing model as a function of the atomic charges. For this purpose, the accurate equilibrium structures of some other molecules with alternative ligands, such as CH3Li, CF3CCH, and CF3CN, are also computed.
NASA Technical Reports Server (NTRS)
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
Generalization of the rotated parabolic equation to variable slopes.
Outing, Donald A; Siegmann, William L; Collins, Michael D; Westwood, Evan K
2006-12-01
The rotated parabolic equation [J. Acoust. Soc. Am. 87, 1035-1037 (1990)] is generalized to problems involving ocean-sediment interfaces of variable slope. The approach is based on approximating a variable slope in terms of a series of constant slope regions. The original rotated parabolic equation algorithm is used to march the field through each region. An interpolation-extrapolation approach is used to generate a starting field at the beginning of each region beyond the one containing the source. For the elastic case, a series of operators is applied to rotate the dependent variable vector along with the coordinate system. The variable rotated parabolic equation should provide accurate solutions to a large class of range-dependent seismo-acoustics problems. For the fluid case, the accuracy of the approach is confirmed through comparisons with reference solutions. For the elastic case, variable rotated parabolic equation solutions are compared with energy-conserving and mapping solutions. PMID:17225384
Rotation, differential rotation, and gyrochronology of active Kepler stars
NASA Astrophysics Data System (ADS)
Reinhold, Timo; Gizon, Laurent
2015-11-01
most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65
Rotational partition functions for linear molecules
NASA Astrophysics Data System (ADS)
McDowell, Robin S.
1988-01-01
An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1Sigma electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Qr = about 1/beta exp beta/3, where beta is defined as hcB / kT and B is the rotational constant in per cm; for beta of 0.2 or greater additional power-series terms in beta are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C2H2 at temperatures from 2 to 5000 K, including separate evaluation of the conributions of nuclear spin and centrifugal distortion.
Experimental rovibrational constants and equilibrium structure of phosphorus trifluoride
NASA Astrophysics Data System (ADS)
Najib, Hamid
2014-11-01
Thanks to recent high-resolution Fourier transform infrared (FTIR) and pure rotational (RF/CM/MMW) measurements, several experimental values of the rotation-vibration parameters of the oblate molecule PF3 have been extracted, contributing thus to the knowledge of the molecular potential of phosphorus trifluoride. The data used are those of the fundamental, overtone and combination bands studied in the 300-1500 cm-1 range. The new values are in good agreement with ones determined at low resolution, but significantly more accurate. The agreement is excellent with the available values determined by ab initio HF-SCF calculations employing the TZP/TZ2P triple-zeta basis. From the recent experimental rovibrational interaction constants αC and αB, new accurate equilibrium rotational constants Ce and Be have been derived for the symmetric top molecule PF3, which were used to derive the equilibrium geometry of this molecule: re(F-P) = 1.560986 (43) Å; θe(FPF) = 97.566657 (64)°.
Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.
Puzzarini, Cristina
2015-11-25
The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed. PMID:26529434
The millimeter-wave rotational spectrum of tertiary butyl isocyanide
NASA Astrophysics Data System (ADS)
Kisiel, Z.
1992-02-01
The millimeter-wave rotational spectrum of tertiary butyl isocyanide, (CH 3) 3CNC, was measured in the ground state and in the first excited state of the doubly degenerate CNC bending mode vβ. Accurate spectroscopic constants for both states have been determined from frequency measurements spanning the range 146-333 GHz. The results are compared with those for tertiary butyl cyanide, for which improved ground state sextic distortion constants are reported. The experimental quartic centrifugal distortion constants and the Coriolis coupling constant ξβ are well reproduced by a rudimentary force field calculation. Coriolis coupling constants for bending modes of linear segments attached to symmetric top C3 v molecules based on a tetrahedrally substituted carbon atom are compared and factors responsible for changes in their values are identified and discussed.
Accurate rest-frequencies of ketenimine (CH2CNH) at submillimetre wavelength
NASA Astrophysics Data System (ADS)
Degli Esposti, C.; Dore, L.; Bizzocchi, L.
2014-05-01
Context. Imine compounds are thought to have a role in the interstellar formation of complex organic species, including pre-biotic molecules. Ketenimine (CH2CNH) is one of the four imines discovered in space. It was identified in Sgr B2(N-LMH) through the detection of three rotational lines in absorption. Aims: We present an extensive laboratory study of the ground-state rotational spectrum of CH2CNH at submillimetre wavelengths, aimed at obtaining accurate rest-frequencies for radio-astronomical searches. Methods: The investigation was carried out using a source-modulation microwave spectrometer equipped with a cell that is coupled to a pyrolysis apparatus working at 1000°. The spectrum was recorded in the frequency range 80-620 GHz with the detection of 150 transitions. Results: The newly measured transition frequencies were analysed with previously available microwave and far-infrared data, yielding accurate rotational constants of CH2CNH, the complete sets of quartic and sextic centrifugal distortion constants, and three octic constants. Several transitions exhibit a hyperfine structure due to the quadrupole and spin-rotation couplings of the 14N nucleus, which were accounted for in the analysis. Conclusions: The determined spectroscopic constants allowed for the computation of a list of highly accurate rest-frequencies for astrophysical purposes in the submillimetre and THz region with 1σ uncertainties that are lower than 0.1 km s-1 in radial equivalent velocity. Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A66
Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared
NASA Technical Reports Server (NTRS)
Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.
1993-01-01
Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.
Rotationally resolved infrared spectroscopy of adamantane
NASA Astrophysics Data System (ADS)
Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.
2012-01-01
We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.
Advances in the analysis and design of constant-torque springs
NASA Technical Reports Server (NTRS)
McGuire, John R.; Yura, Joseph A.
1996-01-01
In order to improve the design procedure of constant-torque springs used in aerospace applications, several new analysis techniques have been developed. These techniques make it possible to accurately construct a torque-rotation curve for any general constant-torque spring configuration. These new techniques allow for friction in the system to be included in the analysis, an area of analysis that has heretofore been unexplored. The new analysis techniques also include solutions for the deflected shape of the spring as well as solutions for drum and roller support reaction forces. A design procedure incorporating these new capabilities is presented.
Unitaxial constant velocity microactuator
McIntyre, Timothy J.
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
Synchronizing Rotation Of A Heavy Load
NASA Technical Reports Server (NTRS)
Ratliff, Roger
1991-01-01
Drive system rotates large-inertia load at constant low speed. Simple setup of motors, pulleys, and belts provides both torque and synchronism. Induction motor drives two loads: rotating instrument and slightly lagging synchronous motor. Provides ample torque to start and maintain rotation, and synchronous motor ensures rotation synchronized with ac power supply.
Performance of a constant torque pedal device.
Sherwin, K.
1979-01-01
A constant-torque oscillatory pedal-crank device using vertical movement of the feet is described and its performance compared to a conventional rotational cycle. Using a generator to measure the power output the constant-torque device produced 33% less power and thus has no practical value as an alternative to the conventional pedal-crank system. Images Figure 3 PMID:526783
Tully, R B
1993-06-01
Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391
Tully, R B
1993-01-01
Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391
Nonaxisymmetric oscillations of differentially rotating relativistic stars
Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas D.
2008-01-15
Nonaxisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness M/R, the degree of differential rotation A, and the number of maximum couplings l{sub max}. It is shown that the rotational splitting of the nonaxisymmetric modes are strongly enhanced by increasing the compactness of the star and the degree of differential rotation. Finally, we investigate the relation between the fundamental quadrupole mode and the corotation band of differentially rotating stars.
Crawford, R J; Kearns, M P
2003-10-01
Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714
Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.âº Asteroid and...
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
Highly accurate articulated coordinate measuring machine
Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.
2003-12-30
Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.
Yee, Seonghwan; Gao, Jia-Hong
2014-12-15
Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels of clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.
Translation and Rotation Trade Off in Human Visual Heading Estimation
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)
1996-01-01
We have previously shown that, during simulated curvilinear motion, humans can make reasonably accurate and precise heading judgments from optic flow without either oculomotor or static-depth cues about rotation. We now systematically investigate the effect of varying the parameters of self-motion. We visually simulated 400 ms of self-motion along curved paths (constant rotation and translation rates, fixed retinocentric heading) towards two planes of random dots at 10.3 m and 22.3 m at mid-trial. Retinocentric heading judgments of 4 observers (2 naive) were measured for 12 different combinations of translation (T between 4 and 16 m/s) and rotation (R either 8 or 16 deg/s). In the range tested, heading bias and uncertainty decrease quasilinearly with T/R, but the bias also appears to depend on R. If depth is held constant, the ratio T/R can account for much of the variation in the accuracy and precision of human visual heading estimation, although further experiments are needed to resolve whether absolute rotation rate, total flow rate, or some other factor can account for the observed -2 deg shift between the bias curves.
NASA Astrophysics Data System (ADS)
Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel
2001-05-01
As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C4H10FO2P) was observed in the rotationally cold (Trot<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1σ), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm-1. Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G** level of theory is consistent with our experimental findings.
NASA Astrophysics Data System (ADS)
Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen
2012-07-01
Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD2FI, as well as of the 13C-containing species, 13CH2FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH2FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011);, 10.1063/1.3583498 G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)], 10.1080/00268976.2011.609142 enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).
Automated flexure testing of axially rotated optical fiber gratings
NASA Astrophysics Data System (ADS)
Bachim, B. L.; Gaylord, T. K.
2002-10-01
The design and performance of an automated system for flexure testing of optical fiber gratings is described. In addition to flexing (bending) a fiber grating through a specified curvature range, the system can change the axial rotational orientation of the grating relative to the plane of curvature. Flexure is accomplished by holding the grating against a smooth plastic platform. A linear stage deflects the center of the pinned platform to create a curved surface. Two small weights, hanging on the optical fiber, hold the fiber grating against the curved platform and provide constant tension on the optical fiber over the entire range of curvatures. The fiber grating is axially rotated to a different orientation by returning the platform to zero curvature, removing the weights from the optical fiber, and rotating the optical fiber about its axis using a pair of rotation stages. After replacing the weights on the optical fiber, flexure testing resumes at the new axial rotational orientation. The grating transmission spectrum during flexure is monitored with a broadband source and optical spectrum analyzer. All of these steps are done in an automated fashion (unattended) under computer program control. The testing system allows complete characterization of the fiber grating response for curvatures from 0 to 4 m-1 and for axial rotational orientations from 0° to 360°. Use of this automated test fixture eliminates the need for human intervention during the measurements and greatly decreases the testing time while still allowing complete characterization of the flexure response with axial rotational orientation as a parameter. Additional advantages of the testing system include an absolute zero curvature starting position, an absence of hysteresis effects, and accurate frictionless rotation.
NASA Astrophysics Data System (ADS)
Hochlaf, M.; Puzzarini, C.; Senent, M. L.
2015-07-01
We present multi-component computations for rotational constants, vibrational and torsional levels of medium-sized molecules. Through the treatment of two organic sulphur molecules, ethyl mercaptan and dimethyl sulphide, which are relevant for atmospheric and astrophysical media, we point out the outstanding capabilities of explicitly correlated coupled clusters (CCSD(T)-F12) method in conjunction with the cc-pVTZ-F12 basis set for the accurate predictions of such quantities. Indeed, we show that the CCSD(T)-F12/cc-pVTZ-F12 equilibrium rotational constants are in good agreement with those obtained by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set (CBS) limit and core-correlation effects [CCSD(T)/CBS+CV], thus leading to values of ground-state rotational constants rather close to the corresponding experimental data. For vibrational and torsional levels, our analysis reveals that the anharmonic frequencies derived from CCSD(T)-F12/cc-pVTZ-F12 harmonic frequencies and anharmonic corrections (Δν = ω - ν) at the CCSD/cc-pVTZ level closely agree with experimental results. The pattern of the torsional transitions and the shape of the potential energy surfaces along the torsional modes are also well reproduced using the CCSD(T)-F12/cc-pVTZ-F12 energies. Interestingly, this good accuracy is accompanied with a strong reduction of the computational costs. This makes the procedures proposed here as schemes of choice for effective and accurate prediction of spectroscopic properties of organic compounds. Finally, popular density functional approaches are compared with the coupled cluster (CC) methodologies in torsional studies. The long-range CAM-B3LYP functional of Handy and co-workers is recommended for large systems.
The measurement system of birefringence and Verdet constant of optical fiber
NASA Astrophysics Data System (ADS)
Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun
2013-12-01
The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.
ERIC Educational Resources Information Center
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
NASA Astrophysics Data System (ADS)
Császár, Attila G.
1989-10-01
Optimized geometries and complete, scaled quadratic force fields of HCOCN and HCSCN have been determined at different theoretical levels (HF/4-21, HF/6-31G **; geometries also at MP2/6-31G ** and MP2/6-311G **). Frequencies calculated from the force fields confirm, with one exception, the assignment of the vibrational spectrum of HCOCN. The vibrational fundamentals calculated for HCSCN (accurate within about 50 cm -1) could direct a spectroscopy study aimed at determining them. Calculated rotational and quartic centrifugal distortion (QCD) constants are in good agreement with the experimental data for both molecules, but QCD constants only after scaling of the force fields.
Rotational superposition: a review of methods.
Flower, D R
1999-01-01
Rotational superposition is one of the most commonly used algorithms in molecular modelling. Many different methods of solving superposition have been suggested. Of these, methods based on the quaternion parameterization of rotation are fast, accurate, and robust. Quaternion parameterization-based methods cannot result in rotation inversion and do not have special cases such as co-linearity or co-planarity of points. Thus, quaternion parameterization-based methods are the best choice for rotational superposition applications. PMID:10736782
ERIC Educational Resources Information Center
Ford, T. A.
1979-01-01
In one option for this project, the rotation-vibration infrared spectra of a number of gaseous diatomic molecules were recorded, from which the fundamental vibrational wavenumber, the force constant, the rotation-vibration interaction constant, the equilibrium rotational constant, and the equilibrium internuclear distance were determined.…
Cadogan, Angela; McNair, Peter; Laslett, Mark; Hing, Wayne; Taylor, Stephen
2013-01-01
Objectives: Rotator cuff tears are a common and disabling complaint. The early diagnosis of medium and large size rotator cuff tears can enhance the prognosis of the patient. The aim of this study was to identify clinical features with the strongest ability to accurately predict the presence of a medium, large or multitendon (MLM) rotator cuff tear in a primary care cohort. Methods: Participants were consecutively recruited from primary health care practices (n = 203). All participants underwent a standardized history and physical examination, followed by a standardized X-ray series and diagnostic ultrasound scan. Clinical features associated with the presence of a MLM rotator cuff tear were identified (P<0.200), a logistic multiple regression model was derived for identifying a MLM rotator cuff tear and thereafter diagnostic accuracy was calculated. Results: A MLM rotator cuff tear was identified in 24 participants (11.8%). Constant pain and a painful arc in abduction were the strongest predictors of a MLM tear (adjusted odds ratio 3.04 and 13.97 respectively). Combinations of ten history and physical examination variables demonstrated highest levels of sensitivity when five or fewer were positive [100%, 95% confidence interval (CI): 0.86–1.00; negative likelihood ratio: 0.00, 95% CI: 0.00–0.28], and highest specificity when eight or more were positive (0.91, 95% CI: 0.86–0.95; positive likelihood ratio 4.66, 95% CI: 2.34–8.74). Discussion: Combinations of patient history and physical examination findings were able to accurately detect the presence of a MLM rotator cuff tear. These findings may aid the primary care clinician in more efficient and accurate identification of rotator cuff tears that may require further investigation or orthopedic consultation. PMID:24421626
NASA Astrophysics Data System (ADS)
Schou, Jesper; Beck, John G.
2001-01-01
Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.
Rotational spectra of bicyclic decanes: the trans conformation of (-)-lupinine.
Jahn, Michaela K; Dewald, David; Vallejo-López, Montserrat; Cocinero, Emilio J; Lesarri, Alberto; Grabow, Jens-Uwe
2013-12-19
The conformational and structural properties of the bicyclic quinolizidine alkaloid (-)-lupinine have been investigated in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum is consistent with a single dominant trans conformation within a double-chair skeleton, which is stabilized by more than 10.4 kJ mol(-1) with respect to other conformations. In the isolated conditions of the jet, the hydroxy methyl side chain of the molecule locks in to form an intramolecular O-H···N hydrogen bond to the electron lone pair at the nitrogen atom. Accurate rotational constants, centrifugal distortion corrections, and (14)N nuclear quadrupole coupling parameters are reported and compared to ab initio (MP2) and DFT (M06-2X) calculations. The stability of lupinine is further compared computationally with epilupinine and decaline in order to gauge the influence of intramolecular hydrogen bonding, absent in these molecules. PMID:24028578
Quantitation of enantiospecific adsorption on chiral nanoparticles from optical rotation
NASA Astrophysics Data System (ADS)
Shukla, Nisha; Ondeck, Nathaniel; Gellman, Andrew J.
2014-11-01
Au nanoparticles modified with enantiomerically pure D- or L-cysteine have been shown to serve as enantioselective adsorbents of R- and S-propylene oxide. A simple adsorption model and accompanying experimental protocol have been developed to enable optical rotation measurements to be analyzed for quantitative determination of the ratios of the enantiospecific adsorption equilibrium constants of chiral species on the surfaces of chiral nanoparticles, KLS/KDS = KDR/KLR. This analysis is robust in the sense that it obviates the need to measure the absolute surface area of the absorbent nanoparticles, a quantity that is somewhat difficult to obtain accurately. This analysis has been applied to optical rotation data obtained from solutions of R- and S-propylene oxide, in varying concentration ratios, with D- and L-cysteine coated Au nanoparticles, in varying concentration ratios.
Rotational Structure of the Ir/fir Bands of Small Pahs
NASA Astrophysics Data System (ADS)
Pirali, O.; Gruet, S.; Vervloet, M.; Goubet, M.; Huet, T. R.; Georges, R.; Soulard, P.; Asselin, P.
2013-06-01
Accurate spectroscopic measurements in the laboratory of PAH molecules are required to better understand their excitation/relaxation processes which could be responsible for the Unidentified Infrared Bands observed in various objects in space. In particular very few is known concerning the rotational structure of the IR/FIR bands of PAHs. We used the high resolution Fourier Transform interferometer of the AILES beamline of synchrotron SOLEIL to record the rotationally resolved spectra of several IR/FIR vibrational modes of naphthalene (C_{10}H_{8}) and its derivatives: quinoline (C_9H_7N), isoquinoline (C_9H_7N), azulene (C_{10}H_{8}), quinoxaline (C_8H_6N_2), quinazoline (C_8H_6N_2). Firstly, the intense band associated with the ν_{46} CH bending out of plane mode of naphthalene recorded under jet conditions (Jet-AILES experiment developed on the AILES beamline by the IPR-LADIR-PhLAM consortium) revealed transitions involving low J and Ka rotational quantum numbers. These new data permitted to accurately fit the ground state rotational constants and to improve the ν_{46} band constants. As a second step, we performed the rotational analysis of the low frequency ν_{47} and ν_{48} bands of naphthalene recorded at room-temperature in the long absorption pathlength cell from ISMO. As a last step, the high resolution spectra of several bands of azulene, quinoline, isoquinoline and quinoxaline were recorded at room temperature and analyzed using the same procedure. All the rotational constants fitted in the present work were compared to the results of anharmonic DFT calculations realized at various levels of accuracy. S. Albert, et al.; Faraday Discussions, 150, 51 (2011)
A highly accurate interatomic potential for argon
NASA Astrophysics Data System (ADS)
Aziz, Ronald A.
1993-09-01
A modified potential based on the individually damped model of Douketis, Scoles, Marchetti, Zen, and Thakkar [J. Chem. Phys. 76, 3057 (1982)] is presented which fits, within experimental error, the accurate ultraviolet (UV) vibration-rotation spectrum of argon determined by UV laser absorption spectroscopy by Herman, LaRocque, and Stoicheff [J. Chem. Phys. 89, 4535 (1988)]. Other literature potentials fail to do so. The potential also is shown to predict a large number of other properties and is probably the most accurate characterization of the argon interaction constructed to date.
Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo
2014-04-20
In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm{sup –1} for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%-3%, and 3%-4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan's atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz).
Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo
2015-01-01
In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm−1 for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%–3%, and 3%–4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan’s atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz). PMID:26543240
NASA Astrophysics Data System (ADS)
Dziembowski, W.
Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.
NASA Astrophysics Data System (ADS)
Fletcher, N. H.; Tarnopolsky, A. Z.; Lai, J. C. S.
2002-03-01
Free rotational aerophones such as the bullroarer, which consists of a wooden slat whirled around on the end of a string, and which emits a loud pulsating roar, have been used in many ancient and traditional societies for ceremonial purposes. This article presents an experimental and theoretical investigation of this instrument. The aerodynamics of rotational behavior is elucidated, and relates slat rotation frequency to slat width and velocity through the air. Analysis shows that sound production is due to generation of an oscillating-rotating dipole across the slat, the role of the vortices shed by the slat being relatively minor. Apparent discrepancies between the behavior of a bullroarer slat and a slat mounted on an axle in a wind tunnel are shown to be due to viscous friction in the bearings of the wind-tunnel experiment.
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Cimino, Paola; Penocchio, Emanuele; Puzzarini, Cristina
2015-09-01
The structures and relative stabilities as well as the rotational and vibrational spectra of the three low-energy conformers of pyruvic acid (PA) have been characterized using a state-of-the-art quantum-mechanical approach designed for flexible molecules. By making use of the available experimental rotational constants for several isotopologues of the most stable PA conformer, Tc-PA, the semiexperimental equilibrium structure has been derived. The latter provides a reference for the pure theoretical determination of the equilibrium geometries for all conformers, thus confirming for these structures an accuracy of 0.001 Å and 0.1 deg for bond lengths and angles, respectively. Highly accurate relative energies of all conformers (Tc-, Tt-, and Ct-PA) and of the transition states connecting them are provided along with the thermodynamic properties at low and high temperatures, thus leading to conformational enthalpies accurate to 1 kJ mol(-1). Concerning microwave spectroscopy, rotational constants accurate to about 20 MHz are provided for the Tt- and Ct-PA conformers, together with the computed centrifugal-distortion constants and dipole moments required to simulate their rotational spectra. For Ct-PA, vibrational frequencies in the mid-infrared region accurate to 10 cm(-1) are reported along with theoretical estimates for the transitions in the near-infrared range, and the corresponding infrared spectrum including fundamental transitions, overtones, and combination bands has been simulated. In addition to the new data described above, theoretical results for the Tc- and Tt-PA conformers are compared with all available experimental data to further confirm the accuracy of the hybrid coupled-cluster/density functional theory (CC/DFT) protocol applied in the present study. Finally, we discuss in detail the accuracy of computational models fully based on double-hybrid DFT functionals (mainly at the B2PLYP/aug-cc-pVTZ level) that avoid the use of very expensive CC
Rotation of rigid Venus: a complete precession-nutation model
NASA Astrophysics Data System (ADS)
Cottereau, L.; Souchay, J.
2009-12-01
Context: With the increasing knowledge of the terrestrial planets due to recent space probes it is possible to model their rotation with increasing accuracy. Despite that fact, an accurate determination of Venus precession and nutation is lacking Aims: Although Venus rotation has been studied in several aspects, a full and precise analytical model of its precession-nutation motion remains to be constructed. We propose to determine this motion with up-to-date physical parameters of the planet Methods: We adopt a theoritical framework already used for a precise precession-nutation model of the Earth, based on a Hamiltonian formulation, canonical equations and an accurate development of the perturbing function due to the Sun. Results: After integrating the disturbing function and applying the canonical equations, we can evaluate the precession constant dot{Psi} and the coefficients of nutation, both in longitude and in obliquity. We get dot{Psi} = 4474farcs35/Jcy ± 66.5 , corresponding to a precession period of 28 965.10±437 years. This result, based on recent estimations of the Venus moment of inertia is significantly different from previous estimations. The largest nutation coefficient in longitude with an argument 2 LS (where LS is the longitude of the Sun) has a 2''19 amplitude and a 112.35 d period. We show that the coefficients of nutation of Venus due to its triaxiality are of the same order of amplitude as these values due to its dynamical flattening, unlike of the Earth, for which they are negligible. Conclusions: We have constucted a complete theory of the rotation of a rigid body applied to Venus, with up-to-date determinations of its physical and rotational parameters. This allowed us to set up a new and better constrained value of the Venus precession constant and to calculate its nutation coefficients for the first time.
NASA Technical Reports Server (NTRS)
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)
1995-01-01
We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.
Solar constant secular changes
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Orosz, Jerome A.
1990-01-01
A recent model for solar constant secular changes is used to calculate a 'proxy' solar constant for: (1) the past four centuries, based upon the sunspot record, (2) the past nine centuries, based upon C-14 observations and their relation to solar activity, and (3) the next decade, based upon a dynamo theory model for the solar cycle. The proxy solar constant data is tabulated as it may be useful for climate modelers studying global climate changes.
Optical constants of concentrated aqueous ammonium sulfate.
NASA Technical Reports Server (NTRS)
Remsberg, E. E.
1973-01-01
Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.
Nayak, Malaya K.; Chaudhuri, Rajat K.
2011-02-15
The spin-rotational Hamiltonian parameters A{sub ||} and A{sub perpendicular} for the BaF molecule are calculated using four-component relativistic spinors at the second-order many-body perturbation theory (MBPT) level via the Z-vector technique. The second-order MBPT is applied to assess the accuracy of the computed hyperfine-structure constants before studying the problem with the state-of-the-artcoupled cluster with single and double excitations (CCSD) method which is highly accurate but computationally more expensive than MBPT. The hyperfine-structure constants A and A{sub d} resulted from these calculations agree favorably well with experimental findings and with other correlated calculations. The convergence behavior of A and A{sub d} with respect to the number of active orbitals used in the perturbative calculations suggests that our estimated A and A{sub d} values should be accurate.
ERIC Educational Resources Information Center
Rom, Mark Carl
2011-01-01
Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…
Spatial and temporal variations of fundamental constants
NASA Astrophysics Data System (ADS)
Levshakov, S. A.; Agafonova, I. I.; Molaro, P.; Reimers, D.
2010-11-01
Spatial and temporal variations in the electron-to-proton mass ratio, μ, and in the fine-structure constant, α, are not present in the Standard Model of particle physics but they arise quite naturally in grant unification theories, multidimensional theories and in general when a coupling of light scalar fields to baryonic matter is considered. The light scalar fields are usually attributed to a negative pressure substance permeating the entire visible Universe and known as dark energy. This substance is thought to be responsible for a cosmic acceleration at low redshifts, z < 1. A strong dependence of μ and α on the ambient matter density is predicted by chameleon-like scalar field models. Calculations of atomic and molecular spectra show that different transitions have different sensitivities to changes in fundamental constants. Thus, measuring the relative line positions, Δ V, between such transitions one can probe the hypothetical variability of physical constants. In particular, interstellar molecular clouds can be used to test the matter density dependence of μ, since gas density in these clouds is ~15 orders of magnitude lower than that in terrestrial environment. We use the best quality radio spectra of the inversion transition of NH3 (J,K)=(1,1) and rotational transitions of other molecules to estimate the radial velocity offsets, Δ V ≡ Vrot - Vinv. The obtained value of Δ V shows a statistically significant positive shift of 23±4stat±3sys m s-1 (1σ). Being interpreted in terms of the electron-to-proton mass ratio variation, this gives Δμ/μ = (22±4stat±3sys)×10-9. A strong constraint on variation of the quantity F = α2/μ in the Milky Way is found from comparison of the fine-structure transition J=1-0 in atomic carbon C i with the low-J rotational lines in carbon monoxide 13CO arising in the interstellar molecular clouds: |Δ F/F| < 3×10-7. This yields |Δ α/α| < 1.5×10-7 at z = 0. Since extragalactic absorbers have gas densities
Rotational excitation of CO by collisions with He, H, and H2 under conditions in interstellar clouds
NASA Technical Reports Server (NTRS)
Green, S.; Thaddeus, P.
1976-01-01
Cross sections for rotational excitation of small molecules by low-energy collisions with helium and hydrogen can currently be obtained via accurate numerical solution of the quantum equations that describe both intermolecular forces and collision dynamics. The relevant methods are discussed in some detail and applied to compute excitation rates for carbon monoxide. These calculations also predict collision-induced spectral pressure-broadening constants which are in excellent agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Zou, Luyao; Widicus Weaver, Susanna L.
2016-06-01
Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2012-01-01
The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies
NASA Astrophysics Data System (ADS)
1995-08-01
about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the
Fundamental Physical Constants
National Institute of Standards and Technology Data Gateway
SRD 121 CODATA Fundamental Physical Constants (Web, free access) This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.
NASA Astrophysics Data System (ADS)
Kissin, Yevgeni; Thompson, Christopher
2015-07-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
NASA Technical Reports Server (NTRS)
1979-01-01
In aircraft turbine engine research, certain investigations require extremely precise measurement of the position of a rotating part, such as the rotor, a disc-like part of the engine's compressor which revolves around a shaft at extremely high speeds. For example, in studies of airflow velocity within a compressor, researchers need to know-for data correlation the instantaneous position of a given spot on the rotor each time a velocity measurement is made. Earlier methods of measuring rotor shaft angle required a physical connection to the shaft, which limited the velocity of the rotating object.
Constraints on Titan rotation from Cassini radar
NASA Astrophysics Data System (ADS)
Bills, B. G.; Stiles, B. W.; Kirk, R. L.
2014-12-01
We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective
On the black hole limit of rotating discs of charged dust
NASA Astrophysics Data System (ADS)
Breithaupt, Martin; Liu, Yu-Chun; Meinel, Reinhard; Palenta, Stefan
2015-07-01
Investigating the rigidly rotating disc of dust with constant specific charge, we find that it leads to an extreme Kerr-Newman black hole in the ultra-relativistic limit. A necessary and sufficient condition for a black hole limit is, that the electric potential in the co-rotating frame is constant on the disc. In that case certain other relations follow. These relations are reviewed with a highly accurate post-Newtonian expansion. Remarkably it is possible to survey the leading order behaviour close to the black hole limit with the post-Newtonian expansion. We find that the disc solution close to that limit can be approximated very well by a ‘hyperextreme’ Kerr-Newman solution with the same gravitational mass, angular momentum and charge.
Rotational spectrum of tryptophan
Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.
2014-05-28
The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.
Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and controllability
NASA Astrophysics Data System (ADS)
Meshkati, Farshad; Fu, Henry Chien
2014-12-01
Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.
Rotational spectra of the X 2Sigma(+) states of CaH and CaD
NASA Technical Reports Server (NTRS)
Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.
1993-01-01
The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.
Space Shuttle astrodynamical constants
NASA Technical Reports Server (NTRS)
Cockrell, B. F.; Williamson, B.
1978-01-01
Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.
Reaching during virtual rotation: context specific compensations for expected coriolis forces
NASA Technical Reports Server (NTRS)
Cohn, J. V.; DiZio, P.; Lackner, J. R.
2000-01-01
Subjects who are in an enclosed chamber rotating at constant velocity feel physically stationary but make errors when pointing to targets. Reaching paths and endpoints are deviated in the direction of the transient inertial Coriolis forces generated by their arm movements. By contrast, reaching movements made during natural, voluntary torso rotation seem to be accurate, and subjects are unaware of the Coriolis forces generated by their movements. This pattern suggests that the motor plan for reaching movements uses a representation of body motion to prepare compensations for impending self-generated accelerative loads on the arm. If so, stationary subjects who are experiencing illusory self-rotation should make reaching errors when pointing to a target. These errors should be in the direction opposite the Coriolis accelerations their arm movements would generate if they were actually rotating. To determine whether such compensations exist, we had subjects in four experiments make visually open-loop reaches to targets while they were experiencing compelling illusory self-rotation and displacement induced by rotation of a complex, natural visual scene. The paths and endpoints of their initial reaching movements were significantly displaced leftward during counterclockwise illusory rotary displacement and rightward during clockwise illusory self-displacement. Subjects reached in a curvilinear path to the wrong place. These reaching errors were opposite in direction to the Coriolis forces that would have been generated by their arm movements during actual torso rotation. The magnitude of path curvature and endpoint errors increased as the speed of illusory self-rotation increased. In successive reaches, movement paths became straighter and endpoints more accurate despite the absence of visual error feedback or tactile feedback about target location. When subjects were again presented a stationary scene, their initial reaches were indistinguishable from pre
Constant potential pulse polarography
Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.
1976-01-01
The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.
Absolute radiometry and the solar constant
NASA Technical Reports Server (NTRS)
Willson, R. C.
1974-01-01
A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).
A phenomenological treatment of rotating turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.
NASA Astrophysics Data System (ADS)
Itano, Wayne M.; Ramsey, Norman F.
1993-07-01
The paper discusses current methods for accurate measurements of time by conventional atomic clocks, with particular attention given to the principles of operation of atomic-beam frequency standards, atomic hydrogen masers, and atomic fountain and to the potential use of strings of trapped mercury ions as a time device more stable than conventional atomic clocks. The areas of application of the ultraprecise and ultrastable time-measuring devices that tax the capacity of modern atomic clocks include radio astronomy and tests of relativity. The paper also discusses practical applications of ultraprecise clocks, such as navigation of space vehicles and pinpointing the exact position of ships and other objects on earth using the GPS.
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Dielectric Constant of Suspensions
NASA Astrophysics Data System (ADS)
Mendelson, Kenneth S.; Ackmann, James J.
1997-03-01
We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.
Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
Rotational Energy Transfer in N2
NASA Technical Reports Server (NTRS)
Huo, Winifred M.
1994-01-01
Using the N2-N2 intermolecular potential of van der Avoird et al. rotational energy transfer cross sections have been calculated using both the coupled state (CS) and infinite order sudden (IOS) approximations. The rotational energy transfer rate constants at 300 K, calculated in the CS approximation, are in reasonable agreement with the measurements of Sitz and Farrow. The IOS approximation qualitatively reproduces the dependence of the rate constants on the rotational quantum numbers, but consistently overestimates their magnitudes. The treatment of exchange symmetry will be discussed.
Vibration-rotation-tunneling dynamics in small water clusters
Pugliano, N.
1992-11-01
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.
Vibration-rotation-tunneling dynamics in small water clusters
Pugliano, N.
1992-11-01
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm{sup {minus}1} intermolecular vibration of the water dimer-d{sub 4}. Each of the VRT subbands originate from K{sub a}{double_prime}=0 and terminate in either K{sub a}{prime}=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A{prime} rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K{sub a}{prime} quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a{prime} symmetry, and the vibration is assigned as the {nu}{sub 12} acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D{sub 2}O-DOH isotopomer.
Energy Science and Technology Software Center (ESTSC)
2005-06-20
This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).
Estimating extragalactic Faraday rotation
NASA Astrophysics Data System (ADS)
Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.
2015-03-01
Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly
NASA Astrophysics Data System (ADS)
Deeley, C. M.
1987-04-01
Vibration-rotation spectra of the three fundamental vibrations of D 16O 35Cl have been measured at a resolution of 0.01 cm -1 to determine vibration-rotation constants. From these results values for the equilibrium rotational constants have been established and used, in conjunction with the equilibrium rotational constants for H 16O 35Cl (C. M. Deeley and I. M. Mills, J. Mol. Spectrosc.114, 368-376 (1985)), to determine the equilibrium structure of hypochlorous acid.
Ng, Yee-Hong; Bettens, Ryan P A
2016-03-01
Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations. PMID:26835785
Molecular structure, spectral constants, and fermi resonances in chlorine nitrate
NASA Astrophysics Data System (ADS)
Petkie, Douglas T.; Butler, Rebecca A. H.; Helminger, Paul; De Lucia, Frank C.
2004-06-01
Chlorine nitrate has two low-lying vibrational modes that lead to a series of Fermi resonances in the 9 υ97 υ7 family of levels that include the 9 2⇔7 1 and 9 3⇔7 19 1 dyads and the 9 4⇔9 27 1⇔7 2 and 9 5⇔9 37 1⇔9 17 2 triads. These states, along with the ground and 9 1 vibrational states, have been previously analyzed with millimeter and submillimeter wave spectroscopy and provide a substantial body of data for the investigation of these resonances and their impact on calculated spectroscopic constants and structural parameters. Due to fitting indeterminacies, these previous analyses did not include the main Fermi resonance interaction term. Consequently, the fitted rotational constants are linear combinations of the unmixed rotational constants of the basis vibrational states. In this paper, we have calculated the contributions of the Fermi resonances to the observed rotational constants in a model that determines the vibrational-rotational constants, the Fermi term and the mixing between interacting vibrational states, the cubic potential constant ( φ997) that connects interacting levels through a Fermi resonance, and the inertial defects. These results agree with predictions from ab initio and harmonic force field calculations and provide further experimental information for the determination of the fundamental molecular properties of chlorine nitrate.
Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe
2011-02-15
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.
Renormalization of Newton's constant
NASA Astrophysics Data System (ADS)
Falls, Kevin
2015-12-01
The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.
The spectroscopic constants and anharmonic force field of AgSH: An ab initio study.
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang
2016-07-01
The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH. PMID:27085293
The spectroscopic constants and anharmonic force field of AgSH: An ab initio study
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang
2016-07-01
The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH.
Varying constants quantum cosmology
Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl
2015-02-01
We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
NASA Astrophysics Data System (ADS)
Jackson, Neal
2015-09-01
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72-74 km s^-1 Mpc^-1, with typical errors of 2-3 km s^-1 Mpc^-1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s^-1 Mpc^-1 and typical errors of 1-2 km s^-1 Mpc^-1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
NASA Astrophysics Data System (ADS)
Sinclair, Wayne E.; Pfluger, David; Linnartz, Harold; Maier, John P.
1999-01-01
The spectrum of the Ã 2Πg←X˜2Πu 000 band system of the triacetylene cation and isotopic derivatives DC6H+ and C6D2+ have been studied at Doppler-limited resolution using frequency modulation absorption spectroscopy. The ions were generated in a liquid-nitrogen-cooled hollow cathode discharge incorporated in a White cell. A discharge modulation in combination with the frequency modulation technique was used to enhance the detection sensitivity. Analyses of the rotational structure yield accurate rotational and spin-orbit interaction constants of triacetylene cation in the two electronic states and information on its geometry.
Rotation frequency relay for hydrogenerator
Matveev, V.V.
1980-09-01
The rotation frequency relay (RFR) is one of the most critical elements of automatic control system of the hydrogenerators. Accurate fixing of braking, subsynchronous and acceleration angular speeds contribute to operational reliability of many units of mechanical and electrical parts of the hydrogenerator and vise versa. Both experimental and theoretical investigations were performed on hydrogenerators. It was concluded that the rotation frequency relay, where an integrated voltage of the regulator generator is used as reference voltage and the elements of comparison are executed on the operating amplifiers, has a fairly high accuracy and stability of settings, and practically does not require regulation for manufacture and operation.
Space station rotational equations of motion
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Carroll, S. N.
1985-01-01
Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.
Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C
2015-11-14
In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations. PMID:26567669
The effect of rotations on Michelson interferometers
Maraner, Paolo
2014-11-15
In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.
Current status of quantitative rotational spectroscopy for atmospheric research
NASA Technical Reports Server (NTRS)
Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois
2004-01-01
Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.
NASA Technical Reports Server (NTRS)
1988-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.
Effective optical constants of anisotropic materials
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.
1980-01-01
The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.
RNA structure and scalar coupling constants
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
NASA Astrophysics Data System (ADS)
Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro
2015-12-01
High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 61 levels of C6H6 or C6D6 are split into 6a1 and 6b1 in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.
Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro
2015-12-28
High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 6(1) levels of C6H6 or C6D6 are split into 6a(1) and 6b(1) in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms. PMID:26723667
Hydrodynamic interactions between rotating helices.
Kim, MunJu; Powers, Thomas R
2004-06-01
Escherichia coli bacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia, and there are significant hydrodynamic interactions between nearby helices. These interactions cause the flagella to bundle during the "runs" of bacterial chemotaxis. Here we use slender-body theory to solve for the flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or repulsive force between the helices. PMID:15244620
New model accurately predicts reformate composition
Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )
1994-01-31
Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.
Accurate colorimetric feedback for RGB LED clusters
NASA Astrophysics Data System (ADS)
Man, Kwong; Ashdown, Ian
2006-08-01
We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.
Balance in a rotating artificial gravity environment
NASA Technical Reports Server (NTRS)
Soeda, Kazuhiro; DiZio, Paul; Lackner, James R.
2003-01-01
When subjects stand at the center of a fully enclosed room that is rotating at constant velocity, their natural postural sway generates Coriolis forces that destabilize their center of mass and head. We quantitatively assessed how exposure to constant velocity rotation at 10 rpm affected postural control. Twelve subjects stood in a heel-to-toe stance in the rotating room. Each test session involved three phases: (1) pre-rotation, (2) per-rotation, and (3) post-rotation. In each phase, subjects were tested in both eyes open and eyes closed conditions. Four measures were used to characterize center of mass movement and head movement: mean sway amplitude, total power, mean power frequency, and frequency of maximum power. Each measure was computed for anterior-posterior and medial-lateral sway. Both anterior-posterior and medial-lateral head and center of mass sway during rotation had significantly greater mean sway amplitude and total power compared with pre- and post-rotation values. Mean power frequency and frequency of maximum power were little affected. Eyes open conditions were significantly more stable in all test phases than eyes-closed, but vision did not completely suppress the effects of rotation. The greatest effect of rotation was in the eyes-closed condition with mean sway amplitude and total power increasing more than twofold. Inverted pendulum sway was maintained in all phases of both test conditions. No aftereffects of rotation were present after the four 25-s exposures each subject received. We expect that with longer exposure periods and with active generation of body sway subjects would both adapt to rotation and exhibit post-rotary aftereffects.
Acoustic streaming flows and sample rotation control
NASA Astrophysics Data System (ADS)
Trinh, Eugene
1998-11-01
Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS
Makarov, Valeri V.; Efroimsky, Michael E-mail: michael.efroimsky@usno.navy.mil
2013-02-10
We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrade model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.
No Pseudosynchronous Rotation for Terrestrial Planets and Moons
NASA Astrophysics Data System (ADS)
Makarov, Valeri V.; Efroimsky, Michael
2013-02-01
We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrade model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.
Alternating-current relaxation of a rotating metallic particle
NASA Astrophysics Data System (ADS)
Guo-Xi, Nie; Wen-Jia, Tian; Ji-Ping, Huang; Guo-Qing, Gu
2016-06-01
Based on a first-principles approach, we establish an alternating-current (AC) relaxation theory for a rotating metallic particle with complex dielectric constant . Here is the real part, the conductivity, ω 0 the angular frequency of an AC electric field, and . Our theory yields an accurate interparticle force, which is in good agreement with the existing experiment. The agreement helps to show that the relaxations of two kinds of charges, namely, surface polarized charges (described by ) and free charges (corresponding to ), contribute to the unusually large reduction in the attracting interparticle force. This theory can be adopted to determine the relaxation time of dynamic particles in various fields. Project supported by the National Natural Science Foundation of China (Grant No. 11222544), the Fok Ying Tung Education Foundation (Grant No. 131008), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0121), and the National Key Basic Research Program of China (Grant No. 2011CB922004).
Enhancement in Verdet Constant of an e-field oriented polymer nanocomposite
NASA Astrophysics Data System (ADS)
Kumar, Ganapathy
Magneto-optical (MO) materials based on the Faraday effect have a variety of applications in current sensing, magneto-optic current transformers, optical modulation, lasers and magneto-optical imagery due to their wide operation bandwidth, immunity to electromagnetic interference (EMI), tunability for high measurement accuracy and inexpensive development costs. Magneto-optic current transformers (MOCT) are potential replacements for conventional current transformers due to the MOCT's almost linear response, accurate output and the absence of core saturation which is lacking in the latter. Rare earth element based garnets used to design the sensors in an MOCT still suffer from saturated response for high values of current, despite expensive development. Contemporary advancements in nanotechnology have been sought to tackle this issue to yield relatively inexpensive and accurate sensors. Optical glasses and polymers doped with nanoparticles and quantum dots have proven to be highly responsive and suitable as MO current sensors. This research describes an effort to use an optical quality polymer, phenyl methyl vinyl siloxane doped with hematite and maghemite nanoparticles for the development of an optical current sensor with enhanced MO sensitivity or Verdet Constant by orienting the doped nanoparticles using externally applied DC electric fields. E-field based orientation of nanoparticles in a polymer creates dipole moments on the nanoparticles, producing a torque that tends to align them with the applied field. From a boundary value formulation of this torque, it was observed that optimal orientation could be achieved when the nanoparticle major axis is at 45° to the applied electric fields. The samples of doped polymers were experimentally characterized using small angle x-ray scattering, electron microscopy, Faraday rotation and evaluation of Verdet constant. The Verdet constants were measured with respect to the applied electric field strength and field duration
Stimulated rotational Raman scattering
NASA Astrophysics Data System (ADS)
Parazzoli, C. G.; Rafanelli, G. L.; Capps, D. M.; Drutman, C.
1989-03-01
The effect of Stimulated Rotational Raman Scattering (SRRS) processes on high energy laser directed energy weapon systems was studied. The program had 3 main objectives; achieving an accurate description of the physical processes involved in SRRS; developing a numerical algorithm to confidently evaluate SRRS-induced losses in the propagation of high energy laser beams in the uplink and downlink segments of the optical trains of various strategic defense system scenarios; and discovering possible methods to eliminate, or at least reduce, the deleterious effects of SRRS on the energy deposition on target. The following topics are discussed: the motivation for the accomplishments of the DOE program; the Semiclassical Theory of Non-Resonant SRRS for Diatomic Homonuclear Molecules; and then the following appendices; Calculation of the Dipole Transition Reduced Matrix Element, Guided Tour of Hughes SRRS Code, Running the Hughes SRRS Code, and Hughes SRRS Code Listing.
Beiu, V.
1997-04-01
In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.
NASA Technical Reports Server (NTRS)
Stevens, F W
1924-01-01
This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.
ROTATIONAL INSTABILITIES AND CENTRIFUGAL HANGUP
K. NEW; J. CENTRELLA
2000-12-01
One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An n=1.5 polytrope with the Maclaurin rotation law will encounter the m=2 bar instability at T/{vert_bar}W{vert_bar} {ge} 0.27. Our results indicate that the remnant of this in-stability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in n=3.33 polytropes with the j-constant rotation law at T/{vert_bar}W{vert_bar} {ge} 0:14. In this case, the dominant mode of instability is m=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.
Deconvolving Current from Faraday Rotation Measurement
Stephen E. Mitchell
2008-02-01
In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters, such as the Faraday fiber’s Verdet constant and number of loops in the sensor, are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform, which reveals much of the Faraday rotation measurement’s implicit information necessary for unfolding the dynamic current measurement.
... doctors because of a rotator cuﬀ problem. A torn rotator cuﬀ will weaken your shoulder. This means ... or more of the rotator cuﬀ tendons is torn, the tendon no longer fully attaches to the ...
... others can be very painful. Treatment for a torn rotator cuff depends on age, health, how severe ... is, and how long you've had the torn rotator cuff. Treatment for torn rotator cuff includes: ...
... days, such as in painting and carpentry Poor posture over many years Aging Rotator cuff tears TEARS ... also help prevent rotator cuff problems. Practice good posture to keep your rotator cuff tendons and muscles ...
Stephens, Susanna L; Tew, David P; Walker, Nicholas R; Legon, Anthony C
2016-07-28
The new compound H3PAgI has been synthesized in the gas phase by means of the reaction of laser-ablated silver metal with a pulse of gas consisting of a dilute mixture of ICF3 and PH3 in argon. Ground-state rotational spectra were detected and assigned for the two isotopologues H3P(107)AgI and H3P(109)AgI in their natural abundance by means of a chirped-pulse, Fourier-transform, microwave spectrometer. Both isotopologues exhibit rotational spectra of the symmetric-top type, analysis of which led to accurate values of the rotational constant B0, the quartic centrifugal distortion constants DJ and DJK, and the iodine nuclear quadrupole coupling constant χaa(I) = eQqaa. Ab initio calculations at the explicitly-correlated level of theory CCSD(T)(F12*)/aug-cc-pVDZ confirmed that the atoms PAg-I lie on the C3 axis in that order. The experimental rotational constants were interpreted to give the bond lengths r0(PAg) = 2.3488(20) Å and r0(Ag-I) = 2.5483(1) Å, in good agreement with the equilibrium lengths of 2.3387 Å and 2.5537 Å, respectively, obtained in the ab initio calculations. Measures of the strength of the interaction of PH3 and AgI (the dissociation energy De for the process H3PAgI = H3P + AgI and the intermolecular stretching force constant FPAg) are presented and are interpreted to show that the order of binding strength is H3PHI < H3PICl < H3PAgI for these metal-bonded molecules and their halogen-bonded and hydrogen-bonded analogues. PMID:27354204
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.
2013-01-01
It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.
Rotational Spectroscopy of Isocyanic Molecules: Allyl Isocyanide and Diisocyanomethane
NASA Astrophysics Data System (ADS)
Motiyenko, R. A.; Margules, L.; Haykal, I.; Huet, T. R.; Cocinero, E. J.; Ecija, P.; Fernandez, J. A.; Castano, F.; Lesarri, A.; Guillemin, J.-C.
2012-06-01
Isocyanides are less stable isomers of nitriles and some of them have already been observed in the interstellar medium (HNC, CH_3NC, HCCNC). But still there exists a lack of experimental spectroscopic data on simple isocyanic molecules that can represent potential astrophysical interest. In this view we have performed high resolution studies of rotational spectra of allyl isocyanide (CH_2=CH--CH_2--NC) and diisocyanomethane (CN--CH_2--NC). The rotational spectra of allyl isocyanide have been measured in the frequency range 6 -- 18 GHz by means of FTMW spectrometer in Bilbao and in the frequency range 150 -- 945 GHz by means of classic absorption spectroscopy in Lille. Two stable confomers of allyl isocyanide have been observed in both series of measurements. In addition, all 13C-monosubstituted isotopologues and 15N isotopologues were detected in natural abundance. Due to much lower kinetic stability the rotational spectrum of diisocyanomethane has been measured only in absorption using the Lille spectrometer. The spectral assignments have been supported by high-level quantum chemical calculations. For both molecules accurate sets of rotational and centrifugal distortion constants (up to the octics) have been produced. As a result, reliable predictions of transitions frequencies suitable for astrophysical detection have been obtained for both molecules. Finally, the effective and substitution structures were determined for the two conformers of allyl isocyanide, comparing the result with ab initio data. This work is supported by Centre Nationale d'Etudes Spatiales (CNES), Action sur Projet Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054. Spanish part acknowledges funding from the MICINN and the MINECO.
Straylight correction to Doppler rotation measurements
NASA Astrophysics Data System (ADS)
Andersen, B. N.
1985-07-01
The correction of the Pierce and LoPresto (1984) Doppler data on the plasma rotation rate for stray light increases the observed equatorial rotation velocity from 1977 to 2004 m/sec. This correction has an uncertainty of approximately 10 m/sec, because the accurate form of the stray light function is not available. The correction is noted to be largest for the blue lines, in virtue of increased scattering, and for the weak lines, due to the limb effect.
Planck Constant Determination from Power Equivalence
NASA Astrophysics Data System (ADS)
Newell, David B.
2000-04-01
Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.
Universal constants and equations of turbulent motion
NASA Astrophysics Data System (ADS)
Baumert, Helmut
2011-11-01
For turbulence at high Reynolds number we present an analogy with the kinetic theory of gases, with dipoles made of vortex tubes as frictionless, incompressible but deformable quasi-particles. Their movements are governed by Helmholtz' elementary vortex rules applied locally. A contact interaction or ``collision'' leads either to random scatter of a trajectory or to the formation of two likewise rotating, fundamentally unstable whirls forming a dissipative patch slowly rotating around its center of mass, the latter almost at rest. This approach predicts von Karman's constant as 1/sqrt(2 pi) = 0.399 and the spatio-temporal dynamics of energy-containing time and length scales controlling turbulent mixing [Baumert 2005, 2009]. A link to turbulence spectra was missing so far. In the present contribution it is shown that the above image of dipole movements is compatible with Kolmogorov's spectra if dissipative patches, beginning as two likewise rotating eddies, evolve locally into a space-filling bearing in the sense of Herrmann [1990], i.e. into an ``Apollonian gear.'' Its parts and pieces are are frictionless, excepting the dissipative scale of size zero. Our approach predicts the dimensionless pre-factor in the 3D Eulerian wavenumber spectrum (in terms of pi) as 1.8, and in the Lagrangian frequency spectrum as the integer number 2. Our derivations are free of empirical relations and rest on geometry, methods from many-particle physics, and on elementary conservation laws only. Department of the Navy Grant, ONR Global
NNLOPS accurate associated HW production
NASA Astrophysics Data System (ADS)
Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia
2016-06-01
We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.
Ultrasound determination of rotator cuff tear repairability
Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa
2015-01-01
Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996